
JOURNAL OF FUNCTIONAL ANALYSIS 68, 388403 (1986) 

Degree Theory for Wiener Maps 

EZRA GETZLER* 

Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138 
and Universit6 de Paris-Sud, Or.ray, France 

Communicated by Paul Mailiavin 

Received October 1985 

Degree theory is developed for a class of Wiener maps, as well as a few 
interesting tools, such as partitions of unity and Sard’s theorem. (f” 1986 Academic 

Press. Inc. 

The usual theory for the degree of a map for compact manifolds, has two 
aspects, one geometric, the other coming from the theory of integration. In 
this paper, we will show how, in certain circumstances, both of these view- 
points can be extended to the theory of Wiener maps. (For a brief outline 
of the theory of Wiener maps, see the introduction to Malliavin [12].) 
Thus, we are attempting to implement a piece of the program which was 
begun in the paper of Eells and Elworthy [4]. 

Let J M+ N be a smooth map, where M and N are both n-dimensional 
compact manifolds. In the geometric method of defining the degree of a 
map, we choose a regular value n E N of ,f, which exists by Sard’s theorem, 
and define the degree of/ to be 

deg(f)= c wKJ”)~ 
f(m)=n 

(0.1) 

where sgn(V,j) is the sign of det(V,,J’). (The sum is finite sincef-‘(n) is 
compact and discrete.) It is then proved that this integer is independent of 
the point n chosen, so long as n is regular. From this point of view, it is 
clear that the degree is an integer. 

If w is an n-form on N, then we can also define deg(J) by 

That deg(f) defined in this way is independent of w follows from Stokes’ 
theorem; its equality with the geometrically defined degree comes from 
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Sard’s theorem, which tells us that the integral over N may be restricted to 
the set of regular values off, which is an open subset of N for which f is a 
covering map. 

As an example of the type of map which we would like to extend degree 
theory to, consider the infinite dimensional map Af = df/dt + f ‘, called a 
Nicolai map. If 0 < a < 1, then A is a smooth map from C’(S) to C-‘(S), 
where Cl(S) is the Holder space on the circle S. But Cl(S) is certainly not 
compact, and worse still, A is not proper, so we cannot apply the geometric 
degree theory of Leray and Schauder which generalizes finite dimensional 
degree theory. On the other hand, for u <t, Ca(,S) is a Wiener space for 
the Gaussian measure corresponding to 
js I(d/dt+ l)f 1’. 

If I:,=js IfI’+ If 12= 
S’ mce (d/dt+l)- ‘A:,f+f+(d/dt+1)p’(,f2-f) is a 

smooth Wiener map on C?(S), there is some chance of defining the degree 
of A as the degree of (d/dt + 1))’ A obtained by adapting the integration 
approach to degree---except that we replace n-forms by measures of the 
form f dp, f E L”(c*(S)), in the definition. In this paper, we develop an 
abstract theory which will be applied to the map A, and more general 
examples, in another paper. The technique used is inspired by de Alfaro 
et al. [2]. 

The results that we obtain for nonsmooth Wiener maps are an example 
of a philosophy due to D. Stroock (and, perhaps, to others as well): in 
studying Wiener maps, it is better to work with weak (integrated) quan- 
tities, rather than hoping to make sense of the corresponding strong 
(pointwise) quantities. 

The first section of this paper recalls some results on Wiener spaces that 
are needed later in the paper. Sections 2 and 3 develop some technical 
results that are of interest in their own right-the existence of partitions of 
unity for Wiener spaces, and Sard’s theorem for smooth Wiener maps. 
These results are not completely new, but they do not occur anywhere in 
the literature in the form that we need them. Section 4 applies the results of 
these sections to the definition and study of the degree for Wiener maps. 

A point on notation-by A 5 B, we mean that there is a positive con- 
stant c such that A < cB. Likewise, A -Bmeans that ALBand BLA. 

I would like to thank P. Malliavin for discussions that were helpful in 
writing Section 2. 

