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As we will explain in this talk, the construction by Mathai and Quillen of ex-
plicit differential form representatives of the Thom class and Euler class of a vector
bundle [5] gives a framework for understanding in unified way a number of ideas in
stochastic differential geometry. We will also show briefly how Witten’s topological
quantum field theories fit into this formalism. For the moment, the picture that
he envisages is inaccessible to rigourous methods; but even in the more humdrum
world of Brownian motion, the point of view presented here illuminates quite a few
of the other talks that were given at this conference.

For a more thorough presentation of the mathematical portion of this talk, we
refer the reader to Chapters 1 and 7 of the book [2].

1. The Thom class

Recall that the de Rham complex of differential forms on a manifold M is con-
sists of the infinite dimensional vector spaces Ai(M) of i-forms,with the exterior
differential

d : Ai(M) −→ Ai+1(M).

Let E
π−→ M be an orientable vector bundle with fibre Rm over a manifold M . A

Thom class for the bundle E is a differential form µ(E) ∈ Am(E) on E such that

(1) µ(E) is closed;
(2) π∗µ(E), the integral of µ(E) over the fibres of π, equals 1.

Reprint from: “Stochastic Analysis and Applications,” Proceedings of the 1989 Lisbon Confer-

ence, Eds. A.B. Cruzeiro, J.C. Zambrini. Progres in Probability 26, 1991, Birkhäuser.
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To construct a Thom class, we suppose that we are given three pieces of data:
(1) an orientation of E, that is, a nowhere-vanishing section of the highest

exterior power ΛmE of E;
(2) a metric on the bundle E, that is, a bundle map

E ⊗ E −→ M × R
which induces positive definite inner products (·, ·)x on each fibre Ex of E;

(3) a connection D compatible with the metric (·, ·), that is, a map

D : Ai(M,E) −→ Ai+1(M,E)

such that
D(α ∧ β) = (dα) ∧ β + (−1)jα ∧ (Dβ)

for all α ∈ Ai(M) and β ∈ Aj(M,E) and such that

d(s1, s2) = (Ds1, s2) + (s1, Ds2)

for all s1 and s2 ∈ Γ(M,E).
Since E has a metric, we can reformulate the orientation of the bundle E as an
isometry

B {·} : ΛmE −→ M × R
of the highest exterior power of E with the trivial line bundle over M . The map
B {·} is the Berezin integral.

Let π∗E be the pull-back of the bundle E over M to a bundle over E, whose
fibre at e ∈ E is Eπ(e); this bundle has a metric π∗(·, ·) with compatible connection
π∗D; we will usually write these as (·, ·) and D. Let Λ∗π∗E −→ E be the bundle of
exterior algebras of π∗E, and let A∗(E,Λ∗π∗E) be the algebra of differential forms
on E with values in Λ∗π∗E; it is a bigraded algebra, with graded subspaces

Ai,j = Ai(E,Λjπ∗E).

The Berezin integral B {·} : ΛmE −→ M × R extends to a linear form

B {·} : Ai(E,Λjπ∗E) −→ Ai(E)

which vanishes unless j = m.
Let x be the tautological section of π∗E, that is, the section which maps a point

e ∈ E to the corresponding point e ∈ π∗Ee = Eπ(e). We may think of x as an
element of A0,1, and its covariant derivative Dx is an element of A1,1. Define an
operator ι(x) : Ai,j −→ Ai,j−1, characterized by the following properties:

(1) if w ∈ A0,1 = Γ(E, π∗E), then ι(x)w = (x, w) (for example, ι(x)x = |x|2);
(2) ι(x) is a derivation, that is,

ι(x)(α ∧ β) = (ι(x)α) ∧ β + (−1)i+jα ∧ (ι(x)β)

for α ∈ Ai,j and β ∈ Ak,l.
Let Dt be the operator D + tι(x), where t > 0.
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Lemma 1.1. If α ∈ A∗(E,Λ∗π∗E), then dB {α} = B {Dtα}.
Proof. This follows from the fact that D is compatible with the metric, so that
dB {α} = B {Dα}, combined with the obvious fact that ι(x)α has no component in
A∗(E,Λmπ∗E). �

The curvature Ω = D2 of the connection D on E is an element of A2(M, so(E)),
where so(E) is the bundle of skew-symmetric endomophisms of E. We may identify
the bundle so(E) with Λ2E; if A ∈ so(Ey) and ei is an orthonormal basis of Ey, we
map A to ∑

1≤i<j≤m

(ei, Aej) ei ∧ ej ∈ Λ2Ey,

so that ι(x)A = −Ax. The pull-back π∗Ω of Ω from M to E is then an element of
A2,2, which we will usually denote by Ω. Consider the following differential form
(here, t is a positive real number):

ωt = 1
2 t2|x|2 + tDx + Ω.

