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Abstract
Using Gerstenhaber’s deformation theory, we develop an analogue of the Poisson

bracket for foliations associated to pre-symplectic manifolds. Our motivation for
this is to understand better the algebra of Fourier integral operators associated to a

coisotropic submanifold of the cotangent bundle by Guillemin, Sternberg and Uribe.

In this article, we will discuss a non-commutative analogue of the Poisson bracket
for symplectic manifolds; we are motivated by the problem of finding a generaliza-
tion of the symbol calculus for pseudodifferential operators associated to the alge-
bras of Fourier integral operators discussed by Guillemin-Sternberg4 and Guillemin-
Uribe5. Another motivation is to justify by some examples the following definition
of Poisson structures in non-commutative geometry, which has been independently
considered by Ping9. This definition will be explained in the first section, using
Gerstenhaber’s deformation theory2.

Definition. A Poisson structure on a (posssibly non-commutative) algebra A is a
two-cocycle P ∈ Z2(A,A) such that P ◦ P is a three-coboundary.

Let M be a presymplectic manifold, that is, a manifold which carries a closed two-
form of constant rank. This differential form defines a foliation F of the manifold,
and we will study a Poisson structure on the convolution algebra of this foliation.
This two-cocycle will depend on the presymplectic structure and on another piece
of data which we call a Haar form. In this article, we only prove that P ◦ P is a
coboundary when there is an invariant connection on the bundle τ = TM/F ; we
will discuss the general case in another article.

Contact manifolds form an important class of presymplectic manifolds, where the
kernel of the presymplectic form has dimension one. This case is simpler, because
one may work with the crossed product algebra associated to the contact flow.
Furthermore, there is a natural Haar form, namely the contact form. We study the



case of contact manifolds in the second section: it is already of interest, since it
includes the case of geodesic flow on a Riemannian manifold.

We are extremely grateful to Steven Zelditch, who proposed the question which
led to this work.

1. Poisson Structures on Non-commutative Algebras

Recall that a Poisson algebra is a commutative algebra A with Lie algebra
structure {a1, a2}, such that

{a1, a2a3} = {a1, a2}a3 + a2{a1, a3}.

The last term of this equation reverses the order of a1 and a2, which means that
it cannot be used as it stands to define a Poisson structure on a non-commutative
algebra. In this section, we will explain how the correct notion of a Poisson structure
on a non-commutative algebra is given by a two-cocycle P on A such that P ◦ P is
a three-coboundary on A. The fact that P is a two-cocycle is the analogue of the
Jacobi rule, while the fact that P ◦ P is a boundary is the analogue of Leibniz’s
rule. In this section, we will explain these formulas, which come from Gerstenhaber’s
deformation theory2.

If A is an algebra, the space of Hochschild k-cochains on A is the complex
Ck(A,A) = Hom(A⊗k, A), with differential δ given by the formula

(δc)(a1, . . . , ak+1) = a1c(a2, . . . , ak+1)

+
k∑

i=1

(−1)ic(a1, . . . , aiai+1, . . . , ak+1) + (−1)k+1c(a1, . . . , ak)ak+1.

The cohomology of δ is called the Hochschild cohomology H•(A,A) of A. For
example, H0(A,A) is just the centre Z(A) of A, while H1(A,A) is the space
Out(A) = Der(A)/ Inn(A) of outer derivations of A.

The Hochschild cohomology of A carries a graded Lie bracket discovered by
Gerstenhaber. Define an operation Ck(A,A) ⊗ Cl(A,A) −→ Ck+l−1(A,A) by the
formula

c1 ◦ c2(a1, . . . , ak+l−1)

=
k−1∑
i=0

(−1)(k−i−1)(l−1)c1(a1, . . . , ai, c2(ai+1, . . . , ai+l), ai+l+1, . . . , ak+l−1)

for c1 ∈ Ck(A,A) and c2 ∈ Cl(A,A). Define the Gerstenhaber bracket

[c1, c2] = c1 ◦ c2 − (−1)(k−1)(l−1)c2 ◦ c1.



This may be shown to define a graded Lie algebra structure on C•+1(A,A) which
descends to the Hochschild cohomology H•+1(A,A).

Let m ∈ C2(A,A) be a two-cochain on A. The three-cochain m ◦m is given by
the formula

(m ◦m)(a1, a2, a3) = m(a1,m(a2, a3))−m(m(a1, a2), a3),

from which we see that that m defines an associative product on A if and only if
m ◦m = 0. If m is the two-cochain corresponding to the product on A, then δc is
given by the formula δc = [m, c].