1. WIENER SPACES 

If B is a separable Banach space, then a Gaussian measure on B is a 
finite Bore1 measure dp on B that satisfies 

I 

eix(x) d&) = e w/2, where a E B*, (1.1) 
B 
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for some bounded inner product ( , ) on B* called the covariance of the 
measure. We say that (B, &) is a Wiener space. 

A measurable function on B that only depends on a finite number of 
linear forms (EWE B* 11 <i< n}, so that f(x) =f(cr,(x),..., a,(x)) for some 
measurable function f on R”, is called a cylindrical function. If f lies in 
C;(R”), then by the Fourier inversion formula, 

s f(&(X),..., 
l3 

where A, is the matrix inverse of the n x n matrix (A l)ii = (tl,, a,). Since 
cylindrical functions generate the Bore1 o-algebra of B, it follows 
immediately that the measure LIP is positive, and thus is a probability 
measure. 

The following proposition shows that there is a plentiful supply of 
integrable functions on B if it carries a Gaussian measure. The proof may 
be found in Fernique [S]. 

PROPOSITION 1.1. There exists a number c1> 0 such that 

If B is a Wiener space, then the tautological injection of B* into L*(B) is 
an isometry if B* is given the pre-Hilbert topology defined by the inner 
product ( , ): 

I 14x)12 4-4x) = (6 a). (1.3) B 

We will denote the closure of the image of B* in L2(B) by N. The space H 
is a Hilbert space which may be thought of as a dense subspace of B using 
the adjoint of the injection of B* into H. The injection I: H + B determines 
the inner product ( , ) on B* and hence the Gaussian measure LIP. 

If H is a Hilbert space, then its nth symmetric power S’H is the closed 
subspace of its nth Hilbert tenor product spanned by the vectors 

The inner product on S’H is completely determined by 

(1.4) 

(lr, w”) = (0, w)‘! for v,w~H. (1.5) 
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It is possible to develop a differential calculus for functions on B. The 
main difference between this calculus and the finite-dimensional calculus is 
that derivatives are only taken along tangent vectors in H c B. Thus, V” 
will be an unbounded operator 

V”: Lp( B; G) + L”(B; G @ YH). (1.6) 

If S(P yx) is a cylinder function, where f E CF( V) and P, is the 
orthogonal projection from B onto a finite-dimensional space Vc B*, then 
it is easy to see what V"f must be: 

V"f = (V’~)(P,,X)E W”(B; SnV)c W”(B; YH). (1.7) 

We can now define the number (or Ornstein-Uhlenbeck) operator N to 
be the self-adjoint operator equal to V*V. In finite dimensions, N is the 
operator -8 +x . a, which is unitarily equivalent to the harmonic 
oscillator acting on L*(R”, dx): 

eplxl2/4( -a* + x. a) el+4 = -a* + lx]*/4 - n/2. Cl.81 

The number operator is used to define the Sobolev spaces on B. If s 3 0 
and 1 < p < co, let LP-“(B) be the domain of (1 + N)““: L”(B) + LP(B). (If 
p = 1 or p = co, we could define the Sobolev spaces LP,“(B), but they are 
not useful.) Similarly, if G is a Hilbert space, we can define the Sobolev 
spaces LP3”(B; G). Malliavin’s spaces W’(B) are the Frechet spaces defined 
by 

W(B) = n LP,“(B). (1.9) 
1<p<z 

Unlike in finite dimensions, there is no analog of Sobolev’s lemma for 
Wiener spaces; the space W”(B) contains many discontinuous functions. 

The fundamental inequalities for the derivative operator are analogs of 
the singular integral estimates of Euclidean harmonic analysis. They are 
due to Meyer [13]: if 1 < p < cc and n is an integer, then for some 
C(P, a) > 0, 

/W’2fI/p- IlYf II,,. (1.10) 

Using this, we see that V" extends to a bounded operator from 
Lp,’ + “( B; G) to Lp,“( B; G @ S”H), for s 3 0. 

