
411-3 Macro

Problem Set 2

1 Forward guidance and precautionary savings
Consider an Aiyagari economy without capital. In each period, households
consume ct or save at to maximize discounted utility

E
∞∑
t=0

βtu (ct) ,

where u (c) = c1−σ/ (1− σ) if σ 6= 1, and u (c) = log (c) is σ = 1. The household
per-period budget constraint is

ct + at ≤ (1 + rt−1) at−1 + yt.

The household faces the borrowing constraint

at+1 ≥ 0.

In class we assumed a simple linear relation yt = ωtYt between aggregate out-
put and individual labor incomes. In this problem we study what happens when
the relation is, in general, non-linear. So we assume that yt = fnt (Yt) where
nt is an idiosyncratic shock, drawn each period independently from {1, 2, ...N}
with probabilities {π1, ...., πN}. We assume that fn (Yt) > fm (Yt) if n > m. By
construction it must be that

N∑
n=1

πnfn (Yt) = Yt.

Assume there is a zero supply of assets so market clearing in the asset mar-
kets requiresAt = 0. In the terminology used in class, we are in a 0-HANK
environment. Assume the central bank chooses a sequence for the real interest
rate {rt}.

Market clearing in the goods market requires Ct = Yt, where Ct denotes
aggregate consumption.

i. Write the value function problem of an individual household and derive the
individual Euler equation.

ii. Use market clearing for consumption and assets to argue that in equilibrium
ct = fnt

(Yt) for every agent. Show that, if {rt} and {Yt} satisfy

u′ (fN (Yt)) = β (1 + rt)

N∑
n=1

πnu
′ (fn (Yt+1)) . (1)

then the Euler equation of each household is satisfied.
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iii. Consider a steady state with no aggregate shocks. Suppose that in steady
state Ct = Yt = 1. Show that the steady state natural interest rate satisfies

log (1 + r∗) = − log β − log

(∑
πn

(
fn (1)

fN (1)

)−σ)
.

iv. Define the steady state elasticities of income with respect to aggregate in-
come

εn ≡
f ′n (1)

fn (1)
.

Log-linearize the Euler equation (1) around the steady state and write it
in the form

Ŷt = αŶt+1 − ηr̂t+1, (2)

where Ŷt = d log Yt and r̂t = rt − r∗ (that is, log-linearize w.r.t. to Y and
just linearize w.r.t. to r). Express the coefficient α as a function of the
elasticities εn.

iv. Suppose at date 0 the central bank announces a path with r̂T > 0 for some
future date T and r̂t = 0 for all t 6= T . Assume that limt→∞ Ŷt = 0.
Derive the time-0 consumption response using (2).

v. A large empirical literature has found support to the idea that income risk
is countercyclical, i.e. that income risk rises in recessions. We can capture
this idea in our model by assuming that bottom incomes are more respon-
sive than top incomes to changes in aggregate activity. That is, we can
assume ε1 > ε2 > ... > εN . What happens to the effects of the anticipated
monetary policy shock r̂T under this assumption? Is the effect increasing
or decreasing in T? Provide an interpretation based on how an increase
in output tomorrow alters the incentives of agents to do precautionary
savings today.

2 Monetary and fiscal policy: numerical experi-
ments

Consider an Aiyagari economy without capital. In each period, households
consume ct or save at to maximize discounted utility

E
∞∑
t=0

βtu (ct) ,

where u (c) = c1−σ/ (1− σ) if σ 6= 1, and u (c) = log (c) is σ = 1. The household
per-period budget constraint is

ct + at ≤ (1 + rt−1) at−1 + yt
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where yt = ωtYt (we are back to our linear specification). The household also
faces the borrowing constraint

at+1 ≥ −φ,

for some φ > 0. Assume that ωt is drawn from a discrete, binary distribution
on
{
ω1, ω2

}
with probabilities {π1, π2}. Remember that you need

N∑
n=1

πnωn = 1.

Assume there is a zero supply of assets so market clearing in the asset markets
requiresAt = 0 (but since φ > 0 we used in class, we are not in a 0-HANK
model). Assume the central bank chooses a sequence for the real interest rate
{rt}.

As you did in PS1 you will work on a grid for z = (1 + rt−1) at−1 + yt.
However, now, due to the fact that the interest rate changes over time, you will
have to compute time-varying policies Ct (z).

i. (Steady state) First, let’s find a steady state. Let’s assume that Yt = 1 in
steady state. Use the codes you did for PS1 (with exogenous income)
to find C (z). Find the interest rate r that clears the asset market, so
At = 0. Is the goods market also in equilibrium? Why? (You can look
at the matlab codes I posted to compute invariant distribution and asset
demand, or, even better, you can write your own.)

ii. (Partial equilibrium) Write a code to compute the optimal policy Ct (z) for a
sequence of interest rates {rt} that converges to r∗, assuming the income
process is just given by yt = ωt (so Yt = 1) . In particular, let’s focus on
sequences of the form

rt = ρ (r0 − r∗) + r∗. (3)

Hint: assume that for t large enough the policy Ct (z) is equal to the
steady state policy and solve backward.

iii. (Disequilibrium) Write a code to compute what happens to the asset dis-
tribution if we start from a steady state and then there is an unexpected
monetary policy shock at t = 0 of the form (3) and we keep aggregate in-
come at Yt = 1. Hint: start from the steady state distribution and use the
policies in (ii) to update the distribution from t = 0 onwards. Check that
for t large enough you converge back to the steady state distribution. In
this exercise are you getting

´
cidi = Yt = 1? Are you getting

´
aidi = 0?

How are excess demand in the good and asset market related?

iv. (Equilibrium) Now we want to check that the goods market is in equilibrium.
Here you need to use some updating rule to compute {Yt} and extend the
code in (ii) to deal with both time-varying rt and time-varying Yt. Again,
the idea is to assume that when t is large enough the economy goes back to
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Yt = 1 and rt = r∗. Hint: to update Yt use the goods market equilibrium
condition, setting

Y
(j)
t = Y

(j−1)
t + ζ

(ˆ
c
(j−1)
i di− Y (j−1)

t

)
where j denotes the iteration of your algorithm and ζ ∈ (0, 1) controls the
speed of convergence.

v. Compare your results to those of a representative agent, new-Keynesian
model (with the same σ).
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