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0. INTR~OUCTION 

In an earlier paper, we developed a degree theory for Wiener maps [O]. 
In this paper, we will give an application of this theory which arises in the 
study of path integrals for supersymmetric Hamiltonians in quantum 
mechanics. Before defining the map which we will be looking at, we must 
specify the Wiener space on which it acts. This is the space of HGlder loops 
C’(.S, R”‘), c( < 4, with the Ornstein-Uhlenbeck measure d;l-the Gaussian 
measure corresponding to the Hilbert subspace L’x’(S, R”“), which is the 
Hilbert space of functions on the circle for which the inner product 

llfrl:, =J1, If’l’+ lfl’. (0.1) 

is finite. The measure dA is related to the Brownian measure dp on 
C=(S, R”) by 

(0.2 1 

where Z=n,.,(n’+ l)- ’ is the normalizing constant which makes dA 
into a probability measure. 

We will need another Wiener space: the Banach space Ca- ‘(S, R”), for 
u < 4, carries a Gaussian measure dq known as the white noise measure, 
corresponding to the Hilbert subspace L2(S, R”). A nice way to construct 
dK is to use the invertible operator L! = d/dt + 1: C” + C’- ’ to identify the 
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two Banach spaces. Since .4 carries L*,’ isometrically into L*, that is, 
Ilf II*,1 = IlAf II*, it follows that we can simply define drc as the push- 
forward of d,I by ,4. 

Let V be a C” function on R”, satisfying 

(a) for each m > 0, 

IV”V[ < eO(‘x’) (0.3) 

and 

(b) for any c > 0, and 1x1 large enough, 

(V2V(x)( -cc [VV(x)l. 

Thinking of VP’ as a smooth map from RM to itself, then the map that we 
will discuss in this article is the nonlinear map from C’(S, R”) to 
Cbl--I(S, R”) given by 

d’(t) 
A(f )(Q=~+VV(f(r)). 

The map A is not quite a Wiener map as it stands, since it does not go 
from a Wiener space to itself. However, we can generalize the notion of a 
Wiener map as follows. Let Bi, i= 1,2, be two Wiener spaces, with 
Gaussian measures dpi and associated Hilbert spaces Hi. Then a Wiener 
map from B, to B, is defined to be a map of the form ,4 + F, where /i is an 
invertible linear map from B, to B2 (possibly only defined and invertible on 
a domain whose complement has zero capacity) which is an orthogonal 
isomorphism between H, and H,, and FE W”( B, , H,). Of course, we 
could equally well consider the Wiener map 1 + /1 +‘F from B, to itself, and 
this is what we shall do in practice. 

With these definitions out of the way, we can state our first results, 
which are proved in Section 1. 

THEOREM A. The map A is a Wiener map from C” to C’ ~ ‘, 0 K a< f. 
Thus, it satisfies Sard’s theorem: the set of critical values of A in C”- ’ has 
x-measure zero. 

Following the method of [0], we define the pullback of the white noise 
measure dK by A, using the inverse function theorem on regular open sets 
in C” to define the measure ~(A*K) there as the pushforward +_(A-‘), dp, 
the sign depending on whether A preserves or reverses orientation. We can 
now state the main result of this paper. 
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THEOREM B. There is an integer deg(A) such that for all 4 E L”( c” - ‘), 

In effect, we are considering 4 drc to be a volume form on Ca- ’ which we 
pull back to calculate the degree. By taking 4 to equal various charac- 
teristic functions, we can translate this into a more geometric result. 

COROLLARY. For K--a.e. g E c” - ‘(S, R”‘), the set A -l(g) is finite, g is a 
regular value, and 

C sgn(V,A) = deg(A). 
A(/)=.? 

This corollary shows that A has a quite satisfactory degree theory, even 
though it does not satisfy the assumptions of Leray-Schauder theory- 
namely, it is not proper. This degree is a measure theoretic, or probabilistic, 
notion, quite distinct from the Leray-Schauder degree. 

