Model	Generalized Best Reply	Payoff Lower Bound	Proof	Comments	Rate of Convergence

Lecture 2: Commitment Payoff Theorem Long-Run Short-Run Models with Imperfect Monitoring

Harry PEI Department of Economics, Northwestern University

Spring Quarter, 2021

Last Lecture: Reputation under Perfect Monitoring

Commitment Payoff Theorem: Fudenberg and Levine (1989)

For every $\varepsilon > 0$, there exists $T \in \mathbb{N}$,

such that when π attaches prob more than ε to commitment type $a_1^* \in \Omega^m$,

rational P1's payoff in any Bayes Nash Equilibrium is at least:

$$(1-\delta^T)\underline{\boldsymbol{u}}_1+\delta^T\boldsymbol{v}_1^*(\boldsymbol{a}_1^*).$$

The proof uses an elegant Bayesian learning argument:

• If rational P1 deviates and imitates commitment type a_1^* ,

then there is a uniform upper bound *T* on the number of periods s.t. P2 does not best reply to a_1^* .

• The upper bound T does not depend on δ .

Today: Reputation Building under Imperfect Monitoring

What happens when P2s cannot perfectly observe whether P1 has honored his commitment?

- the public signal is noisy,
- commitment action is mixed,
- extensive-form stage game, future P2s observe the terminal node,
- P1 observes an i.i.d. state before choosing his action.

Questions:

- How much payoff can a patient player guarantee?
- What is the maximal payoff a patient player can receive?

Model	Generalized Best Reply	Payoff Lower Bound	Proof	Comments	Rate of Convergence
Recall	I: Model				

- Time: t = 0, 1, 2, ...
- Long-lived player 1 (P1), *vs* an infinite sequence of short-lived player 2s (P2).
- Players move simultaneously in the stage game: $a_1 \in A_1$, $a_2 \in A_2$.
 - * Actions in period *t*: $a_{1,t}$ and $a_{2,t}$.
- Stage-game payoffs: $u_1(a_1, a_2), u_2(a_1, a_2)$.

* P1's discounted average payoff: $\sum_{t=0}^{\infty} (1-\delta)\delta^t u_1(a_{1,t}, a_{2,t})$.

• Public signals: $y \in Y$, with $\rho(y|a_1, a_2)$ the probability of y.

* y_t : public signal in period t.

- * Last lecture: $Y = A_1 \times A_2$ and $\rho(a_1, a_2 | a_1, a_2) = 1$.
- * Now: general monitoring structure ρ .

P1's type is perfectly persistent, draw from $\Omega \equiv {\omega^r} \bigcup \Omega^m$.

1. ω^r is the *rational type*.

Can flexibly choose actions in order to maximize payoffs.

Each α₁^{*} ∈ Ω^m represents a *commitment type*, with Ω^m ⊂ Δ(A₁).
 Does not care about payoffs and plays α₁^{*} in every period.

P2's prior belief: $\pi \in \Delta(\Omega)$.

What can players observe?

- Player 1's history: $h_1^t \in \mathcal{H}_1^t \equiv \Omega \times \{A_1 \times A_2 \times Y\}^t$.
- Player 2's history: $h_2^t \in \mathcal{H}_2^t \equiv \{A_2 \times Y\}^t$.

Assumptions: A_1, A_2, Y and Ω^m are finite, π has full support.

What can go wrong under imperfect monitoring?

A simple example: One commitment action H.

• Suppose $Y \equiv \{G, B\}$ and $\rho(G|H) = \rho(G|L)$.

What is player 1's equilibrium payoff when commitment prob is small?

_	Т	N
H	2,1	-2,0
L	3, -1	0,0

Bottomline: We need a general formula for the payoff lower bound (take the monitoring structure into account).

A More Permissive Notion of Best Reply

Let $|| \cdot ||$ be the total variation distance.

