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We examine the monotonicity of the sender’s equilibrium strategy with respect to her 

type in signaling games. We show that when the sender’s return from the receiver’s action 

depends on her type, the Spence–Mirrlees condition cannot rule out equilibria in which a 

higher-type sender chooses a strictly lower action than a lower-type. We provide sufficient 

conditions under which all equilibria are monotone, which require that the sender’s payoff

is decreasing in her action, is increasing in the receiver’s action, and has strictly increasing 

differences between her type and the action profile. We apply our sufficient conditions to 

education signaling, advertising, and warranty provision. 
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1. Introduction 

Starting from the seminal contribution of Spence (1973) , signaling games have become powerful tools to study strategic

interactions under asymmetric information. In a standard signaling game, an informed sender, who has private information

about the payoff environment (or her type ), takes an action that influences the behavior of an uninformed receiver. Typically,

the sender’s payoff function satisfies a Spence-Mirrlees condition , which says that her actions and her types can be ranked,

such that a higher type enjoys a comparative advantage in taking higher actions compared to a lower type. For example,

more talented workers face lower cost to receive education ( Spence, 1973 ), and more efficient firms benefit more from cut-

ting prices ( Milgrom and Roberts, 1982 ). A natural prediction under this condition is that the sender’s equilibrium strategy

is a nondecreasing function of her type. 

This paper studies signaling games with general payoff functions. Our results address the robustness and limitations of

the above monotonicity prediction by examining whether it applies to all equilibria . 2 In our model, the set of types and

players’ actions are complete lattices, and the sender’s payoff function has strictly increasing differences between her type
∗ Corresponding author. 
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2 To address the concern that there is a plethora of equilibria in signaling games, we adopt the following “double standard”: In our counterexamples, we 

focus on equilibria that can survive refinements in Kreps and Wilson (1982) , Kohlberg and Mertens (1986) , Cho and Kreps (1987) , Banks and Sobel (1987) , 

https://doi.org/10.1016/j.euroecorev.2020.103408 

0014-2921/© 2020 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.euroecorev.2020.103408
http://www.ScienceDirect.com
http://www.elsevier.com/locate/euroecorev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.euroecorev.2020.103408&domain=pdf
mailto:shuo.liu@gsm.pku.edu.cn
mailto:harrydp@northwestern.edu
https://doi.org/10.1016/j.euroecorev.2020.103408


2 S. Liu and H. Pei / European Economic Review 124 (2020) 103408 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and her action. This generalizes the Spence–Mirrlees condition by allowing types and actions to be multi-dimensional. In

addition, we allow the sender’s return from the receiver’s action to depend on her type. We say that an equilibrium is

monotonically nondecreasing, or monotone for short, if every action played by a higher-type sender is not strictly lower

than any action played by a lower-type. 

Our results are interesting for two reasons. First, many seminal works on signaling games, such as Milgrom and

Roberts (1986) and Mailath (1987) , establish the existence of monotone equilibria and focus their analysis on those equi-

libria. This is because for Bayesian games, monotone equilibria are straightforward to interpret, tractable to analyze, and

easy to compute. 3 However, it remains unclear whether this monotonicity property applies to all equilibria, especially when

the sender’s returns from the receiver’s action depends on her type. Second, from a more practical perspective, as pointed

out by Ho and Rosen (2017) and other works on partial identification, identifying properties that apply to all equilibria is an

important step towards empirical estimation of game theoretic models. 

We start by formally showing that the Spence–Mirrlees condition cannot guarantee the monotonicity of all equilibria. To

illustrate, consider an example between a student and an employer. The student, who privately knows whether she enjoys

coding or managing, needs to choose whether to do an MS in statistics or an MBA. Observing the student’s education choice,

the employer then decides whether to hire her as a data analyst or as an account manager. Players’ payoffs are given by the

left matrix when the student is a coder type, and are given by the right matrix when the student is a manager type. 

Coder type Analyst Manager Manager type Analyst Manager 

MS 4,4 2,2 MS 1,1 3,3 

MBA 3,3 1,1 MBA 2,2 4,4 

Types and actions are ordered according to Coder Type � Manager Type, MS � MBA , and Analyst � Manager . The Spence–

Mirrlees condition is satisfied because, regardless of the job assigned, the Coder Type has a higher marginal benefit from

pursuing the MS degree compared to the Manager Type. In fact, the above game even satisfies a more demanding condition:

both players’ payoff functions are strictly supermodular with respect to the sender’s type and the action profile. 

However, there exists a non-monotone equilibrium in which the Coder Type chooses to do an MBA and the Manager

Type chooses to do an MS in statistics; the employer assigns the data-analyzing job to an MBA graduate, and assigns the

managerial job to an MS graduate. 4 Intuitively, this is because when expectations about which type earns which degree are

reversed, the student has an incentive to meet these expectations by choosing the opposite of his preferred degree. 

Economically, it would be nice to refine away this equilibrium given that it seems unintuitive and is inefficient. However,

this equilibrium survives standard refinements since both players have strict incentives to choose their equilibrium strate-

gies and the sender plays each of her actions with strictly positive probability. Intuitively, non-monotone equilibria can arise

because the sender’s return from the receiver’s action depends on her type, which may countervail the effect of supermod-

ularity. This observation is important because in many economic applications the sender’s return from the receiver’s action

would naturally be type-dependent. For example, in addition to the application on education and job assignment, it is also

relevant when sellers signal their product quality through prices and introductory advertising ( Milgrom and Roberts, 1986 ). 

Next, we provide sufficient conditions under which all equilibria are monotone. At the heart of our analysis is a

monotone-supermodularity condition, which requires that the sender’s payoff (1) is strictly decreasing in her action and is

strict increasing in the receiver’s action, and (2) has strictly increasing differences between her type and the action profile. 5 

In words, our monotone-supermodularity implies that all types of the sender pay higher signaling costs by sending higher

signals and enjoy higher “signaling benefits” when the receiver takes higher actions. Moreover, the marginal increase of

such costs (benefits) are higher (lower) for a high type than a low type. This fits into the application on education and job

assignment when workers of all types face strictly positive cost to receive more education, and strictly benefit from better

jobs, though for the more talented workers both the cost is lower ( Spence, 1973 ) and the benefit is higher ( Waldman, 1984;

Gibbons and Waldman, 1999 ). 6 

Our Theorem 1 shows that all equilibria are monotone when the sender’s payoff function is monotone-supermodular

and the receiver’s action choice is binary. Intuitively, this is because distributions over the receiver’s actions can be ranked

according to first-order stochastic dominance (FOSD). Since playing a higher action a is strictly more costly than a lower

action a ′ for the sender, she would have an incentive to do so only when the distribution over the receiver’s action induced

by a first-order stochastically dominated the one induced by a ′ . This implies that in every equilibrium, the ranking over the
and so on. For positive results, we use weak solution concepts such as Bayes Nash equilibrium, which makes our results stronger and implies that our 

monotonicity prediction is robust against equilibrium selection. 
3 For instance, McLennan (2018) argues that for many Bayesian games “the existence of equilibria with strategies that are monotonic functions of the 

agents’ types is important because nonmonotonic equilibria are intractable.”
4 Spence (2002) also provides an example of education signaling game where a low-type worker chooses a strictly higher level of education than a 

high-type one. However, in his example the worker’s payoff function is submodular with respect to her own type and action (because, e.g., the opportunity 

costs associated with spending time on education are larger for very talented people). 
5 Although we cannot establish the necessity of our monotone-supermodularity condition, we use counterexamples to show that none of its components 

is superfluous. 
6 Different types of workers receive different returns from a “higher level” job can be due to, for instance, that the talent of a worker affects her prospects 

of promotion, or the expected compensation she receives under piece-rate incentive schemes, etc. 
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sender’s equilibrium actions coincides with the ranking over the receiver’s mixed actions that they induce. Since a higher

type sender has a stronger preference towards higher action profiles , she would never play a strictly lower action than a low

type in any equilibrium. 

When the receiver has three or more actions, we show by example that non-monotone equilibria exist even when the

sender’s payoff function is monotone-supermodular. This is because not every pair of the receiver’s mixed actions can be

ranked according to FOSD. Therefore, a higher action of the sender does not necessarily induce a more favorable distribution

over the receiver’s actions. 

We introduce two sets of sufficient conditions to address this issue. First, we show in Theorem 2 that every equilibrium

is monotone if the sender’s payoff is monotone-supermodular, the ranking over the receiver’s actions is complete, and the

receiver’s payoff satisfies a quasiconcavity-preserving property (QPP). QPP requires the receiver’s payoff to be strictly quasi-

concave in his own action under every belief about the sender’s type, which implies that the receiver has at most two pure

best replies against each action of the sender and under each of his posterior belief about the sender’s type. 7 Furthermore,

these best replies are adjacent elements in the receiver’s action set, which implies that every pair of the receiver’s mixed

best replies can be ranked according to FOSD. One can then apply the argument in Theorem 1 to establish the monotonicity

of all equilibria. 

A sufficient condition for QPP is that the receiver’s payoff is strictly concave in his own action. For example, with the

sender being a worker choosing education and the receiver being an employer assigning jobs, QPP will be satisfied if the

employer faces a quadratic loss when there is a mismatch between the levels of the assigned job and the “ideal” job assign-

ment (i.e., the job that maximizes the employer’s payoff when he can observe the worker’s talent). 

Second, we identify a novel condition on the sender’s payoff function under which every pair of the receiver’s mixed

actions can be ranked endogenously. We call this property increasing absolute differences over distributions (IADD). Theo-

rem 3 shows that all equilibria are monotone when the sender’s payoff function is monotone-supermodular and satisfies

IADD. 8 We also establish a representation result that characterizes IADD (Proposition 1), which facilitates the application of

our Theorem 3 to economic modeling. For example, the characterization shows that in the education signaling context, a

worker’s payoff function satisfies IADD if it can be written as: 

u 1 (θ, a 1 , a 2 ) = f (θ, a 1 ) g(a 2 ) ︸ ︷︷ ︸ 
worker’s return from job assignment 

− c(θ, a 1 ) ︸ ︷︷ ︸ 
cost of education 

, (1.1)

where θ ∈ R is her talent, a 1 ∈ R is the amount of education she receives, a 2 ∈ R is the level of job she is assigned to. This

payoff function captures new economic forces that are relevant in practice but are absent in Spence (1973) . For example,

suppose jobs that have higher a 2 are those that offer more promotion opportunities (such as tenure-track positions), then

a worker’s benefit from those jobs relative to other jobs depends on his talent θ and his education background a 1 . This is

because both θ and a 1 affect his chances of being promoted given the opportunities. The above interaction, which is shown

to be empirically relevant by Gibbons and Waldman (1999) , is omitted in Spence (1973) but can be captured by the term

f ( θ , a 1 ) g ( a 2 ) in our model. 