Lemma 1.2. The following formula holds: Dtωt = 0.

Proof. Note that DΩ = 0, by Bianchi’s identity, and that D|x|2 = −2ι(x)Dx. From
this, we see that

Dωt =
t2

2
D|x|2 + tD2x = −ι(x)

(
t2Dx + tΩ

)
∈ A1,0 ⊕A2,1.

The lemma follows, since it is clear that ι(x)|x|2 = 0. �

Suppose f is a polynomial in one variable. It is easy to see that f(ωt) is the
element of A∗,∗ given by the Taylor expansion

f(ωt) =
m∑

k=0

f (k)(t2|x|2/2)
k!

(tDx + Ω)k.

(The expansion terminates at k = m because (tDx+Ω)k = 0 for k > m.) We adopt
this formula as the definition of f(ωt) for any smooth function on R.

Proposition 1.3.
(1) The differential form B {f(ωt)} is a closed m-form on E.
(2) If f decays at infinity, the integral over the fibres π∗f(ωt) is the constant

π∗B {f(ωt)} = (−1)m(m+1)/2

∫
Rm

f (m)(|x|2/2) dx.

(3) (transgression formula)

dB {f(ωt)}
dt

= dB {xf ′(ωt)}
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Proof. To see that B {f(ωt)} ∈ Am(E), we simply note that

f(ωt) ∈
m∑

k=0

Ak,k,

and hence that only the component in Am,m contributes to the Berezin integral.
The proof that B {f(ωt)} is closed is an easy consequence of Leibniz’s rule and

Lemmas 1.1 and 1.2:

dB {f(ωt)} = B {f ′(ωt)Dtωt} = 0.

The formula for π∗B {f(ωt)} may be checked in the special case in which M is
a point, and hence we may take E to equal Rm. If xi is the standard orthonormal
basis of Rm, we see that

Dx =
m∑

i=1

dxi ⊗ xi,

and hence that

(Dx)m = m!(dx1 ⊗ x1) . . . (dxm ⊗ xm)

= (−1)m(m+1)/2m!(x1 ∧ . . . ∧ xm)⊗ (dx1 . . . dxm).

We see that

B {f(ωt)} = tmB
{

f (m)(t2|x|2/2)(dx1 ⊗ x1) . . . (dxm ⊗ xm)
}

= (−1)m(m+1)/2tm B
{

f (m)(t2|x|2/2)x1 . . . xm

}
dx1 . . . dxm

= (−1)m(m+1)/2tm f (m)(t2|x|2/2) dx1 . . . dxm,

since all of the other terms in the Taylor expansion have vanishing Berezin integral.
From this, (2) follows easily.

The proof of the transgression formula is similar to the proof that dB {f(ωt)} = 0.
On the one hand,

dB {f(ωt)}
dt

= B
{
(t|x|2 + Dx)f(ωt)

}
,

while on the other,

dB {xf ′(ωt)} = B {(Dtx)f(ωt)} = B
{
(Dx + t|x|2)f(ωt)

}
. �

Being probabilists, we are especially fond of the Gaussian function, so we choose
as our Thom class the following differential form:

µt(E) = (−1)m(m−1)/2(2π)−m/2B
{
e−ωt

}
∈ Am(E).
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Let s be a section of the bundle E. We can form the pull-back s∗µt(E) ∈
Am(M); it is called the Euler class of the bundle E. The following formula for
the differential form s∗µt(E) is obvious from the definition of µt(E):

s∗µt(E) = (−1)m(m−1)/2(2π)−m/2B
{

e−t2|s|2/2−tDs−Ω
}

,

where t2|s|2/2 + tDs + Ω/2 is thought of as a section of A∗(M,Λ∗E), and B {·} is
the Berezin integral from A∗(M,Λ∗E) to A∗(M).

Proposition. The cohomology class of the differential form s∗µt(E) ∈ Am(M) is
independent of the section s.