Cecotti and Girardello [2] gave the following heuristic calculation of 
deg(A), assuming that V is a Morse function, that is, has only a finite num- 
ber of non-degenerate critical points, and JVVJ: RM -+ RM is proper. If ,f is 
a solution of A( f ) = 0, then we have 

js IA(f )I’=[, If ‘12+2 y+ IvV(f),2=o. 

Since the middle term vanishes, we see that f is a constant equal to a zero 
of VV, that is, a critical point of V. It is easy to show that sgn(V,A) equals 
sgn(V: V), so that 

c sgn(V’A) = c sgn(Vt V) = deg(VV: RM -+ R”). (0.6) 
A(/)=0 v,v=o 

As it stands, this argument is not a calculation of deg(A), because {0} is 
a set of zero measure in C”- ‘. On the other hand, it is not hard to turn this 
heuristic into a proof. Let dK,, E>O, be the measure on C’-‘(S,R”) 
obtained by scaling du, 

Instead of using the Gaussian measure dK in the definition of deg(A), we 
could as well have used drc,. It is easy to see that the resulting degree is a 
continuous function of E, and being an integer, is independent of E. Thus, 



124 EZRA GETZLER 

assuming that the family of measures A* drc, has a weak limit as E --f 0, we 
can write 

deg(A) = icn-, w-!FO A* dK,. (0.8) 

Now, as E -+ 0, the family dK, approaches a delta measure at 0, and once 
we can show that the measure w-lim A* dx, is concentrated at A-’ (0), it is 
easy to calculate this limit. 

THEOREM C. Zf V is a Morse function on R M, then 

w-,‘?o A* dq = C sgn(V-t V) .6.,, 
v,v=o 

where 6, is the measure of mass 1 concentrated at the constant function x in 
Ca( S, R”). 

COROLLARY. Zf (VV( is proper, then 

deg(d/dt +VV) = deg(VV: RM + R”). 

Proof Any such function V may be perturbed slightly so that it 
becomes a Morse function without changing deg( A). Q.E.D. 

This calculation of deg(A) has many similarities to the calculation of the 
index of the Dirac operator by path integral methods (Atiyah [l] and 
Getzler [4]). In fact deg(A) is actually the index of an elliptic operator on 
R”“, which is the Hamiltonian for a supersymmetric quantum theory. It 
was discovered by Nicolai [7] that for any supersymmetric quantum field 
theory, the path integral of the theory is formally the pullback by a map A 
of a Gaussian measure. Following this, Parisi and Sourlas [S] and Cecotti 
and Girardello [2 J showed that the map A given above in formula (0.4) is 
actually the Nicolai map for a certain supersymmetric quantum mechanical 
theory that is well known on account of its having been used by Witten to 
prove the Morse inequalities [9]. The Hamiltonian of this theory is a self- 
adjoint operator on the space of L2 differential forms on R”, defined in 
terms of the operator dy= e-“a d. e” as follows: D is the operator d,+ d;, 
and the Hamiltonian is D2, which equals 

d*,d, + d,d*, = -d + lVV12 + p(V’V), (0.9) 

where p(A,) is the linear operator on A*RM defined by the formula 

p(A,) = c A,,(ara, - a,ay). (0.10) 
ij 
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Here, a: is the creation operator on A*RM obtained by taking the exterior 
product with ei, and ai is the annihilation operator, obtained by con- 
tracting with ei. 

If we calculate A* dfc formally by using the ordinary change of variables 
formula from finite dimensions, we obtain 

A* dK =det(VfA) e-11A(“)12’2 df 

= det(d/dt +V; V) e-I~vv~2’2 dp. 

Here, Vf. V is the linear operator from C” to C” ’ such that 

(0.11) 

cv: V.hNt) = (v;(t) V)(h(t)). (0.12) 

This calculation is the intuitive justification for stating that A* drc is the 
path integral for the Hamiltonian H defined above. Indeed, j IA(f)\’ is the 
bosonic part of the action corresponding to H, while the determinant gives 
the result of integrating over the fermion fields, whose action is quadratic 
in the fermions. 

