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Abstract

We examine a patient player’s behavior when he can build reputations in front of a sequence of myopic 
opponents. With positive probability, the patient player is a commitment type who plays his Stackelberg 
action in every period. We characterize the patient player’s action frequencies in equilibrium. Our results 
clarify the extent to which reputations can refine the patient player’s behavior and provide new insights to 
entry deterrence, business transactions, and capital taxation. Our proof makes a methodological contribution 
by establishing a new concentration inequality.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

Economists have long recognized that individuals, firms, and governments can benefit from 
good reputations. As shown in the seminal work of Fudenberg and Levine (1989), a patient player 
can guarantee himself a high payoff when his opponents believe that he might be committed to 
play a particular action. Their result can be viewed as a refinement, which selects the patient 
player’s optimal equilibria in many games of interest.
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This paper studies the effects of reputations on the patient player’s behavior instead of his pay-
offs, which have been underexplored in the reputation literature. Existing works on reputation-
building behaviors restrict attention to particular equilibria or games with particular payoff 
functions. By contrast, we identify tight bounds on the patient player’s action frequencies that 
apply to all equilibria under more general payoff functions. Our results clarify the extent to which 
reputations can refine the patient player’s behavior and provide new insights to applications such 
as entry deterrence, business transactions, and capital taxation.

We analyze a repeated game between a patient player and a sequence of myopic opponents. 
The patient player is either a strategic type who maximizes his discounted average payoff, or 
a commitment type who plays his optimal pure commitment action (or Stackelberg action) in 
every period. The myopic players cannot observe the patient player’s type, but can observe all 
the actions taken in the past.

We examine the extent to which the option to imitate the commitment type can motivate the 
patient player to play his Stackelberg action. Theorem 1 characterizes tight bounds on the dis-
counted frequencies with which the strategic-type patient player plays his Stackelberg action in 
equilibrium. We show that the maximal frequency equals one and the minimal frequency equals 
the value of the following linear program: Choose a distribution over action profiles in order 
to minimize the probability of the Stackelberg action subject to two constraints. First, each ac-
tion profile in the support of this distribution satisfies the myopic player’s incentive constraint. 
Second, the patient player’s expected payoff from this distribution is no less than his Stackelberg 
payoff. The first constraint is necessary since the myopic players best reply to the patient player’s 
action in every period. The second constraint is necessary since the patient player can approxi-
mately attain his Stackelberg payoff by imitating the commitment type. In order to provide him 
an incentive not to play his Stackelberg action, his continuation value after separating from the 
commitment type must be at least his Stackelberg payoff.

The substantial part is to show that these constraints are not only necessary but also sufficient. 
Our proof is constructive and makes a methodological contribution by establishing a novel con-
centration inequality on the discounted sum of random variables that bounds the patient player’s 
action frequencies (Lemma A.1).

Theorem 2 identifies a sufficient condition under which a distribution of the patient player’s 
actions is his action frequency in some equilibria of the reputation game. In a number of leading 
applications such as the product choice game and the entry deterrence game, our sufficient condi-
tion is also necessary, in which case Theorem 2 fully characterizes of the set of action frequencies 
that can arise in equilibrium.

Our results provide new insights to classic applications of reputation models. For example, 
in the product choice game of Mailath and Samuelson (2006, Figure 15.1.1 on page 460),1

our results imply that a policy maker can increase the frequency of high effort by subsidizing 
consumers for purchasing low-end products or by taxing consumers for purchasing high-end 
products. Intuitively, these policies increase the consumers’ demand for high effort when they 
purchase the high-end product, which in turn increases the frequency of high effort in the worst 

1 In Mailath and Samuelson (2006)’s product choice game, a patient firm faces a sequence of consumers. In every 
period, the firm chooses between high effort and low effort, and a consumer chooses between buying a high-end product 
and a low-end product. The firm finds it costly to exert high effort and prefers the consumers to purchase high-end 
products. Each consumer has an incentive to buy the high-end product only when she believes that the firm will exert 
high effort with high enough probability. In this game, high effort is the firm’s Stackelberg action but low effort is the 
dominant action in the stage game.
2
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equilibrium. In the entry deterrence game of Kreps and Wilson (1982) and Milgrom and Roberts 
(1982a), our results imply that a small amount of subsidy to potential entrants for entering the 
market makes a reputation-building incumbent more aggressive in fighting entry, but a large 
amount of subsidy eliminates the incumbent’s fighting incentives.

Our results contribute to the reputation literature by clarifying the role of reputations in refin-
ing the patient player’s behavior. This is complementary to the result of Fudenberg and Levine 
(1989) that studies how reputations refine the patient player’s payoff. Existing works on players’ 
reputation-building behaviors restrict attention to particular equilibria or particular payoff func-
tions. For example, Kreps and Wilson (1982) and Milgrom and Roberts (1982a) characterize 
sequential equilibria in entry deterrence games. Schmidt (1993) characterizes Markov equilibria 
in repeated bargaining games. Bar-Isaac (2003), Phelan (2006), Ekmekci (2011), Liu (2011), and 
Liu and Skrzypacz (2014) restrict attention to supermodular games or 2 × 2 games. By contrast, 
we characterize tight bounds on the patient player’s action frequencies that apply to all equilibria. 
Our results are more general in terms of payoffs, which only require the patient player’s optimal 
commitment payoff to be greater than his minmax value and that his optimal commitment out-
come is not a stage-game Nash equilibrium.

Cripps et al. (2004) show that when the monitoring structure has full support, the myopic 
players eventually learn the patient player’s type and the strategies converge to an equilibrium 
of the repeated complete information game. However, their results do not characterize the speed 
of convergence or players’ behaviors in finite time, and hence do not imply what players’ dis-
counted action frequencies are. Ekmekci and Maestri (2019) study players’ reputation-building 
behaviors in stopping games where a patient uninformed player chooses between continuing and 
irreversibly stopping the game in every period. By contrast, the uninformed players in our model 
are myopic and their action choices are reversible. Pei (2020a) provides sufficient conditions 
under which the patient player has a unique on-path behavior. Unlike our model that restricts 
attention to private value environments but allows for general stage-game payoffs, his result re-
quires nontrivial interdependent values and monotone-supermodular stage-game payoffs.

Section 2 sets up the baseline model. Section 3 states our main results. Section 4 applies 
our results to several applied models of reputation formation and discusses the results’ practical 
implications. Section 5 discusses our modeling assumptions as well as issues related to taking 
our predictions to the data. Section 6 concludes. The proofs of our results can be found in the 
appendix.

2. Model

Time is discrete, indexed by t = 0, 1, 2, .... A patient player 1 with discount factor δ ∈ (0, 1)

interacts with an infinite sequence of myopic player 2s, arriving one in each period and each 
playing the game only once. In period t , a public randomization device ξt ∼ U [0, 1] is realized 
and is observed by both players, after which players simultaneously choose their actions. Player 
1’s action is denoted by at ∈ A. Player 2’s action is denoted by bt ∈ B . Their stage-game payoffs 
are u1(at , bt ) and u2(at , bt ). We assume A and B are finite, with |A|, |B| ≥ 2.

Let BR1 : �(B) ⇒ 2A\{∅} and BR2 : �(A) ⇒ 2B\{∅} be player 1’s and player 2’s best 
reply correspondences in the stage-game. The set of player 1’s (pure) Stackelberg actions is 
arg maxa∈A{minb∈BR2(a) u1(a, b)}.

Assumption 1. Player 1 has a unique Stackelberg action, denoted by a∗. Player 2 has a unique 
best reply to player 1’s Stackelberg action, denoted by b∗.
3
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Assumption 1 is satisfied when each player has a strict best reply to each of his opponent’s 
pure actions and player 1 is not indifferent between any pair of pure action profiles, both of which 
are satisfied for generic (u1, u2) since A and B are finite sets. Player 1’s Stackelberg payoff is 
u1(a

∗, b∗). Let

B ≡ {β ∈ �(B)|∃α ∈ �(A) s.t. supp(β) ⊂ BR2(α)} ⊂ �(B).

Since player 2s are myopic, they will never take actions that do not belong to B. As a result, 
player 1’s minmax value is v1 ≡ minβ∈B maxa∈A u1(a, β).

Assumption 2. a∗ /∈ BR1(b
∗) and u1(a

∗, b∗) > v1.

Assumptions 1 and 2 are satisfied in many leading applications of reputation models. For 
example,

1. In the product choice game of Mailath and Samuelson (2006), a firm benefits from commit-
ting to exert high effort since it can encourage consumers to purchase the high-end product 
or to purchase larger quantities. However, the firm can save costs by lowering its effort.

2. In the entry deterrence game of Kreps and Wilson (1982) and Milgrom and Roberts (1982a), 
and the limit pricing game of Milgrom and Roberts (1982b), an incumbent firm benefits 
from committing to set low prices and to fight potential entrants, but its stage-game payoff 
is higher when it accommodates entry.

3. In the fiscal policy game of Phelan (2006), the government benefits from committing to low 
tax rates in order to encourage investments, but it is tempted to expropriate the citizens after 
investment takes place.

4. In the monetary policy game of Barro (1986), the central bank can benefit from committing 
to low inflation rates. But given the households’ expectations about inflation, the central bank 
is tempted to raise inflation in order to boost economic activities.

Assumption 2 rules out coordination games (such as the battle of sexes), common inter-
est games, and chicken games, in which a∗ best replies to b∗, and zero-sum games in which 
u1(a

∗, b∗) ≤ v1. Section 5 discusses games that violate this assumption, and the role of Assump-
tion 2 in our proofs is explained in Appendix A.

