Online Appendix
 Crime Aggregation, Deterrence, and Witness Credibility

Harry Pei Bruno Strulovici

March 10, 2021

A Derivation of $\pi_{\min }(\bar{\pi})$

Recall the expression for the fraction of wrongful convictions under DPP, which equals $\bar{\pi}$ under the proposed $\pi^{* *}$, we have

$$
\begin{equation*}
\bar{\pi}=\frac{\left(1-\pi^{* *}\right)^{2} R}{\left(1-\pi^{* *}\right) R+\pi^{* *}}, \tag{A.1}
\end{equation*}
$$

which solves

$$
\begin{equation*}
\pi^{* *}=\frac{2 R \bar{l}+R+1-\sqrt{(R+1)^{2}+4 R \bar{l}}}{2 R(\bar{l}+1)} \tag{A.2}
\end{equation*}
$$

where $\bar{l} \equiv \frac{1-\bar{\pi}}{\bar{\pi}}$. The remainder of the proof computes the expected number of crimes, which is

$$
\begin{equation*}
\frac{2 \pi^{* *}}{\left(1-\pi^{* *}\right) R+\pi^{* *}}=\frac{\left(1-\pi^{* *}\right)^{2} R}{\left(1-\pi^{* *}\right) R+\pi^{* *}} \cdot \frac{2 \pi^{* *}}{\left(1-\pi^{* *}\right)^{2} R}=(1-\bar{\pi}) \frac{2 \pi^{* *}}{\left(1-\pi^{* *}\right)^{2} R} \tag{A.3}
\end{equation*}
$$

Plugging in A.2, we have

$$
\begin{gather*}
\left(1-\pi^{* *}\right)^{2} R=\frac{\left(R-1+\sqrt{(R+1)^{2}+4 R \bar{l}}\right)^{2}}{4 R(\bar{l}+1)^{2}}=\frac{\left(R-1+\sqrt{(R+1)^{2}+4 R \bar{l}}\right)^{2}\left(R-1-\sqrt{(R+1)^{2}+4 R \bar{l}}\right)^{2}}{4 R(\bar{l}+1)^{2}\left(R-1-\sqrt{(R+1)^{2}+4 R \bar{l}}\right)^{2}} . \\
\quad=\frac{\left((R-1)^{2}-(R+1)^{2}-4 R \bar{l}\right)^{2}}{4 R(\bar{l}+1)^{2}\left(R-1-\sqrt{(R+1)^{2}+4 R \bar{l}}\right)^{2}}=\frac{16 R^{2}(\bar{l}+1)^{2}}{4 R(\bar{l}+1)^{2}\left(R-1-\sqrt{(R+1)^{2}+4 R \bar{l}}\right)^{2}}, \tag{A.4}
\end{gather*}
$$

as well as

$$
2 \pi^{* *}=\frac{2 R \bar{l}+R+1-\sqrt{(R+1)^{2}+4 R \bar{l}}}{R(\bar{l}+1)} .
$$

Therefore,

$$
\begin{aligned}
& \frac{2 \pi^{* *}}{\left(1-\pi^{* *}\right)^{2} R}=\frac{1}{4 R^{2}(\bar{l}+1)}\left(2 R \bar{l}+R+1-\sqrt{(R+1)^{2}+4 R \bar{l}}\right)\left(R-1-\sqrt{(R+1)^{2}+4 R \bar{l}}\right)^{2} . \\
& =\frac{1}{4 R^{2}(\bar{l}+1)}\left(2 R \bar{l}+R+1-\sqrt{(R+1)^{2}+4 R \bar{l}}\right)\left((R-1)^{2}+(R+1)^{2}+4 R \bar{l}-2(R-1) \sqrt{(R+1)^{2}+4 R \bar{l}}\right) \\
& =\frac{1}{2 R^{2}(\bar{l}+1)}\left(2 R \bar{l}+R+1-\sqrt{(R+1)^{2}+4 R \bar{l}}\right)\left(2 R \bar{l}+R^{2}+1-(R-1) \sqrt{(R+1)^{2}+4 R \bar{l}}\right) \\
& =\frac{1}{2 R^{2}(\bar{l}+1)}\left((2 R \bar{l}+R+1)\left(2 R \bar{l}+R^{2}+1\right)+(R-1)\left[(R+1)^{2}+4 R \bar{l}\right]-\left[(R-1)(2 R \bar{l}+R+1)+2 R \bar{l}+R^{2}+1\right] \sqrt{(R+1)^{2}+4 R \bar{l}}\right) \\
& =2 \bar{l}+R+1-\sqrt{(R+1)^{2}+4 R \bar{l}}
\end{aligned}
$$

Since $\bar{\pi}=\frac{1}{1+\bar{l}}$, we have

$$
\frac{2 \pi^{* *}}{\left(1-\pi^{* *}\right) R+\pi^{* *}}=\frac{2 \bar{l}+R+1-\sqrt{(R+1)^{2}+4 R \bar{l}}}{1+\bar{l}}
$$