Definition: ε -confirming best reply

 $\alpha_2 \in \Delta(A_2)$ is an ε -confirming best reply to $\alpha_1 \in \Delta(A_1)$ if there exists $\alpha'_1 \in \Delta(A_1)$ such that

1. α_2 best replies to α'_1 ,

2.
$$\left\|\rho(\cdot|\alpha_1,\alpha_2)-\rho(\cdot|\alpha_1',\alpha_2)\right\|\leq \varepsilon.$$

Idea: α_2 is P2's best reply to something that is hard to distinguish from α_1 .

- If y_t is uninformative, then any undominated action is an ε-confirming best reply to any α₁ ∈ Δ(A₁).
- If y_t is more informative, then the set of ε -confirming best reply to any given α_1 shrinks.

Properties of ε -Confirming Best Reply

Let $B_{\varepsilon}(\alpha_1) \subset \Delta(A_2)$ be the set of P2's ε -confirming best replies to α_1 .

Properties of ε -Confirming Best Reply:

- 1. If $\varepsilon' < \varepsilon$, then $B_{\varepsilon'}(\alpha_1) \subset B_{\varepsilon}(\alpha_1)$.
- 2. $\lim_{\varepsilon \downarrow 0} B_{\varepsilon}(\alpha_1) = B_0(\alpha_1)$ (why?).
- 3. For every $\varepsilon \geq 0$, $BR_2(\alpha_1) \subset B_{\varepsilon}(\alpha_1)$.

Definition: Statistical Identification

P1's actions are statistically identified if for every $\alpha_2 \in \Delta(A_2)$ *,*

 $\{\rho(\cdot|a_1,\alpha_2)\}_{a_1\in A_1}$ are linearly independent vectors.

4. If P1's actions are statistically identified, then BR₂(α_1) = $B_0(\alpha_1)$, $\forall \alpha_1$.

Statement of Payoff Lower Bound Result

Payoff Lower Bound Result: Fudenberg and Levine (1992)

For every $\varepsilon > 0$, there exists $\underline{\delta} \in (0, 1)$

s.t. when $\delta > \underline{\delta}$ and π attaches prob more than ε to commitment type α_1^* , rational P1's payoff in any BNE is at least:

 $\min_{\alpha_2\in B_{\varepsilon}(\alpha_1^*)}u_1(\alpha_1^*,\alpha_2)-\varepsilon.$

1. Fix the type distribution and let $\delta \rightarrow 1$, P1's payoff lower bound is:

$$\lim_{\varepsilon \downarrow 0} \min_{\alpha_2 \in B_{\varepsilon}(\alpha_1^*)} u_1(\alpha_1^*, \alpha_2) = \min_{\alpha_2 \in B_0(\alpha_1^*)} u_1(\alpha_1^*, \alpha_2).$$

2. When P1's actions are statistically identified, the value of the red equation equals P1's commitment payoff from α_1^* , namely,

 $\min_{\alpha_2\in \mathsf{BR}_2(\alpha_1^*)}u_1(\alpha_1^*,\alpha_2).$

Comment

Rate of Convergence

Proof of Payoff Lower Bound Result

Three approaches:

- 1. Fudenberg and Levine (1992): Doob's upcrossing inequality.
- 2. Sorin (1999): merging between prob measures (Blackwell and Dubins).
- 3. Gossner (2011): relative entropy.

Comments

Rate of Convergence

Detour: Relative Entropy

Let *X* be a countable set, and let $p, q \in \Delta(X)$.

Relative entropy/KL-divergence of q with respect to p:

$$d(p||q) \equiv \sum_{x \in X} p(x) \log \frac{p(x)}{q(x)}.$$

Intuitively, it measures an observer's expected error in predicting $x \in X$ using the distribution q when the true distribution is p.

Thought experiment: suppose we have n i.i.d. draws from X with true distribution p but an observer's believed distribution is q.

- Log likelihood ratio of a given sample is $\sum_{x \in X} n_x \log \frac{p(x)}{q(x)}$.
- As $n \to \infty$, average log likelihood ratio goes to d(p||q).

