NOTES ON FINANCIAL ACCELERATOR

GUIDO LORENZONI

1. A Baseline financial accellerator model

- Stochastic model with non state contingent debt, collateral constraints and aggregate investment
- Full global solution in the spirit of Brunnermeier-Sannikov
- A rich problem with a two dimensional state space
- Entrepreneurs risk neutral, with discount factor β
- Lenders risk neutral, with discount factor q
- Entrepreneurs only agents that can hold capital
- Adjustment cost function
- When entrepreneurs selling capital goods, these are turned back into consumption goods (at some cost)
- Entrepreneur's budget constraint

$$
c_{t}+G\left(k_{t+1}, k_{t}\right)=A_{t} F\left(k_{t}, l_{t}\right)-w_{t} l_{t}-b_{t}+q b_{t+1}
$$

- G is a CRS investment cost function, which includes adjustment costs

$$
G\left(k^{\prime}, k\right) \equiv k^{\prime}-(1-\delta) k+\zeta\left(k^{\prime}-(1-\delta) k\right)^{2} / k
$$

- Collateral constraint

$$
b_{t+1} \leq \theta p_{t+1} k_{t+1}
$$

for all realizations of p_{t+1} that have positive probability at t

- More below on the price p_{t} at which capital can be sold
- A_{t}, w_{t}, p_{t} driven by Markov process s_{t}
- G and F are constant returns to scale
- Then the value function must satisfy

$$
V\left(k_{t}, b_{t}, s_{t}\right)=v\left(b_{t} / k_{t}, s_{t}\right) k_{t}
$$

for some function v

- Bellman equation

$$
v\left(\tilde{b}_{t}, s_{t}\right) k_{t}=\max _{c_{t}, l_{t}, \tilde{b}_{t+1}, k_{t+1}} c_{t}+\beta E_{t}\left[v\left(\tilde{b}_{t+1}, s_{t+1}\right)\right] k_{t+1}
$$

subject to

$$
c_{t}+G\left(k_{t+1}, k_{t}\right)=A_{t} F\left(k_{t}, l_{t}\right)-w_{t} l_{t}-\tilde{b}_{t} k_{t}+q \tilde{b}_{t+1} k_{t+1}
$$

and

$$
\tilde{b}_{t+1} \leq \theta \underline{p}_{t+1 \mid t}
$$

- Optimality for k_{t+1} yields

$$
\beta E_{t}\left[v\left(\tilde{b}_{t+1}, s_{t+1}\right)\right]+q \lambda_{t} \tilde{b}_{t+1}=\lambda_{t} G_{1}\left(k_{t+1}, k_{t}\right)
$$

- If it's optimal to consume $\lambda_{t}=1$, in this case

$$
G_{1}\left(k_{t+1}, k_{t}\right)=\beta E_{t}\left[v\left(\tilde{b}_{t+1}, s_{t+1}\right)\right]+q \tilde{b}_{t+1}
$$

- The LHS is marginal Q the RHS is average Q (Abel 1982 and Hayashi 1982)
- If the non-negativity of consumption is never binding this model yields standard Q theory predictions: asset price over capital stock is a sufficient statistic for the investment rate k_{t+1} / k_{t}
- In general we can have $\lambda_{t}>1$ which implies marginal Q smaller than average Q : firms have an incentive to issue more claims to finance investment, but entrepreneurs cannot buy these claims, since they are at $c_{t}=0$
- If $\lambda_{t}>1$ it means that either the collateral constraint is binding today or it will be binding in the future
- Optimality condition with respect to \tilde{b}_{t+1} is

$$
\lambda_{t} q k_{t+1}+\beta E_{t}\left[\frac{\partial v\left(\tilde{b}_{t+1}, s_{t+1}\right)}{\partial \tilde{b}}\right] k_{t+1}-\mu_{t}=0
$$

and using envelope condition

$$
q \lambda_{t}=\beta E_{t}\left[\lambda_{t+1}\right]+\mu_{t} / k_{t+1}
$$

- Envelope condition for k_{t} is

$$
v\left(\tilde{b}_{t}, s_{t}\right)=\lambda_{t}\left[A_{t} F_{k}\left(k_{t}, l_{t}\right)-G_{2}\left(k_{t+1}, k_{t}\right)-\tilde{b}_{t}\right]
$$