In fact, we will are able to prove the following result. 

THEOREM D. [fficCC,“(RM), l<iirn, andO<t,< ... <t,<l, then 

c ~~.fi(w(t,))...f,(o(t,)) A* dK(o) 
where Str is the supertrace, that is, the trace on even L2 forms minus the 
trace on odd L’ forms. 

COROLLARY. The index of the operator d,, + d*, equals deg(d/dt + VV). 

Proof: From Theorem D, we see that jc3 1 A* drc = Str e -D2’2, which by 
the McKean-Singer formula is the index of D. The result now follows from 
the definition of deg(A). Q.E.D. 

Of course, this corollary follows from Bott Periodicity, which shows 
directly that the index of D equals deg(VV); but the proof we have given is 
perhaps more direct. 

It may be possible to extend the techniques used to cover the Nicolai 
map that Parisi and Sourlas [S] discovered for the N = 2 Wess-Zumino 
model in 2 space-time dimensions 

A(f)=g+:P(f):, (0.13) 
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where f is a complex function on the torus, P is a real polynomial, and :P: 
denotes Wick ordering. However, it would only be possible to prove the 
existence of a weak form of the degree, owing to the lack of an analogue of 
the implicit function theorem. 

I am grateful to Arthur Jaffe for being the advisor for my thesis, from 
which this paper is taken. Part of this article was written while I was 
visiting the Caltech Department of Mathematics, and I would like to thank 
Barry Simon for his hospitality. Also, I benefited from some conversations 
with John Lott, who was working on a related problem at the same time 

cu 

1. THE NICOLAI MAP AS A WIENER MAP 

In this section, we will prove that the map A of Section 0 is a Wiener 
map, by establishing the following technical result. Once this is done, 
Theorem B and its corollary will follow immediately from the results of 
COI. 

PROPOSITION 1.1. The following function on c* is bounded: 

exp( IIVFII &,zI) - V*F- IIFII 2142. 

In showing that the Nicolai map is a Wiener map, the main fact needed 
will be Fernique’s inequality: there is a positive constant c such that 

We will make use of the regularizer P, given by the Fourier multiplier on 
Cats, R”), 

(Pef)(t) = 1 e2xirt-Et2’2f((2), 
TEZ 

(1.2) 

where f(r) is the Fourier transform of J: This regularizer satisfies the 
bounds 

ll(l-P,)fllL~~~OL Ilfll, and ll(l-PE)f(IL~N<~a IIAafllL~ for O<o!<l. 

(1.3) 

PROPOSITION 1.2. Let H(f) =VV(f): P(S, R”) + L’(S, R”), where I/ 
is a C” function on RM such that 

IV”VJ 5 e”(lxi) for all m > 0. 

Then HE W”O(C”,L*) (i.e.,V”H~LPforallmandp<co),andHE=P,HP, 
converges to H in Wm( C’, L2) as E -+ 0. 
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Prooj: That HE B@ follows directly by the exponential bounds and 
Fernique’s inequality. Furthermore, we have 

The right-hand side is in Lp for all p < cc by Fernique’s inequality, which 
proves that H, --f H in W” for all m < 00. Q.E.D. 

To apply this result to the Nicolai map A, we recall that we can write A 
as 

A(f’)=/?f+(VV-l)(f)=/i[l(l +F)(f), (1.5) 

where F(f)=K’o(VV-l)(f). By Proposition 1.2, F lies in 
W” (C”, L’,‘), and so A is a Wiener map. Using the approximation of F by 
F,., we can calculate V*F, as the limit of V*F,, when E -+ 0. 

LEMMA 1.3. Let C=CnEZ (n’ + l)- I. Then the divergence qf F is given 
by the ,formula 

Proof: The divergence of F, is the sum of two pieces 

V*F,(f)=(f,F,(f))L2.1-Tr IPVF,. 

