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Abstract

We examine the long-term behavior of a Bayesian agent who has a misspecified belief about
the time lag between actions and feedback, and learns about the payoff consequences of his ac-
tions over time. Misspecified beliefs about time lags result in attribution errors, which have no
long-term effect when the agent’s action converges, but can lead to arbitrarily large long-term
inefficiencies when his action cycles. Our proof uses concentration inequalities to bound the
frequency of action switches, which are useful to study learning problems with history depen-
dence. We apply our methods to study a policy choice game between a policy-maker who has a
correctly specified belief about the time lag and the public who has a misspecified belief.
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1 Introduction

We study learning problems faced by Bayesian decision makers who have misspecified beliefs about the

time lag between decisions and feedback. We examine the long-term consequences of such belief misspec-

ifications both in single-agent decision-making problems and in games of collective decision-making.

Misperception about time lags is prevalent among decision makers at various levels, ranging from leaders

in organizations to ordinary citizens. For example, a manager decides how much resource to allocate to

R&D. Unlike efforts on production and sales, investments in R&D are unlikely to pay off in the short run,

and moreover, it is usually unclear when and whether they will pay off. Repenning and Sterman (2002) show

that these time lags hinder an organization’s learning about the optimal resource allocation by “complicating

the attribution of causality between actions and results”. Rahmandad, Repenning, and Sterman (2009) point

out that what slows down organizational learning is not the delay per se, but instead, people’s misperceptions

about the delay. Consequences of such misperceptions include the so-called capability traps (Repenning and

Sterman, 2002), in which members of an organization work hard on production at the expense of cutting

back on the time allocated to R&D and maintenance, that ultimately results in low productivity.

Similarly, fans of football clubs tend to credit or blame their current managers for their team’s perfor-

mances while ignoring the effects of previous managers’ decisions. Many people believe that reopening the

economy is safe amidst the COVID-19 pandemic when the number of cases and hospitalizations in Georgia,

Florida, and Arizona went down three weeks after these states’ reopenings.1 However, the number of cases

and hospitalizations started to surge six to eight weeks after these states’ reopennings, forcing some of them

to partially return to lockdown.

We propose a model that incorporates such misperceptions. In every period, an agent chooses an action

and observes an outcome that determines his payoff. The agent faces uncertainty about the state, i.e., the

mapping from his actions to the outcome distributions. He observes the history of actions and outcomes

and updates his belief according to Bayes rule. We assume that the true state belongs to the support of the

agent’s prior belief and that the outcome is informative about the state regardless of the agent’s action.

The outcome distribution in period t depends only on the agent’s action in period t− k∗ while the agent

believes that it depends on his action in period t− k′, where k′ is different from k∗.2 Our formulation can

1The state of Georgia reopened in late April, and on May 23rd, Governor Brian Kemp shared the news that hospital-
izations are down by 30% since the state reopened. Similar patterns arise after the reopening of Florida, Texas and Ari-
zona in early May. However, the number of cases and hospitalizations in these states started to surge from late June to July.
See https://www.latimes.com/world-nation/story/2020-05-23/georgia-reopened-first-the-data-say-whatever-you-want-them-to and
https://www.cnbc.com/2020/06/29/more-states-reverse-or-slow-reopening-plans-as-coronavirus-cases-climb.html

2Section 5 extends our result to situations where (1) the outcome distribution depends on a weighted average of the agent’s
current and past actions, or (2) the agent faces uncertainty about the time lag and learns about it over time.
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capture, for example, an individual underestimates the time it takes for workouts to have effects on fitness,

a policy-maker underestimates or overestimates the time it takes for a curriculum reform to have effects on

students’ academic achievements, and so on.

This novel form of belief misspecification interferes learning through an attribution error, which has

no long-term effect when the agent’s action converges but can lead to mislearning when the agent’s action

changes over time. Theorem 1 shows that the mislearning caused by attribution errors can lead to arbitrarily

large long-term inefficiencies in the sense that for an open set of states, there exist prior beliefs that include

the true state in their support such that the asymptotic frequency with which the agent takes his optimal action

is arbitrarily close to zero. This stands in contrast to the benchmark scenario with a correctly specified belief

about the time lag, in which the agent chooses his optimal action almost surely in the long run.

The first challenge in establishing this result stems from the fact that our learning problem exhibits

nontrivial history-dependence. This is because the agent’s current-period action directly affects his future

observations. The second challenge arises from the observation that the agent’s action cannot converge to

anything suboptimal and inefficiencies can only arise when the agent’s action cycles in the long run. As a

result, one needs to bound the frequency of action switches in order to quantify the amount of mislearning,

which is a key step toward showing that the posterior probability of the true state is low in the long run.

We develop a new technique using concentration inequalities. First, we examine an auxiliary problem in

which the true state is excluded from the agent’s prior belief. We use the Chernoff-Hoeffding inequality to

show that in expectation, the agent switches actions within a finite number of periods. We then establish a

concentration inequality on unbounded random variables in order to bound the frequency of action switches.

Next, we study situations in which the true state occurs with small but positive probability. We use the

Azuma-Hoeffding inequality to show that due to the mislearning caused by frequent action switches, the

true state occurs with low probability in the agent’s posterior for all periods. This explains why the agent’s

actions cycle over time even when the true state belongs to the support of his prior belief.

We apply our framework to study a dynamic policy choice game between a policy-maker who has a

correctly specified belief about the time lag and the public who has a misspecified belief. The policy-maker

wants to implement a socially beneficial reform but cannot do so without the public’s support. The public

prefers the reform to the status quo in one state and prefers the status quo in the other state. This conflict

of interest can arise when the reform has positive externalities or the status quo has negative externalities on

marginalized groups (e.g., massive gatherings during a pandemic has negative externalities on the immuno-

compromised) which the policy-maker cares about but the majority of citizens fail to internalize. Therefore,

a reform can be both optimal for the benevolent policy-maker and suboptimal for the majority of citizens.
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We characterize the maximal frequency that the policy-maker can implement the reform when he has

no private information about the state. We show that the policy-maker’s optimal payoff equals the maximal

frequency of reform in an auxiliary game where he knows the state but the public is naive in the sense that

they fail to recognize the informational content of the policy-maker’s behaviors. Intuitively, this is because

the policy-maker can asymptotically learn the true state, and when the reform is optimal for the public, he

can implement the reform in almost every period regardless of the public’s prior.

We also construct a class of strategies under which the policy-maker can approximately achieve his

optimal payoff, according to which he proposes the reform with frequency close to a half when the public

entertains a pessimistic belief about the reform, and proposes the reform with frequency strictly greater

than a half when the public entertains an optimistic belief about the reform. The former maximizes the

amount of mislearning and the latter maximizes the frequency of reform subject to a constraint that the

expected amount of mislearning is non-negative. The key step is to use the Wald inequality and show that

conditional on the reform being suboptimal for the public, the policy-maker’s future proposals are accepted

with probability close to 1 when he started to propose the reform with frequency greater than a half.

Our work contributes to a growing literature on misspecified learning by studying environments with

history dependence. The agent in our model has a misspecified belief about the dynamic structure of the

problem and his past actions can affect future outcomes. This stands in contrast to most of the existing

works such as Berk (1966), Nyarko (1991), Esponda and Pouzo (2016), Fudenberg, Romanyuk, and Strack

(2017), Bohren and Hauser (2020), Frick, Iijima, and Ishii (2020), Esponda, Pouzo, and Yamamoto (2020),

and Fudenberg, Lanzani, and Strack (2020) that exclude history dependence.

Several recent papers study misspecifed learning models with history dependence and provide conditions

for the steady states. Shalizi (2009) provides sufficient conditions for the convergence of posterior belief

when there is no endogenous action choice and the signals in different periods can be correlated. He (2020)

examines misspecified learning in two-period optimal stopping problems in which an agent mistakenly

believes that the outcome in the second period is negatively correlated with that in the first period. Esponda

and Pouzo (2020) study a single-agent Markov decision problem with misspecified beliefs about the state

transition function. Molavi (2020) examines a dynamic general equilibrium model in which an agent’s

choice in the current period affects the constraints he face in the future. By contrast, we focus on the

dynamics of an agent’s behavior in history-dependent learning problems instead of the steady states. We

show that the long-run outcome can be inefficient by bounding the frequency of action switches.3

3Esponda, Pouzo, and Yamamoto (2020) introduce stochastic approximation techniques and characterize the frequency of the
agent’s actions in misspecified learning problems without history-dependence.
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The attribution error in our model is related to Eliaz and Spiegler (2020), who study an agent’s long-term

behavior when he updates his belief according to a misspecified causal model. They propose a solution con-

cept that characterizes the steady states of the above learning process, rather than examining the dynamics

of actions and beliefs. Spiegler (2013) examines the dynamic interaction between an agent and a sequence

of principals, each of them acts only once and chooses whether to intervene. The agent attributes changes of

a state variable to the latest intervention, which is applicable when some of the principal’s actions (interven-

tion) are more salient than others (no intervention). Jehiel and Samuelson (2012) characterize an informed

long-run player’s payoff and behavior when he faces a sequence of short-run players who mistakenly be-

lieve that all types of the long-run player use stationary strategies. By contrast, we study a different type of

attribution error, where the agent has wrong beliefs about the delay between actions and feedback.

2 Model

Time is discrete, indexed by t = 1,2, ... In period t, a Bayesian agent chooses an action at ∈ A, and then

observes an outcome yt ∈ Y . We assume that both A and Y are finite sets.

Our modeling innovation is to introduce time lags between decisions and feedback as well as the agent’s

misperception about the time lag. Formally, there exist two non-negative integers k∗,k′ ∈ N with k∗ 6= k′,

such that the distribution of yt depends only on at−k∗ , while the agent believes that it depends on at−k′ .