Proof. Let st = s + τ be an affine one-parameter family of sections of E. We see
that

(−1)m(m−1)/2(2π)m/2 ds∗τµt(E)
dτ

=
d

dτ
B

{
e−t2|sτ |2/2−tDsτ−Ω

}
= −s∗τB

{
(t2(x, u) + tDu)e−t2|x|2/2−tDx−Ω

}
= −s∗τB

{
(tDtu)e−t2|x|2/2−tDx−Ω

}
= −ts∗τdB

{
ue−t2|x|2/2−tDx−Ω

}
= −tdB

{
ue−t2|sτ |2/2−tDsτ−Ω

}
�

2. The Gauss-Bonnet theorem

In this section, we explain the geometric significance of the Euler class: its
Poincaré dual represents the homology class of the zero-set of a non-degenerate
section of E. We will assume for simplicity that M is compact, since otherwise we
would have to formulate general conditions on the section s to increase at infinity,
and these are better done on a case-by-case basis.

Suppose that the section s ∈ Γ(M,E) has the special property that its zero-
set M0 is a submanifold of M , and furthermore that ∇s ∈ Γ(M,Hom(TM,E))
is surjective along M0; we call such a section non-degenerate. In particular, it
follows that dim(M0) = dim(M) −m. Let δM0 be the current on M whose value
on a differential form α ∈ A∗(M) is

〈δM0 , α〉 =
∫

M0

α
∣∣
M0

.

Thus, δM0 vanishes on α unless α ∈ Adim(M)−m(M). The following theorem ex-
plains the significance of the Euler class.
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Theorem 2.1. The differential forms s∗µt(E) ∈ Am(M) converge, as t → ∞, to
a current of the form

lim
t→∞

s∗µt(E) = εδM0 ,

where ε : M0 −→ {±1} is a continuous function which measures whether the map
∇s preserves or reverses orientation.

Proof. By (1.3), we see that

s∗µt(E) = (−1)m(m−1)/2(2π)−m/2B
{

e−t2|s|2/2−tDs−Ω
}

.

To take the limit as t → ∞ in this formula, we observe that there is clearly no
contribution from the region in which |s| >, for some small c > 0. Thus, the
limiting current is supported on the submanifold M0. We may assume that M is
an open subset of Rn, parametrized by coordinates

(x1, . . . , xm, y1, . . . , yn−m),

that M0 = U ∩ Rm, where

Rm = {(x, y) ∈ Rn | x = 0}

and that E is the trivial bundle with fibre Rm. In a neighbourhood of M0, we see
that the endomorphism ∇s : M −→ Hom(Rn, Rm) is surjective, and hence, possibly
replacing M by a smaller neighbourhood of M0 in Rn, we may choose as a frame of
the bundle E the sections

ei = D∂/∂xi
s, 1 ≤ i ≤ m.

For the moment, assume that the resulting frame of E is oriented.
Let Aij = (ei, ej) be the m × m-matrix of inner products in this frame. By

changing the coordinate system on M to

x̃i =
(
A(0, y)−1/2

)
ij

xj ,

we may assume that (ei, ej) = δij + O(|x|).
We see that the section s may be written

s(x, y) =
m∑

i,j=1

xifij(x, y)ej(x, y),
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where fij ∈ C∞(M) are functions satisfying fij(0, y) = δij . It follows that

Ds =
m∑

j=1

( m∑
i=1

gijdxi ⊗ ej +
n−m∑
i=1

hijdyi ⊗ ej

)
,

where gij(0, y) = δij and hij(0, y) = 0. Finally, let Ω0 ∈ A2(M0,Λ2E) be the
restriction of the curvature Ω ∈ A2(M,Λ2E) to M0 ⊂ M .

If ϕ ∈ C∞
0 (M) is a function on M with compact support, we have∫

M

ϕ µt dx dy = (−1)m(m−1)/2(2π)−m/2

∫
M

ϕ B
{

e−t2|s|2/2−tDs−Ω
}

dx dy.

Pull this differential form back by the map ρt(x, y) = (t−1x, y). Since the integral
of a differential form is invariant under pull-back, we see that∫

M

ϕ µt dx = (−1)m(m−1)/2(2π)−m/2∫
Rm×M0

ϕ(t−1x, y)B
{

e−t2|s(t−1x,y)|2/2−tρ∗t Ds−ρ∗t Ω
}

dx dy.