Related Literature: Starting from Spence (1973) , monotone equilibria have been a primary focus in many applications of

signaling games. Our counterexamples point out that this is not without loss of generality when the sender’s return from the

receiver’s action depends on her type. This finding contrasts to alternative channels through which non-monotone equilibria

can arise, such as the receiver observing exogenous signals that are informative about the sender’s type ( Feltovich et al.,

2002; Araujo et al., 2007 ), or the sender’s actions being imperfectly observed ( Gal-Or, 1989; Balachander, 2001 ). 

Our paper also contributes to the study of supermodular incomplete information games. Most papers in this litera-

ture focus on simultaneous-move games and provide sufficient conditions for the existence of monotone equilibrium (e.g.

Athey 2001, McAdams (2003) ; Van Zandt and Vives (2007) ; Reny (2011) . 9 A separate strand of literature establishes the

monotonicity of all equilibria in simultaneous-move games, such as Morris and Shin (1998) on coordination games, and

McAdams (2006) on multi-unit auctions. In contrast, we provide sufficient conditions for the monotonicity of all equilibria

in sequential-move supermodular games, with one-shot signaling games a natural starting point. 10 Our sufficient conditions,

together with our counterexamples, highlight the economic forces that guarantee equilibrium monotonicity: the monotone-

supermodularity of the sender’s payoff, which is not explicitly pointed out in signaling game models that assume separable

payoffs. 

Lastly, our sufficient conditions for equilibrium monotonicity are related to two existing results. The first one is in

Cho and Sobel (1990) . They restrict attention to equilibria in which the receiver uses a pure strategy, and obtain a sufficient
7 In Appendix B.3 , we relate QPP to a strict version of the signed-ratio monotonicity condition in Quah and Strulovici (2012) and provide a full charac- 

terization of this property. 
8 Since Theorems 1 and 3 require no assumption on the receiver’s payoff function, their conclusions extend to richer environments such as the sender 

signals to a population of heterogeneous receivers, the receiver has private information about his payoff, and so on. 
9 Mensch (2018) provides sufficient conditions on the existence of monotone equilibrium in dynamic games of incomplete information. 

10 Complementarities in dynamic games are studied by Echenique (2004a,b) , who show that intertemporal incentives weaken the implications of super- 

modularity. Although we establish the monotonicity of all equilibria, a signaling game with supermodular payoff functions is not necessarily supermodular 

in its normal form. Therefore, the other attractive properties of simultaneous move supermodular games, such as the existence of extremal equilibria and 

monotone comparative statics, are not applicable to our setting. 
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condition under which the sender’s equilibrium strategy is monotone (Lemma 4.1, p. 393). Different from theirs, our results

examine the common properties of all equilibria. The second one is in a recent work by Kartik et al. (2019) . Similar to our

Theorem 3, they also identify a class of utility functions under which the sender’s strategy is monotone in all equilibria.

The difference between our condition and theirs is explained in the education signalling context in Section 4 . 

2. The model 

Consider the following two-player signaling game. Player 1 (or sender, she) privately observes her type θ ∈ �, and

then chooses a 1 ∈ A 1 . The prior belief of player 2 (or receiver, he) is π ∈ �( �). He chooses a 2 ∈ A 2 after observing a 1 .

For i ∈ {1, 2}, player i ’s payoff is u i ( θ , a 1 , a 2 ). Each player maximizes his/her expected payoff. For every α2 ∈ �( A 2 ), let

u 1 (θ, a 1 , α2 ) ≡
∫ 

a 2 
u 1 (θ, a 1 , a 2 ) dα2 be type θ sender’s expected payoff from ( a 1 , α2 ). 

Throughout the paper, we assume that �, A 1 and A 2 are finite lattices and π has full support. 11 We use � and � to

denote strict and weak orders on lattice sets. Following Topkis (1998) , for two lattices X and Y , a mapping f : X × Y → R

exhibits increasing differences if for every x, x ′ ∈ X and y, y ′ ∈ Y with x �x ′ and y � y ′ : 

f (x, y ) − f (x ′ , y ) ≥ f (x, y ′ ) − f (x ′ , y ′ ) . (2.1)

The mapping exhibits strictly increasing differences if the above inequality is strict. We introduce a condition on the sender’s

payoff, which generalizes the Spence–Mirrlees condition to discrete lattice sets: 

Definition 1 (Generalized Spence–Mirrlees Condition) . u 1 satisfies the generalized Spence–Mirrlees condition if it exhibits

strictly increasing differences in ( θ , a 1 ). 
12 

Intuitively, the above condition requires a higher type sender to have a comparative advantage in playing higher actions

relative to a lower type. This fits into most applications of signaling games, which include education games where receiving

education is less costly for a more talented worker Spence (1973) , the beer-quiche game where drinking beer is more pleas-

ant for the strong-type sender Cho and Kreps (1987) , warranty provision games where providing lengthier warranty is less

costly for a high-quality firm Gal-Or (1989) , and so on. Our condition is also satisfied in many multi-dimensional signaling

models (e.g., Quinzii and Rochet, 1985; Araujo et al., 2007 ). 

Strategies & Equilibrium: The sender’s strategy is σ 1 : � → �( A 1 ) and the receiver’s strategy is σ 2 : A 1 → �( A 2 ). Let

σθ
1 

∈ �(A 1 ) be the (possibly mixed) action played by type θ . We also write σ1 = 

(
σθ

1 

)
θ∈ �. 

The solution concept is Bayes–Nash equilibrium (or equilibrium ), which is a strategy profile σ ≡ ( σ 1 , σ 2 ) such that for

every i ∈ {1, 2}, σ i best replies against σ−i . Since the game is finite, an equilibrium exists. We introduce our notions of

monotone strategy and monotone equilibrium : 

Definition 2 (Monotone Strategy & Monotone Equilibrium) . σ 1 is a monotone strategy if for every θ � θ ′ , there exist no

a 1 ∈ supp (σ θ
1 
) and a ′ 

1 
∈ supp (σ θ ′ 

1 
) such that a 1 ≺ a ′ 

1 
. An equilibrium ( σ 1 , σ 2 ) is monotone if σ 1 is a monotone strategy. 

According to Definition 1 , a strategy is monotone if a lower type sender never plays a strictly higher action than a higher

type. When the order on A 1 is complete (or equivalently A 1 is one-dimensional), the monotonicity of σ 1 is equivalent to: 

min 

a 1 

{
supp (σ θ

1 ) 
}

� max 
a 1 

{
supp (σ θ ′ 

1 ) 
}

for every θ � θ ′ . (2.2) 

That is to say, if type θ ′ plays a 1 with positive probability, then every type higher than θ ′ plays actions that are higher or

equal to a 1 with probability 1. 13 

We examine whether all equilibria are monotone in signaling games that satisfy the generalized Spence–Mirrlees condi-

tion. Our choice of solution concept, namely Bayes–Nash equilibrium, implies that our positive results (Theorems 1, 2, and

3) are robust against equilibrium selection. To address the concern that there is a plethora of equilibria in signaling games

and some of them are driven by unreasonable off-path beliefs, we adopt more stringent solution concepts in our counterex-

amples, such as sequential equilibrium ( Kreps and Wilson, 1982 ). We also require those equilibria to survive refinements in

Kohlberg and Mertens (1986) , Cho and Kreps (1987) , and Banks and Sobel (1987) . 

3. Existence of non-monotone equilibria: examples 

We present two counterexamples which show that neither the generalized Spence–Mirrlees condition nor the more de-

manding requirement that both players’ payoff functions being strictly supermodular is sufficient to guarantee the mono-

tonicity of the sender’s equilibrium strategy. 
11 A set X is a lattice if there exists a partial order 
 such that for every x, x ′ ∈ X, x ∨ x ′ , x ∧ x ′ ∈ X , where x ∨ x ′ is the smallest element above both x and 

x ′ , x ∧ x ′ is the largest element below both x and x ′ . 
12 For alternative versions of the Spence–Mirrlees condition, see Engers (1987) and Cho and Sobel (1990) . 
13 When the order on A 1 is incomplete, i.e., A 1 is multi-dimensional, our notion of monotonicity is no longer equivalent to, but is only implied by condition 

(2.2). One may wonder whether our robust prediction results can be strengthened by replacing Definition 1 with (2.2). In Appendix B.1 , we provide an 

example that illustrates the difficulty of such a generalization when A 1 is multi-dimensional. 
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Example 1. Let us revisit the example in the introduction, in which a student privately knows his preference between coding

and managing, chooses between an MBA degree and an MS degree, and an employer decides whether to offer a data analyst

job or an account manager job. The employer’s prior belief remains unspecified since it is irrelevant. One can check that

according to the orders Coder Type � Manager Type, MS � MBA , and Analyst � Manager , this game satisfies the generalized

Spence–Mirrlees condition. In fact, players’ payoffs in this game satisfy a more demanding notion of complementarity, that

is, both u 1 and u 2 are strictly supermodular functions of the triple ( θ , a 1 , a 2 ). 
14 As already mentioned in the Introduction,

this game admits the following non-monotone equilibrium, that the coder type pursues the MBA degree, and the manager

type pursues the MS degree; the employer offers the data analyst position upon observing the MBA degree and offers the

account manager position upon observing the MS degree. 

A notable feature of this example is that the student’s ordinal preference over job offers depends on her type. In equilib-

rium, she chooses to receive the training she dislikes in order to get the job offer she desires. The next example shows that

such non-monotone equilibria can arise even when the sender’s ordinal preference over the receiver’s actions is the same

for all types, but different types have different cardinal preferences. 

Example 2. Consider the following 2 × 2 × 2 game: 

θ = θ1 h l θ = θ0 h l

H 1 , 2 1 , 0 H 0,0 3,1 

L 2 , 1 4 , 0 L 2,0 7,2 

The sender observes θ and choose between H and L , and the receiver chooses between h and l after observing the

sender’s action choice. We again leave the receiver’s prior belief unspecified since it is irrelevant. The sender’s payoff satisfies

the generalized Spence–Mirrlees condition, and u 1 and u 2 are both strictly supermodular functions of ( θ , a 1 , a 2 ) once we

rank the sender’s types and players’ actions according to θ1 � θ0 , H � L , and h � l . 

