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Last Lecture: Reputation under Perfect Monitoring

Commitment Payoff Theorem: Fudenberg and Levine (1989)

For every ε > 0, there exists T ∈ N,

such that when π attaches prob more than ε to commitment type a∗1 ∈ Ωm,

rational P1’s payoff in any Bayes Nash Equilibrium is at least:

(1− δT)u1 + δTv∗1(a∗1).

The proof uses an elegant Bayesian learning argument:

• If rational P1 deviates and imitates commitment type a∗1 ,

then there is a uniform upper bound T on the number of periods s.t. P2
does not best reply to a∗1 .

• The upper bound T does not depend on δ.
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Today: Reputation Building under Imperfect Monitoring

What happens when P2s cannot perfectly observe whether P1 has honored
his commitment?

• the public signal is noisy,

• commitment action is mixed,

• extensive-form stage game, future P2s observe the terminal node,

• P1 observes an i.i.d. state before choosing his action.

Questions:

• How much payoff can a patient player guarantee?

• What is the maximal payoff a patient player can receive?
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Recall: Model

• Time: t = 0, 1, 2, ...

• Long-lived player 1 (P1),
vs an infinite sequence of short-lived player 2s (P2).

• Players move simultaneously in the stage game: a1 ∈ A1, a2 ∈ A2.

* Actions in period t: a1,t and a2,t.

• Stage-game payoffs: u1(a1, a2), u2(a1, a2).

* P1’s discounted average payoff :
∑∞

t=0(1− δ)δtu1(a1,t, a2,t).

• Public signals: y ∈ Y , with ρ(y|a1, a2) the probability of y.

* yt: public signal in period t.
* Last lecture: Y = A1 × A2 and ρ(a1, a2|a1, a2) = 1.
* Now: general monitoring structure ρ.
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Recall: Model

P1’s type is perfectly persistent, draw from Ω ≡ {ωr}
⋃

Ωm.

1. ωr is the rational type.

Can flexibly choose actions in order to maximize payoffs.

2. Each α∗1 ∈ Ωm represents a commitment type, with Ωm ⊂ ∆(A1).

Does not care about payoffs and plays α∗1 in every period.

P2’s prior belief: π ∈ ∆(Ω).

What can players observe?

• Player 1’s history: ht
1 ∈ Ht

1 ≡ Ω× {A1 × A2 × Y}t.

• Player 2’s history: ht
2 ∈ Ht

2 ≡ {A2 × Y}t.

Assumptions: A1,A2,Y and Ωm are finite, π has full support.
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What can go wrong under imperfect monitoring?

A simple example: One commitment action H.

• Suppose Y ≡ {G,B} and ρ(G|H) = ρ(G|L).

What is player 1’s equilibrium payoff when commitment prob is small?

– T N
H 2, 1 −2, 0
L 3,−1 0, 0

Bottomline: We need a general formula for the payoff lower bound (take the
monitoring structure into account).



Model Generalized Best Reply Payoff Lower Bound Proof Comments Rate of Convergence

A More Permissive Notion of Best Reply

Let || · || be the total variation distance.

Definition: ε-confirming best reply

α2 ∈ ∆(A2) is an ε-confirming best reply to α1 ∈ ∆(A1) if there exists
α′1 ∈ ∆(A1) such that

1. α2 best replies to α′1,

2.
∥∥∥ρ(·|α1, α2)− ρ(·|α′1, α2)

∥∥∥ ≤ ε.
Idea: α2 is P2’s best reply to something that is hard to distinguish from α1.

• If yt is uninformative, then any undominated action is an ε-confirming
best reply to any α1 ∈ ∆(A1).

• If yt is more informative, then the set of ε-confirming best reply to any
given α1 shrinks.
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Properties of ε-Confirming Best Reply

Let Bε(α1) ⊂ ∆(A2) be the set of P2’s ε-confirming best replies to α1.

Properties of ε-Confirming Best Reply:

1. If ε′ < ε, then Bε′(α1) ⊂ Bε(α1).

2. limε↓0 Bε(α1) = B0(α1) (why?).

3. For every ε ≥ 0, BR2(α1) ⊂ Bε(α1).

Definition: Statistical Identification

P1’s actions are statistically identified if for every α2 ∈ ∆(A2),

{ρ(·|a1, α2)}a1∈A1 are linearly independent vectors.

