411-3 NOTES: CONSUMPTION 1

GUIDO LORENZONI

1. Consumption in the recession

FIGURE 1. Consumption

FIGURE 2. Durable goods

Date: Winter 2019.

Source: Board of Governors of the Federal Reserve System (US) myf.red/g/nuSC

FIGURE 3. Household debt

2. Permanent income hypothesis

- Basic idea: consumption smoothing
- Consumers' objective

$$E\sum_{t=0}^{\infty}\beta^{t}u\left(c_{t}\right)$$

• Budget constraint

$$a_{t+1} = (1+r) a_t + y_t - c_t$$

- Simple case
 - no uncertainty
 - $-\beta(1+r)=1$
- Optimality condition

$$u'(c_t) = \beta (1+r) u'(c_{t+1}) = u'(c_{t+1})$$

so c_t constant

• Intertemporal budget constraint

$$\sum_{j=0}^{\infty} (1+r)^{-j} (c_{t+j} - y_{t+j}) = (1+r) a_t$$

• So we obtain

$$c_t = \frac{r}{1+r} \sum_{j=0}^{\infty} (1+r)^{-j} y_{t+j} + ra_t$$

• Main insights:

- consumption depends on expected future income (here with perfect foresight), not just on current income
- so income process matters
- marginal propensity to consume out wealth is small (r)
- Can we add uncertainty and get something like this?

$$c_t = \frac{r}{1+r} E_t \sum_{j=0}^{\infty} (1+r)^{-j} y_{t+j} + ra_t$$

• Yes, if we assume quadratic utility, so

$$u'\left(c_{t}\right) = E_{t}u'\left(c_{t+1}\right)$$

becomes

$$c_t = E_t c_{t+1}$$

• Random walk property of consumption (rejected in data)

3. Income fluctuation problem

- Suppose i.i.d. income process y_t
- Utility function $u\left(.\right)$ strictly concave, with $\lim_{c\to 0}u'\left(c\right)=\infty$
- Borrowing constraint

$$a_t \ge -\phi$$

• Natural borrowing limit

$$\phi = \frac{y_{min}}{r}$$

• Define cash-on-hand

$$z_t = a_t + y_t$$

• Bellman equation

$$V(z) = \max_{a'} u(z - a') + \beta E[V((1+r)a' + y')]$$

• Euler equation

$$u'(c_t) \ge \beta (1+r) E_t [u'(c_{t+1})]$$

- What happens if $\beta(1+r)=1$?
- We have

$$u'\left(c_{t}\right) \geq E_{t}\left[u'\left(c_{t+1}\right)\right]$$

so $u'(c_t)$ is a supermartingale and has a limit distribution, but then c_t has a limit distribution and if $c_t < \infty$ we obtain a violation of budget constraints

• Result (Bewley): when $\beta(1+r)$ the optimal solution has $a_t \to \infty$ and $c_t \to \infty$

- Intuition: wealth provides self-insurance, as long as we are away from lower limit, with $\beta(1+r)=1$ no trade-off between self-insurance and impatience so agents accumulate unbounded wealth
- In general equilibrium supply of assets is "bounded", so to have bounded asset demand the interesting case is $\beta (1+r) < 1$
- We'll see this later in computations
- From now on we assume

$$\beta (1+r) < 1$$

- Properties of the value function
- V(z) is increasing, concave, differentiable (review)
- Properties of consumption and asset accumulation policies
- c(z) is increasing a'(z) is non-decreasing
- Proof: define $\Psi(a') \equiv \beta E[V((1+r)a'+y')]$, then Bellman is just a 2 goods problem with separable utility
- Borrowing constraint is binding iff $z \leq z^*$
- Proof: If

$$u'(z+\phi) > \Psi'(-\phi)$$

the inequality still holds for any z' < z

- An important property: with $\beta(1+r) < 1$ the asset distribution is bounded above
- This property holds if the utility function satisfies

(1)
$$\lim_{c \to \infty} -\frac{u''(c)}{u'(c)} = 0$$

that is if risk aversion not important at high levels of wealth, so trade-off now dominated by impatience and consumers stop accumulating wealth

- Proof (sketch)
- Define consumption tomorrow if highest realization of income is realized

$$\bar{c}(z) = c((1+r)a'(z) + y_{max})$$

- Let $z > z^*$ so Euler holds as equality
- Write Euler as

$$u'\left(c\left(z\right)\right) = \beta R \frac{E\left[u'\left(c\left(z'\right)\right)\right]}{u'\left(\bar{c}\left(z\right)\right)} u'\left(\bar{c}\left(z\right)\right)$$

• Suppose that

(2)
$$\lim_{z \to \infty} \frac{E\left[u'\left(c\left(z'\right)\right)\right]}{u'\left(\bar{c}\left(z\right)\right)} = 1$$

(we'll prove it later)

• Then there is a \bar{z} large enough such that if $z > \bar{z}$

$$u'\left(c\left(z\right)\right) < u'\left(\bar{c}\left(z\right)\right)$$

and from envelope condition

$$V'(z) < V'((1+r) a'(z) + y_{max})$$

 \bullet Concavity of V then implies

$$(1+r) a'(z) + y_{max} < z$$

so the map

$$(1+r) a'(z) + y_{max}$$

crosses the 45 degree line at some z, that's the upper bound for the distribution of z in the long run

• It remains to prove (2), here we need

$$\frac{u'\left(c-A\right)}{u'\left(c\right)} \to 1$$

for $c \to \infty$

$$1 \le \frac{u'\left(c - A\right)}{u'\left(c\right)} = 1 + \int_{c}^{c - A} \frac{u''\left(\tilde{c}\right)}{u'\left(c\right)} d\tilde{c} \le 1 + \int_{c - A}^{c} \frac{u''\left(\tilde{c}\right)}{u'\left(\tilde{c}\right)} d\tilde{c}$$

and under condition (1)

$$\int_{c-A}^{c} \frac{u''\left(\tilde{c}\right)}{u'\left(\tilde{c}\right)} d\tilde{c} \to 0$$