Different from Example 1, both types of sender’s payoffs are strictly increasing in a 1 and is strictly increasing in a 2 . In

the education signaling context of Example 1, this implies that both the coder-type and the manager-type students would

prefer to do an MBA rather than do an MS in statistics (perhaps because the latter is more difficult to graduate), and prefer

the account manager job to the data analyst job (perhaps because the salary of the former is higher). Despite the type-

independent ordinal preferences, this game also admits a non-monotone equilibrium in which type θ1 plays L , type θ0

plays H , and the receiver plays h after observing L and plays l after observing H . Hence, in this equilibrium a manager-type

student has to do the more challenging MS in statistics in order to receive the more well-paid managerial job, while the

coder-type student gets the MBA degree without studying very hard but receives the less well-paid coding job in the end. 

Note that in both non-monotone equilibria discussed above, both players have strict incentives to play their equilibrium

strategies, and all actions of the sender are played with strictly positive probability. As a result, those equilibria are robust

against perturbations of players’ payoff functions and can survive the refinements proposed by Kreps and Wilson (1982) ,

Kohlberg and Mertens (1986) , Cho and Kreps (1987) , and Banks and Sobel (1987) . 

We argue that the existence of non-monotone equilibria are driven by the following three features shared by the exam-

ples: (1) players move sequentially, (2) the sender’s return from the receiver’s action depends on her type, and (3) values

are interdependent. Since players move sequentially, every a 1 induces a distribution over a 2 . As a result, the sender is effec-

tively choosing a distribution over action profiles instead of only her own action. Since u 1 is non-separable with respect to

θ and a 2 , the sender’s action choice depends not only on her comparative advantage in a 1 , but also on her preference over

a 2 . Since the receiver’s best reply against a 1 depends on his belief about the sender’s type (i.e. values are interdependent ),

his strategy of choosing h after observing L and choosing l after observing H is rationalizable despite the complementarities

between players’ actions. This strategy of the receiver’s provides the sender an incentive to take the low (high) action when

her type is high (low), making the receiver’s belief self-fulfilling. 

While sequential-move and interdependent values are standard in signaling games, non-separability of the sender’s pay-

off distinguishes our model from the education game in Spence (1973) and the beer-quiche game in Cho and Kreps (1987) . In

these classic examples, the sender’s returns from wages and fighting do not depend on her type. Nevertheless, the sender’s

return from the receiver’s action does depend on her type in many scenarios. In the education signaling context, a worker’s

benefit from a job depends both on her preferences and on her talents, the relevance of which has been pointed out in the

labor economics literature, both in the case where jobs are horizontally differentiated ( Roy, 1951 ), and in the case where

jobs are vertically differentiated ( Gibbons and Waldman, 1999 ). As we will discuss in detail in Section 5 , such non-separable

payoffs also naturally arise in many applications in industrial organization. 

4. Sufficient conditions for monotone equilibria 

We introduce sufficient conditions that guarantee the monotonicity of all equilibria. At the heart of our analysis is the

following monotone-supermodular condition on the sender’s payoff: 
14 Let X be a lattice. A function f : X → R is strictly supermodular if f (x ∨ x ′ ) + f (x ∧ x ′ ) ≥ f (x ) + f (x ′ ) for every x, x ′ ∈ X , and the inequality is strict if { x, 

x ′ } 
 = { x ∨ x ′ , x ∧ x ′ }. 
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Definition 3 (Monotone-Supermodular Condition) . The sender’s payoff is monotone-supermodular if (1) u 1 is strictly de-

creasing in a 1 and is strictly increasing in a 2 , and (2) u 1 exhibits strictly increasing differences in ( θ , a 1 ) and increasing

differences in ( θ , a 2 ). 

Compared to the requirement that both u 1 and u 2 are strictly supermodular functions of ( θ , a 1 , a 2 ), our monotone-

supermodularity condition does not require any complementarities between players’ actions, nor does it impose any re-

strictions on the receiver’s payoff function. Nevertheless, it introduces an additional requirement that the sender’s payoff is

strictly decreasing in her own action and is strictly increasing in the receiver’s action. This requirement rules out Examples

1 and 2, and fits into applications to education and job assignment when jobs are vertically ranked such that all types

of workers prefer better jobs (e.g., jobs that offer more promotion opportunities and/or provide more retirement benefits),

but face more opportunity costs to receive more education. It also fits into warranty provision games (see Section 5 ) if all

types of firms find it costly to provide lengthier warranties and higher refund, but beneficial when consumers increase their

purchasing quantities. 

4.1. Binary action games 

We focus on games in which the receiver’s action choice is binary. This is the case in the education and job assign-

ment example when the employer have two jobs to offer. Theorem 1 shows that monotone-supermodularity is sufficient to

guarantee the monotonicity of all equilibria. 

Theorem 1. If | A 2 | = 2 and u 1 is monotone-supermodular, then all equilibria are monotone. 

Proof. Let A 2 ≡ { a 2 , a 2 } with a 2 � a 2 . Suppose towards a contradiction that in some equilibrium σ , there exist θ � θ ′ and

a 1 � a ′ 
1 

such that σ θ
1 
(a ′ 

1 
) > 0 and σ θ ′ 

1 
(a 1 ) > 0 . Let α2 ≡ σ 2 ( a 1 ) and α′ 

2 
≡ σ2 (a ′ 

1 
) be the (potentially mixed) actions played

by the receiver after observing a 1 and a ′ 
1 
, respectively. Since type θ prefers (a ′ 

1 
, α′ 

2 
) to ( a 1 , α2 ) and type θ ′ prefers ( a 1 , α2 )

to (a ′ 1 , α′ 
2 ) , we have: 

u 1 (θ, a ′ 1 , α′ 
2 ) ≥ u 1 (θ, a 1 , α2 ) (4.1) 

and 

u 1 (θ
′ , a 1 , α2 ) ≥ u 1 (θ

′ , a ′ 1 , α′ 
2 ) . (4.2) 

These together imply that: 

u 1 (θ, a ′ 1 , α′ 
2 ) − u 1 (θ, a 1 , α2 ) ≥ 0 ≥ u 1 (θ

′ , a ′ 1 , α′ 
2 ) − u 1 (θ

′ , a 1 , α2 ) . (4.3)

Since u 1 is strictly decreasing in a 1 , it also follows from (4.2) that u 1 (θ
′ , a ′ 

1 
, α2 ) > u 1 (θ

′ , a 1 , α2 ) ≥ u 1 (θ
′ , a ′ 

1 
, α′ 

2 
) . This further

implies that α2 attaches a higher probability to a 2 compared to α′ 
2 
, as the sender’s payoff is strictly increasing in a 2 . There-

fore, we have θ � θ ′ , a 1 � a ′ 1 , and α2 dominates α′ 
2 in the sense of first-order stochastic dominance (FOSD). Since u 1 has

strictly increasing differences in ( θ , a 1 ) and increasing differences in ( θ , a 2 ), we have: 

u 1 (θ, a ′ 1 , α′ 
2 ) − u 1 (θ, a 1 , α2 ) < u 1 (θ

′ , a ′ 1 , α′ 
2 ) − u 1 (θ

′ , a 1 , α2 ) . (4.4)

This contradicts (4.3) and establishes Theorem 1. �

Intuitively, when | A 2 | = 2 , every pair of distributions over the receiver’s action can be ranked according to FOSD. Since

playing a higher action is more costly for the sender, she only has an incentive to do so when it induces a more favorable

response from the receiver. This implies that the ranking over the sender’s equilibrium actions coincides with the ranking

over the receiver’s mixed actions that they induce. Since a higher type sender has a stronger preference towards higher

action profiles, she never plays a strictly lower action than a lower type. 

Given that our proof makes no reference to the receiver’s incentives, our monotonicity property also applies to every ex

ante rationalizable strategy ( Bernheim, 1984; Pearce, 1984 ). In fact, only monotone strategies can survive the first round of

elimination (of non-rationalizable strategies). The irrelevance of the receiver’s payoffs also implies that our result extends

to cases in which the receiver has private information about his preferences, the sender signals to a population of receivers

with heterogeneous preferences, and so on. 

Our result also generalizes to signaling games with infinite A 1 and � with two caveats. First, Bayes Nash equilibrium

needs to be defined at the interim stage after the sender observes her type. This is to ensure that all types of the sender

play a best reply. Second, when A 1 is infinite, some actions in the support of a sender’s strategy can be suboptimal. Nev-

ertheless, we show in Appendix B.2 that the sender’s equilibrium strategy is almost surely monotone : for every θ � θ ′ and

a 1 ∈ supp (σ θ
1 
) , the probability that type θ ′ plays an action strictly higher than a 1 equals zero. 

Theorem 1 is also applicable to the study of repeated signaling games in which the sender’s stage game payoff is

monotone-supermodular, the receiver’s action choice is binary, and the sender’s type is perfectly persistent. In particular,

for every pair of types θ � θ ′ and every equilibrium ( σ 1 , σ 2 ) of the repeated signaling game, if playing the highest ac-

tion in every period is type θ ′ sender’s best reply against σ , then according to every best reply of type θ sender, she
2 
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plays the highest action with probability 1 at every on-path history. As shown in Pei (2019) , this is an important step to-

wards establishing the commitment payoff theorem and the uniqueness of the sender’s on-path equilibrium behavior in

monotone-supermodular reputation games. 

Finally, note that Theorem 1 only shows that the monotonicity property applies to all equilibria, but it does not imply

the uniqueness of equilibrium or the uniqueness of equilibrium outcome. For example, consider the following 2 × 2 × 2

signaling game: 

θ = θ1 h l θ = θ0 h l

H 1,1 −1 , 0 H 1 
2 
, −1 − 3 

2 
, 0 

L 2 , −1 0,0 L 2 , −2 0,0 

The sender’s payoff is monotone-supermodular according to the orders θ1 � θ0 , H � L and h � l . Since the action set

of the sender is binary, Theorem 1 implies that all equilibria in this game are monotone. Now suppose the receiver’s prior

belief attaches probability more than 1/2 to type θ0 . Then, there exists a pooling equilibrium in which both types of senders

play L and the receiver chooses l no matter which action he observes. However, neither this equilibrium nor its outcome is

unique. There is also a partially separating equilibrium in which type θ1 chooses H , while type θ0 mixes between H and L

with probabilities such that the receiver’s posterior belief attaches probability 1/2 to type θ1 after observing H . The receiver

chooses l after observing L , and chooses h with probability 3/4 after observing H , which makes type θ0 sender indifferent

between H and L . 

