Menu costs

June 4, 2019

1 Partial equilibrium

- Want to minimize distance for optimal relative price z (in log terms)
- z follows random walk

$$
z^{\prime}=z+\epsilon
$$

- Loss function

$$
\left(p_{i}-p-z\right)^{2}
$$

- Fixed cost ϕ of changing p_{i}
- State variable

$$
x=p+z-p_{i}
$$

- Law of motion if price not adjusted

$$
x^{\prime}=p^{\prime}+z^{\prime}-p_{i}=x+\pi+\epsilon^{\prime}
$$

where π inflation

- Let $V(x)$ be the value if no adjustment occurs
- Bellman equation

$$
V(x)=-x^{2}+\beta E \max \left\{V\left(x+\pi+\epsilon^{\prime}\right), V^{*}-\phi\right\}
$$

where $V^{*}=\max _{x} V(x)$

- The function V is quasi-concave and bounded. We can apply contraction mapping theorem to that function space
- There exists two values \underline{x}, \bar{x} such that it is optimal to keep price unchanged if $x \in(\underline{x}, \bar{x})$ and is optimal to set $x=x^{*}$ otherwise

2 General equilibrium

- Suppose money (or nominal demand) follows geometric random walk (with drift)

$$
M_{t}=M_{t-1} e^{\epsilon_{t}}
$$

with binary shock

$$
\epsilon_{t}=\left\{\begin{array}{cc}
\Delta & \text { with prob. } q \\
0 & \text { with prob. } 1-q
\end{array}\right.
$$

- Output

$$
C_{t}=Y_{t}=\frac{M_{t}}{P_{t}}
$$

- Preferences

$$
\log C_{t}-N_{t}
$$

so wages

$$
\frac{1}{C_{t}} \frac{W_{t}}{P_{t}}=1
$$

- Production function

$$
Y_{i t}=A N_{i t}
$$

- Firms maximize profits

$$
\frac{P_{i, t}}{P_{t}} Y_{i, t}-\frac{1}{A} \frac{W_{t}}{P_{t}} Y_{i, t}
$$

facing demand function

$$
Y_{i, t}=\left(\frac{P_{i, t}}{P_{t}}\right)^{-\sigma} \frac{M_{t}}{P_{t}}
$$

- So profits are

$$
\frac{P_{i, t}}{P_{t}} Y_{i, t}-\frac{1}{A} \frac{W_{t}}{P_{t}} Y_{i, t}=\left(\frac{P_{i, t}}{P_{t}}\right)^{1-\sigma} C_{t}-\frac{1}{A}\left(\frac{P_{i, t}}{P_{t}}\right)^{-\sigma} C_{t}^{2}
$$

- Conjecture, real consumption is constant and unaffected by money shocks

$$
C=\frac{M_{t}}{P_{t}}
$$

So

$$
\left(\frac{P_{i, t}}{P_{t}}\right)^{1-\sigma} C-\frac{1}{A}\left(\frac{P_{i, t}}{P_{t}}\right)^{-\sigma} C^{2}
$$

- Then analyze problem with individual state variable

$$
X=\frac{P_{i t}}{P_{t}}
$$

define

$$
\Pi(X)=C X^{1-\sigma}-A^{-1} C^{2}(X)^{-\sigma}
$$

- Bellman equation

$$
V(X)=\Pi(X)+\beta E \max \left\{V\left(X^{\prime}\right), V^{*}-\phi\right\}
$$

- Optimal policy

$$
P_{i t}=X^{*} M_{t}
$$

if

$$
P_{i t}>\bar{X} M_{t}
$$

or

$$
P_{i t}<\underline{X} M_{t}
$$

and

$$
P_{i t}=P_{i t-1}
$$

otherwise

- Equilibrium uniform distribution of prices

$$
\begin{gathered}
P_{i t} / M_{t}=X^{*} \\
P_{i t} / M_{t}=X^{*} e^{-\Delta} \\
\cdots \\
P_{i t} / M_{t}=X^{*} e^{-(L-1) \Delta}
\end{gathered}
$$

each with probability $1 / L$

- To find L just look for smallest integer such that

$$
X^{*} e^{-L \Delta}<\underline{X}
$$

- Aggregating

$$
\frac{1}{C}=\frac{P_{t}}{M_{t}}=\left\{\int\left(\frac{P_{i t}}{M_{t}}\right)^{1-\sigma} d i\right\}^{\frac{1}{1-\sigma}}=\left\{\frac{1}{L} \sum_{l=0}^{L-1}\left(e^{-\Delta l}\right)^{1-\sigma}\right\}^{\frac{1}{1-\sigma}}
$$

from this equation, given L and Δ we get C

- Fixed point problem in C
- To complete equilibrium, check that distribution is uniform
- Yes, because any time there is a money shock $1 / L$ prices would go from

$$
P_{i t-1} / M_{t-1}=X^{*} e^{-(L-1) \Delta}
$$

to

$$
\frac{P_{i t-1}}{M_{t}}=\frac{P_{i t-1}}{M_{t-1}} \frac{M_{t-1}}{M_{t}}=X^{*} e^{-L \Delta}<\underline{X}
$$

so they jump to X^{*}, all other prices stay unchanged