We will calculate the a.e. limit of these two terms separately. The first term 
gives 

= s .~ $ [PEf?Pcf(t))- P, I P,:f(t)(/2] dt 

+ (P2E”L WP,f) - P*.f )LZ> 

which converges to (A VV(f) -f)L~ a.e. as E + 0, since the first term 
equals zero. 
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The other contribution to V*F, is 

-Tr lL2.,VfFE= -Tr (L2PEoV$~fV~Pc~A-1 

= -Tr IL2 P,,~A-‘oV~,~,.V 

= - C e-“*(iz + 1))’ 
II‘ZZ 

s 
dV(P,f(r)) dt 

s 

= -*Fz emEr2(t2+ 1))’ /s dV(P,f(t)) dt. 

As E -+ 0, this converges to - C. Js A V(P,f (t)) dr a.e. Q.E.D. 

From this proposition, it follows that 

A*drc -=Z-Mdet2(~-‘(d/d~+V~V))e-~‘~~~(.f)-IlvY(~)~1~2/2. (1.6) 
4 

We will calculate the right-hand side of this formula more explicitly 
later-for the moment, we content ourselves with proving Proposition 1.1. 
We see that 

= c j 
S 

IIV;,,, VII: df. 

Thus the exponent in Proposition 1.1 is bounded by 

which is bounded above by a fixed constant, by the assumption that for 
any positive constant c, and large enough (xl, IV2V(x)J <c JVV(x)J. 

2. SUPERSYMMETRIC QUANTUM MECHANICS 

Supersymmetric quantum mechanics is best thought of as a Z,-graded 
version of ordinary quantum mechanics, Its axioms are as follows: 

(I) H is a Hilbert space with a Z,-grading (i.e., a superspace) 

H=H+@H-; (2.1) 
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(II) D is an odd self-adjoint operator, 

The Hamiltonian of the theory is D*, which is thus a positive self-adjoint 
operator. 

We will be interested in the following class of examples, first considered 
by Witten [9]. The Hilbert space H is taken to be the space of L2 differen- 
tial forms on R”, with the grading under which the forms of even degree lie 
in H + and those of odd degree lie in H . 

If T/ is a smooth real function R”, called the superpotential, then the 
operator D is defined to be 

(2.2) 

Obviously, D is self adjoint. 
It follows that D* is given by the formula 

D* = -d + IVVl ’ + p(V’V), (2.3) 

where p(V’I/) was defined in (0.10). 
Here are some more or less physical examples of the above class of 

operators. 

EXAMPLE 2.1. We take A4 = 1. Thus, our Hilbert space is 
L2(R) 0 L*(R), and D and D2 are given by the matrices 

0 
D= 

-d/dx + v’(x) 

d/dx + v’(x) 0 1 

D’= 
- d2/dx’ + V’(x)’ - V”(x) 0 

0 -d*/dx* + V’(s)‘+ V”(x) 1 

This is the supersymmetric anharmonic oscillator. 

EXAMPLE 2.2. In this example, we will let our vector space be C”‘, 
considered as a real vector space. The model is a lattice regularization of 
Wess and Zumino’s N = 2 supersymmetric field theory in two space-time 
dimensions. The superpotential is given by 

V(z, 2) = Re f k 5;zi_, +p(z,) , 
i=l I 

where p is a real polynomial in one variable; the i variable is cyclic, so that 
we can think of the points {l,..., M} as lying on the circle of unit circum- 
ference. 
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It follows that VV is given by 

& (Zi+l -z;-l)+p’(z,) hi, 1 
and consequently that 

Ivvl’=; c [-& lZi+1 
I 

-Z;-l12+ (p'(Zi)12 +A Im C (Zi+l-zi-l)p'(Zi)- 
I I 

To recover the continuum quantum theory, we let M + co, and define the 
complex scalar field 4: S -+ C by 

4 j/M) = zj. 