- Combining with optimality for k_{t+1}

$$
\begin{equation*}
\lambda_{t}=\frac{\beta E_{t}\left[v\left(\tilde{b}_{t+1}, s_{t+1}\right)\right]}{G_{1}\left(k_{t+1}, k_{t}\right)-q \tilde{b}_{t+1}}=\frac{\beta E_{t}\left[\lambda_{t+1}\left[A_{t+1} F_{k, t+1}-G_{2, t+1}-\tilde{b}_{t+1}\right]\right]}{G_{1, t}-q \tilde{b}_{t+1}} \tag{1}
\end{equation*}
$$

- Suppose now entrepreneurs can trade used capital from other entrepreneurs, before employing the adjustment cost technology
- Then to reach capital k_{t+1} they will choose to minimize total cost of achieving it

$$
\min _{\hat{k}_{t}} G\left(k_{t+1}, \hat{k}_{t}\right)+p_{t}\left(\hat{k}_{t}-k_{t}\right)
$$

- Representative entrepreneur, so no trade and $\hat{k}_{t}=k_{t}$ in equilibrium
- First order condition

$$
p_{t}=-G_{2}\left(k_{t+1}, k_{t}\right)
$$

gives us the price of capital that appears in the collateral constraint

- Then the optimality condition can be rewritten as

$$
E_{t}\left[\beta \frac{\lambda_{t+1}}{\lambda_{t}} \frac{A_{t+1} F_{k, t+1}+p_{t+1}-\tilde{b}_{t+1}}{G_{1, t}-q \tilde{b}_{t+1}}\right]=1
$$

- This is an asset pricing equation where

$$
\beta \frac{\lambda_{t+1}}{\lambda_{t}}
$$

is the stochastic discount factor of the entrepreneurs and

$$
\frac{A_{t+1} F_{k, t+1}+p_{t+1}-\tilde{b}_{t+1}}{G_{1, t}-q \tilde{b}_{t+1}}
$$

is the levered return on entrepreneurial capital

- We can also rewrite optimality for borrowing ratio as an asset pricing equation

$$
1=E_{t}\left[\beta \frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{q}\right]+\frac{\mu_{t}}{q \lambda_{t}} \frac{1}{k_{t+1}}
$$

which implies

$$
E_{t}\left[\beta \frac{\lambda_{t+1}}{\lambda_{t}} \frac{1}{q}\right] \leq 1
$$

here the expected return on bonds, discounted with the discount factor $\beta \lambda_{t+1} / \lambda_{t}$ can be <1 if the collateral constraint is binding

- Rewrite (1) as

$$
E_{t}\left[\beta \lambda_{t+1}\left[A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}-\tilde{b}_{t+1}\right]\right]=\lambda_{t}\left(G_{1, t}-q \tilde{b}_{t+1}\right)
$$

and then as

$$
\begin{aligned}
E_{t}\left[\beta \lambda_{t+1}\left[A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}\right]\right] & =\lambda_{t} G_{1, t}-\left(\lambda_{t} q-E_{t}\left[\beta \lambda_{t+1}\right]\right) \tilde{b}_{t+1} \\
& =\lambda_{t} G_{1, t}-\mu_{t} \tilde{b}_{t+1}
\end{aligned}
$$

SO

$$
E_{t}\left[\beta \frac{\lambda_{t+1}}{\lambda_{t}} \frac{A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}}{G_{1, t}}\right] \leq 1
$$