We will also need the adjoint of the operator V, delined by 

j 
B 

PA g)&= jBf .V*g& 

for f~ W”(B)andgE W”(B; H). (1.11) 
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In finite dimensions, V* is the operator V*(f, dxi) = -a,f, + x,fi. In Krte 
[S], it is proved that V* is bounded from LP’“+‘(B; GO H) to LPzS(B; G). 

Using the heat kernel of the Ornstein-Uhlenbeck operator, it is possible 
to produce W” functions, as in finite dimensions. This technique goes back 
to Goodman [6]. 

PROPOSITION 1.2. If P,, t > 0, denotes the operator e-IN on L2(B), then 
P, is bounded from LP(B) to Lp3”( B), for 1 < p < co. 

Proof. It is sufficient to prove that P, is bounded from LP(B) to 
Lp32”(B) for all n > 0. By Mayer’s inequality, the norm l/N”f 11 p is a norm 
defining the topology of L p,2n B ( ). Since N” 0 P, is bounded on Lp( B) for all 
t > 0, it follows that 11 N” 0 P, f 11 p 5 /If 11 p. Q.E.D. 

There is an explicit formula for P,f in terms of integration with respect 
to dp: 

P,ftxJ=~Bf(emrx+(l -ep2') Y)&(Y). (1.12) 

This is proved by checking it for functions of the form e’(“), a E B*, for 
which it reduces to a one dimensional integral. This formula has the follow- 
ing important consequence. 

PROPOSITION 1.3. If f is a bounded Lipschitz function on B, then P, f con- 
verges uniformly to f as t -+ 0. 

Proof If x E B, we have 

I.f.(x)-p,f(x)l~?rRCf(x)-fle 'x-(l-e~ *'I Y)I~~Y) 

-7 llxll + (1 -ep20 JB IIYII &] 

< O(t) Lip(f ). Q.E.D. 

We now state a martingale convergence theorem in the form in which it 
will be used later. Let V, be an increasing flag of subspaces of B*, that is, 
dim V, = n and the union of the spaces V, is dense in H. Let P, be the 
orthogonal projection from B onto I/,,, and let Z, be the a-field obtained 
by pulling back the Bore1 field of V, by P,. The conditional expectation 
operator E, is defined to be the conditional expectation for the C-field 
C,-it is just integration over the finite codimension space orthogonal to 
V,. Since E, f is a martingale for ,fe L’( B; G), we obtain the following 
useful result: 

PROPOSITION 1.4. If f E L’( B; G), then E, f converges to f a.e. as n + co. 
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2. CAPACITIES AND PARTITIONS OF UNITY 

To explain the purpose of capacities, recall Egorov’s theorem: Iffis an 
integrable function on R”, then for each E>O, there is a set A with 
Lebesgue measure less than E such that f is continuous on A”. 

Thus, Lebesgue measure gives a gauge of the size of the set on whichf is 
irregular in the sense of not being continuous. If f is in the Sobolev space 
Lp,k(R”), then we expect that there should be some finer measure of the size 
of the set of singularities off, called (p, k)-capacity; for example, if k > n/p, 
then f is continuous, so even a single point will have positive (p, k)- 
capacity. 

In studying W”-functions on Wiener spaces, the use of capacities is a 
vital tool, since W”-functions are not continuous, unlike in finite dimen- 
sions. The use of capacities was first introduced in this context by 
Malliavin [ 121. 

The capacity of an open set U with respect to the Banach space J~“,~(B), 
k 3 0, is 

cap,,~(U)=inf{IIfI/,,If~ W=(B),f>l a.e.on Uandf>Oa.e.}. (2.1) 

It is immediate from this definition that cap,,, is subadditive: 

capp,k( u” v) 6 capp,k( u, + cai$,k( v). (2.2) 

The definition of cap,, is extended to all subsets of B by 

capp,k(A ) = j;‘, capp,k( u). (2.3) 

PROPOSITION 2.1. If f~ Lp,k(B), there is an open set A with 
cap,,,,(A) < E such that f is continuous on A”. 