4.2. Games with | A 2 | ≥ 3 

We generalize our findings to games in which the receiver has three or more actions. We start from a counterexample

showing that monotone-supermodularity of the sender’s payoff function is no longer sufficient to guarantee the monotonic-

ity of all equilibria. 

Example 3. Consider the following game in which the sender chooses row and the receiver chooses column: 

θ = θ1 h m l θ = θ0 h m l

H 2 − ε, 1 1 − 2 ε, 0 −3 ε, −2 H 2 − 3 ε, 0 1 − 3 ε, 0 4 ε, 0 

L 2,0 1,1 0,0 L 2 − ε, 0 1,2 8 ε, 3 

Suppose ε ∈ (0, 1/8). The sender’s types and players’ actions are ranked according to θ1 � θ0 , H � L , and h � m � l . 15

One can verify that the sender’s payoff is monotone-supermodular. However, the game admits the following non-monotone

equilibrium. The sender plays L when θ = θ1 , and plays H when θ = θ0 . The receiver plays m after observing L , and plays h

and l with equal probabilities after observing H . One can check that first, the sender’s strategy is non-monotone, and second,

the above strategy profile and its induced belief constitute a sequential equilibrium. 16 

Why does monotone-supermodularity alone cannot guarantee equilibrium monotonicity? Reviewing Theorem1 ′ s proof

suggests that the main issue is that the distributions over the receiver’s actions cannot be completely ranked via FOSD

when | A 2 | ≥ 3. In what follow, we proceed along two directions to address this challenge. First, we introduce a property

on the receiver’s payoff under which every pair of his mixed best replies can be ranked via FOSD. This together with the

monotone-supermodularity condition on the sender’s payoff implies the monotonicity of all equilibria (Theorem 2). Second,

we identify a condition on the sender’s payoff under which one can endogenously construct a complete order on �( A 2 ).

When the sender’s payoff satisfies this condition and monotone-supermodularity, every equilibrium is monotone regardless

of the receiver’s payoff (Theorem 3). 

4.2.1. Quasiconcavity-preserving property 

We assume A 2 ≡ { a 1 
2 
, . . . , a n 

2 
} is completely ranked with a 1 

2 
≺ a 2 

2 
≺ . . . ≺ a n 

2 
. 17 For every ( θ , a 1 ) ∈ � × A 1 and i ∈ I ≡

{ 1 , 2 , . . . , n − 1 } , let 

γ a 1 
θ

(i ) ≡ u 2 (θ, a 1 , a 
i 
2 ) − u 2 (θ, a 1 , a 

i +1 
2 ) , (4.5)

be the receiver’s payoff gain by locally decreasing his action. Given a belief about the sender’s type ˜ π ∈ �(�) , let 


a 1 
˜ π (i ) ≡

∫ 
γ a 1 

θ
(i ) d ̃  π (4.6)

be the receiver’s expected payoff gain under ˜ π . Recall the strict single-crossing property in Milgrom and Shannon (1994) : 
15 Mapping Example 3 into an education signaling context similar to Example 1, we can again interpret the sender’s type as whether she is more talented 

in coding ( θ0 ) or managing ( θ1 ), and her action as whether to do an MS in statistics ( L ) or an MBA ( H ). The positions which the receiver (an employer) is 

recruiting are a manager ( h ), a coder ( m ), and a customer service staff ( l ). Given the payoff matrix of Example 3, one can check that, other things equal, 

the sender would always prefer to do an MS in statistics rather than an MBA degree (perhaps due to the difference in tuition fees). In addition, both types 

of the sender prefer the manager position to the coder position, and the coder position to the customer service position (perhaps due to the difference in 

salaries). 
16 This counterexample is not driven by the receiver’s non-generic payoff function. Even when the receiver has strict preferences over A 2 conditional on 

(θ, a 1 ) = (θ0 , H) , there still exists a non-monotone partial pooling equilibrium in which type θ 1 mixes between H and L , and type θ0 always plays H . 
17 Our monotonicity result in this subsection (Theorem 2) can be extended to settings where A 2 is a multi-dimensional convex set. 
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Definition 4. Function γ : I → R satisfies the strict single-crossing property (SSCP) if for every i ∈ I, γ ( i ) ≥ 0 implies that

γ ( j ) > 0 for every j ∈ I with j > i . 

If γ
a 1 
θ

(·) satisfies SSCP for every ( θ , a 1 ) ∈ � × A 1 , then u 2 ( θ , a 1 , · ) is strictly quasi-concave in a 2 . In that case, the

receiver has at most two pure best replies to every ( θ , a 1 ), which are adjacent elements in A 2 . This further implies that

every pair of his mixed best replies against a degenerate distribution on � × A 1 can be ranked according to FOSD. However,

some actions of the sender may induce a non-degenerate posterior belief, which gives rise to an issue of aggregating the

single-crossing property. This motivates us to introduce a quasiconcavity-preserving property (QPP) on the receiver’s payoff. 

Definition 5 (Quasiconcavity-Preserving Property) . u 2 satisfies QPP if 

a 1 
˜ π

(·) satisfies SSCP for every ( ̃  π, a 1 ) ∈ �(�) × A 1 . 
18 

Under QPP, the receiver’s mixed best replies against any element in �( �) × A 1 can be ranked according to FOSD. This

leads to our second result: 

Theorem 2. If the order on A 2 is complete, u 1 is monotone-supermodular, and u 2 satisfies QPP, then all equilibria are monotone.

The proof is similar to that of Theorem 1 , which is omitted to avoid repetition. Theorem 2 applies to games in which u 2 
is strictly concave in a 2 , which is equivalent to γ

a 1 
θ

(·) being strictly increasing for every ( θ , a 1 ). 
19 In the education-signaling

example with vertically differentiated jobs, this is the case if the employer’s suffers a convex loss when there is a mismatch

between the worker and the job position that maximizes the employer’s payoff under complete information, where the

latter can depend both on the worker’s talent and her level of education. 

One thing to note is that Theorem 2 only requires the receiver to play a best reply against some posterior belief ˜ π ∈
�(�) . Therefore, the monotonicity property does not depend on the details of the receiver’s posterior beliefs and applies

to all outcomes under weaker solution concepts such as S ∞ W in Dekel and Fudenberg (1990) and iterative conditional

dominance in Shimoji and Watson (1998) . 20 Moreover, when applying the elimination procedure for S ∞ W , all non-monotone

strategies are deleted after one round of elimination of weakly dominated strategy followed by another round of elimination

of strictly dominated strategy. When applying iterative conditional dominance, all surviving strategies are monotone after

two rounds of elimination. 

4.2.2. Increasing absolute differences over distributions 

We take an alternative approach by introducing a condition on the sender’s payoff that can guarantee the monotonicity

of all equilibria irrespective of the receiver’s payoff. For this result, we allow the order on A 2 to be incomplete. Instead, we

introduce the following increasing absolute differences over distributions (IADD) condition on the sender’s payoff under which

one can construct a complete order on �( A 2 ) endogenously. 

Definition 6 (Increasing Absolute Differences over Distributions) . The sender’s payoff satisfies IADD if for every a 1 ∈ A 1 and

every α2 , α
′ 
2 

∈ �(A 2 ) , we have u 1 (θ, a 1 , α2 ) − u 1 (θ, a 1 , α
′ 
2 
) being either increasing in θ and non-negative for all θ ∈ �, or

decreasing in θ and non-positive for all θ ∈ �. 

To make sense of the terminology of IADD, note that it implies that the absolute value of the difference u 1 (θ, a 1 , α2 ) −
u 1 (θ, a 2 , α

′ 
2 
) is increasing in θ . 21 Intuitively, if u 1 satisfies IADD, then for every a 1 ∈ A 1 , there exists a complete ordinal

preference on �( A 2 ) (denoted by � a 1 ) that is shared among all types of senders. In addition, this ordinal ranking coincides

with the one based on the intensity of the sender’s preferences. In other words, if α2 � a 1 α
′ 
2 , then the difference in the

sender’s payoffs between ( a 1 , α2 ) and (a 1 , α
′ 
2 
) is increasing in θ . This leads to our third theorem: 

Theorem 3. If u 1 is monotone-supermodular and satisfies IADD, then all equilibria are monotone. 

Proof. Suppose towards a contradiction that in some equilibrium ( σ 1 , σ 2 ), there exist θ � θ ′ and a 1 � a ′ 
1 

such that σ θ
1 
(a ′ 

1 
) >

0 and σθ ′ 
1 

(a 1 ) > 0 . Let α2 ≡ σ 2 ( a 1 ), α
′ 
2 

≡ σ2 (a ′ 
1 
) with α2 , α

′ 
2 

∈ �(A 2 ) . Since type θ prefers (a ′ 
1 
, α′ 

2 
) to ( a 1 , α2 ), and type θ ′

prefers ( a 1 , α2 ) to (a ′ 1 , α′ 
2 ) , we have: 

u 1 (θ, a ′ 1 , α′ 
2 ) ≥ u 1 (θ, a 1 , α2 ) (4.7) 

and 

u 1 (θ
′ , a 1 , α2 ) ≥ u 1 (θ

′ , a ′ 1 , α′ 
2 ) . (4.8) 
18 A more general version of the QPP property when A 2 is any subset of R is introduced and characterized by Choi and Smith (2017) . In the case where 

A 2 is finite, our condition is equivalent to a strict version of theirs. 
19 Strict concavity is sufficient but not necessary for QPP. In Appendix B.3 , we provide a full characterization of QPP by relating it to a strict version of 

the signed-ratio monotonicity condition introduced in Quah and Strulovici (2012) . 
20 These solution concepts are variants of rationalizability that rule out the receiver’s suboptimal plays at off-path information sets. In particular, S ∞ W is 

the solution concept when applying one round elimination of weakly dominated strategies followed by iterative elimination of strictly dominated strategies. 