Under these deformations, the exponent becomes

1
2

m∑
i=1

x2
i +

m∑
i=1

dxi ⊗ ei + Ω0(0, y) + O(t).

By the dominated convergence theorem, the integral over Rm×M0 converges to

(2π)−m/2

∫
Rm×M0

ϕ(0, y) e−|x|
2/2B

{
exp

(
−

∑m
i=1 dxi ⊗ ei(0, y)− Ω0(0, y)

)}
dx dy.

It is easily seen that Ω0 cannot contribute to this integral, since any term involving
Ω0 will not have enough powers of dxi to give a non-zero answer. This shows that
this limit equals

∫
M0

ϕ(0, y) dy as desired.
This handles the case in which the basis ei is an oriented basis of E. If it is

not an oriented basis, there is an additional sign ε = −1, but otherwise the above
calculation is unchanged. �

Theorem 2.1 implies as a special case the Gauss-Bonnet-Chern theorem. Let
M be a compact, oriented, even-dimensional Riemannian manifold, and let E =
T ∗M . We choose a Morse function f on M , and consider the section s = df . By
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Proposition 1.4, the differential forms s∗µt(E) are cohomologous. Setting t = 0, we
obtain the differential form

s∗µ0(T ∗M) = (−2π)−m/2B
{
e−Ω

}
= (2π)−m/2 Pf(Ω),

where Pf(Ω) = B
{
eΩ

}
is the Pfaffian of Ω. On the other hand, as t → ∞, the

differential forms s∗µt(T ∗M) converge in the distributional sense to the differential
form

s∗µ∞(T ∗M) =
∑

df(x)=0

sgn det(Hessx(f)) δx.

Here, Hessx(f) = ∇df(x) is the Hessian of the function f at x ∈ M , which may be
considered to be an element of End(T ∗x M).

In this way, we see that∫
M

s∗0µ(T ∗M) = (2π)−m/2

∫
M

Pf(Ω)

and
lim

t→∞

∫
M

s∗µt(T ∗M) =
∑

df(x)=0

sgn det(Hessx(f))

are equal. By Morse Theory, this second sum is just the Euler number of the
manifold, and we obtain the Gauss-Bonnet-Chern theorem.

3. An infinite-dimensional example

In this section, we will see that the Euler class constructed in Section 1 can
be used to understand the functional integral of the Laplace-Beltrami operator
on a compact manifold X. This is a simple example of a topological quantum field
theory: the Hilbert space is the space of harmonic forms on X, which is a topological
invariant of the manifold.

If X is a compact orientable Riemannian manifold, let LX be the loop space of
X; this is the Hilbert manifold of all maps γ : S1 −→ X of finite energy,

E(γ) =
∫

S1
|γ̇(t)|2 dt < ∞.

The tangent space TγLX of the loop space at a loop γ is the space of all finite
energy tangent vector fields along γ.

If SO(X) is the orthonormal frame bundle of X, then the loop space LSO(X) is
a principal bundle over LX with structure group LSO(n). The tangent bundle of
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LX is the bundle associated to LSO(X) with fibre L2
1(S

1, Rn); however, the action
of LSO(n) is not unitary, so this representation does not give the Hilbert bundle
structure of T (LX).

The principal bundle LSO(X) has a connection which is derived from the Levi-
Civita connection on SO(X) as follows: if θ ∈ A1(SO(X); so(n)) is the connec-
tion one-form on SO(X), then the connection form on LSO(X) is just the ele-
ment of A1(LSO(X);Lso(n)) given by integrating θ around the circle. It is not
very difficult to calculate the curvature of this connection; it is just the element of
A2(LSO(X); so(n)) given by integrating the curvature form R ∈ A2(SO(X); so(n))
around the circle:

(Ω(X, Y )Z,W ) =
∫

S1

(
Rγ(t)(Xt, Yt)Zt,Wt

)
dt.

Over the manifold LX, we will also consider the Hilbert bundle E whose fibre
at γ ∈ LX is the space of square-integrable vector fields along γ; this is the bundle
associated to LSO(X) with fibre L2(S1, Rn). On this Hilbert space, the struc-
ture group LSO(n) acts in a unitary fashion, so that E is a Hilbert bundle with
compatible covariant derivative, derived from the connection on LSO(X).

