PORTFOLIO CHOICE AND OPTIMAL MONETARY POLICY

GUIDO LORENZONI

- A simple model of portfolio choice based on "Monetary Policy, Capital Controls and International Portfolios," Fanelli 2017
- Two periods t-1 and t
- Tradable and non-tradable goods

$$c_t = \left(c_t^T\right)^{\omega} \left(c_t^N\right)^{1-\omega}$$

• Preferences

$$\log c_t - \frac{\psi_t}{1+\phi} n_t^{1+\phi}$$

- Shocks to labor supply ψ_t
- Endowment of tradables

$$y_t^T$$

• Production of non-tradables

$$y_t^N = n_t$$

• Budget constraint at t-1, country can only take long and short positions in domestic and foreign bonds that pay nominal returns R and R^* , respectively

$$B_t^* + B_t = 0$$

 \bullet Budget constraint at t

$$P_{t}^{T} c_{t}^{T} + P_{t}^{N} c_{t}^{N} = P_{t}^{T} y_{t}^{T} + W_{t} n_{t} + R^{*} \mathcal{E}_{t} B_{t}^{*} + R B_{t}$$

• Optimal portfolio in economy with no capital controls gives

$$E_{t-1} \left[\frac{1}{P_t^T} u'(c_t) \left(\frac{R}{\mathcal{E}_t} - R^* \right) \right] = 0$$

 \bullet Foreign investors are risk neutral so R must satisfy

$$E_{t-1} \left[\frac{R}{\mathcal{E}_t} - R^* \right] = 0$$

or

$$R = \frac{R^*}{E_{t-1} \left[\frac{1}{\mathcal{E}_t}\right]}$$

• Price of tradables pinned down by the world price (normalized to 1) so

$$P_{\iota}^{T} = \mathcal{E}_{\iota}$$

• Price of NT pinned down by optimality of firms

$$P_t^N = W_t$$

• Rigid wages W_t (can be modeled with labor service monopolists)

Date: January 2019.

• Relative price of non-tradables

$$p_t \equiv \frac{P_t^N}{P_t^T} = \frac{W_t}{\mathcal{E}_t}$$

• Demand for non-tradables conditional on tradable demand

$$\frac{\omega}{1 - \omega} \frac{c_t^N}{c_t^T} = \frac{P_t^T}{P_t^N}$$

which gives

$$c_t^N = \frac{1 - \omega}{\omega} \frac{c_t^T}{p_t}$$

• First best, with complete markets

$$c_t^T = E_{t-1} \left[y_t^T \right]$$

constant across states of the world

• Substituting budget constraint at t-1 we get

$$P_{t}^{T} c_{t}^{T} + P_{t}^{N} c_{t}^{N} = P_{t}^{T} y_{t}^{T} + W_{t} n_{t} + (R - R^{*} \mathcal{E}_{t}) B_{t}$$

which, using market clearing in NT, becomes

$$c_t^T = y_t^T + \left(\frac{R}{\mathcal{E}_t} - R^*\right) B_t$$

- To keep c_t^T constant we need $\mathcal E$ to go down when y_t^T goes down That is, appreciate domestic currency in bad states to provide insurance
- \bullet First best allocation of N satisfies

$$(1 - \omega) \frac{1}{c_t^N} = \psi_t n_t^{\phi}$$

$$1 - \omega = \psi_t n_t^{1+\phi}$$

so we need n_t to move with ψ

$$\frac{\omega}{1 - \omega} \frac{c_t^N}{c_t^T} = \frac{\mathcal{E}_t}{W_t}$$

exchange rate must depreciate when ψ_t is lower so we produce and consume more non-tradables

- Result: if agents can trade complete set of state contingent claims at t-1, then optimal monetary policy achieves the first best
- If agents can only trade the 2 bonds denominated in the 2 currencies, in general, we have incomplete markets
- With incomplete markets optimal monetary policy needs to trade-off insurance vs optimal allocation
- Rewrite objective of monetary policy as

$$E_{t-1} \left[\omega \log c_t^T + (1 - \omega) \log (c_t^N) - \frac{1}{1 + \phi} \psi_t (c_t^N)^{1 + \phi} \right]$$

and let's solve the relaxed planner problem in which the only constraints faced by the planner are

$$c_t^T = y_t^T + \left(\frac{\frac{1}{\mathcal{E}_t}}{E_{t-1}\frac{1}{\mathcal{E}_t}} - 1\right) R^* B_t$$

and

$$\frac{\omega}{1 - \omega} \frac{c_t^N}{c_t^T} = \frac{\mathcal{E}_t}{W_t}$$

• Since W_t is pre-set at t-1 we can write

$$\frac{\frac{1}{\mathcal{E}_t}}{E_{t-1}\frac{1}{\mathcal{E}_t}} = \frac{p_t}{Ep_t}$$