4. If P1’s actions are statistically identified, then BR2(α1) = B0(α1), ∀α1.
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Statement of Payoff Lower Bound Result

Payoff Lower Bound Result: Fudenberg and Levine (1992)

For every ε > 0, there exists δ ∈ (0, 1)

s.t. when δ > δ and π attaches prob more than ε to commitment type α∗1 ,

rational P1’s payoff in any BNE is at least:

min
α2∈Bε(α∗1 )

u1(α∗1 , α2)− ε.

1. Fix the type distribution and let δ → 1, P1’s payoff lower bound is:

lim
ε↓0

min
α2∈Bε(α∗1 )

u1(α∗1 , α2) = min
a2∈B0(α∗1 )

u1(α∗1 , α2).

2. When P1’s actions are statistically identified, the value of the red
equation equals P1’s commitment payoff from α∗1 , namely,

min
α2∈BR2(α∗1 )

u1(α∗1 , α2).



Model Generalized Best Reply Payoff Lower Bound Proof Comments Rate of Convergence

Proof of Payoff Lower Bound Result

Three approaches:

1. Fudenberg and Levine (1992): Doob’s upcrossing inequality.

2. Sorin (1999): merging between prob measures (Blackwell and Dubins).

3. Gossner (2011): relative entropy.
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Detour: Relative Entropy

Let X be a countable set, and let p, q ∈ ∆(X).

Relative entropy/KL-divergence of q with respect to p:

d(p||q) ≡
∑
x∈X

p(x) log
p(x)

q(x)
.

Intuitively, it measures an observer’s expected error in predicting x ∈ X
using the distribution q when the true distribution is p.

Thought experiment: suppose we have n i.i.d. draws from X with true
distribution p but an observer’s believed distribution is q.

• Log likelihood ratio of a given sample is
∑

x∈X nx log p(x)
q(x) .

• As n→∞, average log likelihood ratio goes to d(p||q).
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Why should we care about entropy?

Suppose σ is the equilibrium being played, but player 1 deviates and plays
the equilibrium strategy of type ω.

• Let Pσ ∈ ∆{Y × A2}∞ be the distribution over player 2s’ observations
in the entire game.

• Let Pω,σ ∈ ∆{Y × A2}∞ be the distribution over player 2s’
observations conditional on knowing that player 1’s type is ω.

Player 2’s predictions may have some errors.

• However, her prediction errors of the entire game must be bounded.

Why? Pσ =
∑
ω∈Ω π(ω)Pω,σ, which implies that:

d
(

Pω,σ
∥∥∥Pσ

)
≤ − logπ(ω)︸ ︷︷ ︸

a bounded number

.
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One-Step Ahead Prediction Error

Bounding the prediction error in the entire game is not that useful.

• What matters for P2’s incentives is her prediction in each period.

P2’s best reply problem at history ht
2:

• She has some belief about how P1 behaves in period t, say α1(ht
2).

She plays a best reply to α1(ht
2).

• α1(ht
2) and this best reply induce pσ|ht

2
∈ ∆(Y).

• Let pω,σ|ht
2
∈ ∆(Y) be the signal distribution induced by type ω.

• If ||pω,σ|ht
2
− pσ|ht

2
|| ≤ ε, then P2 plays an ε-confirming best reply to

type ω’s action at ht
2.

Two problems:

1. We only know the total prediction error, not the one in each period.

2. We need to convert relative entropy to total variation distance.
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Chain Rule

Let X and Y be two sets and let p, q ∈ ∆(X × Y).

Let pX, qX, pY , qY be the marginal distributions on X and Y .

Chain rule:

d(p||q) = d(pX||qX) + EpX

[
d
(

pY(·|x)
∥∥∥qY(·|x)

)]
.

How to apply this:

• Partition h∞2 into ∪+∞
t=0 {a2,t, yt}.

Apply the chain rule iteratively, we have

− logπ(ω) ≥ d
(

Pω,σ
∥∥∥Pσ

)
=

∞∑
t=0

EPω,σ

[
d
(

pω,σ|ht
2

∥∥∥pσ|ht
2

)
︸ ︷︷ ︸

1-step-ahead prediction error

]
.
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Pinsker’s Inequality

An inequality that connects relative entropy with total variation distance:

‖p− q‖ ≤
√

2d(p||q).

Implication: If d(p||q) ≤ ε2/2, then ||p− q|| ≤ ε.
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Putting Things Together

If

d
(

pω,σ|ht
2

∥∥∥pσ|ht
2

)
≤ ε2

2
,

then ∥∥∥pω,σ|ht
2
− pσ|ht

2

∥∥∥ ≤ ε,
and player 2 will play an ε-confirming best reply to type ω’s action at ht

2.