- Agents are willing to accept a lower return on capital, since holding capital helps to relax the collateral constraint
- Using the same condition and $q \lambda_{t} \geq E_{t}\left[\beta \lambda_{t+1}\right]$ we also get that if

$$
\lambda_{t+1} \text { and } A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}-\tilde{b}_{t+1}
$$

are negatively correlated we have
$q \lambda_{t} E_{t}\left[A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}-\tilde{b}_{t+1}\right] \geq E_{t}\left[\beta \lambda_{t+1}\left[A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}-\tilde{b}_{t+1}\right]\right]=\lambda_{t}\left(G_{1, t}-q \tilde{b}_{t+1}\right)$
which imply

$$
E_{t}\left[\frac{A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}}{G_{1, t}}\right] \geq \frac{1}{q}
$$

so the expected rate of return on capital is greater than the risk free interest rate

- New possibility: the collateral constraint can be slack even though the rate of return on entrepreneurial capital is greater than $1 / q$
- Rewrite condition as

$$
E_{t}\left[\beta \lambda_{t+1}\left[A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}-\tilde{b}_{t+1}\right]\right]=\lambda_{t}\left(G_{1, t}-q \tilde{b}_{t+1}\right)
$$

- If constraint is slack $\mu_{t}=0$ and this becomes

$$
E_{t}\left[\beta \lambda_{t+1}\left[A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}\right]\right]=\lambda_{t} G_{1, t}
$$

or

$$
E_{t}\left[\beta \frac{\lambda_{t+1}}{\lambda_{t}} \frac{A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}}{G_{1, t}}\right]=1
$$

- If there are no shocks we have

$$
\beta \frac{\lambda_{t+1}}{\lambda_{t}}=q
$$

and

$$
\frac{A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}}{G_{1, t}}=\frac{1}{q}
$$

so collateral constraint can be slack only if investment is efficient at date t

- With risk, rate of return on entrepreneurial capital is correlated with λ_{t+1}
- Temporary productivity shocks generate negative correlation: high return on entrepreneurial wealth, high net worth, economy closer to efficient investment, lower return on entrepreneurial capital
- Then

$$
1=E_{t}\left[\beta \frac{\lambda_{t+1}}{\lambda_{t}} \frac{A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}}{G_{1, t}}\right]<E_{t}\left[\beta \frac{\lambda_{t+1}}{\lambda_{t}}\right] E_{t}\left[\frac{A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}}{G_{1, t}}\right]
$$

SO

$$
E_{t}\left[\frac{A_{t+1} F_{k}\left(k_{t+1}, l_{t+1}\right)+p_{t+1}}{G_{1, t}}\right]>\frac{1}{q}
$$

- This is a form of precautionary behavior: entrepreneurs are avoiding excess leverage because they anticipate states of the world in which the rate of return on their wealth will be higher than today (high $\lambda_{t+1} / \lambda_{t}$)
- Notice that entrepreneurs are risk neutral so "precautionary behavior" is really driven by general equilibrium forces

2. Linear technology

- Suppose $F(k, l)=k$ and $A_{t}=a_{t}$ that is an i.i.d. shock
- Model can be analyzed with single state variable

$$
s_{t} \equiv a_{t}-\tilde{b}_{t}
$$

- Recursive equilibrium is given by

$$
\lambda(s), x(s), b(s)
$$

where

$$
x_{t}=\frac{k_{t+1}}{k_{t}}
$$

the three functions must satisfy three sets of conditions for all $s>\underline{s}$, where \underline{s} is a lower bound to be determined

- Recursive condition for λ

$$
\lambda(s)=\beta \frac{E\left[\lambda\left(a^{\prime}-b(s)\right)\left[a^{\prime}-b(s)-G_{2}\left(x\left(a^{\prime}-b(s)\right), 1\right)\right]\right]}{G_{1}(x(s), 1)-q b(s)}
$$