Player 1 has perfectly persistent private information about his type ω. Let ω ∈ {ωs, ωc}, where 
ωc stands for a commitment type who mechanically plays a∗ in every period, and ωs stands for 
a strategic type who can flexibly choose his actions in order to maximize his discounted average 
payoff 

∑+∞
t=0 (1 − δ)δtu1(at , bt ). Player 2’s prior belief attaches probability π ∈ (0, 1) to the 

commitment type.
Players’ past actions are perfectly monitored. A typical public history is denoted by ht ≡

{as, bs, ξs}t−1
s=0. Let H t be the set of ht and let H ≡ ∪t∈NH t . Strategic-type player 1’s strategy 

is σ1 : H → �(A). Player 2’s strategy is σ2 : H → �(B). Let 
1 and 
2 be the set of player 
1’s and player 2’s strategies, respectively.

The solution concept is (Bayes) Nash equilibrium. Let NE(δ, π) ⊂ 
1 ×
2 be the set of equi-
libria. Since the stage game is finite and payoffs are discounted, an equilibrium exists (Fudenberg 
and Levine, 1983).

Existing result on equilibrium payoffs Fudenberg and Levine (1989) show that for every π ∈
(0, 1) and ε > 0, there exists δ ∈ (0, 1) such that
4
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inf
(σ1,σ2)∈NE(δ,π)

E(σ1,σ2)
[ +∞∑

t=0

(1 − δ)δtu1(at , bt )
]

≥ u1(a
∗, b∗) − ε for every δ > δ, (2.1)

where E(σ1,σ2)[·] is the expectation when player 1’s strategy is σ1 and player 2’s strategy is σ2.
Inequality (2.1) unveils the effects of reputations on the patient player’s payoff. Fuden-

berg and Levine (1989) view this result as a refinement, which selects among the plethora 
of equilibria in repeated complete information games. According to the folk theorem of 
Fudenberg et al. (1990), the patient player can attain any payoff between v1 and v1 ≡
max{(α,β)|supp(β)⊂BR2(α)} mina∈supp(α) u1(a, β) in a repeated complete information game without 
any commitment type. By definition, v1 ≥ u1(a

∗, b∗), which implies that introducing a com-
mitment type selects equilibria in which player 1’s payoff is between u1(a

∗, b∗) and v1. In the 
entry deterrence game, product choice game, and fiscal and monetary policy games, v1 equals 
u1(a

∗, b∗), in which case the reputation model selects equilibria where the patient player receives 
his highest equilibrium payoff.

3. Results

Our results examine the discounted frequencies of the patient player’s actions. Formally, the 
discounted frequency of action a ∈ A under (σ1, σ2) is

G(σ1,σ2)(a) ≡ E(σ1,σ2)
[ ∞∑

t=0

(1 − δ)δt1{at = a}
]
. (3.1)

Our first result characterizes the discounted frequencies with which the patient player plays his 
Stackelberg action a∗. Let

� ≡
{
(α, b) ∈ �(A) × B

∣∣∣b ∈ BR2(α)
}

(3.2)

be the set of incentive compatible action profiles. Let

F ∗(u1, u2) ≡ min
(α1,α2,b1,b2,q)∈�(A)×�(A)×B×B×[0,1]

{
qα1(a

∗) + (1 − q)α2(a
∗)

}
, (3.3)

subject to

(α1, b1) ∈ �, (α2, b2) ∈ �, (3.4)

and

qu1(α1, b1) + (1 − q)u1(α2, b2) ≥ u1(a
∗, b∗), (3.5)

where αi(a) stands for the probability of action a ∈ A in αi ∈ �(A).

Theorem 1. Suppose (u1, u2) satisfies Assumptions 1 and 2.

1. For every f ∈ [F ∗(u1, u2), 1] and ε > 0, there exists δ ∈ (0, 1) such that for every δ > δ, 
there exists (σ1, σ2) ∈ NE(δ, π) such that G(σ1,σ2)(a∗) ∈ (f − ε, f + ε).

2. For every f̂ < F ∗(u1, u2), there exist δ ∈ (0, 1) and η > 0 such that G(σ1,σ2)(a∗) > f̂ + η

for every δ > δ and (σ1, σ2) ∈ NE(δ, π).
5
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Theorem 1 implies that when player 1 is patient, the discounted frequency with which he plays 
a∗ can take any value between F ∗(u1, u2) and 1, but it cannot be strictly lower than F ∗(u1, u2). 
Therefore, [F ∗(u1, u2), 1] is the set of frequencies with which a∗ can arise in equilibrium. Our 
result applies to every prior belief π ∈ (0, 1), which includes but not limited to situations where 
the probability of the commitment type is small. Since F ∗(u1, u2) < 1 under Assumption 2, The-
orem 1 implies that an arbitrarily patient player can play his Stackelberg action with frequency 
bounded away from one despite having the option to build a reputation.

The upper bound on the frequency of a∗ is 1 since there exists an equilibrium where player 
1 plays a∗ and player 2s play b∗. Once player 1 plays any action other than a∗, future player 2s 
can observe this deviation after which they can punish player 1 by driving his continuation value 
to his minmax payoff v1. Such a punishment is feasible since player 1 separates from the com-
mitment type after any deviation from his equilibrium strategy, and according to Fudenberg et al. 
(1990), there exists an equilibrium of the repeated complete information game in which player 
1’s payoff is v1. Since Assumption 2 requires that u1(a

∗, b∗) > v1, this punishment provides 
player 1 an incentive to play a∗ when his discount factor δ is large enough.

For some intuition on the linear program that defines the lower bound F ∗(u1, u2), consider 
a static planning problem in which a planner commits to a mixed action α ∈ �(A) on behalf 
of player 1 after which player 2 best replies to α. Suppose the planner faces a constraint that 
player 1’s expected payoff is no less than u1(a

∗, b∗), then by definition, F ∗(u1, u2) is the lowest 
probability with which a∗ needs to be played.2

We map the two constraints in the planning problem to the reputation game studied by The-
orem 1. First, since player 2s are myopic, they play a best reply to α after they learn that the 
patient player will play α. This explains the necessity of constraint (3.4). Second, the presence of 
commitment type implies that the patient player can guarantee payoff approximately u1(a

∗, b∗)
by playing a∗ in every period. Therefore, the patient player has an incentive to play α1 with 
probability q and α2 with probability 1 − q only when his expected payoff from doing so is at 
least u1(a

∗, b∗). This explains the necessity of constraint (3.5). The substantial part of our result 
is to show that constraints (3.4) and (3.5) are not only necessary but are also sufficient.

Our second result examines the set of discounted action frequencies that can arise in equilib-
rium. Let

A ≡
{
α∗ ∈ �(A)

∣∣∣∃q ∈ �(�) such that α∗ =
∫
α

αdq and
∫

(α,b)

u1(α, b)dq = u1(a
∗, b∗)

}
,

(3.6)

which is the set of marginal distributions of player 1’s actions such that one can find a distribution 
of incentive compatible action profiles q ∈ �(�) from which player 1’s expected payoff equals 
his Stackelberg payoff.

Theorem 2. Suppose (u1, u2) satisfies Assumptions 1 and 2.

2 The planner in the planning problem can randomize between any number of commitment actions, while in the linear 
program that defines F ∗(u1, u2), he can randomize between at most two commitment actions. Lemmas C.2 and C.3 show 
that this is without loss and the value of F ∗(u1, u2) remains the same even when the planner can randomize between 
any arbitrary number of commitment actions.
6
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1. For every α∗ ∈ A and ε > 0, there exists δ ∈ (0, 1) such that for every δ > δ, there exists 

(σ1, σ2) ∈ NE(δ, π) such that 
∣∣∣G(σ1,σ2)(a) − α∗(a)

∣∣∣ < ε for every a ∈ A.3

2. In games where u1(a
∗, b∗) = v1. For every ̂α /∈ A , there exist η > 0 and δ ∈ (0, 1) such that 

for every δ > δ and (σ1, σ2) ∈ NE(δ, π), 
∣∣∣G(σ1,σ2)(a) − α̂(a)

∣∣∣ > η for some a ∈ A.

According to Theorem 2, every action distribution that belongs to A is arbitrarily close to 
the patient player’s action frequency in some equilibria of the reputation game. In fact, the first 
statement of Theorem 2 is a generalization of Statement 1 of Theorem 1 since it is without loss 
of generality to focus on distributions of incentive compatible action profiles such that constraint 
(3.5) is binding (Lemma B.1) and it is without loss of generality to focus on distributions sup-
ported on � that have at most two elements in their support when the objective is to minimize 
the discounted frequency of a∗ (Lemma C.2 and Lemma C.3).

In games where u1(a
∗, b∗) = v1, such as the product choice game and the entry deterrence 

game, an action distribution is the patient player’s discounted action frequency in some equilibria 
if and only if it belongs to A . In this class of games, any action frequency that satisfies player 2’s 
incentive constraints and yields player 1 his Stackelberg payoff can be attained in some equilibria 
of the repeated game.

4. Economic applications

We apply our results to monotone-supermodular games that include the leading applications 
of reputation models, such as the product choice game, the entry deterrence game, and the fiscal 
policy game.