A formal deformation of an algebra A is an associative product on the vector
space A[[ν]] over C[[ν]] such that the induced product on A = A[[ν]]/νA[[ν]] is the
product of A. Such a deformation may be described by a cochain

m =
∞∑

i=0

νimi ∈ C2(A,A)[[ν]]

such that
(1) m ◦m = 0, that is, m(m(a1, a2), a3) = m(a1,m(a2, a3)), and
(2) m0(a1, a2) = a1a2.

The above conditions for m is a formal deformation may be rewritten as

m0 ◦mk + m1 ◦mk−1 + · · ·+ mk−1 ◦m1 + mk ◦m0 = 0.

For k = 1, this equation says that m1 is a Hochschild two-cocycle, while for k = 2,
we see that

δm2 + m1 ◦m1 = 0,

so that the cocycle m1 ◦ m1 is a coboundary. Motivated by this, we make the
following definition.

Definition 1.1. A Poisson structure on an algebra A is a two-cocycle P ∈
Z2(A,A) such that P ◦ P ∈ B3(A,A) ⊂ Z3(A,A) is a three-coboundary.

If A has a Poisson structure P , its Hochschild cohomology H•(A,A) carries a
differential

δP c = [P, c].

Indeed, δP δP c = [P, [P, c]] = [P ◦ P, c] = 0. Furthermore, δP satisfies the equation

δP [c1, c2] = [δP c1, c2] + (−1)|c1|−1[c1, δP c2].

The following observation is due to Drinfeld; we will not make use of it, but it shows
a relationship between Poisson structures and commutative Poisson algebras.



Proposition 1.2. If P ∈ Z2(A,A) is a Poisson structure on an algebra A, the
centre Z(A) of A is a Poisson algebra, with Poisson bracket

{a1, a2} = P (a1, a2)− P (a2, a1).

Proof. We define a Poisson bracket on the centre Z(A) = H0(A,A) of A by the
formula

{a1, a2} = [a1, δP a2],

which once more lies in H0(A,A). Let us check that this equals P (a1, a2)−P (a2, a1):

[a1, δP a2] = −(P ◦ a2) ◦ a1 = −P (a2, ·) ◦ a1 + P (·, a2) ◦ a1

= P (a1, a2)− P (a2, a1).

This shows that the Poisson bracket is antisymmetric. To check that it satisfies the
Jacobi rule, we observe that m(a1, a2) = a1a2 + νp(a1, a2) is an associative product
on A[[ν]]/(ν2). Then

{a1, a2} ∼= m(a1, a2)−m(a1, a2) (mod ν2),

and the Jacobi rule is satisfied by a commutator.
Finally, the Poisson bracket satisfies Leibniz’s rule because the Gerstenhaber

bracket [·, ·] does,

{a1, a2a3} = [a1, δP (a2a3)] = [a1, (δP a2)a3] + [a1, a2(δP a3)]

= {a1, a2}a3 + a2{a1, a3}. �

Next, we consider the case where A is an algebra over C with anti-involution ∗.
This induces an involution on C•(A,A), given by the formula

c∗(a1, . . . , ak) = (−1)k(k−1)/2c(a∗k, . . . , a∗1)
∗.

(The sign is just the parity of the permutation
(
1...k
k...1

)
.) The two-cochain m ∈

C2(A,A) associated to an associative ∗-product (a1, a2) 7→ a1a2 satisfies the equa-
tion

m(a∗1, a
∗
2) = m(a2, a1)∗,

in other words, m∗ = −m.



Lemma 1.3. If c1 ∈ Ck(A,A) and c2 ∈ Cl(A,A), then (c1 ◦ c2)∗ = c∗1 ◦ c∗2.

Proof.

(c∗1 ◦ c∗2)
∗(a1, . . . , ak+l−1) = (−1)(k+l−1)(k+l−2)/2

k−1∑
i=0

(−1)(k−i−1)(l−1)

c∗1(a
∗
k+l−1, . . . , a

∗
k+l−i, c

∗
2(a

∗
k+l−i−1, . . . , a

∗
k−i)

∗, a∗k−i−1, . . . , a
∗
1)
∗

=
k−1∑
i=0

(−1)i(l−1)c1(a1, . . . , ak−i−1, c2(ak−i, . . . , ak+l−i−1), ak+l−i, . . . , ak+l−1).

