NOTES ON HYSTERESIS

GUIDO LORENZONI

Based on "Aggregate Demand and the Dynamics of Unemployment" by Edouard Schaal and Mathieu Taschereau-Dumouchel

1. Model

- Workers produce a continuum of intermediate inputs
- All agents are risk neutral and discount future at rate β
- Continuum of workers $j \in[0,1]$
- If worker j is employed, produces good j

$$
Y_{j}=A e^{z}
$$

where z stochastic (see below)

- Unemployed workers enjoy leisure b
- To be employed workers need to be matched with firms (below on matching)
- Differentiated goods produced by each worker enter production function of final good

$$
Y=\left(\int_{j \in E} Y_{j}^{\frac{\sigma-1}{\sigma}} d j\right)^{\frac{\sigma}{\sigma-1}}
$$

where E set of employed workers

- Inverse demand function for good j

$$
P_{j}=P\left(\frac{Y_{j}}{Y}\right)^{-\frac{1}{\sigma}}
$$

- So revenue of firm employing worker j is

$$
P_{j} Y_{j}=P\left(\frac{Y_{j}}{Y}\right)^{-\frac{1}{\sigma}} Y_{j}=P\left(A e^{z}\right)^{1-\frac{1}{\sigma}} Y^{\frac{1}{\sigma}}
$$

- With $1-u$ employed workers total output is

$$
Y=A e^{z}(1-u)^{\frac{\sigma}{\sigma-1}}
$$

- So real revenues per firm are

$$
\rho(u)=\frac{P_{j}}{P} Y_{j}=A e^{z}(1-u)^{\frac{1}{\sigma-1}}
$$

- Now to the search and matching part
- Unemployed workers meet vacancies at rate

$$
m(u, v)
$$

where u is mass of unemployed and v mass of vacancies

- Assume m CRS
- Probability of finding a vacancy for unemployed worker

$$
p\left(\frac{v}{u}\right) \equiv \frac{m(u, v)}{u}=m\left(1, \frac{v}{u}\right)
$$

- Probability of finding a worker for a vacancy

$$
q\left(\frac{v}{u}\right) \equiv \frac{m(u, v)}{v}=m\left(\frac{1}{v / u}, 1\right)
$$

- Value functions
- Value of a job

$$
J_{t}=\rho_{t}-w_{t}+\beta(1-\delta) E_{t}\left[J_{t+1}\right]
$$

- Value of a employment

$$
W_{t}=w_{t}+\beta E\left[(1-\delta) W_{t+1}+\delta U_{t+1}\right]
$$

- Value of unemployment

$$
U_{t}=b+\beta E\left[p_{t} W_{t+1}+\left(1-p_{t}\right) U_{t+1}\right]
$$

- Nash bargaining, wages set so that γ fraction of surplus goes to workers

$$
J_{t}=(1-\gamma) S_{t}
$$

where S_{t} is the total surplus of a match

$$
S_{t} \equiv J_{t}+W_{t}-U_{t}
$$

- Total surplus dynamics

$$
\begin{gathered}
S_{t}=\rho_{t}-b+\beta E_{t}\left[(1-\delta)\left[J_{t+1}+W_{t+1}\right]+\delta U_{t+1}-p_{t} W_{t+1}-\left(1-p_{t}\right) U_{t+1}\right] \\
S_{t}=\rho_{t}-b+\beta E_{t}\left[(1-\delta)\left[J_{t+1}+W_{t+1}-U_{t+1}\right]-p_{t}\left(W_{t+1}-U_{t+1}\right)\right] \\
S_{t}=\rho_{t}-b+\beta E\left[(1-\delta) S_{t+1}-p_{t} \gamma S_{t+1}\right]
\end{gathered}
$$

- Given dynamics for ρ and θ we can recover dynamics of S from last equation
- Job creation
- Create vacancy if

$$
\kappa \leq \beta q_{t} E_{t} J_{t+1}=\beta q_{t}(1-\gamma) E_{t} S_{t+1}
$$

- Heterogeneity in κ
- Mass M of potential entrants with κ distributed with CDF $F(\kappa)$
- So

$$
\theta_{t}=\frac{v_{t}}{u_{t}}=\frac{M F\left(\hat{\kappa}_{t}\right)}{u_{t}}
$$

where

$$
\hat{\kappa}_{t}=(1-\gamma) \beta q\left(\theta_{t}\right) E_{t} S_{t+1}
$$

- Given $E_{t} S_{t+1}$ this equation gives us $\hat{\kappa}_{t}$
- Unemployment dynamics

$$
u_{t+1}=\left(1-p\left(\theta_{t}\right)\right) u_{t}+\delta\left(1-u_{t}\right)
$$