Definition 1. (u1, u2) is monotone-supermodular if there exist a complete order on A and a com-
plete order on B such that u1(a, b) is strictly decreasing in a, and u2(a, b) has strictly increasing 
differences.4

In order to facilitate the application of Theorem 1, we simplify the linear program that defines 
F ∗(u1, u2). Let a be the lowest element of A and let b ∈ B be player 2’s best reply to a. If player 
2 has multiple best replies to a, then let b the one that maximizes player 1’s payoff. Let

�∗ ≡
{
(α, b) ∈ �

∣∣∣|BR2(α)| ≥ 2 and b ∈ arg max
b′∈BR2(α)

u1(α, b′)
}
. (4.1)

Intuitively, �∗ is a subset of � that consists of incentive compatible action profiles where player 
2 has at least two best replies, and for every α that player 2 has multiple best replies, b is the one 
that maximizes player 1’s payoff. Under generic stage-game payoff functions, �∗ is a finite set. 
Proposition 1 implies that in games with monotone-supermodular payoffs, it is without loss of 
generality to choose incentive compatible action profiles from the finite set �∗ ∪ {a, b} instead of 
the infinite set �.

3 We can also show that if δ is large enough and A satisfies a full dimensionality assumption, then every α∗ that 
belongs to the interior of A can be exactly attained as the discounted action frequency of some equilibria.

4 This definition resembles the one in Liu and Pei (2020) and Pei (2020a) except that there is no state that affects 
players’ payoffs. We also do not require u1(a, b) to be strictly increasing in b.
7
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Proposition 1. If (u1, u2) is monotone-supermodular, then

F ∗(u1, u2) = min
(α1,α2,b1,b2,q)∈�(A)×�(A)×B×B×[0,1]

{
qα1(a

∗) + (1 − q)α2(a
∗)

}
,

subject to (α1, b1), (α2, b2) ∈ �∗ ∪ {(a, b)}, and qu1(α1, b1) + (1 − q)u1(α2, b2) ≥ u1(a
∗, b∗).

The proof is in Appendix D. For the rest of this section, we apply our theorems as well as 
Proposition 1 to study product choice games, entry deterrence games, and capital taxation games.

Product choice game Player 1 is a firm that chooses between high (action H ) and low effort 
(action L). Player 2s are consumers, each chooses between purchasing a high-end product (action 
h) and a low-end product (action l). Players’ payoffs are:

– h l

H 1 − ch,2 − γ ∗ −cl ,1

L 1,−γ ∗ 0,0

where ch, cl ∈ (0, 1) are the costs of effort when the consumer buys the high-end product and 
the low-end product, respectively, and consumers are willing to choose h only when they believe 
that the firm exerts high effort with probability more than γ ∗ ∈ (0, 1).

This game has monotone-supermodular payoffs once we rank the firm’s actions according 
to H � L and the consumers’ actions according to h � l. The firm’s Stackelberg action is H . 

According to (4.1), �∗ is a singleton set 
{
(γ ∗H + (1 − γ ∗)L, h)

}
. Proposition 1 implies that

F ∗(u1, u2) = min
q∈[0,1]qγ ∗, subject to qγ ∗u1(H,h) + q(1 − γ ∗)u1(L,h)

+ (1 − q)u1(L, l) ≥ u1(H,h), (4.2)

from which we obtain

F ∗(u1, u2) = γ ∗(1 − ch)

1 − γ ∗ch

. (4.3)

Claim 1. The lowest discounted frequency with which the firm exerts high effort strictly increases 
in γ ∗, strictly decreases in ch, and is independent of cl .

In terms of practical implications, consider a policy maker who wants to increase the fre-
quency with which the firm exerts high effort but does not know which equilibrium players 
coordinate on. The policy maker is ambiguity averse and evaluates the effectiveness of each pol-
icy according to the frequency of high effort in the worst equilibrium. That is, his objective is to 
increase F ∗(u1, u2).

Claim 1 implies that the policy maker can increase F ∗(u1, u2) by subsidizing consumers for 
purchasing the low-end product or by taxing consumers for purchasing the high-end product. 
Intuitively, these policies increase the consumers’ demand for high effort when they purchase the 
high-end product. This leads to an increase in the equilibrium frequency of high effort since the 
firm needs to induce consumers to purchase the high-end product with high enough probability 
in order to obtain its Stackelberg payoff.
8
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Pr(a = H)
10 γ ∗

2 γ ∗
1

l is optimal m is optimal h is optimal

Pr(a = H)
10 γ ∗

2 γ ∗
1

l is optimal m is optimal h is optimal

Fig. 1. Product choice game with three options: Consumer’s best response before (upper panel) and after they receive a 
subsidy for purchasing the intermediate product (lower panel).

Next, we consider a variant of the product choice game in which every consumer chooses 
whether to buy a high-end product, an intermediate product, or a low-end product. The firm’s 
payoffs are:

– h m l

H 1 − c p − c −c

L 1 p 0

where its cost of effort is c ∈ (0, 1), its benefit from selling the high-end product is 1, its ben-
efit from selling the intermediate product is p ∈ (0, 1), and its benefit from selling the low-end 
product is 0.

The value of F ∗(u1, u2) depends on consumers’ payoffs only through two sufficient statistics 
γ ∗

1 and γ ∗
2 with 0 < γ ∗

2 < γ ∗
1 < 1, such that a consumer has an incentive to choose h when the 

firm exerts high effort with probability more than γ ∗
1 , has an incentive to choose m when the firm 

exerts high effort with probability between γ ∗
2 and γ ∗

1 , and has an incentive to choose l when the 
firm exerts high effort with probability less than γ ∗

2 (see Fig. 1).
This game has monotone-supermodular payoffs once the firm’s actions are ranked according 

to H � L and consumers’ actions are ranked according to h � m � l. Applying Proposition 1 to 
this game, we have:

F ∗(u1, u2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γ ∗

1 (1−c)

1−γ ∗
1 c

if p ≤ γ ∗
2

γ ∗
1

γ ∗
2 (1−c)

p−γ ∗
2 c

if p >
γ ∗

2
γ ∗

1
and c ≥ 1−p

1−γ ∗
2

γ ∗
1 (1−p)−c(γ ∗

1 −γ ∗
2 )

(1−p)−c(γ ∗
1 −γ ∗

2 )
if p >

γ ∗
2

γ ∗
1

and c <
1−p

1−γ ∗
2
.

(4.4)

Similar to the game with two purchasing options, we examine the effects of a small amount of 
sales taxes and subsidies for each product on F ∗(u1, u2).

1. A tax on consumers for purchasing the high-end product (i.e., an increase in γ ∗
1 ) has no effect 

on F ∗(u1, u2) when p >
γ ∗

2
γ ∗

1
and c ≥ 1−p

1−γ ∗
2

, and increases F ∗(u1, u2) otherwise. A subsidy 

on consumers for purchasing the low-end product (i.e., an increase in γ ∗
2 ) has no effect on 

F ∗(u1, u2) when p ≤ γ ∗
2

γ ∗
1

, and increases F ∗(u1, u2) otherwise.

2. A subsidy on consumers for purchasing the intermediate product (i.e., a decrease in γ ∗
2 and 

an increase in γ ∗) leads to an increase in F ∗(u1, u2) when p ≤ γ ∗
2∗ , leads to a decrease in 
1 γ1

9
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F ∗(u1, u2) when p >
γ ∗

2
γ ∗

1
and c ≥ 1−p

1−γ ∗
2

, and has an ambiguous effect on F ∗(u1, u2) when 

p >
γ ∗

2
γ ∗

1
and c <

1−p

1−γ ∗
2

.

We obtain two additional insights compared to the case with two products. First, the effec-
tiveness of subsidizing low-end products depends on the firm’s benefit from selling intermediate 

products (i.e., the comparison between p and 
γ ∗

2
γ ∗

1
). This is because a small subsidy for purchasing 

the low-end product only increases the demand for effort when the consumer decides whether 
to purchase the intermediate product instead of the low-end product, but does not affect con-
sumers’ demand for effort when deciding whether to purchase the high-end product instead of 

the intermediate product. When selling the intermediate product is unprofitable (i.e., p ≤ γ ∗
2

γ ∗
1

), an 
increase in the demand for effort when consumers decide between l and m does not affect the fir-
m’s equilibrium action frequencies. Similarly, the effectiveness of taxing high-end products also 
depends on the profitability of selling the intermediate product, that is, the comparison between 
c and 1−p

1−γ ∗
2

.

Second, subsidizing consumers for purchasing intermediate products encourages the firm to 
exert effort more frequently when the firm’s profit from selling the intermediate product is low 

(i.e., p ≤ γ ∗
2

γ ∗
1

), but encourages the firm to shirk more frequently otherwise. Intuitively, subsidizing 
the intermediate product has an effect similar to that of subsidizing the high-end product in the 
two-product setting when selling the intermediate product is attractive for the firm, and has an 
effect similar to that of subsidizing the low-end product when selling the intermediate product is 
unattractive.

Entry deterrence game Player 1 is an incumbent firm that chooses between fight (action F ) and 
accommodate (action A). Player 2s are potential entrants. Each of them chooses between staying 
out (action O) and entering the market (action I ). Players’ payoffs are:

– O I

F 1 − co,0 −ci ,−(1 − γ ∗)

A 1,0 0, γ ∗

where co ∈ (0, 1) is the incumbent’s cost of setting low prices when the potential entrant stays 
out, and ci > 0 is its cost of setting low prices when the potential entrant enters. Each potential 
entrant prefers to stay out only when the incumbent fights with probability more than γ ∗ ∈ (0, 1).

These payoffs are monotone-supermodular once we rank the incumbent’s actions according 
to F � A, and the entrant’s actions according to O � I . The incumbent’s Stackelberg action is 
F . Proposition 1 implies that:

F ∗(u1, u2) = (1 − co)γ
∗

1 − coγ ∗ .