Replacing i by k − i− 1, we obtain the result. �

This lemma shows that [c1, c2]∗ = [c∗1, c
∗
2], and hence that

δc∗ = [m, c∗] = [m∗, c]∗ = −(δc)∗.

In defining a deformation of an associative ∗-product, we will suppose that it
remains a ∗-product with respect to the ∗-operation on A[[ν]] given by the formula

( ∞∑
i=0

νiai

)∗
=

∞∑
i=0

(−ν)ia∗i .

This amounts to requiring that m∗
i = (−1)i+1mi, and motivates the following defi-

nition.

Definition 1.4. A Poisson structure P on a ∗-algebra is a Poisson structure P on
the underlying algebra such that P ∗ = P .

2. Contact Structures

To the contact flow on a contact manifold is naturally associated a crossed-
product algebra C∞

c (M) o R. In this section, we define a natural two-cocycle P
on this algebra, and study the question of when this cocycle defines a Poisson
structure, that is, when P ◦ P is a three-coboundary on C∞

c (M) o R. This turns
out to be a difficult problem, since it requires one to have a good understanding
of H3(C∞

c (M) o R, C∞
c (M) o R). By adapting an idea of Lichnerowicz, we give a

sufficient condition for P to be a Poisson structure; the condition is that M has an
invariant connection on its tangent bundle.



Let M be a 2n + 1-dimensional contact manifold M , with contact one-form θ;
thus, θ ∧ (dθ)n is a volume form. Denote the exact two-form dθ by ω. Any contact
manifold has local coordinate charts {t, ξi, x

i} which are canonical, in the sense that

θ = dt +
n∑

i=1

ξidxi and ω =
n∑

i=1

dξi ∧ dxi.

The kernel F = {X ∈ TM | ι(X)ω = 0} is a one-dimensional sub-bundle of TM .
Denote by T ∈ Γ(M,F ) the unique section of F such that θ(T ) = 1; T is called
the contact (or Reeb) vector field of M . Let ϕt : M × R −→ M be the flow on M
generated by T . In a canonical chart, T = ∂/∂t, and ϕt(s, ξ, x) = (s + t, ξ, x).

Let τ ⊂ TM be the transverse bundle of the contact manifold, defined by

τ = {X ∈ TM | θ(X) = 0}.

It is clear that TM = F ⊕ τ . In a canonical chart, τ is spanned by the vector fields

Ξi =
∂

∂ξi
and Xi =

∂

∂xi
− ξi

∂

∂t
.

Examples of contact manifolds are provided by codimension one submanifolds
of an exact symplectic manifold. Recall that a symplectic manifold (Φ, η) is called
exact if its symplectic form may be written η = dα for some one-form α. There is a
unique vector field Z on such a manifold such that α = ι(Z)η, and this vector field
is conformally Hamiltonian, in the sense that L(Z)η = η. If M is a codimension one
submanifold of Φ which is transverse to the vector field Z, then the restriction of
the differential form α∧ (dα)n to M (where the dimension of Φ is 2n + 2) will be a
volume form on M , and hence the restriction of α to M defines a contact structure.

The most important example of such a contact manifold is given by the cosphere
bundle of a Riemannian manifold

S∗M = {ξ ∈ T ∗M | |ξ|2 = 1}.

The flow generated by the contact vector field on S∗M may be identified with the
geodesic flow, if we think of each covector ξ ∈ S∗M as corresponding to a vector
X = 〈ξ, ·〉.

The crossed-product algebra C∞
c (M) o R is the algebra of smooth functions

C∞
c (M × R) with product

(fg)(t) =
∫ ∞

−∞
f(s)(ϕ∗sg)(t− s) ds.



Following Connes1, we think of C∞
c (M) o R as an algebra of functions on the

quotient of M by the flow ϕt. The algebra C∞
c (M) o R has an anti-involution,

defined by the formula
f∗(t) = f̄(−t).

Denote by Λ ∈ Γ(M,Λ2TM) the two-vector on M such that the bundle map

α 7→ ι(α)Λ : T ∗M −→ TM

vanishes on F ∗, the sub-bundle of T ∗M spanned by θ, and is the inverse of the
operator X 7→ ι(X)ω for X ∈ τ . In a canonical chart, Λ is given by the formula

Λ =
n∑

i=1

Xi ∧ Ξi.

