## Notes on linear approximation for portfolio problems

## October 25, 2017

- These notes discuss how to approximate the solution to a portfolio problem
- They solve problem 2 in problem set 1, but they also introduce the general approach in Judd and Gu
- Problem, find  $\theta$  that solves

$$E[u'(\theta A + (1 - \theta) A^*)(A - A^*)] = 0$$

for the two random variables  $A, A^*$  defined in the problem set

• Solve

$$E\left[\frac{a^{\rho}\epsilon - \epsilon^*}{\theta a^{\rho}\epsilon + (1 - \theta)\epsilon^*}\right] = 0$$

or

$$E\left[\frac{\left(a^{\rho}-1\right)+a^{\rho}\left(\epsilon-1\right)-\left(\epsilon^{*}-1\right)}{\theta a^{\rho}+1-\theta+\theta a^{\rho}\left(\epsilon-1\right)+\left(1-\theta\right)\left(\epsilon^{*}-1\right)}\right]=0$$

- Let  $\sigma^2$  be the variance of the shocks  $\epsilon 1$
- Problem, when  $\sigma^2 = 0$  problem is not well defined
- We solve a sequence of problems that converge as  $\sigma \to 0$
- Let  $a^{\rho} = 1 + \pi \sigma^2$  and  $a^{\rho} (\epsilon 1) = (1 + \pi \sigma^2) \sigma \eta$  and  $\epsilon^* = \sigma \eta^*$
- Consider the problem as  $\sigma \to 0$

$$E\left[\frac{\pi\sigma^2 + (1 + \pi\sigma^2)\,\sigma\eta - \sigma\eta^*}{1 + \theta\pi\sigma^2 + \theta\,(1 + \pi\sigma^2)\,\sigma\eta + (1 - \theta)\,\sigma\eta^*}\right] = 0$$

• Define

$$H\left(\theta,\sigma\right) = E\left[\frac{\pi\sigma + \left(1 + \pi\sigma^{2}\right)\eta - \eta^{*}}{1 + \theta\pi\sigma^{2} + \theta\left(1 + \pi\sigma^{2}\right)\sigma\eta + \left(1 - \theta\right)\sigma\eta^{*}}\right]$$

• Problem

$$H\left(\theta,0\right) = 0$$

for all  $\theta$ !

• Judd-Guu approach, us Bifurcation Theorem, which amounts to applying implicit function theorem to

$$f(\theta, \sigma) = \begin{cases} \frac{H(\theta, \sigma)}{\sigma} & \text{if } \sigma \neq 0\\ H_{\sigma}(\theta, 0) & \text{if } \sigma = 0 \end{cases}$$

- A simple example of the problem
- Apply implicit function theorem to

$$H\left(\theta,\sigma\right) = \sigma\left(\theta - \sigma\right)$$

- If you divide by  $\sigma$  you find the arm that converges
- Now

$$\lim_{\sigma \to 0} \frac{H\left(\theta, \sigma\right)}{\sigma} = H_{\sigma}\left(\theta, 0\right)$$

$$H_{\theta}\left(\theta\left(\sigma\right), \sigma\right) \theta'\left(\sigma\right) + H_{\sigma}\left(\theta\left(\sigma\right), \sigma\right) = 0$$

• At  $\sigma = 0$  we have

$$H_{\theta}\left(\theta,0\right)=0$$

for all  $\theta$ 

• So if we want to have a well defined  $\theta'(\sigma)$  at  $\sigma = 0$  then we need

$$H_{\sigma}(\theta_0,0)=0$$

- This condition gives us the non-stochastic steady state!
- Better, it gives us the non-stochastic steady state that is a limit of the stochastic steady state
- Compute

$$E\left[\frac{\pi\sigma + \left(1 + \pi\sigma^{2}\right)\eta - \eta^{*}}{1 + \theta\pi\sigma^{2} + \theta\left(1 + \pi\sigma^{2}\right)\sigma\eta + \left(1 - \theta\right)\sigma\eta^{*}}\right]$$

$$H_{\sigma}\left(\theta, \sigma\right) = E\left[\frac{\pi + 2\pi\sigma\eta}{1 + \theta\pi\sigma^{2} + \theta\left(1 + \pi\sigma^{2}\right)\sigma\eta + \left(1 - \theta\right)\sigma\eta^{*}} - \frac{\pi\sigma + \left(1 + \pi\sigma^{2}\right)\eta - \eta^{*}}{\left(1 + \theta\pi\sigma^{2} + \theta\left(1 + \pi\sigma^{2}\right)\sigma\eta + \left(1 - \theta\right)\sigma\eta^{*}\right)^{2}}\left(\theta\sigma^{2}\right)\right]$$

$$E\left[\pi - \left(\eta - \eta^{*}\right)\left(\theta\eta + \left(1 - \theta\right)\eta^{*}\right)\right] = 0$$

$$\pi - \left(\theta - \left(1 - \theta\right)\right) = 0$$

$$1 + \pi - 2\theta = 0$$

$$\theta\left(0\right) = \frac{1}{2} + \frac{\pi}{2} = \frac{1}{2} + \frac{a^{\rho} - 1}{2\sigma^{2}}$$

• This is a "zero order" approximation we can then get a better approximation by computing

$$\theta'(\sigma)$$

- How can we do it?
- Differentiate

$$H_{\theta}(\theta(\sigma), \sigma) \theta'(\sigma) + H_{\sigma}(\theta(\sigma), \sigma) = 0$$

• Gives

$$H_{\theta}\left(\theta\left(\sigma\right),\sigma\right)\theta''\left(\sigma\right) + H_{\theta\theta}\left(\theta\left(\sigma\right),\sigma\right)\theta'\left(\sigma\right) + 2H_{\sigma\theta}\left(\theta\left(\sigma\right),\sigma\right)\theta'\left(\sigma\right) + H_{\sigma\sigma}\left(\theta\left(\sigma\right),\sigma\right) = 0$$

• Compute it  $\sigma = 0$  the first two terms are 0 so we have

$$2H_{\sigma\theta}\left(\theta\left(0\right),0\right)\theta'\left(0\right) + H_{\sigma\sigma}\left(\theta\left(0\right),0\right) = 0$$