Proof: Let f, be a sequence of smooth cylinder functions converging in 
Lp,?B) to.f, such that IIfi,-f,+,Ilp.k<8~n. If Un={Ifn-fnfII~2~~"}, 
then 

capp/2,k(Un)d4” I~(fkfn+1)211 pi2.k 

s4" ilfn-fn+ltlp,k 

5 2 -‘I. 

Setting A, = un> ,,, U,, we see that capp,2,k(AN) 5 2 N, and it is clear that f 
is continuous on (AN)C, since the sequence f, converges uniformly on this 
set. Q.E.D. 

The following result often enables us to treat B as if it were locally com- 
pact. It is a generalization of a result of Kusuoka [lo]. 
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PROPOSITION 2.2. Given p, k and c > 0, there is a compact subset K of B 
such that cap,,(K) 6 E. 

Proof: We need a result of Gross [7] (see also Kusuoka [lo]), that for 
every Wiener space B, there is a Banach space E and a compact inclusion 
of E in B, such that the measure of B\E is zero. The space thus constructed 
has the property that Vk( ilxllE) is bounded on the set llxljE3 1, for all 
k> 1. 

Let q5 be a smooth decreasing function on R, such that d(t) = 0 for t d 4 
and d(O) = 1 for t >, 1. If we let f,(x) = @(n ’ llxl/ E), thenJ, 3 1 on E,,, the 
ball of radius n in E, which is compact in B, so 

capp,k(E,) G 11 fn /I p,k 

It is easy to show, by repeated application of Leibniz’s rule, that lifnllp,k 
converges to zero as n + co. Q.E.D. 

Although cap,, is not a-additive, it has the following important con- 
tinuity property. 

PROPOSITION 2.3. If F,, c B is a decreasing sequence of closed sets, then 

= lim cap,,k(F,). 
II - 2’ 

Proof: By Proposition 2.2, it is sufficient to prove this result when all of 
the sets F,, are compact. Let the intersection of the sets F, be called F, and 
choose f E W”(B) in such a way that 

f>la.e.onF, f > 0 a.e., and IIf I/p,k 6 Cap,,(F) + 6. 

Let A be an open set with cap,,,(A) d E such that f is continuous on A’. 
Since the sets F,, are compact, it follows that 

lim inf{f(x)IxEF,\A} = 1. 
n-m 

By the definition of capacity, it follows that 

lim cap,,( F,,) < lim cap,,( F,\A ) + E 
n-CL ,I - s 

d lim sup{f(x)-'lxEFn\A) IlflI p,k+E 
n-r: 

= Cap,,,(F) + 2E. 

Since E was arbitrary, this proves the result. Q.E.D. 
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The following technical result is very useful. 

PROPOSITION 2.4. For any pair (p, k), there is a constant c such that if A 
is a subset of B, there is a W”-function f such that 

(a) O<f< 1, 
(b) f=O on A, 

(c) 11 1 -f-II p.k G c caP,,#). 

Proof: Let g be a positive W”-function such that g 3 1 on A and 
II gll kp k < 2 cap&,,(A). Then f = d(g) is the sought after function, where 4 
is the‘function used in the proof of Proposition 2.2. Q.E.D. 

In differential geometry, a major tool is the existence of partitions of 
unity. Unfortunately, since Wiener spaces are not locally compact, W” 
partitions of unity do not exist in general; we must settle for a weak form 
of the partition of unity. Although this result will not be used elsewhere in 
this paper, it is included since it is of interest in its own right. 

PROPOSITION 2.5. If {U,) . IS an open cover of B by balls, then for any p, 
k and E > 0, there is a finite set of positive W”-functions (f, ,..., f,} sub- 
ordinate to the cover such that 

Proqfi By Propositions 2.2, there is a compact set K such that 
cap,,(K”) d E. Since K is compact, it is covered by a finite number of balls 
iu 1 >..., un>. 