The agent faces uncertainty about the distribution over outcomes (which we call the state) and learns

about it over time by observing the history of actions and outcomes. A typical state is denoted by F ≡

{F(·|a)}a∈A, with F(·|a)∈∆(Y ). Let F∗≡{F∗(·|a)}a∈A be the true state, namely, yt is distributed according

to F∗(·|at−k∗). The agent’s prior belief about the state is π0 ∈ ∆(Y ), with Y ≡
(

∆(Y )
)A

and supp(π0) is

finite.4 After the agent learns that the state is F , he believes that yt is distributed according to F(·|at−k′). The

agent observes ht ≡ {...,a−1,a0,a1, ...,at−1,y1, ....,yt−1} in period t and his posterior belief is denoted by

πt ∈ ∆(Y ). All the actions before period 1 are exogenously given. In order to focus on misspecified belief

about the time lag, we focus on prior beliefs that are regular:

Regular Prior Belief. π0 is regular with respect to F∗ if

1. F∗ ∈ supp(π0), and for every F ∈ supp(π0) and a ∈ A, F(·|a) has full support.

2. for every F,F ′ ∈ supp(π0) and a ∈ A, we have F(·|a) 6= F ′(·|a).

4When there are infinitely many states, Diaconis and Freedman (1986) and Shalizi (2009) show that the agent’s posterior belief
may not converge to the true state even when the true state belongs to the support of his prior belief. We abstract away from this
complication in order to focus on the economic implications of misspecified beliefs about time lags.
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The first part requires that the true state F∗ belongs to the support of the agent’s prior belief and that

the agent cannot rule out any state no matter which action he takes and which outcome he observes. This

rules out canonical forms of belief misspecifications studied by Berk (1966), Nyarko (1991), and Esponda

and Pouzo (2016) in which F∗ is excluded from the agent’s prior belief. The second part requires that

the observed outcome is informative about the state regardless of the agent’s action, which is satisfied for

generic finite subsets of Y . It rules out lack-of-identification problems, such as safe-arms in bandit models.

The agent’s stage-game payoff is v(yt). We assume that argmaxa∈A{∑y∈Y v(y)F∗(y|a)} is a singleton,

and its unique element is denoted by a∗, i.e., the agent has a unique optimal action under the true state. This

is satisfied for generic F∗ ∈ Y and v : Y → R given that A and Y are finite sets. The agent’s strategy is

σ : H → ∆(A), where H is the set of histories. Strategy σ is optimal if σ(ht) maximizes the expected

value of ∑
+∞

s=0 δ sv(yt+s) at every ht , where δ ∈ [0,1) is the agent’s discount factor. We focus on settings such

that either δ ∈ (0,1) or (δ ,k′) = (0,0). This is because the agent is indifferent between all actions when

δ = 0 and k′ ≥ 1. Let Σ∗(π0) be the set of strategies that are optimal for the agent when his prior is π0.

For some useful benchmarks, the agent chooses a∗ in every period after he learns that the true state is

F∗ even if he entertains a misspecified belief about the time lag. If there is no belief misspecification, i.e.,

k∗ = k′, then according to Berk’s Theorem (Berk, 1966), the agent’s action converges to a∗ almost surely.

Remark: Our baseline model focuses on situations in which the outcome in every period is affected only

by one of the agent’s actions. Section 5 discusses extensions where the outcome in period t depends on a

convex combination of the agent’s past and current-period actions, and the agent has a wrong belief about

the weights of different actions. We also consider settings in which the agent faces uncertainty about the

time lag and learns about it over time, but the support of his prior belief excludes the true time lag.

The agent’s payoff in our baseline model depends only on the observed outcome. Our results extend

when the agent’s payoff also depends on the state. When the agent’s payoff depends directly on his action

(e.g., different actions have different costs), his action can be suboptimal even when he learns the true state.

This is because when k∗ 6= k′, the agent either overestimates or underestimates the time it takes for his action

to have an effect, which can lead to suboptimal decisions since the agent discounts future payoffs. Our

results extend to settings where the agent’s payoff is v(yt)− c(at), as long as the absolute value of c(·) is

small enough such that the agent has a strict incentive to choose a∗ after he learns the true state.
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3 Result

First, we show that if the agent’s action converges, then it can only converge to his optimal action. Moreover,

the asymptotic frequency of his optimal action must be strictly positive when his prior belief is regular.

Lemma 3.1. Suppose either δ ∈ (0,1) or (δ ,k′) = (0,0). If π0 is regular with respect to F∗ and at

converges to a with positive probability, then a = a∗. Furthermore,

liminf
t→+∞

Eσ

[1
t

t

∑
s=1

1{as = a∗}
]
> 0 for every σ ∈ Σ

∗(π0). (3.1)

The proof is in Appendix B. Intuitively, the only way in which misspecified beliefs about time lags can

interfere learning is through an attribution error, namely, the agent attributes the effects of at−k∗ to at−k′ .

When the agent’s action converges, at−k∗ and at−k′ are the same so the attribution error does not affect his

learning. Since F∗ ∈ supp(π0) and there is no lack-of identification problem, the agent will learn the true

state almost surely. This implies that the agent’s actions are asymptotically efficient, which contradicts the

presumption that his action converges to something other than a∗. The agent takes his optimal action with

positive asymptotic frequency since for every ε > 0, the following event occurs with positive probability:

E ε ≡ {there exists T ∈ N such that πt(F∗)> 1− ε for every t ≥ T}. (3.2)

Intuitively, this is because y is informative about the state, so there always exists a signal realization that

increases the posterior probability of F∗. The probability that the agent chooses a∗ in all future periods is

strictly positive when the posterior probability of F∗ is close to 1, which implies (3.1).

Despite the agent’s action cannot converge to anything other than a∗, the attribution errors caused by

misspecified beliefs can lead to arbitrarily large long-term inefficiencies. Theorem 1 shows that the fre-

quency with which the agent takes his optimal action can be arbitrarily close to 0.

Theorem 1. Suppose either δ ∈ (0,1) or (δ ,k′) = (0,0). For every γ > 0, there exists an open set

Y o ⊂ Y such that for every F∗ ∈ Y o, there is a prior belief π0 that is regular with respect to F∗ under

which

limsup
t→+∞

Eσ

[1
t

t

∑
s=1

1{as = a∗}
]
< γ for every σ ∈ Σ

∗(π0). (3.3)

Theorem 1 implies that Bayesian agents fail to take their optimal action even when the true state belongs

to the support of their prior belief and the observed outcome can statistically identify the state. Intuitively,

this is because attribution errors lead to mislearning when the agent switches actions. In particular, when the
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agent’s action changes over time, the probability of the true state can decrease in expectation. When action

switches are frequent enough, the amount of mislearning outweighs the what the agent learns when he takes

the same action in consecutive periods. As a result, his posterior belief may attach a low probability to F∗ in

all periods. Under some F∗ and π0 that is regular with respect to F∗, such an event occurs with probability

arbitrarily close to 1, which leads to arbitrarily large asymptotic inefficiencies.

The proof is in Appendix C. We explain the logic behind our argument using an example, which illus-

trates how attribution errors lead to action cycles in the long run and how to bound the frequency of action

switches using concentration inequalities.

Illustrative Example: Suppose A ≡ {0,1}, δ = 0, k∗ = 1, and k′ = 0. That is, the agent is myopic,

the distribution of yt depends only on the agent’s action in period t− 1 while the agent believes that yt is

affected by his action in period t. Let Y ≡ {y0,y1,y2}, v(y0) = v(y1) = 0, v(y2) = 1, and the support of π0 is

{F∗,F0,F1}, with

F∗(yi|a = 0) =


ε i = 0

1−3ε i = 1

2ε i = 2

F∗(yi|a = 1) =


1−2ε i = 0

ε i = 1

ε i = 2

F0(yi|a = 0) =


2/3− ε i = 0

1/3− ε i = 1

2ε i = 2

F0(yi|a = 1) =


2/3− ε/2 i = 0

1/3− ε/2 i = 1

ε i = 2

F1(yi|a = 0) =


1/3− ε/2 i = 0

2/3− ε/2 i = 1

ε i = 2

F1(yi|a = 1) =


1/3− ε i = 0

2/3− ε i = 1

2ε i = 2

These distributions are depicted in Figure 1. One can verify that the optimal actions in states F∗ and F0 are

both 0, and the optimal action in state F1 is 1.

Since the true state F∗ belongs to the support of π0 and y can statistically identify the state, the agent’s

action converges to 0 almost surely when he has a correctly specified belief about the time lag. However,
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Pr(y1)

Pr(y0)

F0(·|a = 0)

F1(·|a = 1)

F∗(·|a = 0)

F0(·|a = 1)

F1(·|a = 0)

F∗(·|a = 1)

Figure 1: Example with Action Cycles: Signal Distributions under F∗, F0 and F1

when the agent has a misspecified belief about the time lag, we sketch an argument which shows that the

asymptotic frequency of the suboptimal action can be arbitrarily close to 1/2.

Claim 1. For every η > 0, there exists ε > 0 such that when ε < ε , there exists a full support π0 under

which

limsup
t→+∞

1
t
Eσ

[ t

∑
s=1

1{as = a∗}
]
<

1
2
+η for every σ ∈ Σ

∗(π0).

Our argument proceeds in two steps. First, we examine an auxiliary learning problem where F∗ occurs

with zero probability. Let lt ≡ log πt(F0)
πt(F1)

. By definition, the agent has a strict incentive to take action 0 when

lt > 0, and has a strict incentive to take action 1 when lt < 0.

A useful observation from Figure 1 is that when the agent takes action 0, F1 is closer to F∗ compared to

F0. As a result, the log likelihood ratio lt decreases in expectation when the agent chooses action 0 in two

consecutive periods. Let τ0 be the number of periods with which the agent’s action switches back to action 1

when at−2 = 1 and at−1 = at = 0. The Chernoff-Hoeffding inequality implies that:

Pr(τ0 ≥ s)≤ Pr(lt+s ≥ 0)≤ exp
(
−2s

( lt
s
+E[ls− ls−1]︸ ︷︷ ︸

<0

)2)
, (3.4)

from which we know that the distribution of τ0 is first order stochastically dominated by an exponential

distribution and therefore, has bounded first and second moments.

Similarly, when the agent takes action 1, F0 is closer to F∗ compared to F1. As a result, lt increases in

expectation when the agent takes action 1 in two consecutive periods. Let τ1 be the number of periods with

which the agent’s action switches back to action 0 when at−2 = 0 and at−1 = at = 1. A similar argument
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based on the Chernoff-Hoeffding inequality implies that τ1 has bounded first and second moments.