Since
∞∑

t=0

EPω,σ

[
d
(

pω,σ|ht
2

∥∥∥pσ|ht
2

)]
≤ − logπ(ω),

the expected number of periods in which d
(

pω,σ|ht
2

∥∥∥pσ|ht
2

)
≥ ε2

2 is no more
than:

T(ε, ω) ≡
⌈
− 2 logπ(ω)

ε2

⌉
.
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To Conclude the Proof

Let ω be commitment type α∗1 .

If rational P1 imitates commitment type α∗1 , then

1. In periods where d
(
pα∗1 ,σ|ht

2

∥∥pσ|ht
2

)
≤ ε2

2 , P1’s stage-game payoff
≥ minα2∈Bε(α∗1 ) u1(α∗1 , α2).

2. In expectation, there can be at most T(ε, α∗1 ) periods in which
d
(
pα∗1 ,σ|ht

2

∥∥pσ|ht
2

)
> ε2

2 .

In expectation, rational P1’s payoff by imitating commitment type α∗1 is at
least:

(1− δT(ε,α∗1 ))u1 + δT(ε,α∗1 ) min
α2∈Bε(α∗1 )

u1(α∗1 , α2).

This lower bound converges to minα2∈Bε(α∗1 ) u1(α∗1 , α2) as δ → 1.
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Payoff Upper Bound

Apply the above argument on the rational type’s equilibrium strategy:

d
(

Pωr,σ

∥∥∥Pσ
)

=

∞∑
t=0

EPωr,σ

[
d
(

pωr,σ|ht
2

∥∥∥pσ|ht
2

)]
︸ ︷︷ ︸

expected sum of prediction error under the strategy of type ωr

≤ − logπ(ωr).

Payoff Upper Bound Result: Fudenberg and Levine (1992)

For every ε > 0, there exists δ ∈ (0, 1)

s.t. when δ > δ and π attaches prob more than ε to the rational type,

rational P1’s payoff in any BNE is at most:

sup
α1∈∆(A1)

max
α2∈Bε(α1)

u1(α1, α2) + ε.
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Payoff Lower Bound & Upper Bound

Payoff lower bound for a patient player 1:

max
α∗1 ∈Ωm

{
min

α2∈B0(α∗1 )
u1(α∗1 , α2)

}
.

Payoff upper bound for a patient player 1:

sup
α1∈∆(A1)

{
max

α2∈B0(α1)
u1(α1, α2)

}
.

If actions are identified, and Ωm is rich enough, then under generic (u1, u2),

• Both the lower bound and the upper bound converge to P1’s (mixed)
Stackelberg payoff.

Reputation leads to a sharp prediction on patient player’s equilibrium payoff.
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Payoff Lower and Upper Bounds in Product Choice Game

A firm (P1) and a sequence of consumers (P2s).

– T N
H 2, 1 −1, 0
L 3,−1 0, 0

If there exists a commitment type that plays ( 1
2 + ε)H + ( 1

2 − ε)L, then

• patient P1’s payoff lower bound is close to 5
2 − ε.

Patient P1’s payoff upper bound is close to 5
2 .

Patient P1’s payoff is close to 5/2 in all equilibria.

This is not an equilibrium refinement. (Why?)
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Caveat: Lower and Upper Bounds

Lower and upper bounds are informative only when

• P1’s discount factor is close to 1.

• Actions are statistically identified.

Does not provide tight payoff bounds when δ is bounded away from 1.

• Significant weight is put on u1 in the payoff lower bound, and is put on
u1 in the payoff upper bound.

• P1 can steal info rent in the short run.

Payoff bounds is uninformative when actions are not identified.

• Ely and Välimäki (03): All equilibria attain the trivial lower bound.

• Example s.t. all equilibria attain the trivial upper bound?
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Tighten the Payoff Lower Bound

Our proof of the Fudenberg-Levine payoff lower bound:

1. Upper bound on the sum of divergence:

∞∑
t=1

Epα∗1

[
d
(

pα∗1 ,σ|ht
2

∥∥∥pσ|ht
2

)]
≤ − logπ(α∗1 ).

2. When d
(

pα∗1 |ht
2

∥∥∥pσ|ht
2

)
≤ ε2

2 , P2 plays an ε-confirmed best reply.