In this limit, jVV(2 converges (formally) to 

t s s WI2 + IP’W12)> 
which is the potential energy for the Wess-Zumino N= 2 Hamiltonian. 
If we denote the corresponding complex fermion field by $, then p(V2V) 
converges as M -+ 00 to 

An important invariant of a supersymmetric quantum theory is its index, 
defined by 

index(D) = dim ker D )u+ - dim ker D 1 H_. (2.4) 

When e-ID2 ’ is trace class for all t > 0, McKean and Singer gave a con- 
venient formula for the index [6]. This will be the case, for the operator of 
(2.2), if V satisfies the assumptions of (0.3), for example, if V is a 
polynomial such that )VVI is a proper map from R“” to itself. 

Before stating the McKean-Singer formula, we need to define the super- 
trace; this is, the linear function on the trace class operators of H given by 

StrA=TrA I,+-TrA lH_. (2.5) 

Adopting the sign superconvention, whereby the transposition of two 
Z,-graded objects engenders an extra minus sign if both objects have odd 
parity, let us define the supercommutator of two operators on H to be 

[A,B]=AoB-(-l)‘A’.‘B’B.A, (2.6) 
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where JAJ is +l if A:H,+H+ and -1 if A:H, -tH+. With this 
definition, the supertrace satisfies the formula 

Str[A, B) = 0. (2.7) 

PROPOSITION 2.1. Zf e - ‘,* is trace class, then 

index(D) = Str e if’Z. 

Proof. It is clear that index(D) = lim,, 5 Str e I’>‘; it remains to be 
shown that Str eetoz ’ IS independent of t. This follows from the calculation 
of the derivative of Str emro2 with respect to I. 

d 
z Stre- ID’ = -Str D*p -lD’ 

z - i Str[D, De t”2] = 0 by (2.7). Q.E.D. 

The index of the operator D can be calculated by using the Atiyah-Singer 
index theorem. However, Witten found a simpler method to obtain the 
following result [9]. 

THEOREM 2.2. The index of the operator D equals the Leray-Schauder 
degree qfVV:R”-+RM. 

Let us check this result for D given in Example 2.1. The operator D has 
kernel spanned by 

,f, = (e ‘(-‘), 0) and f> = (0, eQ’)). (2.8) 

There are three cases to be dealt with: 

(i) if V(x)-+m as jx(+cc, then deg(V’:R-+R)=l, as does 
index(D), since fi is in L2 and f2 is not; 

(ii) if V(x) --t -03 as (xl -+ co, then deg( V’) = index(D) = -1. since 
only ,f-, is in L2; 

(iii) otherwise, neither fi nor f2 are in L2, so index(D) is zero, as, 
obligingly, is deg( V’). 

Using Theorem 2.2, we find that D in Example 2.2 has index equal to 
deg(p’)“, where the degree is now understood to refer to the actual degree 
of the polynomial p’, which is the same thing as its Leray-Schauder degree 
when considered as a map from C to itself. If deg(p’) > I, so that D* Ieads 
to an interacting field theory, then ker D increases in dimension wildly as 
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we take the continuum limit. This indicates that the lattice cutoff is 
somewhat sick for this model. 

Instead of proving Theorem 2.2 in the way that Witten did, we will give 
a heat-kernel proof that makes use of the McKean-Singer formula. We will 
define a measure on the space of continuous loops on R”“, C(S, R”), using 
the operator D2. As is well known, it is sufficient to define such a measure 
on the cylindrical functions, of the form 

F(o)=f,(w(t*))...f,(w(t,)), (2.9) 

where fiE Cz(R”), and O< t, < ... < t, < 1. This presumes, of course, that 
the resulting linear form is bounded; this is automatic for pure bosonic 
theories, since the path integral is positive, but for fermions it is a bigger 
issue. 

Define the expectation of the function F(w) given by (2.7) to be 

Using the Feynman-Kac formula, we will derive a useful alternative 
expression for this integral. 