- Also, use the notation $b = R^*B_t$, drop time subscripts and make explicit dependence on state of the world s to get the problem in the following form
- Choose z(s), b to maximize

$$\sum \pi\left(s\right) \left[\omega \log c^{T}\left(s\right) + \left(1 - \omega\right) \log\left(c^{N}\left(s\right)\right) - \frac{1}{1 + \phi} \psi\left(s\right) \left(c^{N}\left(s\right)\right)^{1 + \phi}\right]$$

subject to

$$c^{T}(s) = y^{T}(s) + \left(\frac{p(s)}{\sum \pi(\tilde{s}) p(\tilde{s})} - 1\right) b$$
$$\omega c^{N}(s) p(s) = (1 - \omega) c^{T}(s)$$

• Optimality

$$\frac{\omega}{c^{T}\left(s\right)} = \lambda\left(s\right) - \left(1 - \omega\right)\mu\left(s\right)$$

$$\frac{1 - \omega}{c^{N}\left(s\right)} - \psi\left(s\right)\left(c^{N}\left(s\right)\right)^{\phi} = \omega\mu\left(s\right)p\left(s\right)$$

$$\lambda\left(s\right) \frac{b}{\sum \pi\left(\tilde{s}\right)p\left(\tilde{s}\right)} - \sum \pi\left(s\right)\frac{\lambda\left(s\right)p\left(s\right)}{\left(\sum \pi\left(\tilde{s}\right)p\left(\tilde{s}\right)\right)^{2}}b = \omega\mu\left(s\right)c^{N}\left(s\right)$$

$$E\lambda\left(s\right)\left(\frac{p\left(s\right)}{\sum \pi\left(\tilde{s}\right)p\left(\tilde{s}\right)} - 1\right) = 0$$

• Rearranging we can write

$$\mu\left(s\right) = \frac{1}{\omega} \frac{1}{p\left(s\right)} \left[\frac{1-\omega}{c^{N}\left(s\right)} - \psi\left(s\right) \left(c^{N}\left(s\right)\right)^{\phi} \right]$$
$$\lambda\left(s\right) = \frac{\omega}{c^{T}\left(s\right)} + \frac{1-\omega}{\omega} \frac{1}{p\left(s\right)} \left[\frac{1-\omega}{c^{N}\left(s\right)} - \psi\left(s\right) \left(c^{N}\left(s\right)\right)^{\phi} \right]$$

- We can omit dependence on s from now on
- Optimality for b yields, after rearranging,

$$E\left[\lambda z\right] = E\left[\lambda\right] E\left[z\right]$$

and optimality for z yields

$$\mu = \frac{1}{\omega} \frac{1}{c^N} \left[\lambda - \frac{E[\lambda z]}{E[z]} \right] \frac{b}{E[z]} = \frac{1}{\omega} \frac{1}{c^N} \left(\lambda - E[\lambda] \right) \frac{b}{E[z]}$$

• So we end up with three conditions

$$\lambda = \frac{\omega}{c^{T}} + \frac{1 - \omega}{\omega} \frac{1}{z} \left[\frac{1 - \omega}{c^{N}} - \psi \left(c^{N} \right)^{\phi} \right]$$
$$(\lambda - E[\lambda]) \frac{b}{E[z]} = \frac{c^{N}}{z} \left[\frac{1 - \omega}{c^{N}} - \psi \left(c^{N} \right)^{\phi} \right]$$
$$E[(\lambda - E[\lambda]) z] = 0$$

• Marginal value of tradable resources is

$$\lambda = \frac{\omega}{c^T} + \frac{1 - \omega}{\omega} \frac{1}{z} \left[\frac{1 - \omega}{c^N} - \psi \left(c^N \right)^{\phi} \right]$$

which captures direct effect plus an "aggregate demand externality" term which reflects the fact that when consumption of traded goods increases, for a given real exchange rate p, the consumption and production of NT also increases, which may be good or bad, from a social welfare perspective, depending on the sign of the efficiency (output-gap) wedge

• Notice that a weighted average of μ is zero because

$$E\left[c^{N}\mu\right] = \frac{1}{\omega}E\left(\lambda - E\left[\lambda\right]\right)\frac{b}{E\left[z\right]} = 0$$

this reflects the fact that we can always scale p by a constant factor, helping to fix the allocation of NT on average, and keeping the allocation of T unchanged, as the latter only depends on $p/E\left[p\right]$

Exercise 1. Choose a discrete set of states S and choose a distribution $\pi(s)$ and functions $y^{T}(s)$ and $\psi(s)$. Find b, p(s) the maximize the planner allocation. You can try a direct maximization algorithm that just sets

$$c^{T}(s) = y^{T}(s) + \left(\frac{p(s)}{\sum \pi(\tilde{s}) p(\tilde{s})} - 1\right) b$$
$$c^{N}(s) = \frac{1 - \omega}{\omega} \frac{c^{T}(s)}{p(s)}$$

and maximizes the planner's objective, or try to use the optimality conditions derived above (or use one method to check the other!)