Claim 2. The lowest discounted frequency with which the incumbent fights potential entrants 
strictly increases in γ ∗, strictly decreases in co, and is independent of ci .

In terms of practical implications, consider a policy maker who can subsidize potential en-
trants for entering the market. This is modeled as an increase in every entrant’s payoff from 
10
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action I by s > 0. Claim 2 implies that the frequency with which the incumbent fights entry is 
non-monotone with respect to the amount of subsidy. In particular,

1. When the subsidy to potential entrants is close to but strictly less than 1 − γ ∗, the strategic-
type incumbent fights with frequency close to 1 in all equilibria. More generally, our formula 
implies that when s < 1 − γ ∗, a marginal increase in the amount of subsidy increases 
F ∗(u1, u2).

2. When the subsidy is more than 1 − γ ∗, each entrant has a strict incentive to enter the market 
regardless of the incumbent’s action, so the incumbent plays A in every period. Therefore, 
the frequency with which the incumbent fights is zero in all equilibria.

Fiscal policy game: Player 1 is a government that chooses between a normal tax rate and a high 
tax rate (i.e., expropriation) and player 2s are citizens who decide whether to invest. Players’ 
payoffs are:

– Invest Not Invest

Normal Tax Rate τ,1 − τ − c 0,0

Expropriate 1,−c 0,0

where the low tax rate is τ ∈ (0, 1) and the cost of investment is c ∈ (0, 1 − τ). These payoffs 
are monotone-supermodular. The government’s Stackelberg action is “normal tax rate” and its 
Stackelberg payoff is τ . According to Proposition 1, the highest frequency with which the gov-
ernment expropriates is:

1 − F ∗(u1, u2) = 1 − τ

1 − τ
· c

1 − c
,

which is a decreasing function of both τ and c. This conclusion implies that in the worst case 
scenario, the frequency of government expropriation is lower when the government’s revenue is 
higher under a normal tax rate (i.e., τ is larger), or when it is more costly for the citizens to invest 
(i.e., c is larger).

5. Discussions of modeling assumptions and results

The role of Assumption 2 Assumption 2 rules out games in which the optimal commitment 
outcome (a∗, b∗) is a stage-game Nash equilibrium (such as coordination games and chicken 
games), as well as games where player 1’s optimal commitment payoff is no more than his 
minmax payoff (such as matching pennies).

Our formula for the lowest discounted frequency of the Stackelberg action fails when 
u1(a

∗, b∗) ≤ v1. For example, consider the following variant of the matching penny game that 
satisfies Assumption 1 and the first part of Assumption 2 but violates the second part of Assump-
tion 2:

– h t

H 1 + ε,−1 −1 + ε,1

T −1,1 1,−1
11
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where ε > 0. Player 1’s unique Stackelberg action is H , his Stackelberg payoff is −1 +ε, and his 
minmax payoff is close to 0 when ε is small enough. Therefore, F ∗(u1, u2) is close to 0 when ε
is close to 0.

However, if both π and ε are small, then the discounted frequency of action H is close to 1/2
in every equilibrium. This means that neither the lower bound F ∗(u1, u2) nor the upper bound 1
can be approximately attained in any equilibrium of the reputation game.

In games where u1(a
∗, b∗) > v1, but (a∗, b∗) is a stage-game Nash equilibrium, our formula 

for the lowest discounted frequency for a∗ applies to the battle of sexes game and the chicken 
game,

Battle of Sexes o f

O 2,1 0,0

F 0,0 1,2

Chicken Game h d

H 0,0 7,2

D 2,7 6,6

or more generally, when u1(a
∗, b∗) is player 1’s highest feasible payoff and u1(a

∗, b∗) >
u1(a, b) for every (a, b) �= (a∗, b∗). In those games, F ∗(u1, u2) = 1. This is because player 1’s 
payoff is close to u1(a

∗, b∗) in every equilibrium of the reputation game, so a∗ must be played 
with discounted frequency close to 1.

Next, we present a counterexample that satisfies Assumption 1 and the second part of As-
sumption 2 but violates the first part of Assumption 2. Suppose players’ payoffs are:

– T N

H 1,1 0,0

M 0,3 3,0

L 0,0 0,3

Player 1’s Stackelberg action is H . Since N is player 2’s best reply to player 1’s mixed action 
1
2M + 1

2L, from which player 1’s expected payoff is 3/2, the value of F ∗(u1, u2) is 0.
When the prior probability of commitment type π is strictly greater than 3/4, the discounted 

frequency with which player 1 plays H is 1 in every equilibrium of the reputation game. This is 
because in every period where player 2 has not observed player 1 playing actions other than H , 
she has a strict incentive to play T , so player 1’s payoff is 1 by playing H in every period. When 
player 1 deviates to M or L, his stage-game payoff is 0, and his continuation value is no more 
than 1 according to the folk theorem result of Fudenberg et al. (1990). This implies that player 1
plays H at every on-path history in every equilibrium.

Mixed-strategy commitment types Our model excludes commitment types that play mixed 
strategies. In order to understand the new challenges brought by mixed-strategy commitment 
types, consider the product choice game in Section 4 where with positive probability, player 1
is a type who mechanically plays (γ ∗ + ε)H + (1 − γ ∗ − ε)L in every period, where ε > 0 is 
small.

A new complication arises since the strategic type can never be separated from the mixed-
strategy commitment type. As a result, the continuation game always has nontrivial incomplete 
information regardless of the strategies being played. This stands in contrast to games where all 
commitment types play pure strategies, in which the strategic type is separated from a commit-
ment type as soon as he stops imitating that type.
12
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Analyzing repeated games with persistent private information and short-lived uninformed 
players is a well-known challenge in the repeated games literature, and to the best of our knowl-
edge, there is no existing result that characterizes the informed player’s equilibrium behaviors or 
his equilibrium action frequencies.5

Rich set of commitment types Our baseline model focuses on settings where there is only one 
commitment type. Our theorems extend to environments with any finite number of commitment 
types, as long as all of them play pure strategies, and there exists a commitment type who plays 
a∗ in every period.

Our proof for the discounted frequency of action a∗ being no less than F ∗(u1, u2) remains 
the same. On the construction of equilibria that approximately attain a given frequency in A , 
for every type space that satisfies the above requirements, there exists T ∈ N such that for every 
δ ∈ (0, 1) and in every equilibrium under δ, player 2’s posterior belief in period T assigns positive 
probability to at most one commitment type. Construct the continuation equilibrium starting from 
period T according to our proof in Appendix A, the discounted frequency of player 1’s action is 
close to α∗ ∈ A when δ is close to 1.

Testable predictions Generally speaking, there are three challenges to test the predictions of 
reputation models.6 First, econometricians do not know which equilibrium players coordinate 
on. Second, econometricians usually observe players’ behaviors rather than their payoffs, while 
most of the existing reputation results that apply to all equilibria (such as those in Fudenberg and 
Levine, 1989) are stated in terms of the patient player’s payoff but not his behaviors. Third, many 
interesting equilibria in reputation games are in mixed strategies, but econometricians usually 
cannot observe these mixed strategies and can only observe the realized pure strategy.

Our results overcome the first and the second challenge by delivering predictions on the patient 
player’s action frequencies that apply to all equilibria. Take the product choice game example in 
Section 4. The expression for F ∗(u1, u2) depends only on two terms:

1. γ ∗: the minimal probability of high effort above which player 2 is willing to play h;
2. ch: the ratio between the cost of effort and the firm’s benefit when a consumer buys the 

high-end product.

The values of γ ∗ and ch can be computed without knowing all the details of players’ stage-game 
payoff functions. Therefore, testing our predictions on the patient player’s action frequencies has 
less demanding data requirements compared to testing the predictions on payoffs in canonical 
reputation models.

In context of the product choice game between a firm and a sequence of consumers, one way to 
address the third challenge is to use the distribution of the firm’s actions across different markets 

5 Very few results are obtained in repeated games between an informed patient player and a sequence of uninformed 
myopic players. Pei (2020b) characterizes the set of equilibrium payoffs between an informed seller and a sequence of 
uninformed buyers when the seller has persistent private information about his cost. His result relies on the assumption 
that all types of the seller have the same ordinal preference over stage-game outcomes, and does not apply when there 
are mixed-strategy commitment types.

6 Despite the large literature that takes repeated game predictions to the lab, see Dal Bó and Fréchette (2018), we are 
unaware of experimental results on repeated games with incomplete information between a patient player and a sequence 
of myopic players.
13
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as a proxy for its mixed actions. This idea is applicable when the firm is a chain store that operates 
in many independent and geographically separated markets, and moreover, the consumers in each 
market can only observe the firm’s actions in their own market but cannot observe the firm’s 
actions in other markets. This is usually the case in developing countries where there is a lack-
of record-keeping institutions, so that most consumers rely on word-of-mouth communication to 
learn about the firm’s past behaviors. In these situations, it is reasonable to assume that consumers 
in one market cannot observe the firm’s past behaviors in other markets. Using this idea, suppose 
an econometrician can observe the firm’s behavior in every period and in every market, then he 
can compute the frequency of the firm’s behaviors using his observations. He can then apply 
Theorems 1 and 2 to examine whether his observations are consistent with the predictions of 
reputation models.

The above discussion also unveils a limitation of our results, that they only characterize the 
set of action frequencies that can arise in equilibrium, but do not deliver predictions on the action 
frequencies that apply to every path of equilibrium play. Therefore, an econometrician cannot test 
our predictions after observing a realized path of equilibrium play. He can do that after observing 
the firm’s mixed actions, e.g., observing the firm’s behaviors across many markets and use the 
empirical distribution as a proxy for the firm’s mixed action.