Dekel and Fudenberg (1990) show that it characterizes the set of rationalizable strategies when players entertain small amount of uncertainty about their 

opponents’ payoffs. Shimoji and Watson (1998) show that iterative conditional dominance generalizes rationalizability in normal-form games to extensive- 

form games. 
21 IADD is also necessary for 

∣∣u 1 (θ, a 1 , α2 ) − u 1 (θ, a 2 , α′ 
2 ) 

∣∣ to be increasing in θ when � is a continuum and u 1 is a continuous function of θ . 
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Since u 1 is strictly decreasing in a 1 , we have u 1 (θ
′ , a ′ 

1 
, α2 ) > u 1 (θ

′ , a 1 , α2 ) . Inequality (4.8) then implies that u 1 (θ
′ , a ′ 

1 
, α2 ) >

u 1 (θ
′ , a ′ 

1 
, α′ 

2 
) . Applying (4.7) and (4.8) we have: 

u 1 (θ, a ′ 1 , α′ 
2 ) − u 1 (θ, a 1 , α2 ) ≥ u 1 (θ

′ , a ′ 1 , α′ 
2 ) − u 1 (θ

′ , a 1 , α2 ) . (4.9)

Meanwhile, note that 

u 1 (·, a ′ 1 , α′ 
2 ) − u 1 (·, a 1 , α2 ) = u 1 (·, a ′ 1 , α′ 

2 ) − u 1 (·, a ′ 1 , α2 ) + u 1 (·, a ′ 1 , α2 ) − u 1 (·, a 1 , α2 ) . 

Since u 1 exhibits strictly increasing differences between θ and a 1 , we have: 

u 1 (θ, a ′ 1 , α2 ) − u 1 (θ, a 1 , α2 ) < u 1 (θ
′ , a ′ 1 , α2 ) − u 1 (θ

′ , a 1 , α2 ) . (4.10)

In addition, IADD and u 1 (θ
′ , a ′ 

1 
, α2 ) − u 1 (θ

′ , a ′ 
1 
, α′ 

2 
) > 0 imply that: 

u 1 (θ, a ′ 1 , α′ 
2 ) − u 1 (θ, a ′ 1 , α2 ) ≤ u 1 (θ

′ , a ′ 1 , α′ 
2 ) − u 1 (θ

′ , a ′ 1 , α2 ) . (4.11)

Inequalities (4.10) and (4.11) together lead to a contradiction against (4.9) , which implies that all equilibria are monotone. �

We make two remarks. First, since the order on �( A 2 ) can be constructed endogenously under IADD, our result does not

rely on the pre-specified order on A 2 , nor does it rely on the monotone-supermodularity condition on u 1 with respect to a 2 .

In fact, it is clear from the above proof that once u 1 satisfies IADD, all equilibria are monotone if u 1 is strictly decreasing in

a 1 and exhibits strictly increasing differences in ( θ , a 1 ). 

Second, since the proof makes no reference to the receiver’s incentives, Theorem 3 shares the same robust properties

with Theorem 1 . That is, all ex ante rationalizable strategies of the sender are also monotone. This monotonicity result also

applies when the receiver has private information about his payoff, when the sender is signaling to a population of receivers

with heterogeneous preferences, and so on. In addition, Theorem 3 immediately extends to cases where A 2 is infinite as the

cardinality of A 2 plays no role in its proof. Finally, extensions of Theorem 3 to cases where � and A 1 are infinite are subject

to the same cautions mentioned in Subsection 4.1 and Appendix B.2 . This is because the support of the sender’s strategy

may include a measure zero of suboptimal actions. 

The key step to apply Theorem 3 is the verify the IADD condition, which we fully characterize in the following proposi-

tion: 

Proposition 1. u 1 satisfies IADD if and only if there exist functions f : A 1 × A 2 → R , v : � × A 1 → R + and c : � × A 1 → R with

v ( θ , a 1 ) increasing in θ , such that: 

u 1 (θ, a 1 , a 2 ) = f (a 1 , a 2 ) v (θ, a 1 ) + c(θ, a 1 ) . (4.12)

Proof. See Appendix A . �

According to Proposition 1, Theorem 3 is applicable to education-signaling games in which the worker’s payoff function

takes the form of (4.12) . For an economic interpretation, f ( a 1 , a 2 ) v ( θ , a 1 ) is the worker’s return from her assigned job, and

c ( θ , a 1 ) captures her cost of receiving education. That is to say, our result applies to situations in which a worker’s benefit

from a job depends both on her talent θ and her education background a 1 . This is relevant in practice as both talent and

education background can affect a worker’s chances of receiving bonuses, being promoted, and so on. 

Remark on the IADD Condition: The significance of IADD is that it endogenously provides a complete order on �( A 2 ). Sim-

ilar conditions are provided in the monotone comparative statics literature, such as single-crossing expectational differences

(SCED) and monotone expectational differences (MED) in Kartik et al. (2019) , and increasing differences over distributions (IDD)

in Kushnir and Liu (2019) . 22 

When applied to the same probability space, IADD is more demanding than MED and SCED. This is because, for example,

IADD on �( A 2 ) requires that first, u 1 (θ, a 1 , α2 ) − u 1 (θ, a 2 , α
′ 
2 ) does not change sign when we vary θ , and second, its abso-

lute value is increasing in θ . These together imply that the expected difference u 1 (θ, a 1 , α2 ) − u 1 (θ, a 2 , α
′ 
2 
) is monotone in

θ . 23 

However, neither MED, SCED nor IDD on �( A 2 ) is sufficient for our purpose. It is also important to note that IADD on

�( A 2 ) neither implies nor is implied by MED or SCED on �( A 1 × A 2 ). To illustrate, we note that in the context of education

signaling, Kartik et al. (2019) show that if the worker’s payoff function has SCED on �( A 1 × A 2 ), then every equilibrium

is monotone. According to their characterization result, u 1 has SCED on �( A 1 × A 2 ) if and only if it takes the following

functional form: 

u 1 (θ, a 1 , a 2 ) = g 1 (a 1 , a 2 ) f 1 (θ ) + g 2 (a 1 , a 2 ) f 2 (θ ) + h (θ ) , (4.13)
22 Formally, a utility function u defined on a partially ordered set � and an arbitrary set A has SCED on the probability space �( A ) if ∀ α, α′ ∈ �( A ), 

the expected utility difference u (θ, α) − u (θ, α′ ) is single-crossing in θ ∈ � (i.e, its signum function is monotone in θ ). The function has MED if u (θ, α) −
u (θ, α′ ) is monotone in θ . Finally, the function has IDD if u (θ, α) − u (θ, α′ ) is strictly monotone in θ either strictly increasing, strictly decreasing, or 

constant in θ . 
23 In our context, IDD on �( A 2 ) would require that for every a 1 ∈ A 1 and every α2 , α′ 

2 ∈ �(A 2 ) , the expected payoff differences u 1 (θ, a 1 , α2 ) − u 1 (θ, a 1 , α′ 
2 ) 

is either strictly increasing, strictly decreasing, or constant in θ . In contrast, IADD only implies that these differences are either increasing or decreasing. 

Thus, in general Kushnir and Liu (2019) ’s IDD is only implied by the strict version of our IADD (i.e. for every a 1 ∈ A 1 and α2 , α′ 
2 ∈ �(A 2 ) , | u 2 (θ, a 1 , α2 ) −

u 2 (θ, a 1 , α′ 
2 ) | is either constant or strictly increasing in θ ). 
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where both f 1 and f 2 are single-crossing functions that satisfy a ratio-ordered condition. 24 Hence, their monotonicity result

is not applicable to education signaling games where the worker’s payoff is given by (4.12) but the cost of education c ( θ ,

a 1 ) cannot be written as a product of two functions c 1 ( θ ) and c 2 ( a 1 ). 
25 In contrast, our Theorem 3 allows for these cases. 

5. Application to industrial organization 

We apply our results to study firms’ decisions in advertising and warranty provision. While the seminal work by

Spence (1977) suggests that a longer warranty is a signal of higher product quality, empirical studies have shown that the

opposite may often be the case ( Priest, 1981; Wiener, 1985; Cooper and Ross, 1985 ). To resolve this puzzle, the literature has

offered explanations that are related to, e.g., consumer moral hazard ( Lutz, 1989 ), or firm competition ( Balachander, 2001;

Gal-Or, 1989 ). Our counterexamples contribute to the literature by showing that once we account for that the firm’s re-

turn from the consumer’s purchase may depend on its product’s quality (perhaps due to word-of-mouth effects), the above

empirical evidence about warranty provision can also be explained by a very simple and standard signaling model. 

Furthermore, our theorems delineate the theory of Spence (1977) by providing general sufficient conditions under which

we can expect to discover a monotone relation between a firm’s decision (such as warranty provision) and the quality of its

product. To illustrate this, consider a firm (sender) selling products to a consumer (receiver). Let θ ∈ � ⊂ R be the product’s

quality, which is the firm’s private information. For simplicity, we assume that the per unit sales price is exogenous, which

is normalized to 1. Every product sold has a positive probability of breakdown, which depends on its quality. The firm

chooses a 3-dimensional action: a 1 ≡ (a ad 
1 

, a len 
1 

, a re 
1 

) ∈ A 1 ⊂ R + × R + × [0 , 1] , where a ad 
1 

is the intensity of advertising, a len 
1 

is

the length of warranty, and a re 
1 

is the (per unit) refund the firm commits to pay if the product breaks down during the length

of the warranty. The consumer chooses how many units to purchase after observing a 1 , which is denoted by a 2 ∈ A 2 ⊂ N . 

Our monotone-supermodular condition requires that first, u 1 is strictly decreasing in the triple (a ad 
1 

, a len 
1 

, a re 
1 

) and is

strictly increasing in a 2 , and second, u 1 has strictly increasing differences in (θ, a ad 
1 

) , (θ, a len 
1 

) and (θ, a re 
1 

) , and increasing

differences in ( θ , a 2 ). The first part of the monotonicity requirement is straightforward, since advertising, providing lengthier

warranty and refund are all costly for firms. Monotonicity also requires that, keeping other factors fixed, the firm’s profit is

strictly higher when consumers purchase larger quantities. This rules out cases in which the low-quality seller loses money

when offering the equilibrium warranty/refund policy of the high-quality seller. Nevertheless, it still fits into a number of

cases of economic interest. 