There is a smooth section of the bundle E, given by taking a finite energy loop
γ to the L2-vector field γ̇ ∈ Eγ , the tangent vector field to the loop. It is clear that
the zero-set of this section is the space of constant loops, which we may think of
as a manifold X ⊂ LX. Another class of sections of E are determined by smooth
functions f ∈ C∞(M): we map γ ∈ LX to the tangent vector field(

t 7→ grad f(γ(t))
)
∈ Eγ .

Call this section grad f .

Lemma 3.1. If f is a Morse function, the section sf = γ̇ + grad f has as its zero
set the finite set of constant loops taking values at a critical point of f .

Proof. Let us calculate the L2-norm of γ̇ + grad f :∫
S1
|γ̇(t) + gradγ(t) f |2 dt =

∫
S1

(
|γ̇(t)|2 + 2(γ̇(t), gradγ(t) f) + | gradγ(t) f |2

)
dt

= E(γ) +
∫

S1
V (γ(t)) dt,

where V = | grad f |2 ∈ C∞(X). Here we have used the fact that the cross-term
vanishes by integration by parts:∫

S1
(γ̇(t), gradγ(t) f) dt =

∫
S1

d

dt
f(γ(t)) dt = 0. �
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This calculation is familiar from the study of the Nicolai map (see [3] for ref-
erences, and also [4]). Indeed, we see that the Nicolai map is just a section of a
vector bundle over the space of fields, and that the supersymmetric quantum field
theories with Nicolai maps are just those whose finite temperature (periodic time)
functional integral is an Euler class: these are the topological quantum field
theories.

Let us now try to make some sense of the Euler class of E obtained by pulling
back the Thom form by the section sf . According to the formulas of Section 1, this
is the differential form on E given by the formula

(−1)m(m−1)/2(2π)−m/2 exp
(
− 1

2

∫
S1V (γ(t))

)
e−E(γ)/2B

{
e−Dsf−Ω

}
.

The difficulty with this expression is that since the bundle E is infinite dimensional,
B {·} makes no sense. The constant (−1)m(m−1)/2(2π)−m/2 is also meaningless, of
course; we are not even sure why the rank of the bundle E is even. Of course, the
solution of these problems is tied together.

Let us look at the case in which X = Rn, which was discussed in [3]. Here, Ω = 0
while Dsf may be thought of as the infinite-dimensional generalization of∑

ij

Aijdxi ⊗ ej ,

where Aij is the operator

a ∈ C∞(S1, Rn) 7→ da(t)
dt

+ Hessγ(t)(f)a(t).

If we set f = 0, we may interpret the Euler class as being the Brownian bridge
measure on LRn, thought of as a volume form. For this measure to be defined, we
must of course replace the manifold LRn by the space of all continuous loops in Rn.
However, we will be somewhat lax in keeping track of this.

The discussion of [3] justifies the following result (which is more a definition
than a theorem, since it relates two objects, one of which is a ill-defined). Let
df = e−f · d · ef , and let ∆f be Witten’s twisted Laplace-Beltrami operator

∆f = (df + d∗f )2 = ∆ + | grad f |2 + Hess(f),

acting on A∗(Rn), where Hess(f) is the derivation of the algebra of differential forms
which vanishes on functions and equals Hess(f)α for a one-form α (see [6]).

If α = f0df1 . . . dfk is a differential form on Rn, let c(α) be the operator of Clifford
multiplication on differential forms given by the formula

c(f0df1 . . . dfk) =
1
k!

∑
σ∈Sk

(−1)ε(σ)f0 (ε(dfσ1)− ε(dfσ1)
∗) . . . (ε(dfσk

)− ε(dfσk
)∗).
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Finally, let Str be the supertrace on the Hilbert space of L2-differential forms on
Rn, that is,

StrA(Rn)(A) = TrA2∗(Rn)(A)− TrA2∗+1(Rn)(A).

A cylinder form is a differential form on LRn obtained by taking differential
forms {αi ∈ A∗(Rn) | 1 ≤ i ≤ n}, and times 0 ≤ t1 < · · · < tn < 1, and forming

γ∗t1α1 . . . γ∗tn
αn ∈ A(LRn).

“Theorem”. The integral of a cylinder form against the Euler form s∗fµ(E) is
given by the formula∫

LRm

γ∗t1α1 . . . γ∗tn
αn ∧ s∗fµ(E)

= StrA(Rm)

(
e−t1∆f c(α1)e−(t1−t2)∆f . . . e−(tn−1−tn)∆f c(αn)e−(1−tn)∆f

)
,

where e−t∆ is the heat kernel of the operator ∆f .