Why should we care about entropy?

Suppose σ is the equilibrium being played, but player 1 deviates and plays the equilibrium strategy of type ω .

- Let P_σ ∈ Δ{Y×A₂}[∞] be the distribution over player 2s' observations in the entire game.
- Let P_{ω,σ} ∈ Δ{Y × A₂}[∞] be the distribution over player 2s' observations conditional on knowing that player 1's type is ω.

Player 2's predictions may have some errors.

• However, her prediction errors of the entire game must be bounded.

Why?
$$P_{\sigma} = \sum_{\omega \in \Omega} \pi(\omega) P_{\omega,\sigma}$$
, which implies that:

$$d(P_{\omega,\sigma} || P_{\sigma}) \leq \underbrace{-\log \pi(\omega)}_{\bullet}$$
.

a bounded number

Commer

Rate of Convergence

One-Step Ahead Prediction Error

Bounding the prediction error in the entire game is not that useful.

• What matters for P2's incentives is her prediction in each period.

P2's best reply problem at history h_2^t :

- She has some belief about how P1 behaves in period t, say α₁(h^t₂).
 She plays a best reply to α₁(h^t₂).
- $\alpha_1(h_2^t)$ and this best reply induce $p_{\sigma|h_2^t} \in \Delta(Y)$.
- Let p_{ω,σ|h'} ∈ Δ(Y) be the signal distribution induced by type ω.
- If $||p_{\omega,\sigma|h_2} p_{\sigma|h_2}|| \le \varepsilon$, then P2 plays an ε -confirming best reply to type ω 's action at h_2^t .

Two problems:

- 1. We only know the total prediction error, not the one in each period.
- 2. We need to convert relative entropy to total variation distance.

Let *X* and *Y* be two sets and let $p, q \in \Delta(X \times Y)$.

Let p_X, q_X, p_Y, q_Y be the marginal distributions on *X* and *Y*.

Chain rule:

$$d(p||q) = d(p_X||q_X) + \mathbb{E}_{p_X} \Big[d\Big(p_Y(\cdot|x) \Big\| q_Y(\cdot|x) \Big) \Big].$$

How to apply this:

• Partition h_2^{∞} into $\cup_{t=0}^{+\infty} \{a_{2,t}, y_t\}$.

Apply the chain rule iteratively, we have

$$-\log \pi(\omega) \ge d\Big(P_{\omega,\sigma}\Big\|P_{\sigma}\Big) = \sum_{t=0}^{\infty} \mathbb{E}_{P_{\omega,\sigma}}\Big[\underbrace{d\Big(p_{\omega,\sigma|h_{2}^{t}}\Big\|p_{\sigma|h_{2}^{t}}\Big)}_{t=0}\Big].$$

1-step-ahead prediction error

An inequality that connects relative entropy with total variation distance:

$$\|p-q\| \le \sqrt{2d(p||q)}.$$

Implication: If $d(p||q) \le \varepsilon^2/2$, then $||p-q|| \le \varepsilon$.

Commei

Rate of Convergence

Putting Things Together

If

$$d\Big(p_{\omega,\sigma|h_2^t}\Big\|p_{\sigma|h_2^t}\Big)\leq rac{arepsilon^2}{2},$$

then

$$\left\|p_{\omega,\sigma|h_2^t}-p_{\sigma|h_2^t}\right\|\leq \varepsilon,$$

and player 2 will play an ε -confirming best reply to type ω 's action at h_2^t .

Since

$$\sum_{t=0}^{\infty} \mathbb{E}_{P_{\omega,\sigma}} \Big[d \Big(p_{\omega,\sigma|h_2^t} \Big\| p_{\sigma|h_2^t} \Big) \Big] \leq -\log \pi(\omega),$$

the expected number of periods in which $d\left(p_{\omega,\sigma|h'_2} \| p_{\sigma|h'_2}\right) \geq \frac{\varepsilon^2}{2}$ is no more than:

$$\overline{T}(\varepsilon,\omega) \equiv \Big[-\frac{2\log \pi(\omega)}{\varepsilon^2} \Big].$$

To Conclude the Proof

Let ω be commitment type α_1^* .