6. Conclusion

We examine the effects of reputation on the frequencies with which a patient player plays 
each of his actions. Our results characterize tight bounds that apply to all equilibria in a broad 
class of games. Our research question stands in contrast to the reputation literature that focuses 
on the patient player’s equilibrium payoff. Our results stand in contrast to those that study the 
patient player’s behavior in some particular equilibria.

Our results imply that in games where the optimal commitment outcome is not a stage-game 
Nash equilibrium, the patient player may play his optimal commitment action with frequency 
bounded away from one no matter how patient he is. When the patient player’s optimal commit-
ment payoff coincides with his highest equilibrium payoff in the repeated complete information 
game, reputation effects cannot further refine the patient player’s behavior beyond that fact that 
his equilibrium payoff is at least his optimal commitment payoff.

In terms of applications, our results imply that a policy maker can increase the frequency 
with which a firm exerts high effort by subsidizing consumers for purchasing low-end products 
or by taxing consumers for purchasing high-end products. They also imply that a small amount 
of subsidy to potential entrants for entering the market makes an incumbent more aggressive in 
fighting entrants, but a large amount of subsidy encourages the incumbent to accommodate entry.

Appendix A. Overview of proofs

Our proof consists of two parts. Part 1 constructs a class of equilibria in which player 1’s dis-
counted action frequency is close to α∗ ∈ A when δ is close to 1. Part 2 shows that G(σ1,σ2)(a∗)
cannot be strictly lower than F ∗(u1, u2) in any equilibrium when δ is large enough, and in games 
where v1 = u1(a

∗, b∗), any action distribution that does not belong to A cannot be player 1’s 
action frequency in any equilibrium.

The first part of our proof makes a methodological contribution, where we establish a dis-
counted version of the Wald’s inequality to bound the discounted frequency of each action. We 
provide an overview of our equilibrium construction and explain our methodological contribution 
14
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in this section, with details relegated to Appendix B. The second part of our proof is standard, 
which we relegate to Appendix C.

Equilibrium construction The first part of Assumption 2 implies the existence of a′ �= a∗ such 
that u1(a

′, b∗) > u1(a
∗, b∗). Since a∗ is player 1’s unique Stackelberg action, there exists b′ �= b∗

that best replies to a′ such that u1(a
′, b′) < u1(a

∗, b∗). Let α′ ∈ �{a∗, a′} be such that {b∗} =
BR2(α

′) and u1(α
′, b∗) > u1(a

∗, b∗).
We construct a three-phase equilibrium in which the discounted frequency of player 1’s ac-

tions is close to α∗ ∈ A . Let q ∈ �(�) be a distribution of incentive compatible action profiles 
such that α∗ = ∫

α
αdq and 

∫
(α,b)∈�

u1(α, b)dq = u1(a
∗, b∗). The equilibrium play starts from 

a preparation phase, gradually reaches a normal phase, and reaches a punishment phase if and 
only if player 1 has made an off-path deviation.

1. Play belongs to the preparation phase when t = 0, or when t ≥ 1 and (a∗, b∗) was played 
from period 0 to t − 1. In this phase, the strategic-type player 1 plays α′ and player 2 plays 
b∗.

2. Play belongs to the normal phase when there exists s ≤ t − 1 such that (as, bs) �= (a∗, b∗). 
The normal phase consists of a number of blocks, and players’ strategies in each block will 
be specified later on.

3. Player 1’s continuation value when play first reaches the punishment phase is v1. This is 
feasible since player 2’s belief attaches zero probability to the commitment type at every 
off-path history.

In every block of the normal phase, (α′, b∗) is played for the first T1 ∈ N periods, where T1 is a 
constant that is independent of δ. A review happens by the end of these T1 periods:

1. If (a′, b∗) was not played in all T1 periods, then play enters a compensation subphase, 
where (a′, b′) is played until period T ∈ N such that (1 − δ) 

∑T
t=0 δtu1(at , bt ) = (1 −

δT +1)u1(a
∗, b∗). The current block ends in period T and the next block starts in period 

T + 1. If there is no such integer T , then use the public randomization device in the last 
period that satisfies (1 − δ) 

∑T
t=0 δtu1(at , bt ) > (1 − δT +1)u1(a

∗, b∗).
2. If (a′, b∗) was played in all T1 periods, then play enters an absorbing subphase, in which 

(α′, b) is played with probability ε1 > 0 and q ∈ �(�) is played with complementary prob-
ability, dictated by the realization of public randomization in the beginning of each period. 
The absorbing subphase ends in period T where T is the smallest integer that satisfies either

T∑
t=0

δtu1(at , bt ) < (1 − δT +1)u1(a
∗, b∗) + c(1 − δ),

or

T∑
t=0

δtu1(at , bt ) > (1 − δT +1)
(
ε1u1(α

′, b∗)+ (1 − ε1)E(α,b)∼q [u1(α, b)]
)

− c(1 − δ),

where c > 0 is a constant that is independent of δ. Once the absorbing subphase ends, play 
enters the compensation subphase described in the first bulletin point, and the current block 
ends when (1 − δ) 

∑T
δtu1(at , bt ) = (1 − δT +1)u1(a

∗, b∗).
t=0
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One can verify that player 2s’ incentive constraints are satisfied. The strategic type’s dis-
counted average payoff is u1(a

∗, b∗) from each of his on-path strategies, and his continuation 
value at every on-path history is bounded away from v1. The second part of Assumption 2 re-
quires that u1(a

∗, b∗) > v1, which implies that player 1 has no incentive to make any off-path 
deviations when δ is large enough. The two together verify player 1’s incentive constraints.

The challenging step is to compute player 1’s discounted action frequencies when he uses 
this history-dependent mixed strategy. To the best of our knowledge, the existing centrality 
results in probability theory either cannot handle geometric discounting (such as the Chernoff-
Hoeffding’s inequality) or do not provide tight bounds on the probability of concentration (such 
as the Lindeberg-Feller central limit theorem), making those results inapplicable in our context. 
We establish a novel concentration inequality that can overcome both challenges, which is also 
applicable to future studies of players’ behaviors in dynamic games.

Lemma A.1. For every δ ∈ (0, 1), c ≥ 0, and sequence of i.i.d. random variables Zt with finite 
support and mean μ < 0, and Zt takes positive value with positive probability, we have:

Pr

[ ∞⋃
n=1

{
n∑

t=1

δtZt ≥ c

}]
≤ exp(−r∗ · c)

where r∗ > 0 is the smallest positive real number such that Ez∼Z1

[
exp(r∗z)

] = 1.

Intuitively, Lemma A.1 bounds the probability with which the discounted sum of a sequence 
of random variables deviates significantly from its expectation.

Proof of Lemma A.1. Let γZ,t (r) = ln Ez∼Zt

[
exp(rzδt )

]
, and let

qZ,r,t (z) = pZ(z) exp(rzδt − γZ,t (r)),

where pZ(z) is the probability mass function of random variable Z. One can verify that q is a 
well-defined probability measure. For a sequence of random variables Zn ≡ {Z1, . . . , Zn}, we 
have

qZn,r (z1, . . . , zn) = pZn(z1, . . . , zn) exp

(
n∑

t=1

rzt δ
t −

n∑
t=1

γZt ,t (r)

)
.

Let sn = ∑n
t=1 zt δ

t , we have

qSn,r (sn) = pSn(sn) exp

(
rsn −

n∑
t=1

γZt ,t (r)

)
.

Since qSn,r is a probability measure, we have

E

[
exp

(
rsn −

n∑
t=1

γZt ,t (r)

)]
= 1. (A.1)

Let γ (r) ≡ Ez∼Z1

[
exp(rz)

]
, we have γ (0) = 1 and γ ′(0) = Ez∼Z1 [z] < 0. Since r∗ > 0 is the 

smallest positive real number such that Ez∼Z1

[
exp(r∗z)

] = 1, we have γ (r) ≤ 1 for any 0 ≤ r ≤
r∗. Since random variables Zt are i.i.d., we have

γZt ,t (r
∗) = ln Ez∼Zt

[
exp(r∗zδt )

] = ln Ez∼Z

[
exp(r∗zδt )

] ≤ 0
1
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for every t ≥ 1. By substituting r = r∗ in inequality (A.1), we have E
[
exp (r∗sn)

] ≤ 1.7 Let J be 
the stopping time that the sum sJ first exceeds the threshold c, we have

Pr [sJ ≥ c] · E
[
exp(r∗sJ )

∣∣∣sJ ≥ c
]

≤ 1,

which implies that

Pr

[ ∞⋃
n=1

{
n∑

t=1

δtZt ≥ c

}]
= Pr [sJ ≥ c] ≤ exp(−r∗ · c). �

Back to the illustration of our constructive proof. Let Z be a random variable that equals 0
with probability ε1α

′(a∗), equals u1(a
∗, b∗) − u1(a

′, b∗) with probability ε1α
′(a′), and equals 

u1(a
∗, b∗) −u1(α, b) with probability 1 − ε1 where (α, b) ∈ � is drawn according to distribution 

q . Intuitively, Zt measures the difference between the stage-game payoff player 1 receives in the 
absorbing subphase and his target payoff u1(a

∗, b∗).
Since the support of Z is a finite set and the expectation of Z is negative, we can apply 

Lemma A.1 to a sequence of random variables with distribution Z. Our lemma implies that once 
play enters the absorbing subphase, the event that:

• ∑T
t=0 δtu1(at , bt ) is between (1 −δT +1)u1(a

∗, b∗) +c(1 −δ) and (1 −δT +1)
(
ε1u1(α

′, b∗) +
(1 − ε1)E(α,b)∼q [u1(α, b)]

)
− c(1 − δ) for all T ∈ N ,

occurs with probability bounded away from 0. Since all other phases end in finite time in expec-
tation, the discounted frequency of player 1’s action is close to his discounted action frequency 
in the absorbing subphase, which is at most ε1 away from α∗.