- Condition for $x(s)$ that

$$
s+q b(s) x(s) \geq G(x(s), 1)
$$

with strict equality if $\lambda(s)>1$

- Condition for the borrowing ratio $b(s)$

$$
q \lambda(s) \geq \beta E\left[\lambda\left(a^{\prime}-b(s)\right)\right]
$$

and

$$
b(s) \leq-\theta \min _{a^{\prime}} G_{2}\left(x\left(a^{\prime}-b(s)\right), 1\right)
$$

with complementary slackness

- Equilibrium can be computed recursively
- As initial condition think of finite horizon problem, set $\lambda=1$ in the final period and G_{2} to some fixed value
- Code stoch_KM.m computes equilibrium using following algorithm
- Iteration, endogenous gridpoint method, find \hat{b} that satisfies

$$
b=-\theta \min _{a^{\prime}} G_{2}\left(x\left(a^{\prime}-b\right), 1\right),
$$

- Choose candidate pairs (b, λ) as follows
- Set $b=\hat{b}$ and let

$$
\hat{\lambda}=\max \left\{\frac{\beta}{q} E\left[\lambda\left(a^{\prime}-b\right)\right], 1\right\},
$$

then choose any λ in $[\hat{\lambda}, \infty)$

- Set $b<\hat{b}$ and if

$$
\frac{\beta}{q} E\left[\lambda\left(a^{\prime}-b\right)\right]<1
$$

discard, otherwise set

$$
\lambda=\frac{\beta}{q} E\left[\lambda\left(a^{\prime}-b\right)\right]
$$

- For each pair (b, λ) find x that solves

$$
\lambda\left[G_{1}(x, 1)-q b\right]=\beta E\left[\lambda\left(a^{\prime}-b\right)\left[a^{\prime}-b-G_{2}\left(x\left(a^{\prime}-b\right), 1\right)\right]\right],
$$

or

$$
\lambda\left[G_{1}(0,1)-q b\right] \geq \beta E\left[\lambda\left(a^{\prime}-b\right)\left[a^{\prime}-b-G_{2}\left(x\left(a^{\prime}-b\right), 1\right)\right]\right]
$$

if $\lambda=1$ this is the optimal solution for all s that satisfy

$$
s \geq G(x, 1)-q b x
$$

if $\lambda>1$ this is the optimal solution for

$$
s=G(x, 1)-q b x
$$

- The lower bound for s is

$$
\underline{s}=\min _{x \geq 0} G(x, 1)-q \hat{b} x
$$

(which arises when $\lambda \rightarrow \infty$)

- Functional form used for G is

$$
G\left(k^{\prime}, k\right)=k^{\prime}-k+\frac{\xi}{2} \frac{\left(k^{\prime}-k\right)^{2}}{k}
$$

or

$$
G(x, 1)=x-1+\frac{\xi}{2}(x-1)^{2}
$$

so derivatives are

$$
G_{1}=1+\xi(x-1)
$$

and

$$
G_{2}=-1-\xi(x-1)-\frac{\xi}{2}(x-1)^{2}
$$

- Then this equation

$$
\lambda\left[G_{1}(x, 1)-q b\right]=\beta E\left[\lambda\left(a^{\prime}-b\right)\left[a^{\prime}-b-G_{2}\left(x\left(a^{\prime}-b\right), 1\right)\right]\right],
$$

becomes

$$
x=1+\frac{1}{\xi}\left\{\frac{\beta E\left[\lambda\left(a^{\prime}-b\right)\left[a^{\prime}-b-G_{2}\left(x\left(a^{\prime}-b\right), 1\right)\right]\right]}{\lambda}+q b-1\right\}
$$

- Frictionless benchmark

$$
G_{1}(x, 1)=q E\left[a-G_{2}(x, 1)\right]
$$

investment constant with x solving

$$
1+\xi(x-1)=q\left[E a+1+\xi(x-1)+\frac{\xi}{2}(x-1)^{2}\right]
$$

- Assume that

$$
r<E a<r+\frac{\xi}{2} r^{2}
$$

where $r=1 / q-1$ to ensure that a solution to the frictionless problem exists and is bounded

Choose: solution with $x<1+r$ to satisfy transversality condition