Choose a refinement {Vi} of the cover ( Uj} of K such that 
d( V,, (U,)‘) > 0. Let g, be a Lipschitz function on Ui such that 0 < gj < 1 
and gi[ Vi] = 1. By Propositions 1.4 and 1.5, the function P, g, is W” for 
any t > 0, and P, g, converges uniformly to gi as t + 0. Since Pin K and 
(U,)’ n K are compact, they are separated by P, g, for t small enough: there 
exist s, < s2 such that 

p,gi<sl on (Ui)“nK 

and 

p, g, 3 s2 on P,nK. 

Now choose a smooth increasing function 4 on R + such that 4 = 0 on 
[0, s,] and d= 1 on [s,, co). It is easy to see that the function 
ki = $(P, g,) E W”‘(B) is supported on Ui, equals 1 on Vi, and lies between 
0 and 1. 
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By Proposition 2.4, there exists a W”-function q such that 0 <q < 1, 
q = 0 on K“, and 11qj1 p,k d c. E. The function fj of the partition of unity is 
defined to be 

f,=h,(l -q)(zhi)-‘. Q.E.D. 

3. SARD'S THEOREM AND THE PULLBACK OF MEASURES 

To generalize the notion of a differentiable map to Wiener spaces, one 
works with Wiener maps. These are maps from B to itself of the form 1 + F, 
where FE W’(B; H). As we saw in the last section, Wiener maps need not 
be continuous. On the other hand, Wiener maps have many nice proper- 
ties. The space HO H is isometric with HS(H), the space of Hilbert- 
Schmidt operators on I?, by the map sending v@ w to u(w, . ). The tangent 
map in the H directions of a Wiener map 1 + F has the form 1 + V,F at a 
point x, so lies in 1 + HS(H). In particular, it is a Fredholm operator; thus, 
the theory of Wiener maps bears some analogies to Smale’s theory of 
Fredholm maps (Smale [ 151). 

We say that 1 + F is a smooth Wiener map from B to H if F is in 
C”(B; H). The following result (of which a proof may be found in Gross 
[7]) shows that F is automatically in W,‘,,( B; H). Thus 1 + F really is a 
Wiener map, at least locally. 

PROPOSITION 3.1. There is a bounded map from L( B, H) to HS( H), the 
space of Hilbert-Schmidt operators on H, given by restriction to H, and if 
A E L(B, H), then the following inequality holds: 

1 
I/2 

IIA II 2 G llxll; &L(x) IIAIIB,H. 

The main impediment to a general theory of Wiener maps is that there is 
no substitute for the implicit function theorem when F is not assumed to be 
continuously differentiable (although for certain Wiener maps, such as the 
solutions to certain stochastic differential equations, one may construct 
inverse maps explicitly,) Thus, although we will define the degree of a 
Wiener map in a rather general setting in the next section, we can only give 
it a point-by-point geometrical interpretation if F is smooth using the 
following theorem. 

THEOREM 3.2 (Sard’s theorem). Let 1 + F be a smooth Wiener map. The 
set of critical values of 1 + F, that is, the set of points y E B such that there is 
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a solution of x + Fx = y such that 1 + V,F is not invertible, has measure 
zero. 

As in the finite-dimensional theory, this result is used to define the 
pullback of the Gausian measure dp by a smooth Wiener map 1 + F, by the 
following formula (f is a bounded continuous function on B): 

~Bf04~+F)*fi=~B c sgn(l+V.,F).f(x)dlt(y). (3.1) 
.Y + Fx = > 

Sard’s theorem shows that the integral on the right may be taken over the 
complement of the singular values of 1 + F. Whether or not a particular f 
will be integrable with respect to d( 1 + F)* p is something which depends 
on 1 + F, but certainly if f is supported on a set on which I + F is inver- 
tible, then it will be integrable. 