If rational P1 imitates commitment type α_1^* , then

- 1. In periods where $d(p_{\alpha_1^*,\sigma|h_2'}||p_{\sigma|h_2'}) \leq \frac{\varepsilon^2}{2}$, P1's stage-game payoff $\geq \min_{\alpha_2 \in B_{\varepsilon}(\alpha_1^*)} u_1(\alpha_1^*,\alpha_2)$.
- 2. In expectation, there can be at most $\overline{T}(\varepsilon, \alpha_1^*)$ periods in which $d(p_{\alpha_1^*, \sigma \mid h_2'} \mid\mid p_{\sigma \mid h_2'}) > \frac{\varepsilon^2}{2}$.

In expectation, rational P1's payoff by imitating commitment type α_1^* is at least:

$$(1-\delta^{\overline{T}(\varepsilon,\alpha_1^*)})\underline{u}_1+\delta^{\overline{T}(\varepsilon,\alpha_1^*)}\min_{\alpha_2\in B_\varepsilon(\alpha_1^*)}u_1(\alpha_1^*,\alpha_2).$$

This lower bound converges to $\min_{\alpha_2 \in B_{\varepsilon}(\alpha_1^*)} u_1(\alpha_1^*, \alpha_2)$ as $\delta \to 1$.

Apply the above argument on the rational type's equilibrium strategy:

$$d\left(P_{\omega^{r},\sigma} \left\| P_{\sigma}\right) = \sum_{t=0}^{\infty} \mathbb{E}_{P_{\omega^{r},\sigma}} \left[d\left(p_{\omega^{r},\sigma|h_{2}^{t}} \left\| p_{\sigma|h_{2}^{t}} \right) \right] \leq -\log \pi(\omega^{r}).$$

expected sum of prediction error under the strategy of type ω^r

Payoff Upper Bound Result: Fudenberg and Levine (1992)

For every $\varepsilon > 0$, there exists $\underline{\delta} \in (0, 1)$

s.t. when $\delta > \underline{\delta}$ and π attaches prob more than ε to the rational type,

rational P1's payoff in any BNE is at most:

 $\sup_{\alpha_1\in\Delta(A_1)}\max_{\alpha_2\in B_{\varepsilon}(\alpha_1)}u_1(\alpha_1,\alpha_2)+\varepsilon.$

Payoff Lower Bound & Upper Bound

Payoff lower bound for a patient player 1:

$$\max_{\alpha_1^*\in\Omega^m}\left\{\min_{\alpha_2\in B_0(\alpha_1^*)}u_1(\alpha_1^*,\alpha_2)\right\}.$$

Payoff upper bound for a patient player 1:

$$\sup_{\alpha_1\in\Delta(A_1)}\Big\{\max_{\alpha_2\in B_0(\alpha_1)}u_1(\alpha_1,\alpha_2)\Big\}.$$

If actions are identified, and Ω^m is rich enough, then under generic (u_1, u_2) ,

• Both the lower bound and the upper bound converge to P1's (mixed) Stackelberg payoff.

Reputation leads to a sharp prediction on patient player's equilibrium payoff.

Payoff Lower and Upper Bounds in Product Choice Game

A firm (P1) and a sequence of consumers (P2s).

-	Т	N
H	2,1	-1,0
L	3, -1	<mark>0</mark> ,0

If there exists a commitment type that plays $(\frac{1}{2} + \varepsilon)H + (\frac{1}{2} - \varepsilon)L$, then

• patient P1's payoff lower bound is close to $\frac{5}{2} - \varepsilon$.

Patient P1's payoff upper bound is close to $\frac{5}{2}$.

Patient P1's payoff is close to 5/2 in all equilibria.

This is not an equilibrium refinement. (Why?)