In order to bound the frequency of action switches from below using the above conclusions on τ0 and

τ1, we establish a concentration inequality that applies to unbounded random variables (Lemma A.3).5 This

inequality implies that for every ε > 0, there exists a large enough T ∈ N such that

E
[ #{t ≤ T |at−1 = at = 1}

#{t ≤ T |at−1 = 1,at = 0}

]
= E

[ #{t ≤ T |at−1 = at = 1}
#{t ≤ T |at−1 = 0,at = 1}

]
≤ E[τ1]+ ε,

and

E
[ #{t ≤ T |at−1 = at = 0}

#{t ≤ T |at−1 = 1,at = 0}

]
= E

[ #{t ≤ T |at−1 = at = 0}
#{t ≤ T |at−1 = 0,at = 1}

]
≤ E[τ0]+ ε.

When π0(F1) and π0(F0) are close, the expectations of τ0 and τ1 are close, and therefore, the asymptotic

frequencies of both actions are close to 1/2. The above inequalities imply that the asymptotic frequency of

action switches is strictly positive and is close to 1
1+E[τ0]

and 1
1+E[τ1]

.

Next, we consider the case in which the true state F∗ belongs to the support of π0 but occurs with low

probability. We show that with probability close to 1, the agent’s posterior belief attaches a low probability

to F∗ in all periods. Formally, for every η > 0, there exists π > 0 such that when the prior probability of F∗

is less than π , the probability of the event that

max
{

πt(F∗)
πt(F0)

,
πt(F∗)
πt(F1)

}
< η for all t ∈ N (3.5)

is at least 1−η . Intuitively, both log πt(F∗)
πt(F0)

and log πt(F∗)
πt(F1)

increase in expectation when at = at−1 since F∗

is the true state. However, as can be seen from Figure 1, F∗(·|a = 0) is further away from F∗(·|a = 1)

compared to both F0(·|a = 0) and F1(·|a = 0), and F∗(·|a = 1) is further away from F∗(·|a = 0) compared

to both F0(·|a = 1) and F1(·|a = 1). Due to the attribution errors caused by misspecified beliefs about the

time lag, both log likelihood ratios decrease in expectation when at 6= at−1.

When πt(F∗) is low, the agent’s best reply problem is similar to the one he faces in the auxiliary scenario

where F∗ is excluded from the support of his prior, in which case he frequently switches actions. Those

action switches together with the attribution error lead to mislearning. When E[τ0] and E[τ1] are sufficiently

small, action switches are frequent, so the mislearning caused by attribution errors outweighs what the agent

can learn when he takes the same action in adjacent periods.

In order to formalize this intuition, we provide a lower bound on the probability of event (3.5) using

5The Chernoff-Hoeffding inequality only applies to bounded random variables. Corollary 5.5 in Lattimore and Szepesvári
(2020) and Jin et al. (2019) establish concentration inequalities for random variables with sub-Gaussian distributions. By contrast,
our result is more general since it only requires the random variable to have bounded first and second moments.
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concentration inequalities. The Chernoff-Hoeffding inequality does not apply since the agent’s belief af-

fects his actions, so the log likelihood ratios between F∗ and F0, and between F∗ and F1 can exhibit serial

correlations. We overcome this challenge by constructing a martingale process with bounded increments

from the log likelihood ratios and then applying the Azuma-Hoeffding inequality. We show that with prob-

ability close to 1, the agent’s belief attaches low probability to F∗ in all periods. This together with the

frequent action switches explains why he takes the inefficient action with positive asymptotic frequency and

his actions cycle over time.

Remark: In our example, the asymptotic frequency with which the agent takes the inefficient action is

close to 1/2. In Appendix B, we construct F∗ as well as regular prior beliefs with respect to F∗ such that

the frequency of the inefficient action is close to 1. In this example, one can simply modify the outcome

distributions such that both τ1 and τ0 have low expectations, but the expectation of τ1 is significantly greater

than the expectation of τ0.

4 Application: Dynamic Policy Choice Game

In order to demonstrate the applicability of our techniques to bound the frequency of action switches, we

analyze a dynamic policy choice game between

• a principal who strategically makes policy proposals, learns about the state over time, and has a

correctly specified belief about the time lag between the chosen policy and the observed feedback,

• a Bayesian agent who can veto the principal’s proposals, and learn about the outcome distribution

under a misspecified belief about the time lag.6

In every period, a society needs to make a collective choice between two policies at ∈ A ≡ {0,1}. In

period t, the principal makes a proposal ãt ∈ A. If ãt = 0, then action 0 is automatically implemented, i.e.,

at = 0. If ãt = 1, then the agent chooses whether to accept (at = 1) or veto (at = 0) the principal’s proposal.

Both the principal and the agent face uncertainty about the state, which is contained in F ≡ {F0,F1}.

Their common prior belief is π0 ∈ ∆(F ), which we assume has full support.7

The principal and the agent agree to disagree in terms of the time lag between decisions and feedback.

The principal has a correctly specified belief about the time lag and knows that the distribution of yt depends

6Our analysis also applies to a sequence of myopic agents, each plays the game only once.
7Extensions to environments with more than two states are available upon request. Our results also apply when the principal

and the agent agree to disagree about the state distribution. For example, when the principal’s prior belief is p0 that is different
from π0, one needs to replace π0 by p0 in RHS of (4.6).
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only on at−k∗ , with k∗ ≥ 1. The agent believes that the distribution of yt depends on at , i.e., k′ = 0. In period

t, both players observe ht ≡ {ãs,as,ys}t−1
s=0 and update their beliefs about the state according to Bayes rule.

Let H be the set of histories. Let σp : H → [0,1] be the principal’s strategy, which maps the histories to

the probability that he proposes action 1, with σp ∈ Σp. Let σa : H → [0,1] be the agent’s strategy, which

maps the histories to the probability with which he approves action 1, with σa ∈ Σa.

The principal is patient and maximizes the frequency of action 1.8 The agent is myopic and his stage-

game payoff in period t is v(yt).9 Since the principal has no private information about the state, under a no

signaling what you don’t know condition (Fudenberg and Tirole, 1991), neither the agent’s belief nor his

best reply depends on the principal’s proposals {ã0, ..., ãt} or the principal’s strategy σp. Without loss of

generality, we assume that ∑y∈Y v(y)F1(y|1) > ∑y∈Y v(y)F1(y|0) and ∑y∈Y v(y)F0(y|0) > ∑y∈Y v(y)F0(y|1),

that is, action a is optimal for the agent in state Fa for every a ∈ A.10

This game fits applications where a benevolent policy-maker (i.e., the principal) wants to persuade the

public (i.e., the agents) to stop taking actions that have negative externalities on marginalized groups (ac-

tion 0, for example, massive gatherings during a pandemic have negative externalities on people who are

immunocompromised), or to adopt reforms that have positive externalities (action 1, for example, reducing

greenhouse gas emission has positive externalities on future generations). Action 0 is interpreted as a status

quo action, which the policy-maker has the ability to implement by himself. By contrast, the public’s co-

operation is crucial for the implementation of the socially beneficial action. For example, the government

can issue a mask mandate for the purpose of slowing down the spread of a virus, but this mandate won’t be

effective unless the majority of citizens cooperate. However, taking the socially beneficial action is against

the agent’s private interest in state F0 and he learns about which action is optimal over time.

Our result characterizes the maximal frequency that the principal can implement the socially beneficial

action by taking advantage of the agent’s misspecified beliefs. We also describe the qualitative features of

the principal’s strategy from which he approximately attains his optimal payoff. We assume that the agent

is not indifferent between action 0 and action 1 at any history.

Assumption 1. π0 is such that the agent is not indifferent between action 0 and action 1 at every ht .

Assumption 1 is satisfied for generic prior belief π0 given that A and Y are finite sets. This assumption

implies that the agent’s optimal strategy is unique, which we denote by σ∗a . The principal’s asymptotic

8We evaluate the patient principal’s payoff using the long-run averages. This is a common practice in undiscounted games, see
for example, Hart (1985) and Forges (1992).

9We comment on the case in which k′ 6= 0 and the agent’s discount factor is strictly positive by the end of this section.
10If action 1 is optimal for the agent in both states, then the principal can implement action 1 with frequency 1 regardless of the

agent’s prior belief and belief misspecification. If action 0 is optimal for the agent in both states, then the frequency of action 1 is
zero regardless of the principal’s strategy.
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payoff from strategy σp is between

V (σp)≡ liminf
t→+∞

1
t
E(σp,σ

∗
a )
[ t

∑
s=1

as

]
and V (σp)≡ limsup

t→+∞

1
t
E(σp,σ

∗
a )
[ t

∑
s=1

as

]
, (4.1)

where E(σp,σ
∗
a )[·] is the expectation under (σp,σ

∗
a ). The principal’s payoff when he optimally chooses his

strategy is bounded between V ≡ supσp∈Σp
V (σp) and V ≡ supσp∈Σp

V (σp).

We introduce some notation to characterize the principal’s optimal payoff. Let

E ∗ ≡
{

there exists t ∈ N such that for every s≥ t, ∑
F∈F

πs(F) ∑
y∈Y

v(y)F(y|1)> ∑
F∈F

πs(F) ∑
y∈Y

v(y)F(y|0)
}

be the event that action 1 is strictly optimal for the agent starting from some period. Let

q∗ ≡ sup
σp∈Σp

Pr(E ∗|σp,σ
∗
a ,F0). (4.2)

Intuitively, q∗ is the maximal probability of event E ∗ when the state is F0 and the agent plays according to

his optimal strategy. Let Xa→a′ be a random variable such that

Xa→a′ = log
F1(y|a′)
F0(y|a′)

with probability F0(y|a) for every y ∈ Y. (4.3)

Intuitively, Xa→a′ is the change in the log likelihood ratio between F0 and F1 when the true state is F0, the

previous period action was a, and the current period action is a′. Let

λ ≡ sup
λ̂≥0

λ̂ +1

λ̂ +2
(4.4)

subject to

λ̂E[X1→1]+E[X1→0 +X0→1]> 0. (4.5)

Moreover, we define λ = 0 if the above inequality is never satisfied. One can verify that λ ∈ (1
2 ,1)∪{0}.

Intuitively, λ is the maximal frequency of action 1 such that the log likelihood ratio between F0 and F1 does

not increase in expectation, or in another word, the amount of mislearning in state F0 is non-negative.