We will now state a formula for d( 1 + F)* p/dp due to Ramer [ 141. Con- 
sider first the finite-dimensional case. By the usual change of variables for- 
mula, we have 

d(l+F)*p 
& 

= det( 1 + VF) . e (r,Fy) 1W*/2, (3.2) 

To generalize this to infinite dimensions, we have to rearrange the factors 
in the formula such that each makes sense in infinite dimensions. First of 
all, instead of the determinant, we use the function det,, which is a con- 
tinuous function 

det,: 1 + HS(H) -+ R (3.3) 

defined for operators of the form 1 + A, A of finite rank, by 

det,(l +A)=det(l +A).emrrA 

=exp C 
i 

x (-I)“+‘TrA” 
,I = 2 n I 

(3.4) 

and extended by continuity to all of 1 + HS(H) (Dunford and Schwartz 
[3]). It is useful to observe that det,( 1 + A) = 0 if and only if 1 + A is not 
invertible. If 1 + A is invertible, we will denote the sign of det,(l + A) by 
sgn(1 + A). 

The following determinant inequalities (Dunford and Schwartz [3]) will 
be useful later: 

det,( 1 + A) < e’ia’1i’2 

and (3.5) 

\I(1 +A)-‘11 det,(l +A)6e’lA11i+‘. 
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Substituting det, for det in the finite dimensional change of variables for- 
mula gives 

d(l+F)*p 
=det,(l +VF)-e ~ ((\.,Et) - Tr(VF)) ~ J,Y#/2 

& 
(3.6) 

The term (x, Fx)- Tr(VF) has a natural generalization to infinite 
dimensions-it is just V* F. If FE W’(B; H), then by Meyer’s inequality, 
V* FE w(B). (But beware that V* F need not be continuous, even if F is 
smooth.) 

Motivated by this discussion, we can state the change of variables for- 
mula. 

THEOREM 3.3. If 1 + F is a smooth Wiener map, then 

d(l +--I* ’ = d(F), where &F)=det,(l +VF)ePv”-iF”12’2. 

In particular, d( 1 + F)* p is absolute/y continuous with respect to dp. 

This theorem strongly suggests that one should define the pullback of dp 
for a general Wiener map to be 6(F) dp. This no longer has any geometric 
significance, unless 1 + F satisfies some kind of inverse function theorem. 

We now turn to the proofs of Theorems 3.2 and 3.3. Theorem 3.3 was 
proved for invertible smooth Wiener maps by Ramer in his important 
paper (Ramer [ 14]), extending an earlier result of Kuo [9]; this was later 
generalized in Kusuoka [ll]. Once Sard’s theorem is proved, it follows 
that d( 1 + F)* p gives measure zero to the singular set (6(F) = O}. Since on 
the regular set 1 + F is locally invertible (here we use that it is smooth), 
Theorem 3.3 follows from Ramer’s result and Theorem 3.2. 

The proof of Sard’s theorem that we will give is modelled on Smale’s 
proof of an analogous result for Fredholm maps: the set of critical values of 
a Fredholm map is residual. First we need an auxilliary result. 

LEMMA 3.4. If 1 + F is a smooth Wiener map and x E B, then there is a 
neighbourhood U of x, and an invertible smooth Wiener map 4: U + B, such 
that 1 + F = (1 + K) 0 4; here, V is a finite dimensional subspace of B* and 
K: q5[ U] + V is smooth. 

Proof. Let W be the image of 1 + V,F considered as a bounded linear 
operator on B. Since 1 +V,F is Fredholm, W is a closed, finite codimen- 
sion, subspace of B. Let V c B* be the orthogonal complement of W, and 
let Pcci be orthogonal projection from B to W. 

The composition Pwo (1 + F) is a submersion in a small neighborhood 
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of x, so by the implicit function theorem, there is a neighborhood U of x 
and a change of variables 4: U -+ B such that 

It is clear that d is a Wiener map, since if y E U, then 

d(Y) - Y = Pw(d(Y) - Y) + (1 - Pw)(4(Y) - v) 

= PwF(Y) + (1 - P,)(Kv) - Y) E H. Q.E.D. 

