Notes on linear approximation for portfolio problems

October 25, 2017

- These notes discuss how to approximate the solution to a portfolio problem
- They solve problem 2 in problem set 1, but they also introduce the general approach in Judd and Gu
- Problem, find θ that solves

$$
E\left[u^{\prime}\left(\theta A+(1-\theta) A^{*}\right)\left(A-A^{*}\right)\right]=0
$$

for the two random variables A, A^{*} defined in the problem set

- Solve

$$
E\left[\frac{a^{\rho} \epsilon-\epsilon^{*}}{\theta a^{\rho} \epsilon+(1-\theta) \epsilon^{*}}\right]=0
$$

or

$$
E\left[\frac{\left(a^{\rho}-1\right)+a^{\rho}(\epsilon-1)-\left(\epsilon^{*}-1\right)}{\theta a^{\rho}+1-\theta+\theta a^{\rho}(\epsilon-1)+(1-\theta)\left(\epsilon^{*}-1\right)}\right]=0
$$

- Let σ^{2} be the variance of the shocks $\epsilon-1$
- Problem, when $\sigma^{2}=0$ problem is not well defined
- We solve a sequence of problems that converge as $\sigma \rightarrow 0$
- Let $a^{\rho}=1+\pi \sigma^{2}$ and $a^{\rho}(\epsilon-1)=\left(1+\pi \sigma^{2}\right) \sigma \eta$ and $\epsilon^{*}=\sigma \eta^{*}$
- Consider the problem as $\sigma \rightarrow 0$

$$
E\left[\frac{\pi \sigma^{2}+\left(1+\pi \sigma^{2}\right) \sigma \eta-\sigma \eta^{*}}{1+\theta \pi \sigma^{2}+\theta\left(1+\pi \sigma^{2}\right) \sigma \eta+(1-\theta) \sigma \eta^{*}}\right]=0
$$

- Define

$$
H(\theta, \sigma)=E\left[\frac{\pi \sigma+\left(1+\pi \sigma^{2}\right) \eta-\eta^{*}}{1+\theta \pi \sigma^{2}+\theta\left(1+\pi \sigma^{2}\right) \sigma \eta+(1-\theta) \sigma \eta^{*}}\right]
$$

- Problem

$$
H(\theta, 0)=0
$$

for all θ !

- Judd-Guu approach, us Bifurcation Theorem, which amounts to applying implicit function theorem to

$$
f(\theta, \sigma)= \begin{cases}\frac{H(\theta, \sigma)}{\sigma} & \text { if } \sigma \neq 0 \\ H_{\sigma}(\theta, 0) & \text { if } \sigma=0\end{cases}
$$

- A simple example of the problem
- Apply implicit function theorem to

$$
H(\theta, \sigma)=\sigma(\theta-\sigma)
$$

- If you divide by σ you find the arm that converges
- Now

$$
\begin{gathered}
\lim _{\sigma \rightarrow 0} \frac{H(\theta, \sigma)}{\sigma}=H_{\sigma}(\theta, 0) \\
H_{\theta}(\theta(\sigma), \sigma) \theta^{\prime}(\sigma)+H_{\sigma}(\theta(\sigma), \sigma)=0
\end{gathered}
$$

- At $\sigma=0$ we have

$$
H_{\theta}(\theta, 0)=0
$$

for all θ

- So if we want to have a well defined $\theta^{\prime}(\sigma)$ at $\sigma=0$ then we need

$$
H_{\sigma}\left(\theta_{0}, 0\right)=0
$$

- This condition gives us the non-stochastic steady state!
- Better, it gives us the non-stochastic steady state that is a limit of the stochastic steady state
- Compute

$$
\begin{gathered}
E\left[\frac{\pi \sigma+\left(1+\pi \sigma^{2}\right) \eta-\eta^{*}}{1+\theta \pi \sigma^{2}+\theta\left(1+\pi \sigma^{2}\right) \sigma \eta+(1-\theta) \sigma \eta^{*}}\right] \\
H_{\sigma}(\theta, \sigma)=E\left[\frac{\pi+2 \pi \sigma \eta}{1+\theta \pi \sigma^{2}+\theta\left(1+\pi \sigma^{2}\right) \sigma \eta+(1-\theta) \sigma \eta^{*}}-\frac{\pi \sigma+\left(1+\pi \sigma^{2}\right) \eta-\eta^{*}}{\left(1+\theta \pi \sigma^{2}+\theta\left(1+\pi \sigma^{2}\right) \sigma \eta+(1-\theta) \sigma \eta^{*}\right)^{2}}(\theta \tau\right. \\
E\left[\pi-\left(\eta-\eta^{*}\right)\left(\theta \eta+(1-\theta) \eta^{*}\right)\right]=0 \\
\pi-(\theta-(1-\theta))=0 \\
1+\pi-2 \theta=0 \\
\theta(0)=\frac{1}{2}+\frac{\pi}{2}=\frac{1}{2}+\frac{a^{\rho}-1}{2 \sigma^{2}}
\end{gathered}
$$

- This is a "zero order" approximation we can then get a better approximation by computing

$$
\theta^{\prime}(\sigma)
$$

- How can we do it?
- Differentiate

$$
H_{\theta}(\theta(\sigma), \sigma) \theta^{\prime}(\sigma)+H_{\sigma}(\theta(\sigma), \sigma)=0
$$

- Gives

$$
H_{\theta}(\theta(\sigma), \sigma) \theta^{\prime \prime}(\sigma)+H_{\theta \theta}(\theta(\sigma), \sigma) \theta^{\prime}(\sigma) \theta^{\prime}(\sigma)+2 H_{\sigma \theta}(\theta(\sigma), \sigma) \theta^{\prime}(\sigma)+H_{\sigma \sigma}(\theta(\sigma), \sigma)=0
$$

- Compute it $\sigma=0$ the first two terms are 0 so we have

$$
2 H_{\sigma \theta}(\theta(0), 0) \theta^{\prime}(0)+H_{\sigma \sigma}(\theta(0), 0)=0
$$