Next, we justify the supermodularity part of our assumption. First, there are complementarities between θ and a ad 
1 

when

the cost of promoting a good product is lower than the cost of promoting a bad one. This can be driven by repeat purchase

( Nelson, 1974 ), reputation concerns ( Kleiner and Leffler, 1981 ), umbrella branding Wernerfelt (1988) , and so on. Second,

there are complementarities between θ and a re 
1 

when a higher quality product has lower probability of breakdown, so that

committing to a higher per unit refund is less costly. Similarly, the firm’s per unit profit (defined as sales price minus ex-

pected refund payment) is strictly increasing in the product’s quality, and therefore, u 1 has strictly increasing differences in

( θ , a 2 ). Finally, there are complementarities between θ and a len 
1 

when breakdown arrives according to a time homogeneous

Poisson process with intensity strictly decreasing in the product’s quality ( Gal-Or, 1989 ). 

Given the multidimensionality of the firm’s action set, in general it would be difficult to fully characterize the equilibrium

outcomes of the game. Nevertheless, our theorems can still be applied to provide robust predictions about the sender’s equi-

librium strategies. In particular, provided that the firm’s payoff is monotone-supermodular, it would use a monotone strategy

in every equilibrium when the consumer has unit demand (Theorem 1), when the consumer faces decreasing marginal re-

turns to quantities (Theorem 2), or when its payoff can be written as follows (Theorem 3): 

u 1 (θ, a 1 , a 2 ) = 

⎛ 

⎜ ⎝ 

1 − g(θ, a len 
1 ) ︸ ︷︷ ︸ 

prob. of breakdown within a len 
1 periods 

·
per unit refund ︷︸︸︷ 

a re 
1 + f (θ ) 

⎞ 

⎟ ⎠ 

a 2 − c(θ, a ad 
1 ) ︸ ︷︷ ︸ 

cost of advertising 

, (5.1) 

in which 

1. g : � × R + → [0 , 1] is strictly decreasing in θ , strictly increasing in a len 
1 

and exhibits strictly decreasing differences in

(θ, a len 
1 

) , 

2. f : � → R + is strictly increasing, which captures the firm’s benefit from initial sales beyond the sales price in a reduced

form, 26 and 

3. c : � × R → R is strictly increasing in a ad and exhibits strictly decreasing differences in (θ, a ad ) . 
+ 1 1 

24 According to Kartik et al. (2019) , for two single-crossing functions f 1 , f 2 : � → R , f 1 ratio dominates f 2 if first, ∀ θ
θ ′ , f 1 ( θ
′ ) f 2 ( θ ) ≤ f 1 ( θ ) f 2 ( θ

′ ), and 

second, ∀ θ 
 ˆ θ 
 θ ′ , f 1 (θ ′ ) f 2 (θ ) = f 1 (θ ) f 2 (θ ′ ) if and only if f 1 (θ ′ ) f 2 ( ̂ θ ) = f 1 ( ̂ θ ) f 2 (θ ′ ) and f 1 ( ̂ θ ) f 2 (θ ) = f 1 (θ ) f 2 ( ̂ θ ) . Functions f 1 and f 2 are ratio-ordered 

if either f 1 ratio dominates f 2 or f 2 ratio dominates f 1 . 
25 The cost function is not multiplicative separable in applications when c(θ, a 1 ) = k (θ ) a 1 + t(a 1 ) , with t ( a 1 ) being a fixed cost, interpreted as the cost of 

tuition, and k ( θ ) a 1 being a variable cost which depends on the worker’s talent. 
26 This is relevant when the product is a newly introduced experience good, such as the environments studied by Nelson (1974) and Milgrom and Roberts 

(1986). In addition, the absence of f ( θ ) does not affect the applicability of our monotonicity result. 



S. Liu and H. Pei / European Economic Review 124 (2020) 103408 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Conclusion 

Our paper makes two contributions. First, we show that equilibrium monotonicity does not follow from the Spence–

Mirrlees condition nor is it implied by complementarities in players’ payoff functions. Our counterexamples are robust

against equilibrium refinements and highlight the problems that can arise when the sender’s returns from the receiver’s

action depend on her type. Second, we provide sufficient conditions under which all Bayes–Nash equilibria are monotone.

These conditions are easy to verify and fit into a number of applications, including advertising, warranty provision, education

and job assignment, and so on. 

Appendix A 

We establish Proposition 1 by proving a series of equivalence statements. 

Lemma A1. u 1 has IADD if and only if for every a 1 ∈ A 1 and every α2 , α
′ 
2 ∈ �(A 2 ) , we have 

u 1 ( ̃  θ, a 1 , α2 ) > u 1 ( ̃  θ, a 1 , α
′ 
2 ) for some ˜ θ ∈ � �⇒ u 1 (θ, a 1 , α2 ) − u 1 (θ, a 1 , α

′ 
2 ) is increasing in θ . (A.1)

Proof. The only-if part of the lemma is straightforward. Let us focus on the if part. To show that (A.1) implies IADD, it

suffices to show that if u 1 ( ̃  θ, a 1 , α2 ) > u 1 ( ̃  θ, a 1 , α
′ 
2 
) for some ˜ θ, then for all θ ∈ �, we have u 1 (θ, a 1 , α2 ) ≥ u 1 (θ, a 1 , α

′ 
2 
) . 

Suppose towards a contradiction that there exist a 1 ∈ A 1 , α2 , α
′ 
2 

∈ �(A 2 ) , and 

˜ θ, ˆ θ ∈ �, such that u 1 ( ̃  θ, a 1 , α2 ) >

u 1 ( ̃  θ, a 1 , α
′ 
2 
) and u 1 ( ̂  θ, a 1 , α2 ) < u 1 ( ̂  θ, a 1 , α

′ 
2 
) . Then, condition (A.1) implies that we have both u 1 (θ, a 1 , α2 ) − u 1 (θ, a 1 , α

′ 
2 
)

and u 1 (θ, a 1 , α
′ 
2 ) − u 1 (θ, a 1 , α2 ) being increasing in θ . Hence, u 1 (θ, a 1 , α2 ) − u 1 (θ, a 1 , α

′ 
2 ) is constant for all θ , which leads

to a contradiction. �

Next, notice that an immediate implication of u 1 satisfying IADD is that for every a 1 ∈ A 1 and α2 , α
′ 
2 

∈ �(A 2 ) , the

expected payoff difference u 1 (θ, a 1 , α2 ) − u 1 (θ, a 1 , α
′ 
2 ) is monotone in θ . The following lemma fully characterizes this nec-

essary condition of IADD. 

Lemma A2. u 1 (θ, a 1 , α2 ) − u 1 (θ, a 1 , α
′ 
2 
) is monotone in θ for every (a 1 , α2 , α

′ 
2 
) ∈ A 1 × �(A 2 ) × �(A 2 ) if and only if the

sender’s payoff has the following representation: 

u 1 (θ, a 1 , a 2 ) = f (a 1 , a 2 ) v (θ, a 1 ) + c(θ, a 1 ) + g(a 1 , a 2 ) , (A.2)

where v : � × A 1 → R is an increasing function of θ . 

The proof of Lemma A2 is omitted as it immediately follows from the characterization results in Kartik et al. (2019) and

Kushnir and Liu (2019) . Therefore, it is without loss of generality to assume u 1 taking the functional form in (A.2) . We now

proceed to characterize condition (A.1) . To do this, let us first introduce some useful notation. Let A 2 ≡ { a 1 
2 
, . . . , a n 

2 
} with

n ≥ 2. For every a 1 ∈ A 1 , let 

v a 1 ≡ min 

θ∈ �
v (θ, a 1 ) ∈ R , 

and 

f a 1 ≡ ( f (a 1 , a 
1 
2 ) , . . . , f (a 1 , a 

n 
2 )) , g a 1 ≡ (g(a 1 , a 

1 
2 ) , . . . , g(a 1 , a 

n 
2 )) ∈ R 

n . 

Finally, let 
 ≡ { γ ∈ R 

n | 1 · γ = 0 } , where 1 ≡ (1 , 1 , . . . , 1) ∈ R 

n and ‘ · ’ denotes the inner product of two vectors. We estab-

lish the following result. 

Lemma A3. Suppose that u 1 has representation (A.2) . Then, u 1 satisfies (A.1) if and only if 

∀ (a 1 , γ ) ∈ A 1 × 
, ( v a 1 f a 1 + g a 1 ) · γ > 0 �⇒ f a 1 · γ ≥ 0 . (A.3)

Proof. (If statement) First, note that given the representation (A .2) , condition (A .1) is equivalent to the requirement that

for every ( a 1 , γ ) ∈ A 1 × 
 and every v ≥ v a 1 , (v f a 1 + g a 1 ) · γ > 0 ⇒ f a 1 · γ ≥ 0 . Suppose towards a contradiction that this

does not hold for some ( a 1 , γ ) ∈ A 1 × 
 and some v ≥ v a 1 . That is, we have (v f a 1 + g a 1 ) · γ > 0 but f a 1 · γ < 0 . Then,

(A.3) implies that ( v a 1 f a 1 + g a 1 ) · γ ≤ 0 . Hence, we have 

0 < (v f a 1 + g a 1 ) · γ = ( v a 1 f a 1 + g a 1 ) · γ︸ ︷︷ ︸ 
≤0 

+ (v − v a 1 ) f a 1 · γ︸ ︷︷ ︸ 
≤0 

≤ 0 , 

which leads to a contradiction. 

(Only-if statement) Suppose that (A.3) is violated for some ( a 1 , γ ) ∈ A 1 × 
, i.e. ( v a 1 f a 1 + g a 1 ) · γ > 0 but f a 1 · γ < 0 . Let

ξ > 0 be small enough such that: 

max {| ξγ1 | , . . . , | ξγn |} < 1 /n. 

Consider two probability distributions α2 , α
′ 
2 

∈ �(A 2 ) , where α2 ≡
∑ n 

i =1 
1 
n δa i 

2 
, α′ 

2 
≡ ∑ n 

i =1 ( 
1 
n − ξγi ) δa i 

2 
, and δ

a i 
2 

denotes the

Dirac measure on a i ∈ A 2 . Let θ be the smallest element in �, which exists since � is a complete lattice. By construction,

2 
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when playing a 1 , type θ sender strictly prefers α2 to α′ 
2 
. However, since f a 1 · γ < 0 , u 1 (·, a 1 , α2 ) − u 1 (·, a 1 , α′ 

2 
) is strictly

decreasing in θ . Hence, condition (A.1) is violated. �

Next, consider the linear operator τ : R 

n → R 

n −1 with 

τ (w ) ≡ (w 1 − w n , . . . , w n −1 − w n ) , ∀ w ∈ R 

n . 