The bilinear map from C∞
c (M) to itself given by the formula [f, g] = 〈Λ, df ∧ dg〉 is

called the Jacobi bracket of M . From it, we may construct a bilinear map from
C∞

c (M) o R to itself by the formula

{f, g}(t) =
∫ ∞

−∞
[f(s), ϕ∗sg(t− s)] ds,

We call {·, ·} the Poisson bracket on C∞
c (M) o R; it is easily seen that it is

compatible with the anti-involution on C∞
c (M) o R, that is, {f∗, g∗} = −{g, f}∗.

Proposition 2.1. The Poisson bracket satisfies the formula

f0{f1, f2} − {f0f1, f2}+ {f0, f1f2} − {f0, f1}f2 = 0

for all fi ∈ C∞
c (M) o R; that is, it is a two-cocycle.

Proof. Since [T,Λ] = 0, we see that ϕ∗t [f, g] = [ϕ∗t f, ϕ∗t g]. Thus, we have

{f0f1, f2}(t) =
∫ ∞

−∞

∫ ∞

−∞
[f0(u) ϕ∗uf1(s− u), ϕ∗sf2(t− s)] du ds

=(f0{f1, f2})(t) +
∫ ∞

−∞

∫ ∞

−∞
ϕ∗uf1(s− u)[f0(u), ϕ∗sf2(t− s)] du ds.

Similarly,

{f0, f1f2}(t) =
∫ ∞

−∞

∫ ∞

−∞
ϕ∗uf1(s− u)[f0(u), ϕ∗sf2(t− s)] du ds + ({f0, f1}f2)(t).

From this, the desired formula is clear. �

We will denote the two-cocycle coresponding to the Poisson bracket by P . In
the rest of this section, we will give a sufficient condition for the three-cochain
P ◦ P ∈ C3(C∞

c (M) o R, C∞
c (M) o R), given by the formula

{{f, g}, h} − {f, {g, h}}
to be a coboundary. To do this, we recall Lichnerowicz’s notion of a contact
connection8.



Definition 2.2. A contact connection on a contact manifold (M, θ) is a torsion-
free connection on its tangent bundle such that ∇T = 0 and ∇ω = 0. An invariant
contact connection is a contact connection invariant under the contact flow.

The existence of an invariant contact connection seems to be rather rare: for
example, restricting oneself to the case of a sphere bundle, there is such an invariant
connection if the Riemannian manifold is flat, or locally symmetric of negative
sectional curvature (for this second case, see Kanai7). However, Lichnerowicz has
shown how an invariant contact connection may be constructed from any connection
on the tangent bundle of M invariant under the contact flow.

Given an invariant contact connection on M , we may form the operator

∇2 = ∇(df) : C∞
c (M) −→ Γ(M,S2T ∗M).

Since ∇ is invariant under the vector field T , it follows that ϕ∗s∇2 = ∇2ϕ∗s. Let P2

be the two-cochain on C∞
c (M) o R defined by the formula

P2(f, g)(t) =
∫ ∞

−∞

〈
Λ⊗ Λ,∇2f(s)⊗∇2(ϕ∗sg)(t− s)

〉
ds,

where the tensor Λ⊗ Λ is paired with S2T ∗M ⊗ S2T ∗M by the formula

ΛijΛklαikβjl.

Note that P2(f∗, g∗) = P2(g, f)∗, that is, P ∗
2 = −P2.

Proposition 2.3. If ∇ is a contact connection on M invariant under the vector
field T , then δP2 + P ◦ P = 0, in other words,

{{f, g}, h} − {f, {g, h}} = fP2(g, h)− P2(fg, h) + P2(f, gh)− P2(f, g)h.

Proof. Since ∇ is a contact connection, it satisfies the formula ∇Λ = 0: from this
and its invariance, we see that

d 〈Λ, df(u) ∧ ϕ∗udg(s− u)〉 =
〈
Λ,∇2f(u)⊗ ϕ∗udg(s− u) + df(u)⊗ ϕ∗u∇2g(s− u)

〉
,

from which it follows that

{{f, g}, h}(t) =
∫ ∞

−∞

∫ ∞

−∞

〈
Λ⊗ Λ,∇2f(u)⊗ ϕ∗udg(s− u)⊗ ϕ∗sdh(t− s)

+ df(u)⊗ ϕ∗u∇2g(s− u)⊗ ϕ∗sdh(t− s)
〉

du ds

{f, {g, h}}(t) =
∫ ∞

−∞

∫ ∞

−∞

〈
Λ⊗ Λ, df(u)⊗ ϕ∗u∇2g(s− u)⊗ ϕ∗sdh(t− s)

+ df(u)⊗ ϕ∗udg(s− u)⊗ ϕ∗s∇2h(t− s)
〉

du ds.