Theorem 2. If π0 satisfies Assumption 1, then

V =V = π0(F1)+π0(F0)q∗λ . (4.6)
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Theorem 2 implies that the principal’s asymptotic payoff exists (i.e., V =V ) and characterizes its value.

At the optimum, the asymptotic frequency of action 1 is 1 in state F1 and is q∗λ in state F0.

The proof is in Appendix D. We provide an intuitive explanation in three steps, using an example in

which there are two outcomes Y = {yg,yb}, the outcome distributions are given by:

F1(y|a)≡

 r if (a,y) = (0,yb) or (1,yg)

1− r if (a,y) = (1,yb) or (0,yg),

F0(y|a)≡

 r if (a,y) = (1,yb) or (0,yg)

1− r if (a,y) = (0,yb) or (1,yg),

where r ∈ (1/2,1) is a parameter, and the agent’s payoff is 1 when the outcome is yg and is 0 otherwise.

In this example, the agent strictly prefers action 0 if and only if log πt(F0)
πt(F1)

> 0. One can verify that

X1→1 first order stochastically dominates both X1→0 and X0→1. Therefore, the maximum that defines q∗ is

attained when the principal proposes the opposite action to what was implemented k∗ periods ago, that is,

ãt = 1−at−k∗ for every t ∈ N. According to the maximization problem that defines λ ,

λ = max
λ̂

λ̂ +1

λ̂ +2
subject to λ̂E[X1→1]+E[X1→0 +X0→1]≥ 0. (4.7)

Since X1→1 first order stochastically dominates both X1→0 and X0→1, the constraint is binding and the max-

imum in (4.7) is attained when the ratio between taking the same action in consecutive periods and action

switches is λ̂ .

Step 1: We consider an auxiliary game in which the principal knows the true state but the agent is naive

in the sense that he fails to extract information from the principal’s proposals. We show that when the true

state belongs to F1, the principal’s asymptotic payoff in the auxiliary game is 1 regardless of the agent’s

prior belief. Moreover, the principal can attain this payoff by proposing action 1 in every period.

Let lt ≡ log πt(F0)
πt(F1)

. Agent t strictly prefers action 1 when lt < 0 and strictly prefers action 0 when lt > 0.

Since lt decreases in expectation when the agent takes the same action in two consecutive periods and F1 is

the true state, the Wald’s inequality (Lemma A.1) implies that

1. for every lt < 0, the probability of the event {lτ < 0 for every τ ≥ t} is bounded away from 0,

2. for every lt > 0, the probability of the event {lτ > 0 for every τ ≥ t} is 0.

Since the log likelihood ratio process is absorbed with positive probability at negative values and is absorbed
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with zero probability at positive values, we know that with probability 1, there exists T ∈ N such that lt < 0

for all t ≥ T . Therefore, the principal’s asymptotic payoff is 1 regardless of the agent’s prior belief.

Step 2: We show that principal’s optimal payoff in the auxiliary game where the state is F0 is q∗λ , that is,

U(F0,π0) = q∗λ . (4.8)

Recall that (1) q∗ is the maximal probability that the agent eventually has an incentive to approve action

1, which is attained when the principal proposes action 1 with frequency approximately 1/2 the agent knows

event E ∗, and (2) according to (4.7), λ is the maximal frequency that the principal can propose action 1

subject to the constraint that the log likelihood ratio between F0 and F1 does not increase in expectation.

The principal faces a tradeoff between increasing the frequency that he proposes action 1 and increasing

the probability that the agent is willing to approve action 1. The former allows him to propose action 1 with

frequency as high as λ , but in order to maximize the probability with which the agent approves action 1, he

needs to propose it with frequency close to 1/2.

Equation (4.8) suggests that such a tradeoff has no impact on the principal’s asymptotic payoff since

in the auxiliary game where the state is F0, the principal can attain an expected payoff as if (1) the agent

eventually approves action 1 for all periods with its maximal probability q∗, and (2) the principal can propose

action 1 with its maximal frequency subject to the mislearning constraint, which equals λ .

The definitions of q∗ and λ imply that U(F0,π0)≤ q∗λ . We show that U(F0,π0)≥ q∗λ by constructing a

family of strategies under which the principal’s asymptotic payoff is arbitrarily close to q∗λ . Each strategy in

this class is characterized by a cutoff log likelihood ratio l∗ε < 0 such that the principal proposes ãt = 1−at−k∗

if the log likelihood ratio is above l∗ε in all previous period, and proposes action 1 with frequency close to

but less than λ when the log likelihood ratio has fall below l∗ε in at least one period.

The key step is to show that under the proposed strategy (1) the probability with which the log likelihood

ratio falls below l∗ε in at least one period is arbitrarily close to q∗, and (2) conditional on the log likelihood

ratio falls below l∗ε , the probability that it is strictly negative in all future periods is close to 1.

We establish these two claims using concentration inequalities. The intuition behind the first claim is

that conditional on lt > 0, the probability that the log likelihood ratio is positive in all future periods is

strictly positive, so the log likelihood ratio will eventually escape any bounded interval with probability 1.

As a result, the probability that lt < 0 for all t large enough equals the probability that lt < l∗ε for all t large

enough. The intuition behind the second statement is that according to (4.8), one can construct strategies



4 APPLICATION: DYNAMIC POLICY CHOICE GAME 15

under which the frequency of proposing action 1 is close to λ , yet the log likelihood ratio is non-increasing in

expectation. For an example of such a strategy, let T1,T2 ∈N be such that T1 is even and T2/T1 ∈ (λ −ε,λ ).

The principal’s strategy is divided into T ≡ T1 +T2 period blocks such that he proposes action 0 in period

1, 3, ... T1− 1 within each block, and proposes action 1 otherwise. The Wald’s inequality implies that the

probability with which the log likelihood ratio exceeds 0 in some period after t is small when lt < l∗ε and l∗ε

is small enough.

To conclude, when the principal uses this class of strategies, he can ensure that with probability close to

q∗, the agent is willing to approve action 1 in all future periods, and conditional on this event, he can propose

policy 1 with frequency arbitrarily close to λ . This explains why the tradeoff he faces between inducing

mislearning and increasing the frequency of proposing action 1 diminishes in the long run.

Step 3: We show that the principal’s payoff in our dynamic policy choice game with symmetric uncertainty

equals his expected payoff in the auxiliary game. Formally, let U(F,π0) be the principal’s payoff in the

auxiliary game when the state is F and the agent’s prior belief is π0. We show that:

V =V = π0(F0)U(F0,π0)+π0(F1)U(F1,π0). (4.9)

This is implied by the following two inequalities:

V ≤ π0(F0)U(F0,π0)+π0(F1)U(F1,π0) (4.10)

and

V ≥ π0(F0)U(F0,π0)+π0(F1)U(F1,π0). (4.11)

Inequality (4.10) is straightforward since the principal’s payoff is weakly greater in the auxiliary game given

that he has more information and the agent does not extract information from his proposals.

In order to establish inequality (4.11), let σ ε
p be the principal’s strategy such that his asymptotic payoff

is more than U(F0,π0)− ε in the auxiliary game where the state is F0. Since y is informative about the

state, for every ε > 0, there exists T ∈ N such that for each of the principal’s strategy and every a ∈ A, the

principal’s posterior belief in period T attaches probability greater than 1−ε to Fa when Fa is the true state.

Consider the principal’s asymptotic payoff by using the following strategy in the original game with

symmetric uncertainty:

1. he plays according to σ ε
p in the first T periods,
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2. if his period T posterior belief attaches probability greater than 1− ε to state F1, then he proposes

action 1 in all future periods,

3. if his period T posterior belief attaches probability less than 1− ε to state F1, he continues to use

strategy σ ε
p .

Under the above strategy, the probability with which the principal proposes 1 in every period after T is at

least 1−ε conditional on the state being F1. Since U(F1,π0) = 1 for all π0, the principal’s asymptotic payoff

conditional on state F1 is at least 1− ε . Conditional on the true state being F0, the probability with which

he uses σ ε
p in every period is at least 1− ε , so his payoff is at least (1− ε)(U(F0,π0)− ε). Therefore, his

expected asymptotic payoff converges to π0(F0)U(F0,π0)+π0(F1) as ε goes to 0.

Remarks: Our formula for the principal’s optimal payoff is reminiscent of the repeated zero sum games

of Aumann and Maschler (1995) and the Bayesian persuasion games of Kamenica and Gentzkow (2011),

where an informed player’s payoff in a binary-state setting is a piece-wise linear and concave function of

the uninformed player’s prior belief. Our formula for the principal’s highest equilibrium payoff (4.6) is not

continuous since q∗ depends on the agent’s prior belief and exhibits discontinuity in general.

When δ > 0, the agent may have incentives to experiment, which depend on the principal’s strategy. As

a result, the agent’s optimal strategy is not unique when the log likelihood ratio between F0 and F1 is close

to the cutoff at which a myopic agent is indifferent. In general, for every δ ∈ (0,1) and k′, there exist two

cutoffs l∗ and l∗∗ with 0 < l∗ < l∗∗ <+∞ such that regardless of the principal’s strategy, the agent has a strict

incentive to approve action 1 when lt < l∗ and has a strict incentive to veto action 1 when lt > l∗∗. When

lt ∈ [l∗, l∗∗], the agent’s incentive depends on the principal’s strategy. Nevertheless, when the discount factor

is positive but small enough, the set of agent-optimal strategy is small and our approach provides lower and

upper bounds on the principal’s payoff. The two bounds coincide as the agent’s discount factor converges

to 0, in which case our approach can exactly characterize the principal’s asymptotic payoff.

5 Discussions

We discuss extensions and generalizations of our main result.

Uncertainty about the time lag: In our baseline model, the agent faces uncertainty about the outcome

distribution but has a degenerate prior about the time lag. In general, the agent may also learn about the time

lag under a misspecified model.
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Our main result extends when the agent faces uncertainty both about the outcome distribution and the

time lag.11 Formally, there is a finite set of states F ⊂ Y and a finite set of possible time lags K ⊂ N. The

agent has a full support prior belief π0 ∈ ∆(F ×K). In order to focus on the effects of misspecified belief

about the time lag, we assume that F∗ ∈F and k∗ /∈ K.