Remark on public randomization device The public randomization device is introduced to ease 
the exposition. It can be dispensed in our constructive proof for a reason similar to that in Fu-
denberg and Maskin (1991). In what follows, we provide an intuitive explanation based on the 
constructive proof of Theorem 1 in Appendix A. The details of the construction without public 
randomization are available upon request.

Recall (α1, α2, b1, b2, q) which solves the constrained minimization problem that defines 
F ∗(u1, u2). Intuitively, the public randomization device plays two roles. First, it is used to im-
plement particular interior action frequencies, i.e., those in which a∗ is played with frequency 
strictly between 0 and 1. For this purpose, it is sufficient to choose a sequence of pure actions un-
der which the discounted frequency approximates that of the implemented mixed action. Second, 
the public randomization device delivers the exact continuation payoff that makes player 1 in-
different by mixing between pure action profiles (a, b) ∈ �. As shown in Fudenberg and Maskin 
(1991), any payoff v can be decomposed as the discounted average payoff of an infinite sequence 
of deterministic pure action profiles (a, b) ∈ � when player 1 is sufficiently patient. Therefore, 
our constructed equilibrium can be sustained in absence of public randomization. Finally, for 
any ε > 0, let T be the time period such that δT = ε. When players have access to a public ran-
domization device, we use the public randomization device by the end of each block to set the 

7 Note that when δ = 1, the inequality holds with equality, which is the Wald’s identity established in Wald (1944).
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discounted average payoff exactly to u1(a
∗, b∗). In environments without the public randomiza-

tion device, we can immediately start the next block if that block ends before period T . For any 
block after period T , we replace the public randomization device with an infinite sequence of 
deterministic pure action profiles that exactly implements the desired discounted payoff. Note 
that this does not affect the incentives of player 1 for using mixed strategies because the payoff 
differences in earlier blocks will be rectified by the compensation phase in later blocks. The pub-
lic randomization device can be dispensed since the discounted frequency of any action affected 
by replacing the public randomization device after time T is at most ε.

Appendix B. Proofs of statement 1 of Theorems 1 and 2

We start from showing that Statement 1 of Theorem 1 is implied by Statement 1 of Theorem 2
by showing that it is without loss of generality to focus on {α1, α2, b1, b2, q} such that (3.5) is 
binding in the constrained optimization problem that defines F ∗(u1, u2). Let

F ∗∗(u1, u2) ≡ min
(α1,α2,b1,b2,q)∈�(A)×�(A)×B×B×[0,1]

{
qα1(a

∗) + (1 − q)α2(a
∗)

}
, (B.1)

subject to

(α1, b1) ∈ �, (α2, b2) ∈ �, (B.2)

and

qu1(α1, b1) + (1 − q)u1(α2, b2) = u1(a
∗, b∗). (B.3)

Compared to F ∗(u1, u2), the objective function and the first constraint remains the same, but the 
inequality constraint (3.5) is replaced by the equality constraint (B.3).

Lemma B.1. Suppose (u1, u2) satisfies Assumptions 1 and 2, then F ∗∗(u1, u2) = F ∗(u1, u2).

Proof. The part in which F ∗∗(u1, u2) ≥ F ∗(u1, u2) is straightforward. Next, we show F ∗∗(u1,

u2) ≤ F ∗(u1, u2). Suppose the constrained minimum in (3.3) is attained by {α1, α2, b1, b2, q}
where qu1(α1, b1) + (1 − q)u1(α2, b2) > u1(a

∗, b∗). Since a∗ is player 1’s unique Stackelberg 
action, for every a′ �= a∗, there exists b′ ∈ BR2(a

′) such that u1(a
′, b′) < u1(a

∗, b∗). Let r ∈
[0, 1] be defined via:

ru1(a
′, b′) + (1 − r)

(
u1(α1, b1) + (1 − q)u1(α2, b2)

)
= u1(a

∗, b∗).

Consider an alternative distribution q ′ ∈ �(�) that attaches probability r to (a′, b′), probability 
(1 − r)q to (α1, b1), and probability rq to (α2, b2). The probability of a∗ is weakly lower under 
q ′ compared to that under q , and constraint (3.5) is binding. Later on, we show in Lemma C.3 that 
there exists a distribution over incentive compatible action profiles supported on two elements 
under which constraint (3.4) is satisfied, constraint (3.5) is binding, and attains the constrained 
minimum. Therefore, F ∗∗(u1, u2) ≤ F ∗(u1, u2). �

In the remainder of this appendix, we show that the equilibrium constructed in Appendix A
achieves the desired (discounted) action frequencies. We first define the parameters used in 
the construction of the equilibrium. Let ε1 > 0 be a small positive real number, and let Z1 =
u1(a

∗, b∗) − u1(a, b) be a random variable that
18
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• equals u1(a
∗, b∗) − u1(a

∗, b∗) with probability ε1α
′(a∗),

• equals u1(a
∗, b∗) − u1(a

′, b∗) with probability ε1α
′(a′),

• with probability 1 − ε1, equals u1(a
∗, b∗) −u1(a, b) where (a, b) is distributed according to 

q .

One can verify that Z1 has finite support and E[Z1] < 0. Let r∗
1 > 0 be the smallest real number 

such that Ez∼Z1

[
exp(r∗

1 · z)] = 1.8 Similarly, let Z2 = u1(a, b) − ε1 be the random variable that:

• equals u1(a
∗, b∗) − ε1 with probability ε1α

′(a∗),
• equals u1(a

′, b∗) − ε1 with probability ε1α
′(a′),

• with probability 1 − ε1, equals u1(a, b) − ε1 where (a, b) is distributed according to q .

Let r∗
2 > 0 be the smallest real number such that Ez∼Z2

[
exp(r∗

2 · z)] = 1. Let M ≡
max(a,b)∈A×B u1(a, b) and let T1 = � M+c

u1(a
′,b∗)−u1(a

∗,b∗)� where c ∈R+ is such that exp(− min{r∗
1 ,

r∗
2 } · c) ≤ ε1. Next we introduce several minor changes in the construction of the equilibrium in 

Appendix A to simplify the exposition.

• We impose a universal upper bound on the length of each absorbing subphase as T̄2 ≡
� ln(1−ε1)

ln δ
�, and let T2 ≤ T̄2 be the stopping time of the absorbing subphase.9

• Letting T0 be the starting time of the absorbing subphase, T2 ≤ T̄2 is the smallest integer that 
satisfies

T2∑
t=0

δtu1(at+T0, bt+T0) < (1 − δT2+1)u1(a
∗, b∗) − c(1 − δ)

or
T2∑
t=0

δtu1(at+T0 , bt+T0) > (1−δT2+1)
(
ε1u1(α

′, b∗)+(1−ε1)E(α,b)∼q [u1(α, b)]
)
+c(1−δ).

The second bulletin point defines the stopping criterion based on the discounted average payoff 
within the absorbing subphase. Moreover, the first inequality in the second bulletin is consistent 
with the constraint that the discounted average payoff from time 0 to T is above u1(a

∗, b∗)
because the accumulated payoff in the first T1 periods of the current block is sufficiently high 
when we start the absorbing subphase.

Next we prove Statement 1 of Theorem 2 with the above parameters constructed in the equi-
librium when δ > δ with

δ̄ = max

{
ln(1 − ε3

1)

lnT1
,1 − ε2

1

}
. (B.4)

In the equilibrium constructed in Appendix A, the discounted payoff for player 1 in each 
block equals (1 − δT )u1(a

∗, b∗), in which T ∈ N is the number of time periods in the block. 

8 Here we consider the case that the random variable Z1 takes positive value with positive probability. As will become 
clearer in the analysis, the case when Z1 only has non-positive support is trivial. We made the same assumption for Z2
as well.

9 T2 is the number of period in the current absorbing subphase, not the time horizon.
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This implies that the strategic type has an incentive to play the mixed action in the beginning of 
the game to separate from the commitment type. In addition, one can verify that player 1 has no 
incentive to make any off-path deviations, since his expected continuation value at every on-path 
history is strictly greater than ν1 when δ is sufficiently close to 1.

Let E1 be the event that player 1’s discounted payoff in the absorbing subphase is less than 
(1 − δt )u1(a

∗, b∗) − c(1 − δ). Let E2 be the event that player 1’s discounted payoff in the absorb-
ing subphase is more than (1 − δt )(ε1u1(α

′, b∗) + (1 − ε1)E(α,b)∼q [u1(α, b)] + ε1) + c(1 − δ). 
First, the probability that event E1 happens is bounded from above by the probability that ∑n

t=1 δt z1;t is greater than c for some n ≥ 1 where z1;t ∼ Z1 for all t . According to Lemma A.1, 
the latter probability is bounded from above by exp(−r∗

1 ·c) ≤ ε1, which implies that Pr[E1] ≤ ε1. 
Similarly, we have Pr[E2] ≤ ε1. Let E3 be the event that action profile (a′, b∗) is observed for T1
periods, and by definition we have Pr[E3] = pT1 .