Let dp be the Brownian measure on C(S, R”); it is defined by a formula 
analogous to (2.10), using the Laplacian d instead of D2, and the trace on 
functions rather than the supertrace on differential forms 

s 

I;(W)d~(w)=Tr[e-“d/Zf,e-(r2--rl)d/2...f,e-(’-’”‘4/2]. (2.11) 

Recall the definition of the path ordered exponential: if 
a(t): [O, 1 ] + End(V) then 

-$ Texpj’a(t)dt=a(s)*Texpj’a(t)df, 
0 0 

with the boundary condition that lim,,, T exp j; a(t) dt = 1. 

PROFYXITION 2.3. The measure dv is finite, and 

22 = Str[Te--Sp(V2y(O(l)))12dr] e-91VV4r))12/2d~. 
& 

(2.12) 

Proof: The formula for dv/dp follows from the Feynman-Kac formula. 
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To show that dv is a finite measure, we observe that Jdv/dpI E 
L”(C(S, R”)). Indeed 

This is bounded by the assumptions that have been made on V in (0.3). 
Q.E.D. 

It follows from Proposition 2.3 and the McKean-Singer formula that 

index(D) = 1 1 dv. (2.13) 

Our plan is to calculate the index of D by finding the weak limit dv, of the 
measures dv, as E + 0, which are obtained from dv by replacing d, by 
EecE 

-‘vcdOe&-‘k’ in (2.10). Since the index of D is unchanged by this 
replacement, the total mass of dvO will be the index of D. 

THEOREM 2.4. Suppose V has nondegenerate critical point x, ,..., x,. Then 
the weak limit qf the measure8 dv, as E -+ 0 is 

dv, = f sgn(V’V(x,)) iT(o(t) -x,). 
l.z=l 

Proof: Let dp, be the measure obtained from the Brownian measure by 
replacing A by e2A in formula (2.11); that is, dpa(W) = dp(Ew). Since 
Idv,/dp,l decreases to zero exponentially fast outside any neighbourhood of 
the set of critical points as E + 0, it follows that the family dv, is precom- 
pact in the space of finite measures on C(S, R”). From Proposition 2.3, it 
is clear that any weak limit of the family dv, must be supported on the set 
of stationary loops at the critical points of V, otherwise a factor of 
e ~n~2~vV(r)IZ’2 can be extracted from Jdv,/dpEi. Thus, we may write 

dv,= f c,s(o(t)-x,), 
IL=1 

for some real numbers c,. 
The numbers c, are local, in the sense that they can only depend on V in 

an arbitrarily small neighbourhood of x,. Given small enough 6 > 0, 
replace V by 

V”(x)=&-’ (x-xX,() V(x) 

+ (1 -fj(6-’ ~x-x,,))(x-xk)~v~v(x,)~(x-xx,)/2, 
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where 4 is a smooth cutoff function equal to 1 near zero and 0 further 
away. We see that dv, is replaced by 

dv; = c,cS(o(t) -x,). 

Thus, ci is the index of the operator D’ obtained by replacing V by Vs in 
(2.3). Sending 6 + 0 does not change the index, so we obtain 

ci = index(dvX + dF%), 

where V, = (x - xK, V’V(x,)(x - x,))/2. 
We will complete the proof by showing that if V is a homogeneous 

quadratic polynomial, then 

index(d, + d$) = sgn(V2 V). 

By diagonalizing V2V, we reduce the calculation to the case in which V is 
the function 1x2/2 on R. We calculated the index of this operator in Exam- 
ple 2.1, where we found that it was indeed equal to the sign of i. Q.E.D. 

Theorem 2.2 is an immediate corollary of this theorem: modifying V if 
necessary while leaving its index fixed, we can assume that it is has no 
degenerate critical points. By Theorem 2.4, the index of D is 
C”, = I sgn(V’V(x,)), which is the definition of the Leray-Schauder degree of 
vv. 