Armed with this result, it is simple to prove Theorem 3.2 from the finite 
dimensional Sard’s theorem. Since B is Lindelof, it can be covered by a 
countable number of open sets U on which 1 + F has the representation 
(1 + K) 0 4. Thus the critical values of 1 + F restricted to the set U are the 
same as the set of critical values of 1 + K on the set d[ U], which equals 

S= {(u + K(u, w), w) 1 1 + VK( ., u)) is not invertible when restricted to V}. 

The Gaussian measure tip equals the product of the Gaussian measures 
dpvx&vl, and for each w E W, the critical values of 1 + K( ., w) have dpv 
measure zero by Sard’s theorem. It follows from Fubini’s theorem that S 
has measure zero. 

The set of critical values of 1 + F is the countable union of sets of the 
form S, so has measure zero by countable additivity. This completes the 
proof of Theorem 3.2. 

4. DEGREE THEORY FOR WIENER MAPS 

Motivated by the theory of degree in the compact finite-dimensional 
case, we define the degree of a Wiener map 1 + F to be 

deg(1 +F)=j 1 d(1 +F)*p. (4.1) 
B 

In order to prove anything about the degree of F, we will assume that F is 
a member of W*(B; H) satisfying 

6(F), 11(1 +VF))‘II MEL’+” for some E > 0. (4.2) 

There is a straightforward condition that implies that (4.2) is true: 

,llvFll:- V’F- I#+/2 E Ll +“(B), 
(4.3) 
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LEMMA 4.1. Given v E B*, define the operator T, by 

T,.f =(v, (1 +VF))‘Vf). 

If 1 + F is a Wiener map sati.$ving (4.2) and f’ E W”(B), then 

j- T,.f.d(l+F)*~=SR,l(I)(v,I+F,~)d(l+F)*~. 
B 

Proof: The idea of the proof is to approximate F by smooth cylinder 
maps, using the results on conditional expectations proved in Section 1. 

Let FH be the function P,E,F. The proof of Proposition 2.1 shows that 
given p < 00 and E >O, there is a set A with cap,,(A) <E such that F,,, 
VF,, and V*FH converge uniformly on A’ to the p, l-functions F, VF, and 
V*F, respectively. In particular, on A’, the functions F, VF, and V*F are 
bounded, and d(F,,) converges to 6(F) uniformly. 

By Proposition 2.4, there exists a W”-function 4 which is zero on A and 
such that increasing E a little, 

cap,l(swp( 1 - 4)) < E and II 1 - dll p.1 < E. 

Multiplying f by 4, we can assume that F,, VF,,, and V*F,, converge 
uniformly on the support off: Once established for such a function f, the 
result follows for all f by letting E + 0. 

All that remains to be done is an integration by parts: 

s T,.fd(l + F)* p 
B 

(u, (1 + VF,) ~ ’ VF,) det( 1 + VF,) e ~ IFnX’2i2-- ‘IJG) dp 

= lim s f .V*&F,,)((l +VF,)-‘)* u dp. 
n--to0 B 

The divergence of 6(Fn)( (1 + Vl;,) ~ ‘)* v is easily calculated, since F, has 
finite rank and is smooth, and we obtain 

V*&F,)((l +VF,)-‘)* u 

=(-(u, (1 +VF,,)‘Vln@F,))+(v, (1 +VF,)--lx) 

- Tr(V,( 1 + VFn)-I)) d(F,) 

= (u, x + F,,x) 6(F,). Q.E.D. 



DEGREE THEORY FOR WIENER MAPS 401 

This lemma gives us everything that we need to show that the degree 
satisfies the analog of (0.2). 

THEOREM 4.2. For all f E L”(B), 

?*,(l +F)*Fd(l +F)*p=deg(l +F)jBfdp. 