Similar to the baseline model, the agent chooses a∗ ≡ argmaxa∈A ∑y∈Y v(y)F∗(y|a) in every period when

he learns the true state regardless of his belief about the time lag. As a result, the agent’s action cannot

converge to actions other than a∗ and a∗ occurs with positive asymptotic frequency. When δ ∈ (0,1) or

(δ ,k′) = (0,0), there exists F∗ ∈ Y and a prior belief π0 that is regular with respect to F∗ under which the

agent takes his optimal action with frequency arbitrarily close to 0.

General forms of belief misspecifications: In our baseline model, the distribution of yt depends only on

one of the agent’s actions. In practice, the outcome distribution can be affected by multiple actions.

We extend our results when the distribution of yt depends on a convex combination of the agent’s current-

period action and his actions in the last k ∈N periods where k is an exogenous parameter. In particular, when

the state is F ≡ {F(·|a)}a∈A, yt is distributed according to ∑a∈A αt(a)F(·|a) where αt(a)≡∑
k
j=0 β j1{at− j =

a}, β ≡ (β0, ...,βk) ∈ Rk+1
+ , and ∑

k
j=0 β j = 1. The agent has a wrong belief about the convex weights

of different actions, and believes that when the state is F , yt is distributed according to ∑a∈A α̂t(a)F(·|a),

where α̂t(a) ≡ ∑
k
j=0 β̂ j1{at− j = a} with β̂ ≡ (β̂0, ..., β̂k) ∈ Rk+1

+ , ∑
k
j=0 β̂ j = 1, and β̂ 6= β . This general

formulation captures for example, when the agent overestimates or underestimates the effects of his current-

period action on the current-period outcome, i.e., when β̂0 6= β0. Theorem 1 extends under a stronger

identification condition that for every F,F ′ ∈F and α ∈ ∆(A), we have F(·|α) 6= F ′(·|α).

11If the agent only faces uncertainty about the time lag but knows the outcome distribution, then he takes his optimal action in
every period and misspecified belief about the time lag is irrelevant for his behavior and payoff.
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A Probability Tools

We state three results in probability theory, which will be used in our subsequent proofs. The first result is

the Wald nequality, which bounds the probability of the union of tail events from above.

Lemma A.1 (Wald, 1944). Let {Zt}t∈N be a sequence of i.i.d. random variables with finite support,

strictly negative mean, and takes a positive value with positive probability. Let r∗ > 0 be the unique real

number that satisfies Ez∼Z1 [exp(r∗z)] = 1. We have

Pr

[
∞⋃

n=1

{
n

∑
t=1

Zt ≥ c

}]
≤ exp(−r∗ · c) for every c > 0.

The second result is the Azuma-Hoeffding inequality, that applies to martingales with bounded incre-

ments.

Lemma A.2 (Azuma-Hoeffding inequality). Let {Z0,Z1, · · ·} be a martingale such that |Zk−Zk−1| ≤ ck.

Then for every N ∈ N and ε1 > 0, we have

Pr[ZN−Z0 ≥ ε1]≤ exp

(
− ε2

1

2∑
N
k=1 c2

k

)
.

The third result extends the Chernoff-Heoffding inequality to random variables with unbounded support

and finite first and second moments.

Lemma A.3. For any λ > 1 and any sequence of i.i.d. random variables X1,X2, . . . ,Xn with finite mean

µ > 0 and finite variance, we have

Pr

[
n

∑
i=1

Xi ≥ λ µn

]
≤ exp(−cn)

where c≡maxt>0{λ µt− lnE
[
etX1
]
}. For any λ ∈ (0,1), we have

Pr

[
n

∑
i=1

Xi ≤ λ µn

]
≤ exp(−c′n)

where c′ ≡maxt>0{−λ µt− lnE
[
e−tX1

]
}

Proof. The proof is similar to that of the Chernoff-Hoeffding inequality. If λ > 1, then

Pr

[
n

∑
i=1

Xi ≥ λnµ

]
= Pr

[
et ∑

n
i=1 Xi ≥ etλnµ

]
≤ 1

etλnµ
·

n

∏
i=1

E
[
etXi
]

for every t ∈ N,
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where the last inequality holds by the Markov inequality. Set t ∈ N in order to maximize λ µt− lnE
[
etX1
]
,

we have

Pr

[
n

∑
i=1

Xi ≥ λnµ

]
≤ exp{−cn} .

If λ < 1, then

Pr

[
n

∑
i=1

Xi ≤ λnµ

]
= Pr

[
e−t ∑

n
i=1 Xi ≥ e−tλnµ

]
≤ 1

e−tλnµ
·

n

∏
i=1

E
[
e−tXi

]
for every t ∈ N,

Set t ∈ N in order to maximize −λ µt− lnE
[
e−tX1

]
, we have

Pr

[
n

∑
i=1

Xi ≤ λnµ

]
≤ exp

{
−c′n

}
.

Remark: In Lemma A.3, let c(t)= λ µt− lnE
[
etX1
]
. One can verify that c(0)= 0 and c′(0)= (λ−1)µ >

0 for λ > 1 and µ > 0. Moreover, c′′(0) = Var[X1] is finite. Therefore, c = maxt>0{λ µt− lnE
[
etX1
]
} is

strictly positive for λ > 1 and µ > 0. Similarly, we can also show that c′ > 0 for λ < 1 and µ > 0.

B Proof of Lemma 3.1

The conclusion of Lemma 3.1 is implied by the following two claims.

Claim 2. For ε ∈ (0,1) and π0 that has finite support, there exists η > 0 and a sufficiently large T such

that the πT (F∗)> 1− ε with probability at least η .

Claim 3. Suppose δ ∈ (0,1) or (δ ,k′) = (0,0). For any finite set of states F ⊆ ∆(Y ), there exist

ε,η ∈ (0,1) such that if π0(F∗) > 1− ε and π0 is supported on F , then a∗ is chosen for all periods with

probability at least η .

Combining those two claims, we have that for any prior π with finite support, there exists η > 0 and

T > 0 such that with probability η , action a∗ is chosen for all periods after T , which implies that the limiting

frequency of a∗ is at least η > 0.

Proof Claim 2. Let F be the support of π0. For every pair of states F0,F1 ∈F , let

Xa→a′(F0,F1)≡ log
F0(y|a′)
F1(y|a′)

with probability F∗(y|a) for every y ∈ Y.
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Let l̄ be the largest realization of |Xa→a′(F0,F1)| for any a,a′ ∈ A and F0,F1 ∈F . One can verify that the

increment of log πt(F0)
πt(F1)

follows the same distribution as random variable Xat−k∗→at−k′ (F0,F1). Therefore,

log
πT (F0)

πT (F1)
− log

π0(F0)

π0(F1)
−

T

∑
t=1

E
[
Xat−k∗→at−k′ (F0,F1)

]
is a martingale with bounded increments. According to Lemma A.2, for every ε > 0, T > 0, π , and F0,F1,

and any sequence of actions a0, . . . ,aT , we have

Pr

[
log

πT (F0)

πT (F1)
− log

π0(F0)

π0(F1)
−

T

∑
t=1

E
[
Xat−k∗→at−k′ (F0,F1)

]
≥ ε

]
≤ exp

(
− ε2

1

2T l̄2

)
. (B.1)

Now consider an auxiliary scenario where k∗ = k′. One can verify that Xat−k′→at−k′ (F,F
∗)< 0 for every

F1 6= F∗. For every ε > 0, let T ∈ N be large enough such that

1. |F | · exp
(
− ε2

1
2T l̄2

)
< 1.

2. For any F ∈F \F∗, − log π0(F)
π0(F∗)

−∑
T
t=1E[Xat−k′ → at−k′(F,F∗)]− ε > log |F |(1−ε)

ε
.

By applying union bound to inequality (B.1) for all F ∈F \F∗, we know that with strictly positive probabil-

ity, log πT (F)
πT (F∗)

≥ log |F |(1−ε)
ε

for any F ∈F \F∗. This implies that πT (F∗)≥ 1− ε . Note that by Condition

2, this event also occurs with strictly positive probability when the true state is F∗ with time lag k∗. This

concludes the proof of Claim 2.

Proof of Claim 3. For every finite set F ⊆ ∆(Y ) such that F∗ ∈F , let πε ∈ (0,1) be the lowest probability

such that for every π ∈∆(F ), if π attaches probability at least πε to F∗, then the agent has a strict incentive to

choose a∗. For simplicity, let X(F)≡ Xa∗→a∗(F,F∗) for any F ∈F \F∗. By definition, we have E[X(F)]<

0. Let r∗F > 0 be defined via Ex∼X(F)[exp(r∗F · x)] = 1. According to Lemma A.1, for a sequence of i.i.d.

random variables X1, . . . ,Xt that is distributed according to X(F), we have

Pr

[
∞⋃

n=1

{
n

∑
t=1

Xt ≥ c

}]
≤ exp(−r∗F · c) for every c > 0.

Let r∗ = minF∈F\F∗ r∗F . Let c be such that |F | · exp(−r∗ · c) < 1, and let ε > 0 be such that c + l̄ ·

max{k∗,k′}+ log ε

1−ε
< log πε

|F |·(1−πε )
, we know that for the first max{k∗,k′} periods, the agent always

chooses action a∗ and the log likelihood ratio between F and F∗ increases by at most l̄ ·max{k∗,k′}. More-
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over, for any t > l̄ ·max{k∗,k′}, with probability 1−|F | · exp(−r∗ · c)> 0, we have that

log
πt(F)

πt(F∗)
< c+ l̄ ·max{k∗,k′}+ log

π0(F)

π0(F∗)
< c+ l̄ ·max{k∗,k′}+ log

ε

1− ε
< log

πε

|F | · (1−πε)

for any F ∈F \F∗. This implies that πt(F∗) > πε for any t > 0 and hence the agent chooses action a∗ in

all future periods.

C Proof of Theorem 1

We establish inequality (3.3) when |Y | = 2, and later adjust the proof to environments where |Y | ≥ 3. For

simplicity, we first consider the case in which k∗ = 1 and k′ = 0. Our argument straightforwardly generalizes

to other values of k∗ and k′ as long as k∗ 6= k′.

Since |Y |= 2, the agent chooses the action that induces the high-payoff outcome with higher probability.