By construction, τ (w ) = 0 if and only if w is a constant vector. In addition, for every γ ∈ 
 and w ∈ R 

n , we have w · γ =∑ n −1 
i =1 (w i − w n ) γi = τ (w ) · γ . Our next lemma provides a further characterization of condition (A.1) via the linear mapping

τ . 

Lemma A4. Suppose that u 1 has the representation (A.2) . Then, u 1 satisfies condition (A.3) if and only if for every a 1 ∈ A 1 , there

exist λ, μ ∈ [0 , + ∞ ) with ( λ, μ) 
 = (0, 0) such that 

λτ ( f a 1 ) = μτ ( v a 1 f a 1 + g a 1 ) . (A.4) 

Proof. For every w ∈ R 

n , let us partition 
 into 
+ (w ) , 
−(w ) , 
0 (w ) , such that w · γ > 0 (resp., w · γ < 0) for every

γ ∈ 
+ (w ) (resp., γ ∈ 
−(w ) ), and 
0 (w ) = 
 \ (
+ (w ) ∪ 
−(w )) . Now we can equivalently state condition (A.3) as 


+ ( v a 1 f a 1 + g a 1 ) ⊂ 
0 ( f a 1 ) ∪ 
+ ( f a 1 ) , ∀ a 1 ∈ A 1 . (A.5) 

( If statement ) Pick any a 1 ∈ A 1 and suppose there exist λ and μ such that (A.4) holds. If either λ or μ is 0, then since ( λ,

μ) 
 = (0, 0), we have either τ ( f a 1 ) = 0 or τ ( v a 1 f a 1 + g a 1 ) = 0 . In both cases, (A.5) is satisfied. If λμ 
 = 0, then by (A.4) we

have for every γ ∈ 
+ ( v a 1 f a 1 + g a 1 ) , 

f a 1 · γ = τ ( f a 1 ) · γ = 

μ

λ
τ ( v a 1 f a 1 + g a 1 ) · γ = 

μ

λ
( v a 1 f a 1 + g a 1 ) · γ > 0 . 

Hence, γ ∈ 
+ ( f a 1 ) . 

( Only-if statement ) Pick any a 1 ∈ A 1 and consider the two n − 1 dimensional vectors τ ( f a 1 ) and τ ( v a 1 f a 1 + g a 1 ) . Suppose

that the required λ and μ do not exist. Then, there exists no κ ≥ 0 such that κτ ( f a 1 ) = τ ( v a 1 f a 1 + g a 1 ) . By Farkas’ Lemma,

there exists ˜ γ ≡ ( ˜ γ1 , . . . , ˜ γn −1 ) ∈ R 

n −1 such that 

τ ( f a 1 ) · ˜ γ < 0 but τ ( v a 1 f a 1 + g a 1 ) · ˜ γ > 0 . 

27 Let γ ≡ ( ˜ γ1 , . . . , ˜ γn −1 , ˜ γn ) , where ˜ γn ≡ −∑ n −1 
i =1 ˜ γi . The construction of ˜ γ implies that γ ∈ 
+ ( v a 1 f a 1 + g a 1 ) but γ ∈


−( f a 1 ) . This violates (A.5) and thus also violates (A.3) . �

To conclude the proof of Proposition 1, we derive (4.12) from (A.4) . According to the definition of τ , Lemma A4 implies

that for every ( a 1 , a 2 ) ∈ A 1 × A 2 , 

λ( f (a 1 , a 2 ) − f (a 1 , a 
n 
2 ) ) = μ

[ 
( v a 1 f (a 1 , a 2 ) + g(a 1 , a 2 )) − ( v a 1 f (a 1 , a 

n 
2 ) + g(a 1 , a 

n 
2 ) ) 

] 
, 

or, equivalently, 

μg(a 1 , a 2 ) = (λ − μv a 1 ) f (a 1 , a 2 ) + h (a 1 ) , 

where 

h (a 1 ) = μ( v a 1 f (a 1 , a 
n 
2 ) + g(a 1 , a 

n 
2 ) − λ f (a 1 , a 

n 
2 ) . 

On the one hand, if μ 
 = 0, let 

ˆ v (θ, a 1 ) ≡ v (θ, a 1 ) + (λ − μv a 1 ) /μ and 

ˆ c (θ, a 1 ) ≡ c(θ, a 1 ) + h (a 1 ) , 

which obtains representation (4.12) . Note that by construction, min θ∈ � ˆ v (θ, a 1 ) = λ/μ ≥ 0 . 

On the other hand, if μ = 0 , then we have λ 
 = 0 and f (a 1 , a 2 ) = h (a 1 ) /λ. In this case, let 

ˆ f (a 1 , a 2 ) ≡ g(a 1 , a 2 ) , ˆ v (θ, a 1 ) ≡ 1 and 

ˆ c (θ, a 1 ) ≡ c(θ, a 1 ) + h (a 1 ) v (θ, a 1 ) /λ, 

which obtains representation (4.12) . 

Appendix B 

B1. Strongly monotone equilibria 

Theorems 1,2, and 3 in the main text provide sufficient conditions under which the sender uses a monotone strategy in

every Nash equilibrium. As discussed in Section 2 , our notion of monotonicity can be strengthened in environments when

A 1 is multi-dimensional. This leads to the definitions of strongly monotone strategy and strongly monotone equilibrium: 
27 Farkas’ Lemma implies the existence of ˆ γ ∈ R n −1 such that τ ( f a 1 ) · ˆ γ ≤ 0 and τ ( v a 1 f a 1 + g a 1 ) · ˆ γ > 0 . But given that τ ( f a 1 ) 
 = 0 , if τ ( f a 1 ) · ˆ γ = 0 , there 

exist ˜ γ ∈ R n −1 close to ˆ γ such that τ ( f a 1 ) · ˜ γ < 0 and τ ( v a 1 f a 1 + g a 1 ) · ˜ γ > 0 . 



S. Liu and H. Pei / European Economic Review 124 (2020) 103408 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition B 1. σ 1 is a strongly monotone strategy if min a 1 { supp (σ θ
1 
) } 
 max a 1 { supp (σ θ ′ 

1 
) } for every θ � θ ′ . An equilibrium

( σ 1 , σ 2 ) is strongly monotone if σ 1 is strongly monotone. 

According to the above definition, a strategy is strongly monotone if a high type sender always plays a higher action

than a low type. Plainly, strong monotonicity is strictly more demanding than monotonicity when A 1 is multi-dimensional.

In what follows, we use an example to illustrate why it is fundamentally more challenging to establish a result stating that

all equilibria are strongly monotone. 

Let � = A 2 = { 0 , 1 , 2 , 3 } , and A 1 = { (0 , 0) , (1 , 0) , (0 , 1) , (1 , 1) } . All sets are endowed with the product order. Note that A 1

is two-dimensional, and the sender’s actions are only partially ordered. For all θ ∈ �, a 1 = (a 11 , a 12 ) ∈ A 1 and a 2 ∈ A 2 , the

sender’s payoff is given by 

u 1 (θ, a 1 , a 2 ) = 

√ 

a 2 − c(θ, a 1 ) , 

where 

c(θ, a 1 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

3 a 11 + 3 a 22 if θ = 0 , 

0 . 9 a 11 + 2 a 22 if θ = 1 , 

0 . 8 a 11 + a 22 if θ = 2 , 

0 . 2 a 11 + 0 . 2 a 22 if θ = 3 . 

The receiver’s payoff is given by u 2 (θ, a 1 , a 2 ) = 1 if a 2 = θ, and u 2 (θ, a 1 , a 2 ) = 0 otherwise. We leave the receiver’s prior

belief π unspecified as it plays no role. 

In this example, the sender’s payoff is separable and monotone-supermodular, which is sufficient to guarantee that she

uses a monotone strategy in every equilibrium (Theorem 3). However, even the sender’s payoff takes such a simple form,

one cannot assert that all equilibria are strongly monotone. In particular, consider the following strategy profile: Type θ =
0 sender chooses a 1 = (0 , 0) , type 1 chooses a 1 = (1 , 0) , type 2 chooses a 1 = (0 , 1) , and type 3 chooses a 1 = (1 , 1) . The

receiver plays a 2 = 0 if he observes a 1 = (0 , 0) , 1 if he observes a 1 = (1 , 0) , 2 if he observes a 1 = (0 , 1) , and 3 if a 1 = (1 , 1)

is observed. One can check that this strategy profile constitutes a sequential equilibrium, in which every action of the sender

is played with positive probability, and the players’ incentives are strict. The sender’s strategy is monotone but not strongly

monotone, because the action (0, 1) taken by type 2 is not higher than the action (1, 0) taken by type 1. 

In sum, the above example suggests that strong assumptions on the players’ payoffs would need to be made if we want to

further strengthen the robust monotonicity prediction about the sender’s equilibrium strategies. In particular, the difficulty

due to the incompleteness of the order on A 1 cannot be easily bypassed even in the simplest settings where the sender’s

payoff is separable. 

B2. Generalized results with infinite A 2 

We generalize our monotonicity results to cases where A 1 is infinite. For simplicity, we shall assume that A 1 ⊂ R 

n with

n ≥ 1 and it is a complete lattice with to the product order on the Euclidean space. With infinite A 1 , a technical difficulty is

that some of the actions in the support of σ θ
1 

can be suboptimal. Therefore, the notion of monotonicity in Definition 1 does

not apply. 

For every a 1 ∈ A 1 and α1 ∈ �( A 1 ), let Pr (α1 � a 1 ) be the probability that the realization of α1 is strictly higher than a 1 .

We introduce the following weaker version of monotonicity: 

Definition B 2. σ 1 is an almost surely monotone strategy if for every θ � θ ′ and a 1 ∈ supp (σ θ
1 
) , we have Pr (σ θ ′ 

1 
� a 1 ) = 0 .

An equilibrium ( σ 1 , σ 2 ) is almost surely monotone if σ 1 is almost surely monotone. 

We establish the following result, which generalizes Theorem 1. 

Theorem B 1. If | A 2 | = 2 and the sender’s payoff is monotone-supermodular, then every Nash equilibrium is almost surely mono-

tone. 