2. Dynamics

- Let's remove the z shock
- Markov equilibrium with unique state variable u
- Functional equation in S

$$
\begin{gathered}
S(u)=\rho(u)-b+\beta\left[(1-\delta) S\left(u^{\prime}\right)-p(\theta) \gamma S\left(u^{\prime}\right)\right] \\
u^{\prime}=(1-p(\theta)) u+\delta(1-u) \\
\kappa=(1-\gamma) q(\theta) \beta S\left(u^{\prime}\right) \\
\theta u=M F(\kappa)
\end{gathered}
$$

- Notice that if $\rho(u)=\rho$ and no heterogeneity in job creation, then we can show that there is a unique equilibrium in which $S(u)$ is flat (Mortensen and Nagypal)
- In this case there is a form of block recursivity: the value of a filled job can be solved without knowing the state u as solution to

$$
S=\rho-b+\beta\left[(1-\delta) S-\frac{\gamma}{1-\gamma} \kappa\right]
$$

then constant θ can be found from

$$
\kappa=(1-\gamma) q(\theta) S
$$

and unemployment dynamics from

$$
u^{\prime}=(1-p(\theta)) u+\delta(1-u)
$$

- With general $\rho(u)$ this does not hold and we have

$$
\theta=\Theta(u)
$$

- Solving the functional equation
- Conjecture $S($.$) ; for given u$ find θ that solves

$$
\theta u=M F((1-\gamma) q(\theta) \beta S((1-p(\theta)) u+\delta(1-u)))
$$

(if there are multiple solutions... pick one)

- Let distribution κ have bounds $\underline{\kappa}, \bar{\kappa}$
- Then, if at $\theta=M / u$

$$
(1-\gamma) q(\theta) \beta S((1-p(\theta)) u+\delta(1-u))>\bar{\kappa}
$$

then

$$
\theta=M / u
$$

if

$$
(1-\gamma) \beta S(u+\delta(1-u))<\underline{\kappa}
$$

then

$$
\theta=0
$$

- Use Cobb-Douglas matching function so

$$
\begin{gathered}
p(\theta)=\min \left\{\eta \theta^{\alpha}, \theta, 1\right\} \\
(1-p(\theta)) u+\delta(1-u)<1 \\
q(\theta)=p(\theta) / \theta
\end{gathered}
$$

- Update

$$
S(u)=\rho(u)-b+\beta\left[(1-\delta) S\left(u^{\prime}\right)-p(\theta) \gamma S\left(u^{\prime}\right)\right]
$$

- In matlab folder a code that follows the algorithm above
- Easy to add z shocks

3. A continuous time version

- The continuous time version of the model gives us two ODEs for u, S

$$
\begin{gathered}
\dot{u}=\delta(1-u)-p(\theta) u \\
r S=\rho(u)-b-(\delta+\gamma p(\theta)) S+\dot{S}
\end{gathered}
$$

- Where

$$
\begin{gathered}
p(\theta)=\eta \theta^{\alpha} \\
\rho(u)=A(1-u)^{\frac{1}{\sigma-1}}
\end{gathered}
$$

- Consider the case with a fixed κ
- Then free entry condition is

$$
\kappa=(1-\gamma) q(\theta) S
$$

where

$$
q(\theta)=\eta \theta^{\alpha-1}
$$

gives a relation between S and θ

- Let's derive the latter relation explicitly and substitute in $p(\theta)$ to obtain the finding rate as a function of the surplus S

$$
p=f(S) \equiv \xi S^{\frac{\alpha}{1-\alpha}}
$$

where

$$
\xi=\eta^{\frac{1}{1-\alpha}}\left(\frac{1-\gamma}{\kappa}\right)^{\frac{\alpha}{1-\alpha}}
$$

- Then the ODEs become

$$
\begin{gathered}
\dot{u}=\delta(1-u)-f(S) u \\
\dot{S}=(r+\delta+\gamma f(S)) S-\rho(u)+b
\end{gathered}
$$

- Steady state conditions

$$
\begin{aligned}
& \delta(1-u)=f(S) u \\
& S=\frac{\rho(u)-b}{r+\delta+\gamma f(S)}
\end{aligned}
$$

3.1. Numerical analysis.

- Choose all parameters except A, b
- Calibrate to 2 steady states u_{L}, u_{H} as follows
- Choose u_{L}, u_{H}
- Get values of S_{L}, S_{H} from

$$
S=\left(\frac{\delta}{\xi} \frac{1-u}{u}\right)^{\frac{1-\alpha}{\alpha}}
$$

- Choose A and b so following the equation holds for both

$$
(r+\delta+\gamma f(S)) S=A(1-u)^{\frac{1}{\sigma-1}}-b
$$

- That is, set

$$
\begin{gathered}
A=\frac{\left(r+\delta+\gamma f\left(S_{H}\right)\right) S_{H}-\left(r+\delta+\gamma f\left(S_{L}\right)\right) S_{L}}{\left(1-u_{H}\right)^{\frac{1}{\sigma-1}}-\left(1-u_{L}\right)^{\frac{1}{\sigma-1}}} \\
b=A\left(1-u_{L}\right)^{\frac{1}{\sigma-1}}-\left(r+\delta+\gamma f\left(S_{L}\right)\right) S_{L}
\end{gathered}
$$