Without loss of generality, let Y ≡ {y0,y1}, and let v(y0) = 0 and v(y1) = 1. Let ζ ,ζ ′ ∈ (0,1/4), and let

F∗(y1|a = 0)≡ 1
2

F∗(y1|a = 1)≡ ζ
′;

F0(y1|a = 0)≡ 2ζ F0(y1|a = 1)≡ ζ ; (C.1)

F1(y1|a = 0)≡ 3ζ F1(y1|a = 1)≡ 4ζ .

The optimal action under F∗ is 0. Let π0(F0)≡ 1−ζ ′

2 , π0(F1)≡ 1−ζ ′

2 , and π(F)≡ ζ ′. First, we show that for

any γ > 0, there exist ζ and ζ ′ such that the asymptotic frequency of action 0 is less than γ . By the end of

this section, we identify the crucial components in this construction to show that there exists an open set of

distributions such that the agent can have arbitrarily small frequency of choosing action a∗.

First we bound the expected number of times with which the agent chooses action 0 and action 1 when

the true distribution is F∗ and the agent’s prior belief attach small but positive probability to F∗. Let

Xa→a′(F0,F1)≡ log
F0(y|a′)
F1(y|a′)

with probability F∗(y|a) for every y ∈ Y. (C.2)

Intuitively, this is the change in the log likelihood ratio between F0 and F1 when the previous period action

was a and the current period action is a′. Let l(F0,F1) be the largest realization of X1→0(F0,F1), and let

l(F0,F1) be the smallest realization of X0→1(F0,F1). By construction we have l(F0,F1)> 0 and l(F0,F1)< 0.

In what follows, we omit the dependence of (F0,F1) and write l and l instead.

Consider a hypothetical scenario in which the support of the agent’s prior belief is {F0,F1}. For any
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discount factor δ ∈ [0,1), there exists l∗ ∈ R depending on δ such that the agent is indifferent between

actions 0 and 1 when log π(F0)
π(F1)

= l∗, and strictly prefers action 0 if and only if log π(F0)
π(F1)

≥ l∗. For every l > l∗,

let random variable τ0(l) be the number of consecutive periods with which the agent takes action 0 when

the initial value of log π(F0)
π(F1)

is l. For every l < l∗, let random variable τ1(l) be the number of consecutive

periods with which the agent takes action 1 when the initial value of log π(F0)
π(F1)

is l.

Claim 4. Random variables τ0(l) and τ1(l) have finite mean and variance for every l ∈ R.

Proof. According to Bayes rule, lt = lt−1 +X0→0(F0,F1) for every t ∈ N. Let H be the maximal difference

in the realization of random variable X0(F0,F1). The Chernoff-Hoeffding inequality implies that

Pr[lt > l∗]≤ exp
(
−2(−t ·E[X0→0(F0,F1)]− l0 + l∗)2

tH2

)
.

Since Pr[lt > l∗] vanishes exponentially as t → +∞, τ0(l) has finite mean and variance for every l ≥ l∗.

Similarly, one can also show that τ1(l) has a finite mean and variance for every l ≤ l∗.

Next, suppose F∗ belongs to the support of agent’s prior belief. Let τε
0 (l) be the number of consecutive

periods with which the agent takes action 0 when the initial value of log π(F0)
π(F1)

is l−ε and switches to action 1

if the log likelihood ratio is below l∗+ε after the first period. Let τε
1 (l) be the number of consecutive periods

with which the agent takes action 1 when the initial value of log π(F0)
π(F1)

is l + ε and switches to action 0 if the

log likelihood ratio is above l∗− ε after the first period.

For every ε > 0, there exists πε > 0 such that when the prior belief π ∈ ∆(F ) satisfies π(F∗) < πε ,

the agent strictly prefers action 0 when l > l∗+ ε and strictly prefers action 1 when l < l∗− ε . Let Xτ0(ε)

be the random variable that has the same distribution as τ0(l + l∗+ 2ε) and X ′τ0
(ε) be the random variable

that has the same distribution as τε
0 (l
∗). Let Xτ1(ε) be the random variable that has the same distribution as

τ1(l + l∗−2ε) and X ′τ1
(ε) be the random variable that has the same distribution as τε

1 (l
∗). For every ε > 0

and η > 0, let

ĉ0(ε,η)≡max
t>0

{
(1+η)tE[Xτ0(ε)]− lnE

[
etXτ0 (ε)

]}
c′0(ε,η)≡max

t>0

{
−(1−η)tE[X ′τ0

(ε)]− lnE
[
e−tX ′τ0

(ε)
]}

c0(ε,η)≡min{ĉ0(ε,η),c′0(ε,η)}
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and

ĉ1(ε,η)≡max
t>0

{
(1+η)tE[Xτ1(ε)]− lnE

[
etXτ1 (ε)

]}
c′1(ε,η)≡max

t>0

{
−(1−η)tE[X ′τ1

(ε)]− lnE
[
e−tX ′τ1

(ε)
]}

c1(ε,η)≡min{ĉ1(ε,η),c′1(ε,η)}.

Let

K0(ε,η)≡ 1
c0(ε,η)

· log
ec0(ε,η)

ε(ec0(ε,η)−1)

and

K1(ε,η)≡ 1
c1(ε,η)

· log
ec1(ε,η)

ε(ec1(ε,η)−1)
.

Let η0(ε,η) ∈ R+ be such that

c0(ε, η̄0(ε,η)) =
log(K0(ε,η)/ε)

K0(ε,η)
,

and η1(ε,η) ∈ R+ be such that

c1(ε, η̄1(ε,η)) =
log(K1(ε,η)/ε)

K1(ε,η)
.

For every k ∈ N, let t0
k ∈ N be the kth time such that atk = 0 and atk−1 = 1 and t1

k ∈ N be the kth time such

that atk = 1 and atk−1 = 0. Let S0
t be the total number of adjacent periods until t in which the agent chooses

action 0. Let S1
t be the total number of adjacent periods until t in which the agent chooses action 1.

Claim 5. For every ε > 0 and η > 0, if π(F∗)< πε , then the following event happens with probability

at least 1−6ε:

S0
t0
k
≤ [k(1+η)+K0(ε,η)(1+ η̄0(ε,η))]E[τ0(l̄ + l∗+2ε)]

S0
t0
k
≥ (k−K0(ε,η)) · (1−η)E[τε

0 (l
∗)]

S1
t1
k
≤ [k(1+η)+K1(ε,η)(1+ η̄1(ε,η))]E[τ1(l + l∗−2ε)]

S1
t1
k
≥ (k−K1(ε,η)) · (1−η)E[τε

1 (l
∗)]

for every k ∈ N.

Proof. We establish the upper and lower bounds for S0
t0
k
. The ones for S1

t1
k

can be derived using a similar
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argument. Claim 4 implies that E[Xτ0(ε)] is finite. Suppose π is such that π(F∗) < πε . Since S0
t0
k

is first

order stochastically dominated by ∑
k
i=1 xi with xi ∼ Xτ0(ε), Lemma A.3 implies that

Pr[S0
t0
k
> k(1+η) ·E[τ0(l̄ + l∗+2ε)]]≤ exp(−k · c0(ε,η)).

The union bound implies that

Pr

 ⋃
k≥K0(ε,η)

{S0
t0
k
> k(1+η) ·E[τ0(l̄ + l∗+2ε)]}

≤ ∑
k≥K0(ε,η)

exp(−k · c0(ε,η))≤ ε.

Moreover, for every k < K0(ε,η), we have

Pr
[
S0

t0
k
> k(1+ η̄0(ε,η)) ·E[τ0(l̄ + l∗+2ε)])

]
≤ ε

K0(ε,η)
.

Take the union of these events, we have

Pr

[⋃
k≥1

{S0
t0
k
> k(1+η) ·E[τ0(l̄ + l∗+2ε)]+K0(ε,η)(1+ η̄(ε,η)) ·E[τ0(l̄ + l∗+2ε)]}

]

≤ Pr

 ⋃
k≥K0(ε,η)

{S0
t0
k
> k(1+η) ·E[τ0(l̄ + l∗+2ε)]}

+Pr

 ⋃
k<K0(ε,η)

{S0
t0
k
> k(1+ η̄0(ε,η))}

≤ 2ε.

Moreover, S0
t0
k

first order stochastically dominates ∑
k
i=1 xi with xi ∼ X ′τ0

(ε). Lemma A.3 implies that

Pr[S0
t0
k
< k(1−η) ·E[τε

1 (l
∗)]]≤ exp(−k · c0(ε,η)).

By union bound, we have

Pr

 ⋃
k≥K0(ε,η)

{S0
t0
k
< k(1−η) ·E[τε

1 (l
∗)]}

≤ ∑
k≥K0(ε,η)

exp(−k · c0(ε,η))≤ ε.

Claim 6. For every ε > 0, there exists a prior belief π0 ∈ ∆(F ) such that event {π(F∗) < πε} occurs

with probability at least 1−6ε .

Proof. Let lt(F,F ′) ≡ log πt(F)
πt(F ′)

. Let Xt(F∗) ≡ lt(F∗,F0)− lt−1(F∗,F0), Z0(F∗) ≡ l0(F∗,F0) and Zt(F∗) =

Zt−1(F∗)+ lt(F∗,F0)− lt−1(F∗,F0)−E
[
Xt(F∗)

∣∣∣ht−1
]

for every t ≥ 1. One can verify that {Zt(F∗)}t∈N is a

martingale. By definition, lt(F∗,F0) = Zt(F∗)+∑t ′≤t E
[
Xt ′(F∗)

∣∣∣ht ′−1
]
. Let H be the difference between the
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maximal realization of X0(F∗,F0) and the minimal realization of X0(F∗,F0). We have |Zt(F∗)−Zt−1(F∗)| ≤

H for every t ∈ N. According to Lemma A.2,

Pr[Zt(F∗)−Z0(F∗)≥ tη ]≤ exp
(
− tη2

2H2

)
for every η ∈ R+.

Let T ≡ 2H2

η2 log eη2/(2H2)

ε(eη2/(2H2)−1)
. Take the union of these events, we obtain the following upper bound:

Pr

[⋃
t≥T

{Zt(F∗)−Z0(F∗)≥ tη}

]
≤ ∑

t≥T
exp
(
− tη2

2H2

)
≤ ε.