3. THE RELATIONSHIP BETWEEN THE NICOLAI MAP A AND dv 

In this section, we will prove Theorem D of Section 0, which relates the 
Nicolai map A = d/dr + VV to the path integral dv of the last section, by 
showing that A * dtc = dv. By comparing formula (1.6) for A * dK, obtained 
from the change of variables formula for Wiener maps, to Proposition 2.3, 
obtained by applying the Feynman-Kac formula to the path integral for 
the operator D*, we see that this theorem follows from the formula 

Str 7”e-h’(v2Y)d~/2=Z-M det,(n-‘(d/dr+V~V))e-C’~dY(j(‘))df. (3.1) 

To show this equality, we will present a list of axioms which both sides 
satisfy and which characterize them completely. 

Let A be the space of all connections on the trivial complex M-dimen- 
sional vector bundle over the circle; that is, an element of A is an operator 

(3.2) 

where a(t) is a map from the circle to the space of M x A4 complex 
matrices. 



DEGREE OF NICOLAI MAP 135 

A function 4: A -+ C will be called a determinant function if it satisfies 
the following three axioms: 

(a) 4 is holomorphic; 

(b) 4 is gauge invariant - if u(t): S + GL(M), then 

~(u(t)-‘oDou(t))=~(D); 

(c) if a(t) is the constant matrix diag(a,,..., a,), then there is some 
constant such that 

d(D) = c. fi sinh ai/2. 
r=l 

PROPOSITION 3.1. Any two determinant functions corresponding to the 
same constant c are equal. 

Proof1 Since any determinant function is holomorphic, it suffices to 
prove equality for connections for which a(t) is skew-adjoint. But for such 
a connection, there is a gauge transformation transforming djdt + a(t) to a 
constant connection: 

Let Ii= TefAa(r)dt U(M) be the holonomy if the connection, and let 

u(t)= Texp 
s 

’ [log U-a(s)] ds. 
0 

This is a periodic map from to CL(M), and 

u(t)- ’ i 1 i+a(t) u(t)=$+log U. 

Since any two determinant functions which agree for constant connec- 
tions are equal, we see that the constant c characterizes the determinant 
function. Q.E.D. 

Incidentally, from this proof, we see that a determinant function as 
defined above has the most important property that one would want from 
a determinant-namely, if a connection D is not invertible, then its deter- 
minant vanishes. 

We now give three examples of determinant functions. 

(I) The zeta-function determinant: recall that this is defined for D 
invertibly by analytically continuing the zeta-function of D, c,(s) = Tr D- ‘, 
from the domain in which it is initially defined, Re s > 1, to the half-plane 
Re s > -E; the zeta-function determinant is 

&t(D) = e-bc”). (3.3) 
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It is a standard fact that this is a gauge-invariant, holomorphic function of 
D. To show that it is actually a determinant function on A, it only remains 
to calculate det(d/dt + a) when a is the matrix diag(a, ,..., uM), a,C. 

PROPOSITION 3.2. If a = diag(u, ,..., uM), where USE C, then the zetu- 
function determinant of d/dt + a is proportional to ni”= i sinh aif2. 

Proof It is easy to see that d/dt + a has eigenvalues 2nin + ai, n E Z. 
Thus the zeta-function of d/dt + a is c,(s) = CE, l,,(s), where cl(s) is the 
zeta-function 

ii(s) = C (2nin + A) -‘. 
?l‘ZZ 

To calculate [l(O), we differentiate [L(s) with respect to L for Re s large 
and analytically continue to s = 0. We obtain 

-$ c;(s)= 1 (27tin+A)-“-I+ C s*Zn(2nin+A).(n--A)-“-‘. 
PIEZ IIGZ 

Both of these sums are convergent for Re s > 0, so we can calculate the 
limit of the right-hand side as s + 0, taking advantage of the continuity of 
the left-hand side at s = 0. The second of the two sums behaves like s * log s 
as s + 0, do does not contribute to the limit. The first sum may be rewrit- 
ten as 

A-“-‘+ fJ [(27cin+A)-“-‘+(-2nin+l)-“-‘I, 

and this equals 

p-1+ f 
( 

(-27cin+I)“+‘+(2xin+1)“+’ +o(s.logs) 

n=l (4K2n2 + A2)‘+ ’ >I 
Taking the limit S-P 0 gives 

$ C;(O) = 2 -i coth 112. 