- Then analyze dynamic properties of the ODEs, solving backward starting near SS
- The following is the phase diagram for an example
- In this example there are multiple equilibria, because for u in some interval two equilibrium paths are possible

Figure 1. Two steady states and equilibrium dynamics

- In fact, the dynamics near the high u equilibrium are a sink-spiral, that is, the linearized system has two complex conjugate eigenvalues with a positive real part (see below a quick review of ODEs)
- This means that the model actually features indeterminacy as for u in some range there is a continuum of S where you can start the equilibrium dynamics
- The following exercise asks you to look for dynamics more like the ones emphasized in the paper: no multiple equilibria, but multiple steady states, so the initial condition for u matters for long run dynamics
- Maybe it can be done, maybe you need to add heterogeneity in κ as in the full blown model in the paper

Exercise 1. Can you find parameters such that the economy has two ss: one of them a saddle and the other one a source and not a spiral?

4. Quick Review of dynamic systems

- If

$$
\dot{x}=h(x)
$$

and x is vector, let it have ss at 0 (normalization)

- Linearize near 0

$$
\dot{x}=D h \cdot x
$$

- Local saddle if $D h$ has two real eigenvalues of opposite sign
- Let

$$
D h=\left[\begin{array}{ll}
h_{11} & h_{12} \\
h_{21} & h_{22}
\end{array}\right]
$$

and notice that characteristic polynomial is

$$
\left(h_{11}-\lambda\right)\left(h_{22}-\lambda\right)-h_{12} h_{21}=\lambda^{2}-\left(h_{11}+h_{22}\right) \lambda+h_{11} h_{22}-h_{21} h_{12}
$$

- This quadratic has two real roots of opposite sign iff

$$
h_{11} h_{22}-h_{21} h_{12}<0
$$

- This restriction can be expressed as a restriction on the relative slope of the loci $\dot{x}_{1}=0$ and $\dot{x}_{2}=0$
- The direction of the inequality depends on the signs of h_{12} and h_{22}
- In our case $h_{22}>0$ and $h_{12}<0$ so we get

$$
\frac{h_{11}}{h_{12}}>\frac{h_{21}}{h_{22}}
$$

or

$$
-\frac{h_{11}}{h_{12}}<-\frac{h_{21}}{h_{22}}
$$

so the locus $\dot{x}_{1}=0$ must have smaller derivative than the locus $\dot{x}_{2}=0$

- If a steady state is not a saddle it can be:
- a source (all eigenvalues have positive real part, if $h_{11}+h_{22}>0$)
- or a sink (all eigenvalues have negative real part, if $h_{11}+h_{22}<0$)
- In both cases it can be a spiral if eigenvalues have imaginary parts, that is, if

$$
\left(h_{11}+h_{22}\right)^{2}-4\left(h_{11} h_{22}-h_{21} h_{12}\right)<0
$$

- A saddle cannot be a spiral

5. Back to the (CONTINUOUS Time) model

- Notice that if multiple steady states are possible, then the loci have to cross multiple times and they cannot cross always from the same side
- Result: if there are multiple ss, if one is a saddle, the one immediately next to it cannot be a saddle
- Result: if a ss is a spiral, then multiple equilibria exist (sufficient condition, not necessary)
- In our example above, the high u steady state was a sink/spiral
- Compute Dh for the model

$$
\begin{gathered}
h_{1}(u, S)=\delta(1-u)-f(S) u \\
h_{2}(u, S)=(r+\delta+\gamma f(S)) S-\rho(u)+b \\
h_{11}=-\delta-f(S) \\
h_{12}=-f^{\prime}(S) u \\
h_{21}=-\rho^{\prime}(u) \\
h_{22}=r+\delta+\gamma f(S)+\gamma f^{\prime}(S) S
\end{gathered}
$$

- Determinant

$$
h_{11} h_{22}-h_{12} h_{21}=-(\delta+f(S))\left(r+\delta+\gamma f(S)+\gamma f^{\prime}(S) S\right)-f^{\prime}(S) u \rho^{\prime}(u)
$$

- Notice that if

$$
\rho^{\prime}=0
$$

(as in baseline DMP) then determinant is always <0 and we can only have a saddle (so ss must be unique)

- But if $\rho^{\prime}<0$ and large enough in absolute value, we can have other configurations