We first show that Gσ1,σ2(a) ≤ α∗(a) +ε for every a ∈ A. Let G denote the discounted number 
of times action a is chosen from the beginning of each block. By construction, we have

G ≤ (1 − δT1) + (1 − pT1 · (1 − 2ε1)) · δT1G + (1 − 2ε1) · pT1δT1+T̄2G

+ pT1δT1(1 − δT̄2)(ε1 + (1 − ε1)α
∗(a))

⇒ G ≤ 1 − δT1 + pT1δT1(1 − δT̄2)(ε1 + (1 − ε1)α
∗(a))

(1 − 2ε1)(1 − δT̄2)δT1pT1 + (1 − δT1)
≤ α∗(a) + ε1

1 − 2ε1
.

The first term in the first inequality is the upper bound on the discounted number of times action 
a is chosen from period 1 to T1; the second term is the upper bound on the discounted number of 
times action a is chosen in future blocks conditional on event (E1 ∪E2) happens; the third term is 
the upper bound on the discounted number of times action a is chosen in future blocks conditional 
on event ¬(E1 ∪ E2), and the last term is the upper bound on the discounted number of times 
action a is chosen in the absorbing subphase. The second inequality holds by rearranging terms. 
By setting ε1 � pT1 , the last inequality holds since 1 − δT1 ≤ ε3

1 and 1 − δT̄2 ≈ ε1. Therefore,

E(σ1,σ2)
[ ∞∑

t=0

(1 − δ)δt1{at = a}
]

≤
∞∑
t=0

p(1 − p)t
(
1 − δt + δtG

)
= (1 − p)(1 − δ)

1 − (1 − p)δ
+ α∗(a) + ε1

(1 − (1 − p)δ)(1 − 2ε1)
≤ α∗(a)

+ ε,

where the last inequality holds for sufficiently small 0 < ε1 � ε.
Next we show that Gσ1,σ2(a) ≥ α∗(a) − ε for every a ∈ A. First, we provide an upper bound 

for the stopping time T . Conditional on event E2 ∩ E3, the stopping time T satisfies

(1 − δT1+T2)M + δT1+T2(1 − δT −T1−T2)u1(a
′, b′) ≥ (1 − δT )u1(a

∗, b∗)

⇒ δT ≥ u1(a
∗, b∗) − δT1+T2(u1(α

′, b′) − (1 − δT1+T2)M

u1(a∗, b∗) − u1(α′, b′)

≥ δT1+T2 − (1 − δT1+T2)M

u1(a∗, b∗) − u1(α′, b′)
≥ δT1+T̄2 − (1 − δT1+T̄2)M

u1(a∗, b∗) − u1(α′, b′)
(B.5)

Conditional on event (¬E2) ∩ E3, the stopping time T satisfies
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(1 − δT1)M + δT1(1 − δT2)(ε1u1(α
′, b∗) + (1 − ε1)E(α,b)∼q [u1(α, b)] + ε1)

+ c(1 − δ) + δT1+T2(1 − δT −T1−T2)u1(a
′, b′) ≥ (1 − δT )u1(a

∗, b∗)

⇒ δT ≥ δT1+T2 (u1(a
∗, b∗) − (u1(α

′, b′)) − (1 − δT1 )M − c(1 − δ) − δT1 (1 − δT2 )(ε1u1(α
′, b∗) + ε1)

u1(a∗, b∗) − u1(α′, b′)

≥ δT1+T2 − ε2
1(1 − δT1+T2)(2M + c)

u1(a∗, b∗) − u1(α′, b′)
≥ δT1+T̄2 − ε2

1(1 − δT1+T̄2)(2M + c)

u1(a∗, b∗) − u1(α′, b′)
(B.6)

Conditional on event ¬E3, the stopping time T satisfies

(1 − δT1)M + δT1(1 − δT −T1)u1(a
′, b′) ≥ (1 − δT )u1(a

∗, b∗)

⇒ δT ≥ u1(a
∗, b∗) − δT1u1(α

′, b′) − (1 − δT1)M

u1(a∗, b∗) − u1(α′, b′)

≥ δT1 − (1 − δT1)M

u1(a∗, b∗) − u1(α′, b′)
(B.7)

Let G denote the discounted number of times action a is chosen in each block. By construc-
tion, we have

G ≥ (1 − pT1)(δT1 − (1 − δT1)M

u1(a∗, b∗) − u1(α′, b′)
)G + pT1(1 − ε1)(δ

T1+T̄2

− ε2
1(1 − δT1+T̄2)(2M + c)

u1(a∗, b∗) − u1(α′, b′)
)G

+ pT1ε1(δ
T1+T̄2 − (1 − δT1+T̄2)M

u1(a∗, b∗) − u1(α′, b′)
)G + pT1δT1(1 − δT̄2)(1 − ε1)α

∗(a)

⇒ G ≥ pT1δT1(1 − δT̄2)(1 − ε1)α
∗(a)

pT1δT1(1 − δT̄2) + O(ε2
1)

≥ α∗(a)(1 − ε1)

1 + O(ε1)
.

The first term in the first inequality is the lower bound on the discounted number of times action 
a is chosen in future blocks conditional on event ¬E3; the second term is the lower bound on the 
discounted number of times action a is chosen in future blocks conditional on event E3 ∩ (¬E2); 
the third term is the lower bound on the discounted number of times action a is chosen in future 
blocks conditional on event E3 ∩ E2; and the last term is the lower bound on the discounted 
number of times action a is chosen in absorbing subphase. Finally, we have

E(σ1,σ2)
[ ∞∑

t=0

(1 − δ)δt1{at = a}
]

≥
∞∑
t=0

p(1 − p)t δtG

= α∗(a)(1 − ε1)

(1 − (1 − p)δ)(1 + O(ε1))
≥ α∗(a) − ε,

where the last inequality holds when ε1 is sufficiently small compared to ε. Combining these 
bounds, we have∣∣∣∣∣E(σ1,σ2)

[ ∞∑
(1 − δ)δt1{at = a}

]
− α∗(a)

∣∣∣∣∣ ≤ ε for every a ∈ A.
t=0

21



Y. Li and H. Pei Journal of Economic Theory 193 (2021) 105222
Appendix C. Proofs of statement 2 of Theorems 1 and 2

First, we establish Statement 2 of Theorem 1. Let �(�) be the set of probability distributions 
on � whose support has countable number of elements. Let F(u1, u2, ε) be the value of the 
following constrained optimization problem:

F(u1, u2, ε) ≡ inf
p∈�(�)

∫
α(a∗)dp(α, b), (C.1)

subject to∫
u1(α, b)dp(α, b) ≥ u1(a

∗, b∗) − ε. (C.2)

Our proof of the necessity part of Theorem 1 consists of three lemmas.

Lemma C.1. For every π > 0 and ε > 0, there exists δ ∈ (0, 1) such that for every δ > δ,

G(σ1,σ2)(a∗) ≥ F(u1, u2, ε) − (1 − δ) for every (σ1, σ2) ∈ NE(δ,π). (C.3)

Lemma C.2. For every u1 and u2 that satisfy Assumptions 1 and 2, limε↓0 F(u1, u2, ε) =
F(u1, u2, 0).

Lemma C.3. For every u1 and u2 that satisfy Assumptions 1 and 2, F ∗(u1, u2) = F(u1, u2, 0).

Proof of Lemma C.1. The reputation result in Fudenberg and Levine (1989) implies that for 
every π > 0 and ε > 0, there exists δ ∈ (0, 1) such that for every δ > δ,

E(σ1,σ2)
[ +∞∑

t=0

(1 − δ)δtu1(at , bt )
]

≥ u1(a
∗, b∗) − ε/2 for every (σ1, σ2) ∈ NE(δ,π).

(C.4)

For given (σ1, σ2) ∈ NE(δ, π), let H ∗ be a set of on-path histories such that ht ∈ H ∗ if and 
only if

• a∗ was played from period 0 to t −1, and σ1(h
t ) assigns positive probability to actions other 

than a∗.

By construction, for every ht ∈ H ∗, player 2’s posterior belief at ht assigns probability at least π
to the commitment type, and therefore, player 1’s continuation value at ht is at least u1(a

∗, b∗) −
ε/2. Let M ≡ max(a,b)∈A×B u1(a, b). For every a ∈ supp(σ1(h

t ))\{a∗} and b ∈ supp(σ2(h
t )), 

player 1’s continuation value at (ht , a, b), denoted by v(ht , a, b), satisfies:

v(ht , a, b) ≥ 1

δ

(
u1(a

∗, b∗) − ε

2
− (1 − δ)M

)
.