Moreover, for every t < T , we have

Pr
[

Zt(F∗)−Z0(F∗)≥
2H2 log(T/ε)

η2

]
≤ ε

T
.

Take the union bound, we obtain

Pr

[⋃
t≥1

{
lt(F∗,F0)− l0(F∗,F0)≥ tη +

2H2 log(T/ε)

η2 + ∑
t ′≤t

E
[
Xt ′(F∗) | ht ′−1

]}]
≤ 2ε. (C.3)

Similarly, let X ′t (F
∗)≡ lt(F∗,F1)− lt−1(F∗,F1), we have

Pr

[⋃
t≥1

{
lt(F∗,F1)− l0(F∗,F1)≥ tη +

2H2 log(T/ε)

η2 + ∑
t ′≤t

E
[
X ′t ′(F

∗) | ht ′−1
]}]

≤ 2ε. (C.4)

Let

T ′0 = K0(ε1,η)(1+ η̄0(ε1,η))E[τ0(l̄ + l∗+2ε1)]+K0(ε1,η)E[τε
0 (l
∗)]

T ′1 = K1(ε1,η)(1+ η̄1(ε1,η))E[τ1(l + l∗−2ε1)]+K1(ε1,η)E[τε
1 (l
∗)].

Note that the expected log likelihood of F∗ when switching from action 0 to action 1 is ∑y∈Y F∗(y|a) logF(y|a′),

which diverges to−∞ as ζ ′ goes to 0, while the the expected log likelihood of F ∈ {F0,F1} remains bounded.

Thus, according to Claim 5, for sufficiently small ζ ′,

∑
t ′≤t

E
[
Xt ′(F∗) | ht ′−1

]
≤ T ′0 · (Z̄ +η)− t ·η for every t ∈ N

occurs with probability at least 1−2ε1. Similar bound holds for ∑t ′≤t E
[
X ′t ′(F

∗) | ht ′−1
]
. Combining these
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with inequalities (C.3) and (C.4), for sufficiently small l0(F∗,F0), l0(F∗,F1), we have

Pr

[⋃
t≥1

{lt(F∗,F0)≥ logπε or lt(F∗,F1)≥ logπε}

]
≤ 6ε.

Therefore, the probability of the event that πt(F∗)< πε for every t ∈ N is at least 1−6ε .

According to Claim 6, there exists a positive probability event under which the probability that the

agent’s posterior belief attaches to F∗ is sufficiently small in all periods. Conditional on this event, Claim 5

implies that the agent’s action cycles between 0 and 1. In the last step, we bound the asymptotic frequency

of action 0:

sup
σ∈Σ∗(π0)

{
limsup

t→+∞

Eσ

[1
t

t

∑
s=1

1{as = a∗}
]}

= limsup
k→+∞

E

 S0
t0
k

S1
t1
k
+S0

t0
k


≤ limsup

k→+∞

[k(1+η)+K0(ε,η)(1+ η̄0(ε,η))]E[τ0(l̄ + l∗+2ε)]

(k−K1(ε,η)) · (1−η)E[τε
1 (l∗)]

+8ε

=
E[τ0(l̄ + l∗+2ε)]

(1−η)E[τε
1 (l∗)]

+8ε ≤ γ.

The first inequality holds by directly applying Claims 5 and 6 and note that when the events in the claims

fails, the expected frequency is at most 1. Moreover, for any γ ′ < γ , there exists ζ > 0 in the construction of

F0,F1 such that E[τ0(l̄+l∗+2ε)]
(1−η)E[τε

1 (l
∗)] < γ due to the fact that in our construction, E[τ0(l̄ + l∗+2ε)] is bounded from

above for any ζ > 0 while E[τε
1 (l
∗)]≥ 1

2log 1−ζ

1−4ζ

approaches infinity as ζ → 0. Thus, the last inequality holds

by simply setting ε,η ,ζ to be small enough constants.

Remark: Note that proof of Theorem 1 does not hinge on the parameters in the design of the instance in

(C.1). We summarize the important features of the construction of F∗ and π0:

1. The KL-divergence between F∗(·|0) and F∗(·|1) is sufficiently large.12 This is sufficient to establish

that the posterior probability of F∗ converges to 0.

2. F1(·|0) is closer to F∗(·|0) compared to F0(·|0), and F0(·|1) is closer to F∗(·|1) compared to F1(·|1).

This is sufficient to established that the action cycles between 0 and 1 for infinite periods if the agent

does not believe F∗ happens with high probability.

3. The expected log likelihood ratio E[X1→1(F0,F1)] is sufficiently close to 0. This is sufficient to estab-

lished that the number of time periods required for the agent to switch action from 1 to 0 is sufficiently
12KL-divergence is not symmetric, and it is sufficient to have either D(F∗(·|0) ||F∗(·|1)) or D(F∗(·|1) ||F∗(·|0)) is large.
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large, which implies the limit frequency of action 0 is sufficiently small.

As is evident from Claim 5 and 6, essentially any instance satisfying those three properties is sufficient to

show that the limit frequency of a∗ is sufficiently small, and the example in (C.1) is an illustration that

satisfies all three properties. Next we discuss the generalization the inefficiency result to broader settings.

• When |Y | ≥ 3, there exists a subset Y ′ ⊆Y and |Y ′|= 2 such that each distribution in the support of the

agent’s belief coincides for outcomes y ∈Y\Y ′. For any γ > 0, by setting distributions F∗,F0,F1 such

that (1) the probability that the realized outcome y∈Y\Y ′ is sufficiently small , and (2) the conditional

distribution on Y ′ is the same as what we constructed for the case there are only two outcomes, we

can show that the expected average frequency of choosing action a∗ can be smaller than γ .

• When |A| ≥ 3, there exists a subset A′ ⊆ A and |A′| = 2. For any γ > 0, by setting distributions

F∗,F0,F1 such that (1) it is always suboptimal to choose any action a ∈ A\A′ for any distribution π ,

and (2) the distribution when choosing action a ∈ A′ is the same as what we constructed for the case

there are only two actions, we can show that the expected average frequency of choosing action a∗

can be smaller than γ .

• For general time lag k∗ 6= k′, we need to have an additional step to show that the number of periods

before the agent switches the action is not always |k∗−k′−1|. This is obvious when k∗= 1 and k′= 0.

For the general case, we can show that the probability of such event happens is strictly between (0,1),

and when the KL-divergence between F∗(·|0) and F∗(·|1) is sufficiently large, the attribution error is

sufficiently large, and the posterior belief on F∗ still converges to 0.

D Proof of Theorem 2

Appendix D.1 characterizes the principal’s payoff in the auxiliary game. Appendix D.2 establishes the

connections between the principal’s payoff in the auxiliary game and his payoff in the original game with

symmetric uncertainty.

D.1 Payoff in the Auxiliary Game

This section examines the principal’s asymptotic payoff in an auxiliary game in which he knows the true

state but the agent is naive in the sense that she ignores the informational content of the principal’s proposals
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and updates her belief based only on the chosen policies and observed signals. For every F ∈F , let

u(σp,F)≡ liminf
t→+∞

1
t
Eσp
[ t

∑
s=1

as

∣∣∣F] (D.1)

and

u(σp,F)≡ limsup
t→+∞

1
t
Eσp
[ t

∑
s=1

as

∣∣∣F] (D.2)

be the lower and upper bounds on the principal’s asymptotic payoffs when he uses strategy σp and the true

state is F . Let

U(F)≡ sup
σp∈Σp

u(σp,F) and U(F)≡ sup
σp∈Σp

u(σp,F) (D.3)

We establish two lemmas.

Lemma D.1. For every π0 ∈ ∆(F ) that has full support, we have U(F1) =U(F1) = 1.

Proof. Let πt,i be the posterior probability of distribution Fi according to the agent’s belief in period t. Let

lt ≡ log πt,1
πt,0

. There exist a threshold l∗ such that the agent chooses action at = 0 if and only if lt > l∗.

We show that for any ε > 0, the following strategy for the principal achieves payoff at least 1− ε . The

strategy of the principal is to always propose action 0 until the log likelihood satisfies lt > l∗+ c, where c is

defined later in the analysis. The principal switches to always proposing action 1 if the above condition is

satisfied. Note that when the principal propose action 0 for all periods, there is no attribution error, and the

agent learns the correct distribution. By inequality (B.1), for any ε1 > 0, any prior π0, and any parameter

c, there exists T > 0 such that with probability at least 1− ε1, lT > l∗+ c. Thus with probability at least

1− ε1, the principal switches to proposing action 1 before time T . Moreover, by Claim 3, for any ε2 > 0,

there exists c > 0 such that with probability at least 1−ε2, lt+T > lT −c for all t > 0. By setting ε1 = ε2 =
ε

2

and apply the union bound, with probability at least 1− ε , we have lt > l∗ for any t > T . Thus the payoff of

the principal is at least 1− ε with the given strategy. Taking ε → 1 gives the desired bound.

Lemma D.2. For every π0 ∈ ∆(F ) that has full support,

U(F0) =U(F0) = q∗λ . (D.4)

The proof consists of two parts. In Section D.1.1, we show that

sup
σp∈Σp

u(σp,F0)≤ q∗λ for every F0 ∈F0. (D.5)
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In Section D.1.2, we show that

sup
σp∈Σp

u(σp,F0)≥ q∗λ for every F0 ∈F0. (D.6)

D.1.1 Proof of Lemma D.2: Establish the Payoff Upper Bound

Let

Π1 ≡
{

π ∈ ∆(F )
∣∣∣argmaxi∈{0,1}

{
∑

F∈F
π(F) ∑

y∈Y
F(y|i)v(y)

}
= {1}

}
be the set of beliefs under which the agent strictly prefers action 1. Claim 3 implies that there exists p > 0

such that for every πt /∈Π1 and σp ∈ Σp, we have

Pr
(

πs /∈Π1 for every s≥ t
∣∣∣F0,σp

)
> p. (D.7)

For every k ∈ N, we say that πt crosses Π1 in period k (or equivalently, there is a crossing in period k) if

πk−1 ∈Π1 and πk /∈Π1, or πk−1 /∈Π1 and πk ∈Π1. The uniform lower bound in (D.7) implies that for every

σp ∈ Σp, the expected number of crossings is finite almost surely. Therefore,

Pr
(
∃t ∈N s.t. πs /∈Π1 for every s≥ t

∣∣∣F0,σp

)
+Pr

(
∃t ∈ N s.t. πs ∈Π1 for every s≥ t︸ ︷︷ ︸

≡event Eσp

∣∣∣F0,σp

)
= 1 (D.8)

Let Eσp be the event that there exists t ∈ N such that πs ∈ Π1 for every s ≥ t. Let σ∗p be the strategy of the

principal for maximizing probability of event Eσ∗p given prior π0. By definition, q∗ is the probability of event

Eσ∗p when the principal uses strategy σ∗p .