Proof. The proof of Theorem 1 implies the following lemma: �

Lemma B 1. Given the receiver’s strategy σ 2 , for every θ � θ ′ and a 1 � a ′ 
1 
, if a ′ 

1 
is a best response to σ 2 for type θ , then a 1 is

not a best response to σ 2 for type θ ′ . 

For every x ∈ R 

n and r > 0, let B ( x, r ) be the open ball around x with radius r . For every θ � θ ′ and a 1 ∈ supp (σ θ
1 
) , we

have σθ
1 
(B (a 1 , r)) > 0 for every r > 0. That is to say, there exists a ′ 

1 
∈ B (a 1 , r) such that a ′ 

1 
is optimal for type θ . Let a r 

1 
be

the smallest element that is above every element in B ( a 1 , r ). Lemma B1 implies that Pr (σ θ ′ 
1 

� a r 
1 
) = 0 for every r > 0. For

every strictly positive decreasing sequence { r i } ∞ 

i =1 
with lim i →∞ 

r i = 0 , we have: 

lim 

i →∞ 

{ a ′ 1 | a ′ 1 � a r i 
1 
} = { a ′ 1 | a ′ 1 � a 1 } and { a ′ 1 | a ′ 1 � a r i 

1 
} ⊃ { a ′ 1 | a ′ 1 � a 

r j 
1 
} for every i > j. 

The monotone convergence theorem implies that: 

Pr (σ θ ′ � a 1 ) = Pr (σ θ ′ � lim a r i ) = lim Pr (σ θ ′ � a r i ) = 0 . 
1 1 
i →∞ 

1 
i →∞ 

1 1 
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B3. Characterizing the quasiconcavity-preserving property 

We characterize the quasiconcavity-preserving property using the primitives of our model. We first introduce a strict

version of the signed-ratio monotonicity condition in Quah and Strulovici (2012) . 

Definition B 3. (Strict Signed-Ratio Monotonicity). A pair of functions γ
a 1 
θ

, γ
a 1 
θ ′ : I → R obeys strict signed-ratio monotonicity

(or SSRM) if 

(1) for every i such that γ
a 1 
θ

(i ) < 0 and γ
a 1 
θ ′ (i ) > 0 , we have 

γ a 1 
θ

(i ) 

γ a 1 
θ ′ (i ) 

< 

γ a 1 
θ

( j) 

γ a 1 
θ ′ ( j) 

for every j > i, and 

(2) for every i such that γ
a 1 
θ

(i ) > 0 and γ
a 1 
θ ′ (i ) < 0 , we have 

γ a 1 
θ ′ (i ) 

γ a 1 
θ

(i ) 
< 

γ a 1 
θ ′ ( j) 

γ a 1 
θ

( j) 
for every j > i. 

The next result characterizes the quasiconcavity-preserving property in our setting, which is a straightforward extension

of Theorem 1 in Quah and Strulovici (2012) : 

Proposition B 1. The receiver’s payoff is quasiconcavity-preserving if and only if (i) γ
a 1 
θ

satisfies SSCP for every ( θ , a 1 ) ∈ � × A 1 ,

and (ii) γ
a 1 
θ

and γ
a 1 
θ ′ obey SSRM for every a 1 ∈ A 1 and every θ , θ ′ ∈ �. 

Proof. (Only-if statement) Suppose that the receiver’s payoff is quasiconcavity-preserving, i.e., 
θ
˜ π has the strict single- 

crossing property for every (a 1 , ˜ π) ∈ A 1 × �(�) . Then, (i) immediately follows by taking the degenerate distributions over

�( �). For (ii), pick any pair of functions γ
a 1 
θ

and γ
a 1 
θ ′ . Suppose that γ

a 1 
θ

(i ) < 0 and γ
a 1 
θ ′ (i ) > 0 . Let 

β = 

−γ a 1 
θ

(i ) /γ a 1 
θ ′ (i ) 

1 − γ a 1 
θ

(i ) /γ a 1 
θ ′ (i ) 

, 

so that β ∈ (0, 1) and βγ
a 1 
θ

(i ) + (1 − β) γ
a 1 
θ ′ (i ) = 0 . Since βγ

a 1 
θ

+ (1 − β) γ
a 1 
θ ′ has the strict single-crossing property, we have

βγ
a 1 
θ

( j) + (1 − β) γ
a 1 
θ ′ ( j) > 0 for all j > i . Given that γ

a 1 
θ ′ satisfy SSCP and thus γ

a 1 
θ ′ ( j) > 0 , we can further obtain 

1 − β

β
= −γ a 1 

θ
(i ) 

γ a 1 
θ ′ (i ) 

> −γ a 1 
θ

( j) 

γ a 1 
θ ′ ( j) 

. 

Hence, γ
a 1 
θ

and γ
a 1 
θ ′ obey SSRM for every a 1 ∈ A 1 and every θ , θ ′ ∈ �. 

( If-statement ) Let � ≡ { θ1 , . . . , θK } . We need to show that ∀ μ ≡ (μ1 , . . . , μK ) ∈ [0 , 1] K such that 
∑ K 

k =1 μi = 1 , the function



a 1 
μ : I → R with 


a 1 
μ (i ) ≡ ∑ K 

k =1 μk γ
a 1 
θk 

(i ) satisfies the strict single-crossing property. Since SSCP is preserved under positive

scalar multiplication, and if γ
a 1 
θ

and γ
a 1 
θ ′ obey SSRM then so do βγ

a 1 
θ

and γ
a 1 
θ ′ for all β ≥ 0, it suffices for us to show that


a 1 ≡ ∑ K 
k =1 γ

a 1 
θk 

satisfies SSCP. 

Suppose that 
a 1 (i ) ≥ 0 . We want to show that 
a 1 ( j) > 0 for every j > i . If γ
a 1 
θk 

(i ) ≥ 0 for all k = 1 , . . . , K, then we are

done because each γ
a 1 
θk 

satisfies SSCP. Now suppose that γ
a 1 
θk 

(i ) < 0 for some θ k ∈ �. In this case, let us partition � into

three subsets, �+ , �0 and �−, such that θk ′ ∈ �+ if γ
a 1 
θ

k ′ 
(i ) > 0 , θk ′ ∈ �0 if γ

a 1 
θ

k ′ 
(i ) = 0 , and θk ′ ∈ �− if γ

a 1 
θ

k ′ 
(i ) < 0 . Hence,

we have 

∑ 

θk ∈ �+ ∪ �−
γ a 1 

θk 
= 

L ∑ 

� =1 

γ a 1 
� , 

where each function γ� : I → R is a positive linear combination of at most two functions γ
a 1 
θk 

, γ
a 1 
θ

k ′ 
such that θk , θk ′ ∈ �+ ∪

�−, and γ � ( i ) ≥ 0 for all � = 1 , . . . , L . 

To complete the proof, it now suffices to show that for every � = 1 , . . . , L, if γ
a 1 
� 

= αγ
a 1 
θk 

+ βγ
a 1 
θ

k ′ 
for some α, β > 0 and

γ
a 1 
θk 

, γ
a 1 
θ

k ′ 
such that γ

a 1 
θk 

(i ) < 0 and γ
a 1 
θ

k ′ 
(i ) > 0 , we would then obtain γ

a 1 
� 

( j) > 0 for every j > i . This is true because by SSRM,

we have 

β

α
≥ −

γ a 1 
θk 

(i ) 

γ a 1 
θk ′ 

(i ) 
> −

γ a 1 
θk 

( j) 

γ a 1 
θk ′ 

( j) 
for every j > i, 

and hence γ
a 1 ( j) = αγ

a 1 ( j) + βγ
a 1 ( j) > 0 . �
� θk θ
k ′ 
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B4. Insufficiency of single-crossing differences 

We show that our strictly increasing difference condition on u 1 cannot be replaced with the strict single-crossing difference

property in Milgrom and Shannon (1994) . 

Definition B 4. u 1 has strict single-crossing differences (SSCD) if for every θ � θ ′ and every (a 1 , a 2 ) �
(a ′ 

1 
, a ′ 

2 
) , u 1 (θ

′ , a 1 , a 2 ) − u 1 (θ
′ , a ′ 

1 
, a ′ 

2 
) ≥ 0 implies that u 1 (θ, a 1 , a 2 ) − u 1 (θ, a ′ 

1 
, a ′ 

2 
) > 0 . 

By definition, SSCD is implied by strictly increasing differences. The following example shows that SSCD cannot guaran-

tee the monotonicity of all equilibria in signaling games, even when u 1 satisfies the monotonicity part of our monotone-

supermodular condition. 

Example B1. Consider the following game in which the sender chooses row and the receiver chooses column: 

θ = θ1 h l θ = θ0 h l

H 1 , 2 −3 , 0 H 1 , 0 −2 , 0 

L 3,1 −1 , 0 L 2 , −1 −1 , 0 

The orders are θ1 � θ0 , H � L , and h � l . One can verify that first, u 1 is strictly increasing in a 2 and is strictly decreasing

in a 1 . Second, u 1 has SSCD but it does not have increasing differences. To see this, let α2 ≡ 2 
3 h + 

1 
3 l and α′ 

2 
≡ 1 

3 h + 

2 
3 l .

Although α2 FOSD α′ 
2 , we have 

u 1 (θ0 , h, α2 ) − u 1 (θ0 , l, α
′ 
2 ) = 0 > −2 

3 

= u 1 (θ1 , h, α2 ) − u 1 (θ1 , l, α
′ 
2 ) . 

When the receiver’s prior belief attaches probability 1/3 to state θ1 , the game admits the following non-monotone equilib-

rium. Type θ1 sender plays L , type θ0 sender plays H and L each with probability 1/2, the receiver plays α2 after observing

H and α′ 
2 after observing L . 

In the above example, the receiver’s best reply against the sender’s action is mixed. SSCD only requires that

u 1 (θ, a 1 , a 2 ) − u 1 (θ, a ′ 
1 
, a ′ 

2 
) has the strict single-crossing property for every pair of pure action profiles that can be ranked.

This does not imply that u 1 (θ, a 1 , α2 ) − u 1 (θ, a ′ 
1 
, α′ 

2 
) satisfies strict single-crossing property for every (a 1 , α2 ) , (a ′ 

1 
, α′ 

2 
) ∈

A 1 × �(A 2 ) with a 1 � a ′ 1 and α2 FOSDs α′ 
2 . 

28 This opens up the possibility of non-monotone equilibria. 
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