Taking the difference, two terms cancel, and we obtain the formula

{{f, g}, h}(t)− {f, {g, h}}(t)

=
∫ ∞

−∞

∫ ∞

−∞

〈
Λ⊗ Λ,∇2f(u)⊗ ϕ∗udg(s− u)⊗ ϕ∗sdh(t− s)

− df(u)⊗ ϕ∗udg(s− u)⊗ ϕ∗s∇2h(t− s)
〉

du ds.

On the other hand, using the formula ∇2(fg) = ∇2fg +2df ⊗ dg + f∇2g, we see
that

fP2(g, h)− P2(fg, h) =
∫ ∞

−∞

∫ ∞

−∞

〈
Λ⊗ Λ,∇2f(u)ϕ∗ug(s− u)⊗ ϕ∗sdh(t− s)

+ df(u)⊗ ϕ∗udg(s− u)⊗ ϕ∗sdh(t− s)〉 du ds.

Similarly, we have

−P2(f, gh)+P2(f, g)h = −
∫ ∞

−∞

∫ ∞

−∞
〈Λ⊗ Λ, df(u)⊗ ϕ∗udg(s− u)⊗ ϕ∗sdh(t− s)

+ df(u)ϕ∗ug(s− u)⊗ ϕ∗s∇2h(t− s)
〉

du ds.

The proposition follows. �

3. Presymplectic Structures

We now turn to defining a Poisson bracket in the more general setting of presym-
plectic manifolds.

Definition 3.1. A presymplectic manifold M is a manifold endowed with a
closed two-form ω of constant rank.

Let M be a presymplectic manifold, and let F ⊂ TM be the subbundle on which
ω vanishes. The following lemma shows that F is integrable; it is a special case of
the Frobenius integrability theorem.

Lemma 3.2. The bundle F is integrable and thus defines a foliation of M .

Proof. For all X and Y ∈ Γ(M,F ) and Z ∈ Γ(M,TM), we see that

0 = dω(X, Y, Z) =X · ω(Y, Z)− Y · ω(X, Z) + Z · ω(X, Y )

− ω([X, Y ], Z) + ω([X, Z], Y )− ω([Y,Z], X)

=− ω([X, Y ], Z),

and hence that [X, Y ] is a section of F . �

We have the following Darboux theorem for presymplectic manifolds.



Proposition 3.3. If (M,ω) is a presymplectic manifold, there is for each x ∈ M
a coordinate neighborhood U with coordinates {x1, . . . , xq, y1, . . . , yp} such that

ω =
q/2∑
i=1

dxi ∧ dxi+1.

Proof. Let U = U1 ×U2 ⊂ Rq ×Rp be a foliation chart, where the leaves of U have
the form {x} × U2. The form ω is basic with respect to the subbundle F , that is,
for any X ∈ Γ(M,F ) one has ι(X)ω = 0 and ι(X)dω = 0. Hence for any such
foliation chart, ω is pulled back from a closed two-form on U1, which is in fact a
symplectic form. The theorem follows from the Darboux theorem for symplectic
manifolds applied to U1. �

Given a foliated manifold (M,F ), we let τ = TM/F denote the transverse bundle
to F .

Recall that a submanifold M of a symplectic manifold (Φ, η) is called coisotropic
if the tangent space TxM ⊂ TxΦ contains a Lagrangian subspace of TxΦ for all x ∈
M . In the following proposition, we show that in fact all presymplectic manifolds
have this form (see Gotay3).

Propostion 3.4. Let (M,ω) be a presymplectic manifold. Then there is a sym-
plectic manifold (Φ, η) and an embedding i : M → Φ such that ω = i∗η and M is a
coisotropic submanifold of Φ.