The principal’s asymptotic payoff conditional on event {∃t ∈N s.t. πs /∈Π1 for every s≥ t} is zero. We

conclude the proof by showing that his asymptotic payoff conditional on event Eσp is at most λ for every

σp ∈ Σp satisfying Pr[Eσp |F0,σp]> 0.

Suppose toward a contradiction that there exists ε > 0 such that conditional on Eσp , the asymptotic

frequency of policy 1 is more than λ + ε when the true state is F0. First, we observe that the asymptotic

frequency of (at−1,at) = (1,0) equals that of (at−1,at) = (0,1) regardless of the principal’s strategy σp. The

definition of λ then implies that

lim
t→+∞

E
[

log
πt(F0)

πt(F1)

∣∣∣Eσp ,σp

]
=+∞. (D.9)

As a result, the agent strictly prefers action 0 asymptotically when the principal uses strategy σp conditional
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on event Eσp . This contradicts the definition of event Eσp under which the agent strictly prefers policy 1.

D.1.2 Proof of Lemma D.2: Attain the Payoff Upper Bound

We construct σ ε
p ∈ Σp for every ε > 0 such that

u(σ ε
p ,F0)≥ q∗λ − ε. (D.10)

For every σp ∈ Σp and l ∈ R, let Eσp,l be the following event when the principal uses strategy σp,

log
πs(F1)

πs(F0)
≥ l for every s≥ t for some t ∈ N. (D.11)

If Π(l)⊂ ∆(F ) be the set of beliefs that satisfy (D.11). Recall the definition of Eσp in (D.8), which implies

the existence of l∗ ∈ R+ such that Eσp,l ⊂ Eσp and Π(l)⊂Π1 for every l ≥ l∗. Recall that σ∗p is the strategy

that maximizes the probability of event Eσ∗p given prior π0..

Lemma D.3. For every π0 ∈ ∆(F ) that has full support and l ∈ R, we have Pr[Eσ∗p ,l|F0,σ
∗
p ] = q∗.

Proof of Lemma D.3: As shown before, there exists p > 0 such that for every πt /∈Π1, the probability with

which πs /∈ Π1 for every s ≥ t is at least p when the true state is F0. As a result, for every l ∈ R+, the

probability of the following event is zero under any strategy in Σp:

• πs ∈Π1\Π(l) for every s≥ t.

This implies that for every l ∈ R that satisfies Π(l)⊂Π1, we have

Pr
(
∃t ∈ N s.t. πt ∈Π(l) for all s≥ t

∣∣∣F0,σ
∗
p

)
= Pr

(
∃t ∈ N s.t. πt ∈Π1 for all s≥ t

∣∣∣F0,σ
∗
p

)
. (D.12)

and moreover,

Pr
(
∃t ∈ N s.t. πt ∈Π1 for all s≥ t

∣∣∣F0,σ
∗
p

)
+Pr

(
∃t ∈ N s.t. πt /∈Π1 for all s≥ t

∣∣∣F0,σ
∗
p

)
= 1. (D.13)

Equations (D.12) and (D.13) together imply that Pr[Eσ∗p ,l|F0,σ
∗
p ] = Pr[Eσ∗p |F0,σ

∗
p ], while the latter equals

q∗.

Next we focus on the case when λ > 0 since the case λ = 0 is trivial. In this case, we know that

E[X1→0 +X0→1]> 0 since E[X1→1]< 0.
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For small enough ε > 0, let T1,T2 ∈ N be two positive integers such that T1 is even and
T1
2 +T2

T1+T2
∈
(

λ −

ε,λ
)

. Let T ≡ T1 +T2. Let σ p ∈ Σp be defined as:

• σ p(ht) = 0 if there exists k ∈ N such that t ∈ {kT +2,kT +4, ...,kT +T1},

• σ p(ht) = 1 otherwise.

According to σ p, the frequency with which the principal proposes policy 1 belongs to the interval (λ−ε,λ ).

Let lt ≡ log πt(F1)
πt(F0)

, and let XT be the increment of lt from period t to t +T when policy 0 is chosen in

period t +2, t +4, ..., t +T1 and policy 1 is chosen in other periods. Let H be the maximal realization of XT .

Let r∗ > 0,η > 0 be such that Ez∼XT [exp(r∗z)] = 1 and exp(−r∗ ·η) < ε . Let l̄ ∈ R be large enough

such that Π(l̄)⊂Π1. Recall the definition of σ∗p . Let σ ε
p ∈ Σp be defined as:

• σ ε
p(h

t) = σ∗p(h
t) if πt ∈Π(l̄ +η +H) for all t ′ < t;

• σ ε
p(h

t) = σ p(ht) otherwise.

Conditional on πt reaches Π(l̄ +η +H), the Wald’s inequality in Lemma A.1 implies that the probability

with which πs ∈Π(l̄) for every s≥ t is at least 1−ε , which implies that the principal’s asymptotic payoff is

at least q∗(λ − ε) when the true state is F0.

D.2 Connections between Auxiliary Game & Original Game

We show that the principal’s payoff in the original game equals his expected payoff in the auxiliary game

studied in Appendix D.1. First, we show that the principal learns the true state asymptotically regardless of

the chosen policies.

Lemma D.4. For every σp ∈ Σp, F ∈F , and ε > 0, there exists τ ∈ N such that

Pr
(

πτ(F)> 1− ε

∣∣∣F)> 1− ε. (D.14)

Proof of Lemma D.4: Let QF be the probability measure over H induced by distribution F and let Qp be

the probability measured over H induced by the principal’s prior belief π0 ∈ ∆(F ). For every history ht ,

let qF |ht ∈ ∆(A×Y ) be the principal’s belief about (at ,yt) conditional on the true state being F , and let

qπt |ht ∈ ∆(A×Y ) be the principal’s belief about (at ,yt) when his belief about the state is πt ∈ ∆(F ). The

chain rule for relative entropy implies that

− logπ0(F)≥ d
(

QF

∥∥∥Qp

)
=

∞

∑
t=0

EQF

[
d
(

qF |ht

∥∥∥qπt |ht

)]
. (D.15)
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Conditional 2 implies that d(qF |ht ||qF ′|ht ) > 0 for every F 6= F ′. Since F is finite, for every ε > 0, there

exists η > 0 such that d(qF |ht‖qp|ht )> η for every π0 ∈ ∆(F ) satisfying π0(F)≤ 1− ε . Inequality (D.15)

implies the existence of τ ∈ N such that

∞

∑
t=τ

EQF

[
d
(

qF |ht

∥∥∥qπt |ht

)]
≤ ηε. (D.16)

The Markov’s inequality implies that the probability with which d(qF |ht‖qπt |ht )> η is strictly less than ε for

every t ≥ τ , or equivalently, the probability with which πt(F)≤ 1− ε is less than ε for every t ≥ τ .

Lemma D.5. We have V =V = ∑F∈F π0(F)U(F) = ∑F∈F π0(F)U(F).

Proof of Lemma D.5: Since U(F) =U(F) for every F ∈F , we have V ≤∑F∈F π0(F)U(F). We show V ≥

∑F∈F π0(F)U(F) by constructing a strategy σ ε
p for every ε > 0 under which V (σ ε

p)≥∑F∈F π0(F)U(F)−

ε .

For every ε > 0, let τ ∈N be such that Pr
(

πτ(F)> 1−ε

∣∣∣F)> 1−ε , and let σF0
p (ε)∈ Σp be the strategy

under which the principal obtains utility u(σF0
p (ε),F0) ≥U(F0)− ε if the true state is F0. Such a strategy

exists according to Lemma D.2. Similarly, let σF1
p (ε) be the strategy under which the principal obtains utility

u(σF1
p (ε),F1)≥ 1− ε . Let σ ε

p ∈ Σp be a strategy under which

• The principal follows σF0
p (ε) for every t ≤ τ .

• If πτ(F0)≥ 1− ε , then the principal follows σF0
p (ε) starting from period τ .

• Otherwise, he follows σF1
p (ε) starting from period τ .

Next, we establish a lower bound on the principal’s asymptotic payoff from strategy σ ε
p . Conditional on the

true state is F0, the probability with which the principal plays σF
p (ε,τ) is at least 1− ε . Conditional on the

true state is F1, there exists T > 0 such that the probability with which the principal proposes 1 in every

period after τ + T is greater than 1− ε according to Lemma D.1. As a result, the principal’s asymptotic

payoff from σ ε
p is at least (1− ε)∑F∈F π0(F)U(F). Since the principal’s stage-game payoff is between 0

and 1, we have (1− ε)∑F∈F π0(F)U(F)≥ ∑F∈F π0(F)U(F)− ε .

Generalizations. Finally, we discuss the generalization of our result in broader settings.

1. All results in this section does not hinge on the fact that k∗ = 1 and k′ = 0. In fact, all the lemmas and

claims hold directly for general time lags.
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2. When |F | > 2, we denote F0 as the set of distributions with optimal action 0 for the agent and F1

as the set of distributions with optimal action 1 for the agent. The results directly generalize when

|F1| > 1. As we observe from Lemma D.1, the payoff of the principal in the auxiliary game does

not depend on the prior when the true state is in F1. Thus the principal can simply learn the true

distribution with high probability as described in Lemma D.5. However, things are more complicated

when |F0| > 1. The main reason is that the payoff of the principal depends on the prior π0 in the

auxiliary game when the true state is in F1. When the principal faces uncertainly over F0, if there

does not exist a strategy σp that maximizes the probability of the event Eσp simultaneously for all

F0 ∈F0, the principal suffers a non-negligible utility loss in the process of learning the true state.
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