The solution of this differential equation is 

c;(O) = log sinh ;1/2 + constant. 

Inserting this into the formula for the zeta-function determinant of d/dt + a 
gives 

det(d/dt + a) = e-c;(O)= fi c . sinh aJ2, 
i=l 

where c is a universal constant independent of M. Q.E.D. 
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(II) The function $(d/dr + a(t)) = Str TePfhp(a(r))‘2dr: it is obvious 
that 4 is gauge invariant and holomorphic, so once more, the nontrivial 
part is to calculate 4(D) for a(t) = diag(a,,..., uM). The matrix ePlpfa)12df 
has eigenvectors ni,, ui E n *RM with eigenvalues ni,, eCn’ ni,, e”‘, where 
I is a subset of {l,..., M}. Adding these up with the correct signs gives 

Str[Te-1 p(a(t))/2)dl] = fi 2 sinh ,3,/z, 
r=l 

(III) The function $(D) = det,(n -‘D) e. ~ ‘3. ftru(f)dr): the easiest 

way to show that this function is a determinant function is to relate it to 
the zeta-function determinant. 

PROPOSITION 3.2. If u(t) is a continuous map from the circle to M x M 
complex matrices, then the zeta-function determinant of djdt + a(t) is propor- 
tional to II/( d/dt + u(t)). 

Proof. It is sufficient to prove the lemma for a(t) real symmetric and 
close to 1, since both quantities under consideration are holomorphic in 
u(t). We will use the following facts about the zeta-function determinant 
(see, e.g., Forman [3]): 

(a) replacing D by the regularized operator A + P,(a(t) - 1) P, 
produces a continuous perturbation of the zeta-function determinant as 
E '0; 

(b) if A is a trace-class pseudodifferential operator, then 

det(D(l +A))=det(D).det(l +A), 

where det(l + A) is the Fredholm determinant of A. 

It follows that 

det(d/dt + u(t)) = fly det(n + P,(u(t) - 1) P,) 

=FmOdet(n)det(l +A-‘(P&a(t)- 1) P,)) 

=det(~I)!m~det,(l +A -‘(P,(a(t)- 1) P,)) 

x liFO exp( -Tr lL~.l A-‘P,(a(t) - 1) P,). 

It is now easy to take the limit E -+ 0. Since A-‘(P,(u(t)- 1) P,) con- 
verges to (1--~ ‘(u(t) - 1) in H,S(t’,‘) as E -+ 0, it follows that 
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det,(l +A-‘(P,(a(z)- 1) P,)) converges to det,(A-‘(d/dt+a(t))). The 
trace in the exponent equals 

Tr ~L~,~A-‘P,(a(t)-l) P,=Tr IL2 (u(f)- 1) P&A-’ 

=A ( 
z2 + 1)-l pr2 

s 
(tr a(t) - N) dt, 

s 

which converges to C. is tr a(t) dt - C. M. Q.E.D. 

From the above discussion, we have learned that formula (3.1) is true up 
to a constant which is independent of V, and hence that dv and A* dx differ 
by this universal constant. Of course, if we wished to, we could calculate 
this constant explicitly, but it must clearly be equal to 1, since when 
V= 1x12/2, the Nicolai map A equals A, so that A* dx equals the Ornstein- 
Uhlenbeck measure d2, while dv defined in Section 2 equals dl essentially 
by definition. In this way, we have proved Theorem D. 

One piece of unfinished business remains: in Section 2, we calculated the 
index of the operator D by calculating the weak limit of a family of 
measures dv, as E -+ 0. In fact, this is precisely the same calculation which is 
required to establish Theorem C, the calculation of the weak limit of 
A* dK,, since in fact dv, = A * drc,, as follows from the results of this section. 
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