Rate of Convergence

Caveat: Lower and Upper Bounds

Lower and upper bounds are informative only when

- P1's discount factor is close to 1.
- Actions are statistically identified.

Does not provide tight payoff bounds when δ is bounded away from 1.

- Significant weight is put on \underline{u}_1 in the payoff lower bound, and is put on \overline{u}_1 in the payoff upper bound.
- P1 can steal info rent in the short run.

Payoff bounds is uninformative when actions are not identified.

- Ely and Välimäki (03): All equilibria attain the trivial lower bound.
- Example s.t. all equilibria attain the trivial upper bound?

Proo

Commer

Rate of Convergence

Tighten the Payoff Lower Bound

Our proof of the Fudenberg-Levine payoff lower bound:

1. Upper bound on the sum of divergence:

$$\sum_{t=1}^{\infty} \mathbb{E}_{p_{\alpha_1^*}} \left[d \left(p_{\alpha_1^*, \sigma \mid h_2'} \left\| p_{\sigma \mid h_2'} \right) \right] \le -\log \pi(\alpha_1^*).$$

- 2. When $d\left(p_{\alpha_1^*|h_2'} \| p_{\sigma|h_2'}\right) \leq \frac{\varepsilon^2}{2}$, P2 plays an ε -confirmed best reply.
- 3. Expected number of periods s.t. $d\left(p_{\alpha_1^*|h_2'} \| p_{\sigma|h_2'}\right) > \frac{\varepsilon^2}{2}$ is at most

$$\overline{T}(\varepsilon,\omega) \equiv \left\lceil -\frac{2\log \pi(\omega)}{\varepsilon^2} \right\rceil$$

Can we further tighten this bound?

Commen

Rate of Convergence

ε -Entropy Confirming Best Reply

Definition: ε -entropy confirming best reply

 α_2 is an ε -entropy confirming best reply to α_1 if $\exists \alpha'_1 \in \Delta(A_1)$ s.t.

1. $\alpha_2 \in BR_2(\alpha'_1)$.

2.
$$d\left(\rho(\cdot|\alpha_1,\alpha_2) \| \rho(\cdot|\alpha_1',\alpha_2)\right) \leq \varepsilon.$$

Let $B^{e}_{\varepsilon}(\alpha_{1})$ be the set of ε -entropy confirming best replies against α_{1} .

Pinkser's inequality:

$$d(P||Q) \ge 2||P - Q||^2.$$

Connections:

• ε -entropy confirming best reply $\Rightarrow \sqrt{\varepsilon/2}$ -confirming best reply.

Set of entropy confirming best reply is smaller, leading to tighter bounds.

Proo

Payoff Lower Bound

Let

$$v_{\alpha_1^*}(\varepsilon) \equiv \min_{\alpha_2 \in B^e_{\varepsilon}(\alpha_1^*)} u_1(\alpha_1^*, \alpha_2).$$

P1's worst payoff when he plays α_1^* and P2 plays an ε -entropy confirming best reply to α_1^* . (This is a decreasing function)

If $d(p_{\alpha_1^*} || p_{\sigma | h_2^t}) \leq \varepsilon$, then P2's action $\in B^e_{\varepsilon}(\alpha_1^*)$ and P1's payoff $\geq v_{\alpha_1^*}(\varepsilon)$. Let

$$\varepsilon(h_2^t) \equiv d\big(p_{\alpha_1^*} \big\| p_{\sigma|h_2^t}\big).$$

By playing α_1^* in every period, P1's payoff is bounded from below by:

$$\mathbb{E}_{p_{\alpha_1^*}}\left[(1-\delta)\sum_{t=0}^{\infty}\delta^t v_{\alpha_1^*}\left(\varepsilon(h_2^t)\right)\right]$$

Model	Generalized Best Reply	Payoff Lower Bound	Proof	Comments	Rate of Convergence
Minm	nax Problem				