Emboldened by this success, it is clear that there is only one plausible possibility
for the Euler class on LX for arbitrary X, given by exactly the same formula as
above except that we replace Rn throughout by the Riemannian manifold X. We
now see that the curvature Ω in the exponential used to define the Thom class
corresponds in a precise way to the curvature in the Feynman-Kac formula for
the Laplace-Beltrami operator, which may be seen by writing out the Weitzenböck
formula for ∆f :

∆f = ∇∗∇+ | grad f |2 +
∑
ijkl

Rijkl ε
iιjεkιl +

∑
ij

∂i∂jf εiιj .

(This formula is with respect to an orthonormal frame of the cotangent bundle.)
In this way, we can understand better some of the calculations made by Alvarez-
Gaumé in his heuristic proof of the Gauss-Bonnet-Chern theorem for X [1]: he was
repeating on the loop-space LX the calculations of the last section.

4. Another example: Donaldson polynomials

We will briefly indicate one more example of the formalism of Euler classes,
introduced by Witten to give an analytic approach to Donaldson polynomials [7].
Let us recall the setting of the Yang-Mills equation in four dimensions. We will
ignore questions of Sobolev spaces and regularity: this section is physics!

Let X be a compact oriented four dimensional Riemannian manifold, and let
P −→ X be a principal G-bundle over X, where G is a compact Lie group, with Lie
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algebra g. Let A be the space of all connections on the bundle P : if we choose a
background connection ∇, this space may be realized as the affine space

∇+A1(X, P ×ad g).

Let G∗ be the restricted gauge group of the bundle P : this is the space of sections

G∗ = {g ∈ Γ(X, P ×Ad G) | g(∗) = 1},

where ∗ is a basepoint in X. It acts freely on the space A by the action

g ·A = g−1Ag + g−1dg.

We will think of A as a principal bundle, with structure group G∗ and base B:

G∗ −−−−→ Ay
B

Incidentally, this shows that B is a classifying space for the group G∗.
The second exterior power Λ2T ∗X of the cotangent bundle of X splits into two

pieces
Λ2T ∗X ∼= Λ+T ∗X ⊕ Λ−T ∗X,

the self-dual and anti-self-dual bundles respectively: these are defined by the equa-
tion

?α = ±α,

where ? is the Hodge dual operator. Let H = Ω−(X, P ×ad g) be the space of
anti-self-dual two-forms with values in the adjoint bundle. Since the gauge group
acts on the bundle P ×ad g, we may form an associated bundle

E = A×G∗ H −→ B.

This bundle has a natural metric, since G∗ preserves the L2-metric on H, and a
natural connection compatible with this metric, coming from the natural invariant
Riemannian structure on A. The curvature of this connection is not pretty: it may
be given in terms of a Green’s kernel associated to the covariant derivative ∇ + A
acting on the space Ω1(X, P ×ad g).

To construct an Euler class, we need a section of the bundle E. This is easily ob-
tained. The curvature F of the connection ∇+ A is an element of Ω2(X, P ×ad g),
so its anti-self-dual component F− lies in Ω−(X, P ×ad g). Since the curvature
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transforms correctly under the gauge group, we see that F− defines a section of
the bundle E, whose zero-set is the space of self-dual connections. In [7], Witten
presents evidence that the Donaldson polynomials, which are invariants of the bun-
dle P −→ X, may be obtained by applying a formal version of Theorem 2.1 to this
situation. It would be interesting to understand the extent to which his arguments
are more than formal.

For the sake of accuracy, we should mention one further point: the above struc-
tures are all acted on by a finite-dimensional group, namely the quotient group
G/G∗ ∼= G, where G is the gauge group with no restriction on its value at the base-
point ∗. The spaces A, H, B and E all carry compatible actions of this group, and
the section F− of E is equivariant; the quotient of its zero-set by the action of G
is the moduli space M. However, the action of G on B is not in general free. It
turns out that to formulate correctly the Donaldson invariants, one must consider
a generalization of the formalism of Section 1, in which we replace the algebra of
differential forms on E by the algebra of equivariant differential forms: this is the
space of maps from the Lie algebra g of G to Ω(E) invariant under the action of G.
For more details, we refer the reader to [2].
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