Proqf: We start by proving the result for the exponential function 
f,(x) = eir(o.r), u E B*. Let g,(x) = (1 + F)* f,(x) = e”‘“++ EX). Applying T, to 
g,(x), we have 

TV g,(x) = (u, (1 + VF)-’ Veir(“,‘+ Fr)) 

= it 1u12 g,(x) 

so that Lemma 4.1 gives 

;, g,(x)d(l+F)*~=irII:12j g,(x)d(l+F)*p. 
E E 

It follows that 

s g,(x) d( 1 + F)* p = ,-+“*‘* g,(x) d( 1 + F)* p 
B s B 

= I eir(‘,‘) dp . deg( 1 + F). 
B 

We can now extend this formula to any smooth cylinder function 
f(Pyx), f~ P( I’), where V is any finite dimensional subspace of B*, by 
using the Fourier representation off: 

I (l+F)*fd(l+F)*~ 
B 

= (27~)“‘~ j,.f(u) jB (1 + F)* ei(“,X)d( 1 + F)* p dv 

=(2n)--““J‘,no)e~i’.‘*‘2du.deg(l + F) 

= s Bf(PI..x) dp.deg(l + F). 

To extend the formula to all f E L”(B), we approximatef by a sequence 
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of uniformly bounded smooth cylinder functions converging pointwise a.e. 
tof: The result follows by the dominated convergence theorem. Q.E.D. 

For a smooth Wiener map, the pullback has a geometric meaning 
expressed in (3.1). Thus we may interpret the degree geometrically, 
generalizing the definition of degree for compact manifolds given in for- 
mula (0.1). 

THEOREM 4.3. Zf F is a smooth Wiener map satisfying (4.2), then for a.e. 
YE& 

deg(1 + F)= c sgn(l +V,F). 
r: t F1- = j 

In particular, degf 1 + F) is an integer. 

Proof: We partition B into disjoint measurable sets: 
B,,, i, j E iY, is the set of y E B which are regular values of 1 + F, for which 

x + Fx = y has i solutions with sgn( 1 + V,F) = + 1, and j solutions with 
sgn(1 +V,F)= -1; 

B, is the set of y E B such that y is a singular value of 1 + F or 
x + Fx = y has an infinite number of solutions. 

Since A( 1 + F)* /A has finite mass, the set B, must have zero measure. 
We will show that B,, has zero measure unless (i-j) = deg( 1 + F). 

Let xii be the characteristic function of the set B,. By formula (4.1), we 
have 

J” 
B 

(1 +F)* x,-41 +F)* p=IB,, (i-j) 4. 

But by Theorem 4.2, the left-hand side equals 

deg( 1 + F) . lB x,~ d,u = deg( 1 + F) I,,, 1 dp. 

Equating these two expressions gives the result. Q.E.D. 

We would now like to show that the degree is an integer for nonsmooth 
Wiener maps. We will have to content ourselves with the following result, 
which is obtained by a method remeniscent of Cruzeiro [ 11. (I do not 
know if the degree is an integer in general.) 

Consider the class of Wiener maps 1 + F satisfying 
,llw:+ Iv*4 EL’ +e for some E > 0. (4.4) 

From the determinant inequality (3.5), we see that F must satisfy (4.2), and 
we can define the degree of 1 + F by (4.1). 

THEOREM 4.4. Under assumption (4.4), deg( 1 + F) is an integer. 



DEGREE THEORY FOR WIENER MAPS 403 

Proof. Jensen’s inequality tells us that the sequence F,, defined in the 
proof of Lemma 4.1 satisfies (4.4) uniformly in n, so that 6(F,) is uniformly 
bounded in L’+‘(B). By the martingale convergence theorem, the mar- 
tingales VF, = EJVF) and V*F,, = E,,(V*F) converge a.e. to VF and V*F. It 
follows that 6(F,) converges a.e. to 6(F). 

Since h(F,) is uniformly bounded in L’+“(B), we can conclude that 

= lim deg( 1 + F,) 1 1 dp. 
n+5 B 

We see that deg( 1 + F) is the limit of the sequence of integers deg( 1 + F,). 
Thus deg( 1 + F) = deg( 1 + F,) for large enough n, proving the theorem. 

Q.E.D. 
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