The right-hand-side is strictly greater than u1(a
∗, b∗) − ε when δ is close enough to 1. For every 

on-path history hs such that hs � (ht , a, b), player 2 attaches probability 1 to the rational type 
at hs , and therefore, σ2(h

s) best replies against σ1(h
s). Therefore, (σ1(h

s), b) ∈ � for every b ∈
supp(σ2(h

s)). Let p(ht ,a,b) ∈ �(�) be a probability measure on � such that for every (α, b) ∈ �,
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p(ht ,a,b)(α, b) ≡ E(σ1,σ2)
[ ∞∑

s=t+1

(1 − δ)δs−t−11{σ1(h
s) = α}σ2(b)

∣∣∣(ht , a, b)
]
. (C.5)

By construction, p(ht ,a,b) has a countable number of elements in its support, and player 1’s 
continuation value at (ht , a, b), denoted by v(ht , a, b), satisfies

v(ht , a, b) =
∫

u1(α, b)dp(ht ,a,b)(α, b) ≥ u1(a
∗, b∗) − ε. (C.6)

The definition of F(u1, u2, ε) in (C.1) and (C.2) suggests that:

G(ht ,a,b)(a∗) ≡ E(σ1,σ2)
[ ∞∑

s=t+1

(1 − δ)δs−t−11{as = a∗}
∣∣∣(ht , a, b)

]
≥ F(u1, u2, ε). (C.7)

Next, we compute a lower bound on G(σ1,σ2)(a∗). Let Ĥ be the set of on-path histories ht ≡
(ht−1, at−1, bt−1) such that t ≥ 1, ht−1 ∈ H ∗, and at−1 �= a∗. Let p(σ1,σ2)(ht ) be the ex ante 
probability of history ht under the probability measure induced by (σ1, σ2). By definition, 1 −∑

ht∈Ĥ p(σ1,σ2)(ht ) is the ex ante probability with which player 1 plays a∗ in every period 
conditional on him being the rational type. Therefore,

G(σ1,σ2)(a∗) =
(

1 −
∑

ht∈Ĥ

p(σ1,σ2)(ht )
)

+
∑

ht∈Ĥ

p(σ1,σ2)(ht )
(
(1 − δt−1) + δtX(ht )(a∗)

)
≥ − (1 − δ) +

(
1 −

∑
ht∈Ĥ

p(σ1,σ2)(ht )
)

+
∑

ht∈Ĥ

p(σ1,σ2)(ht )
(
(1 − δt ) + δtX(ht )(a∗)

)
≥ F(u1, u2, ε) − (1 − δ) ≥ F(u1, u2, ε) − (1 − δ) � (C.8)

Proof of Lemma C.2. By definition, the value of F(u1, u2, ε) is a decreasing function of ε and 
is bounded by [0, 1]. Therefore, limε↓0 F(u1, u2, ε) exists and moreover, limε↓0 F(u1, u2, ε) ≤
F(u1, u2, 0).

Next, we show that limε↓0 F(u1, u2, ε) ≥ F(u1, u2, 0). The optimization problem that defines 
F(u1, u2, ε) implies that for every ε > 0, there exists pε ∈ �(�) that has countable number of 
elements in its support such that 

∫
α(a∗)dpε(α, b) ≤ F(u1, u2, ε) + ε and 

∫
u1(α, b)dpε(α, b) ≥

u1(a
∗, b∗) − ε.

According to Assumption 2, there exists a′ ∈ A such that u1(a
′, b∗) > u1(a

∗, b∗). According 
to Assumption 1, b∗ is player 2’s strict best reply against a∗. This implies the existence of α∗ ∈
�(A) such that α∗(a∗) �= 1, b∗ ∈ BR2(α

∗), and u1(α
∗, b∗) > u1(a

∗, b∗). Let ρ ≡ u1(α
∗, b∗) −

u1(a
∗, b∗). Since the support of pε is countable, there exists α∗

ε ∈ �(A) such that α∗
ε (a∗) �= 1, 

b∗ ∈ BR2(α
∗
ε ), u1(α

∗
ε , b∗) − u1(a

∗, b∗) ≥ ρ
2 , and (α∗

ε , b∗) does not belong to the support of pε. 
We construct probability measure p′

ε ∈ �(�) according to:

• p′
ε(α

∗
ε , b∗) ≡ 2ε

ρ+2ε
.

• p′
ε(α, b) ≡ ρ

ρ+2ε
pε(α, b) for every (α, b) that belongs to the support of pε.

By construction, 
∫

u1(α, b)dp′
ε(α, b) ≥ u1(a

∗, b∗), and therefore,

2ε + ρ (
F(u1, u2, ε) + ε

)
≥

∫
α(a∗)dp′

ε(α, b) ≥ F(u1, u2,0). (C.9)

ρ + 2ε ρ + 2ε
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This implies that

lim
ε↓0

{ 2ε

ρ + 2ε
+ ρ

ρ + 2ε

(
F(u1, u2, ε) + ε

)}
= lim

ε↓0
F(u1, u2, ε) ≥ F(u1, u2,0). �

Proof of Lemma C.3. The inequality that F ∗(u1, u2) ≥ F(u1, u2, 0) is implied by the defini-
tions of F ∗(u1, u2) and F(u1, u2, 0). In what follows, we show that F ∗(u1, u2) ≤ F(u1, u2, 0). 
For every η > 0, there exists pη ∈ �(�) that has countable number of elements in its support 
such that 

∫
α(a∗)dpη(α, b) ≤ F(u1, u2, 0) + η and 

∫
u1(α, b)dpη(α, b) ≥ u1(a

∗, b∗). Let �η be 
a countable subset of � that contains the support of pη. Consider the following minimization 
problem:

Fη ≡ min
p∈�(�η)

∑
(α,b)∈�η

p(α, b)α(a∗), (C.10)

subject to∑
(α,b)∈�η

p(α, b)u1(α, b) ≥ u1(a
∗, b∗). (C.11)

By construction, Fη ≤ ∫
α(a∗)dpη(α, b) ≤ F(u1, u2, 0) + η. We show that Fη can be attained 

via a distribution that contains at most two elements in its support. The Lagrangian of the mini-
mization problem is:∑

(α,b)∈�η

p(α, b)α(a∗) + λ
( ∑

(α,b)∈�η

p(α, b)u1(α, b) − u1(a
∗, b∗)

)
, (C.12)

where λ is the Lagrange multiplier. If constraint (C.11) is not binding, then the minimum is zero 
and is attained by a degenerate distribution. If constraint (C.11) is binding, then for every pair of 
elements (α, b) and (α′, b′) in the support of the minimand p∗

η ∈ �(�η),

α(a∗) + λu1(α, b) = α′(a∗) + λu1(α
′, b). (C.13)

Label the elements in the support of p∗
η as {(αi, bi)}+∞

i=1 . Equation (C.13) implies that for every 
αi(a

∗) �= αj (a
∗),

u1(αi, b) − u1(αj , b)

αi(a∗) − αj (a∗)
= −1

λ
. (C.14)

Let

u1 ≡ sup
(α,b)∈{(αi ,bi )}+∞

i=1

u1(α, b), u1 ≡ inf
(α,b)∈{(αi ,bi )}+∞

i=1

u1(α, b),

q ≡ sup
(α,b)∈{(αi ,bi )}+∞

i=1

α(a∗), and q ≡ inf
(α,b)∈{(αi ,bi )}+∞

i=1

α(a∗).

Equation (C.14) implies that

u − u

q − q
= −1

λ
.

Let γ ∈ (0, 1) be such that γ u1 + (1 − γ )u1 = u1(a
∗, b∗). According to (C.14), we have γ q +

(1 − γ )q = Fη.
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Since �(A) × B is compact, there exist (α, b) and (α, b) which are limit points of set 
{(αi, bi)}+∞

i=1 such that u1(α, b) = u1, α(a∗) = q , u1(α, b) = u1, and α(a∗) = q . Since player 
2’s best reply correspondence is upper-hemi-continuous, (α, b), (α, b) ∈ �. Our analysis above 
suggests that there exists a distribution on �η

⋃{(α, b), (α, b)} with at most two elements in its 
support that satisfies constraint (C.2) and the value of the objective function (C.1) is at most 
F(u1, u2, 0) + η.

Take a decreasing sequence of positive real numbers {ηn}n∈N such that limn→∞ ηn = 0. 
For every n ∈ N , there exists pn ∈ �(�) with at most two elements in its support that satis-
fies constraint (C.2) and the value of the objective function is at most F(u1, u2, 0) + ηn. Since (
�(A1) ×B

)2
is compact, there exists a converging subsequence {pkn}n∈N such that its limit p∗

has at most two elements in its support, satisfies constraint (C.2), and the value of the objective 
function is at most F(u1, u2, 0). This implies that F ∗(u1, u2) ≤ F(u1, u2, 0). �

In the last step, we modify the above proof in order to establish Statement 2 of Theorem 2. 
Since v1 = u1(a

∗, b∗), for every ε > 0, there exists δ ∈ (0, 1) such that player 1’s payoff in every 
equilibrium where δ > δ is no more than u1(a

∗, b∗) + ε. Let

A ε ≡
{
α∗ ∈ �(A)

∣∣∣∃q ∈ �(�) such that α∗ =
∫
α

αdq and
∣∣∣ ∫
(α,b)

u1(α, b)dq − u1(a
∗, b∗)

∣∣∣
≤ ε

}
. (C.15)

Lemma C.1 implies that for every α′ /∈ A ε , there exist η > 0 and δ ∈ (0, 1) such that for every 
δ > δ and every (σ1, σ2) ∈ NE(δ, π), we have:∣∣∣G(σ1,σ2)(a) − α∗(a)

∣∣∣ > η for some a ∈ A. (C.16)

The conclusion of Theorem 2 is obtained since limε→0 A ε = A .

Appendix D. Proof of Proposition 1

First, suppose toward a contradiction that {α1, α2, b1, b2, q} solves (3.3), player 2 has a strict 
incentive to play b1 against α1, α1 does not attach probability 1 to player 1’s lowest action, 
and q �= 0. One can increase the probability of a in α1 and decrease the probability of other 
actions, after which player 1’s expected payoff strictly increases and the probability of action a∗
strictly decreases. This contradicts the presumption that {α1, α2, b1, b2, q} solves the constrained 
minimization problem.

Next, suppose q > 0 and α1 is such that |BR2(α1)| ≥ 2, and there exists b ∈ BR(α1) such that 
u1(α1, b) > u1(α1, b1). Then replace b1 by b in the constrained minimization problem, the value 
of F ∗ remains unchanged but constraint (3.5) becomes slack. This contradicts Lemma B.1 that 
it is without loss of generality to focus on {α1, α2, b1, b2, q} such that constraint (3.5) binds.
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