Think about the problem faced by adverse nature who chooses $\{\varepsilon(h_2^t)\}_{h_2^t \in \mathcal{H}_2}$ in order to minimize:

$$\mathbb{E}_{p_{\alpha_1^*}}\Big[(1-\delta)\sum_{t=0}^{\infty}\delta^t v_{\alpha_1^*}\big(\varepsilon(h_2^t)\big)\Big],$$

subject to a budget constraint on

$$\mathbb{E}_{p_{\alpha_1^*}}\left[(1-\delta)\sum_{t=0}^{\infty}\delta^t\varepsilon(h_2^t)\right] \leq ???$$

What is the upper bound on $\mathbb{E}_{p_{\alpha_1^*}}\left[(1-\delta)\sum_{t=0}^{\infty} \delta^t \varepsilon(h_2^t)\right]$?

• we know that $\sum_{t=0}^{T} \varepsilon(h_2^t) \leq -\log \pi(\alpha_1^*)$ for every $T \in \mathbb{N} \cup \{\infty\}$.

For any bounded sequence $\{x_t\}_{t\in\mathbb{N}}$, summation by parts gives

$$\sum_{t=0}^{\infty} \delta^t x_t = (1-\delta) \sum_{t=0}^{\infty} \delta^t \sum_{s=0}^{t} x_s$$

Since $\sum_{t=0}^{T} \varepsilon(h_2^t) \leq -\log \pi(\alpha_1^*)$ for every $T \in \mathbb{N}$, we have

$$\mathbb{E}_{p_{\alpha_1^*}}\left[(1-\delta)\sum_{t=0}^{\infty}\delta^t\varepsilon(h_2^t)\right] \le -(1-\delta)\log\pi(\alpha_1^*).$$

Minmax Problem

Think about the problem faced by adverse nature who chooses $\{\varepsilon(h_2^t)\}_{h_2^t \in \mathcal{H}_2}$ in order to minimize:

$$\mathbb{E}_{p_{\alpha_1^*}}\Big[(1-\delta)\sum_{t=0}^{\infty}\delta^t v_{\alpha_1^*}\big(\varepsilon(h_2^t)\big)\Big],$$

subject to a budget constraint on

$$\mathbb{E}_{p_{\alpha_1^*}}\Big[(1-\delta)\sum_{t=0}^\infty \delta^t \varepsilon(h_2^t)\Big] \le -(1-\delta)\log \pi(\alpha_1^*).$$

Let $\overline{V}_{\alpha_1^*}(\cdot)$ be the largest convex function below $\nu_{\alpha_1^*}(\cdot)$, the value of the constrained minimization problem is at least:

$$\overline{V}_{\alpha_1^*}\Big(-(1-\delta)\log\pi(\alpha_1^*)\Big).$$

This gives a refined lower bound on P1's equilibrium payoff.

Comment

Rate of Convergence

Payoff Upper Bound

Let

$$w_{\alpha_1^*}(\varepsilon) \equiv \max_{\alpha_2 \in B^e_{\varepsilon}(\alpha_1^*)} u_1(\alpha_1^*, \alpha_2).$$

In words, P1's best payoff when he plays α_1^* and P2 plays an ε -entropy confirming best reply to α_1^* .

Let $\underline{W}_{\alpha_1^*}(\cdot)$ be the smallest concave function below $w_{\alpha_1^*}(\cdot)$, player 1's payoff is bounded from above by:

$$\underline{W}_{\alpha_1^*}\Big(-(1-\delta)\log\pi(\alpha_1^*)\Big).$$

Model	Generalized Best Reply	Payoff Lower Bound	Proof	Comments	Rate of Convergence
Thurs	sday				

- Pedro will present Faingold (2020): How to generalize the payoff bounds to environments with frequent interactions. (FL bound leads to uninformative answers but the refined bounds lead to sharp predictions)
- I will talk about Ely-Valimaki (2003): Due to lack-of-identification, FL's payoff lower bound is trivial. Yet there are examples in which all equilibria attain this trivial lower bound.