NOTES ON PANICS

GUIDO LORENZONI

1. A runnable entity

- A model inspired by He and Xiong
- Captures a simple entity with a balance sheet as follows:
- a risky portfolio of uncertain value
- short term liabilities, rolled over
- An entrepreneur needs to borrow 1 at date 0 to finance project with potential payoff y_{0}
- Payoff of the project evolves according to the geometric random walk

$$
y_{t}=y_{t-1} \varepsilon_{t}
$$

- With $E\left[\varepsilon_{t}\right]=1$ and $\varepsilon_{t} \in[\underline{\varepsilon}, \bar{\varepsilon}]$
- Each period the project is completed with probability ϕ, in which case it pays y_{t}, or it continues
- A project only pays off when completed. The expected present value of the project is

$$
v_{t}=\beta E_{t}\left((1-\phi) v_{t+1}+\phi y_{t+1}\right)
$$

which yields

$$
v_{t}=\frac{\phi}{1 / \beta-1-\phi} y_{t} .
$$

We assume

$$
v_{0}>1,
$$

so the project is profitable.

- Entrepreneur has no initial wealth
- E. finances the project selling debt contracts of random maturity (see below) to a large population of lenders
- Debt contracts have the following features
- Each period $t \geq 1$, if the project is completed a lender gets

$$
\min \left\{1, \frac{y_{t}}{d_{t-1}}\right\}
$$

where d_{t-1} is the number of debt contracts outstanding from last period

[^0]- If the the project is not completed, a fraction δ of the d_{t-1} contracts outstanding is drawn randomly and they are paid 1 each, at which point those debt contracts are fulfilled
- If a contract is not drawn at date t, it remains outstanding
- The borrower finances the payment δd_{t-1} by issuing new debt contracts, so the budget constraint is

$$
\begin{equation*}
p_{t}\left[d_{t}-(1-\delta) d_{t-1}\right] \geq \delta d_{t-1} \tag{1}
\end{equation*}
$$

- Timing in case of rollover is as follows:
- the borrower announces it will issue d_{t} debt contracts
- the lenders observe d_{t} and the price p_{t} is determined (maybe on an auction)
- if $p_{t}\left[d_{t}-(1-\delta) d_{t-1}\right] \geq \delta d_{t-1}$ the borrower continues
- if $p_{t}\left[d_{t}-(1-\delta) d_{t-1}\right]<\delta d_{t-1}$ no new debt is issued, the borrower goes into default, the project is liquidated, and the existing debt holders receive

$$
\min \left\{1, \frac{\lambda y_{t}}{d_{t-1}}\right\}
$$

- The parameter $\lambda<1$ captures the costs of early liquidation
- Assumption: borrower always wants to continue and always wants to have minimum debt, therefore he will always issue the minimum d_{t} such that (1) is satisfied, if such a d_{t} exists
- We could microfound last assumption by assuming borrower is a risk neutral agent who receives the equity value after realization of y with no default
- Rational expectations require the price to satisfy
$p_{t}=\beta E_{t}\left[(1-\phi) \rho_{t+1}\left\{\delta+(1-\delta) p_{t+1}\right\}+(1-\phi)\left(1-\rho_{t+1}\right) \min \left\{1, \frac{\lambda y_{t+1}}{d_{t}}\right\}+\phi \min \left\{1, \frac{y_{t+1}}{d_{t}}\right\}\right]$
where ρ_{t+1} is an indicator equal to 1 in case of successful rollover and 0 otherwise
- Define the debt-to-capital ratio at the end of the period

$$
x_{t}=\frac{d_{t}}{y_{t}},
$$

- Markov equilibrium:
- market price of debt is given by the decreasing continuous function \mathcal{P}

$$
p_{t}=\mathcal{P}\left(\frac{d_{t}}{y_{t}}\right)
$$

- default occurs iff $y_{t}<\xi d_{t-1}$ for some scalar ξ
- rewrite the budget constraint (1) as

$$
p_{t}\left(\frac{d_{t}}{y_{t}}-(1-\delta) \frac{d_{t-1}}{y_{t}}\right) \geq \delta \frac{d_{t-1}}{y_{t}}
$$

or

$$
\begin{gathered}
\mathcal{P}\left(\frac{d_{t}}{y_{t}}\right)\left(\frac{d_{t}}{y_{t}}-(1-\delta) \frac{d_{t-1}}{y_{t-1}} \frac{y_{t-1}}{y_{t}}\right) \geq \delta \frac{d_{t-1}}{y_{t-1}} \frac{y_{t-1}}{y_{t}} \\
\mathcal{P}\left(x_{t}\right)\left(x_{t}-(1-\delta) \frac{x_{t-1}}{\epsilon_{t}}\right) \geq \delta \frac{x_{t-1}}{\epsilon_{t}}
\end{gathered}
$$

- Each period the borrower takes the function \mathcal{P} as given and chooses x_{t} that satisfies last equation as an equality
- The following result is useful:

Claim 1. Given a non-negative, decreasing continuous function $\mathcal{P}() \geq$.0 , there is a ξ (which could be ∞) such that if $x \leq \xi \epsilon$ there is a solution $x^{\prime} \geq(1-\delta) x / \epsilon$ to the equation

$$
\mathcal{P}\left(x^{\prime}\right) x^{\prime}=\left(\delta+(1-\delta) \mathcal{P}\left(x^{\prime}\right)\right) \frac{x}{\epsilon}
$$

and if $x>\xi \epsilon$ there is no solution

- Graphical argument focusing on first looking at the "debt Laffer curve"

$$
\mathcal{P}\left(x^{\prime}\right)\left(x^{\prime}-(1-\delta) \frac{x}{\epsilon}\right)
$$

and then translating it in terms of the solutions to

$$
\frac{\mathcal{P}\left(x^{\prime}\right) x^{\prime}}{\delta+(1-\delta) \mathcal{P}\left(x^{\prime}\right)}=\frac{x}{\epsilon}
$$

where function on LHS is independent of x / ϵ

- Whenever $x \leq \xi \epsilon$ denote the smallest solution as $x^{\prime}=f\left(\frac{x}{\epsilon}\right)$
- Notice that f is defined only on domain $x / \epsilon \in[0, \xi]$
- Notice that the inverse of f can be derived in closed form

$$
f^{-1}\left(x^{\prime}\right)=\frac{\mathcal{P}\left(x^{\prime}\right) x^{\prime}}{\delta+(1-\delta) \mathcal{P}\left(x^{\prime}\right)}
$$

in some range $x^{\prime} \in\left[(1-\delta) x / \epsilon, f^{-1}(\xi)\right]$

- So if $\epsilon \geq \xi x$ the borrower offers $x^{\prime}=f\left(\frac{x}{\epsilon}\right)$ new debt contracts and successfully rolls over
- The rational expectations condition (2) is

$$
\begin{align*}
\mathcal{P}(x)=\beta & E\left[\phi \min \left\{1, \frac{\varepsilon}{x}\right\}+\right. \tag{3}\\
& \left.+(1-\phi)\left(\iota\left(\frac{x}{\varepsilon} \leq \xi\right)\left(\delta+(1-\delta) \mathcal{P}\left(f\left(\frac{x}{\varepsilon}\right)\right)\right)+\iota\left(\frac{x}{\varepsilon}>\xi\right) \min \left\{1, \lambda \frac{\varepsilon}{x}\right\}\right)\right]
\end{align*}
$$

Definition 2. A Markov equilibrium is given by a scalar $\xi>0$, a function f and a function \mathcal{P}, such that ξ and f are constructed as in Claim 1 and \mathcal{P} satisfies (3).

- There can be an interval $[0, \bar{x}]$ where x is small enough and we are sure no liquidation or default will occur next period, then the price is given by

$$
\mathcal{P}(x)=\beta E[(1-\phi)(\delta+(1-\delta) \mathcal{P}(f(x / \varepsilon)))+\phi \min \{1, \varepsilon / x\}]
$$

However, eventually if $\varepsilon<1$ is realized for many periods, we escape to the region where default possible. Therefore $\mathcal{P}(x)<1$ for all $x>0$

- At date 0 , we need to check that

$$
\mathcal{P}\left(x_{0}\right) x_{0} \geq 1
$$

for some x_{0}, so the project can be financed

2. Algorithm

- We compute a finite horizon model where the project matures with probability 1 at date T
- At date T lenders get

$$
\min \left\{1, \frac{\varepsilon_{T}}{x_{T}}\right\}
$$

- Calculate

$$
\mathcal{P}_{T-1}\left(x_{T}\right)=\beta E\left[\min \left\{1, \frac{\varepsilon_{T}}{x_{T}}\right\}\right]
$$

- Find ξ_{T-1}

$$
\xi_{T-1}=\max _{x} \frac{\mathcal{P}_{T-1}(x) x}{\delta+(1-\delta) \mathcal{P}_{T-1}(x)}=\frac{\beta E[\epsilon]}{\delta}
$$

and f_{T-1} from inverting

$$
\frac{\mathcal{P}_{T-1}(x) x}{\delta+(1-\delta) \mathcal{P}_{T-1}(x)}
$$

(which is monotone everywere in this first round)

- Iterate on P

$$
\begin{aligned}
& \mathcal{P}_{T-2}(x)=\beta E\left[\phi \min \left\{1, \frac{\varepsilon}{x}\right\}+\right. \\
& \left.\quad+(1-\phi)\left(\iota\left(\frac{x}{\varepsilon} \leq \xi_{T-1}\right)\left(\delta+(1-\delta) \mathcal{P}\left(f_{T-1}\left(\frac{x}{\varepsilon}\right)\right)\right)+\iota\left(\frac{x}{\varepsilon}>\xi_{T-1}\right) \min \left\{1, \lambda \frac{\varepsilon}{x}\right\}\right)\right]
\end{aligned}
$$

[^0]: Date: Winter 2019.