3. Expected number of periods s.t. d
(

pα∗1 |ht
2

∥∥∥pσ|ht
2

)
> ε2

2 is at most

T(ε, ω) ≡
⌈
− 2 logπ(ω)

ε2

⌉
.

Can we further tighten this bound?
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ε-Entropy Confirming Best Reply

Definition: ε-entropy confirming best reply

α2 is an ε-entropy confirming best reply to α1 if ∃ α′1 ∈ ∆(A1) s.t.

1. α2 ∈ BR2(α′1).

2. d
(
ρ(·|α1, α2)

∥∥∥ρ(·|α′1, α2)
)
≤ ε.

Let Be
ε(α1) be the set of ε-entropy confirming best replies against α1.

Pinkser’s inequality:
d(P||Q) ≥ 2||P− Q||2.

Connections:

• ε-entropy confirming best reply⇒
√
ε/2-confirming best reply.

Set of entropy confirming best reply is smaller, leading to tighter bounds.
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Payoff Lower Bound

Let
vα∗1 (ε) ≡ min

α2∈Be
ε(α
∗
1 )

u1(α∗1 , α2).

P1’s worst payoff when he plays α∗1 and P2 plays an ε-entropy confirming
best reply to α∗1 . (This is a decreasing function)

If d
(
pα∗1
∥∥pσ|ht

2

)
≤ ε, then P2’s action ∈ Be

ε(α
∗
1 ) and P1’s payoff ≥ vα∗1 (ε).

Let
ε(ht

2) ≡ d
(
pα∗1
∥∥pσ|ht

2

)
.

By playing α∗1 in every period, P1’s payoff is bounded from below by:

Epα∗1

[
(1− δ)

∞∑
t=0

δtvα∗1
(
ε(ht

2)
)]
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Minmax Problem

Think about the problem faced by adverse nature who chooses {ε(ht
2)}ht

2∈H2

in order to minimize:

Epα∗1

[
(1− δ)

∞∑
t=0

δtvα∗1
(
ε(ht

2)
)]
,

subject to a budget constraint on

Epα∗1

[
(1− δ)

∞∑
t=0

δtε(ht
2)
]
≤???
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Budget Constraint

What is the upper bound on Epα∗1

[
(1− δ)

∑∞
t=0 δ

tε(ht
2)
]
?

• we know that
∑T

t=0 ε(ht
2) ≤ − logπ(α∗1 ) for every T ∈ N ∪ {∞}.

For any bounded sequence {xt}t∈N, summation by parts gives

∞∑
t=0

δtxt = (1− δ)
∞∑

t=0

δt
t∑

s=0

xs.

Since
∑T

t=0 ε(ht
2) ≤ − logπ(α∗1 ) for every T ∈ N, we have

Epα∗1

[
(1− δ)

∞∑
t=0

δtε(ht
2)
]
≤ −(1− δ) logπ(α∗1 ).
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Minmax Problem

Think about the problem faced by adverse nature who chooses {ε(ht
2)}ht

2∈H2

in order to minimize:

Epα∗1

[
(1− δ)

∞∑
t=0

δtvα∗1
(
ε(ht

2)
)]
,

subject to a budget constraint on

Epα∗1

[
(1− δ)

∞∑
t=0

δtε(ht
2)
]
≤ −(1− δ) logπ(α∗1 ).

Let Vα∗1 (·) be the largest convex function below vα∗1 (·), the value of the
constrained minimization problem is at least:

Vα∗1

(
− (1− δ) logπ(α∗1 )

)
.

This gives a refined lower bound on P1’s equilibrium payoff.
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Payoff Upper Bound

Let
wα∗1 (ε) ≡ max

α2∈Be
ε(α
∗
1 )

u1(α∗1 , α2).

In words, P1’s best payoff when he plays α∗1 and P2 plays an ε-entropy
confirming best reply to α∗1 .

Let Wα∗1
(·) be the smallest concave function below wα∗1 (·), player 1’s payoff

is bounded from above by:

Wα∗1

(
− (1− δ) logπ(α∗1 )

)
.



Model Generalized Best Reply Payoff Lower Bound Proof Comments Rate of Convergence

Thursday

• Pedro will present Faingold (2020): How to generalize the payoff
bounds to environments with frequent interactions. (FL bound leads to
uninformative answers but the refined bounds lead to sharp predictions)

• I will talk about Ely-Valimaki (2003): Due to lack-of-identification,
FL’s payoff lower bound is trivial. Yet there are examples in which all
equilibria attain this trivial lower bound.
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