Proof. Let F ∗ be the dual of the integrable bundle F , let π : F ∗ −→ M be the
projection to the base, and let i : M → F ∗ be the embedding by the zero section.
If we choose a splitting of the short exact sequence

0 −→ F −→ TM −→ τ −→ 0,

we obtain an embedding j of F ∗ in T ∗M . Let j∗ωT∗M be the pull-back of the
canonical symplectic form on T ∗M to F ∗; it is easy to see that i∗j∗ωT∗M = 0,
and hence that the restriction of η = π∗ω + j∗ωT∗M to M equals ω. Furthermore,
there is a tubular neighborhood Φ ⊂ F ∗ of M so that η restricted to Φ is non-
degenerate. �

In the rest of this section, we will show that presymplectic structures are essen-
tially the same thing as transverse symplectic structures, as defined by Haefliger6;
this result is not needed to read the rest of the paper. Recall that a transversal N
to a foliation (M,F ) is an immersion N −→ M which is transverse to F , such that
the dimension of N is equal to the codimension of the foliation. We say that N is
complete if it intersects each leaf of M ; every foliation has a complete transversal.



Definition 3.5. A transverse symplectic structure on a foliated manifold
(M,F ) is a symplectic structure ω on a complete transversal N such that for all
diffeomorphisms h in the holonomy pseudogroup we have h∗ω = ω.

It follows from this definition that any transversal N of a foliation (M,F ) with
a transversal symplectic structure inherits a symplectic structure. Recall that a
foliation is given by a covering Ui and submersions fi : Ui → Ni. The Ni have
the same dimension as the codimension of the foliation and there are transition
functions hij : fj(Ui ∩ Uj) → fi(Ui ∩ Uj) which satisfy fi = hij ◦ fj . Since we may
identify the manifolds Ni with transversals, we obtain symplectic forms ωi on Ni.
The diffeomorphisms hij are the generators of the holonomy pseudogroup and thus
ωj = h∗ijωi on fj(Ui ∩ Uj). The pullback f∗i ωi is closed and

f∗i ωi = (gij ◦ fj)∗ωi = f∗j ◦ h∗ijωi = f∗j ωj

so that the forms f∗i ωi agree on overlaps and so define a global closed two-form
ω ∈ Ω2(M). Of course, ω is not non-degenerate, but its kernel is precisely the
bundle F of vectors tangent to the foliation. Hence we have proved the following
result.

Proposition 3.6. A transverse symplectic structure on (M,F ) determines in a
unique manner a presymplectic structure ω on M such that F is the kernel of the
form ω.

Let (M,ω) be a presymplectic manifold. If N is a transversal to the foliation F
defined by ω, the restriction of the form ω to N defines a symplectic structure on
N , since TN ∼= τ |N and the restriction of ω to N coincides with the form ωτ on τ .

Proposition 3.7. If (M,ω) is a presymplectic manifold, there is a naturally in-
duced transverse symplectic structure on (M,F ) which corresponds to ω by the above
proposition.

Proof. Let N denote any complete transversal. Then as above, ω restricts to define
a symplectic structure ωN on N . We only have to show that ω is invariant under
the holonomy pseudogroup. Use the notation above for fi : Ui → Ni and ωi for
the restrictions of ω to Ni. The holonomy pseudogroup is generated by the hij and
we will show that ωj = h∗ijωi. But this is a direct consequence of the fact that
π : TNi → τ|Ni

preserves the symplectic forms ω. �

4. Haar Forms

Let (M,F ) be a foliation, with dim(F ) = p and dim(M) = p + q. In this
section, we will study the geometry of a foliation enriched with three extra pieces



of geometric structure:
(1) a connection, that is, a choice of a splitting of the short exact sequence

0 −→ F −→ TM −→ τ −→ 0;

(2) a Haar measure, that is, a nowhere-vanishing section of the longitudinal
density bundle |F | on M ;

(3) an orientation of the bundle F .
The two pieces of data (2) and (3) are equivalent to the giving of a nowhere-

vanishing section of the bundle ΛpF ∗ over M . Let α ∈ Ωp(M) be a differential
form which restricts to such a nowhere-vanishing section of ΛpF ∗; we will call
such a differential form a Haar form. Sullivan11 has observed that such a form
determines the above three pieces of data: the orientation of F and the nowhere-
vanishing density are defined by the restriction of α to F , while the splitting of
TM ∼= τ ⊕ F is obtained by identifying τ with the kernel of the surjective map

Γ(M,TM) 3 X 7→ ι(X)α ∈ Γ(M,Λp−1F ∗).

Conversely, to the above data, we may associate a p-form α for which ι(Y )α = 0
if Y is a section of the supplementary bundle τ determined by the connection, and
α(X1, . . . , Xp) = 1 if (X1, . . . , Xp) is an oriented frame of F of volume one. This
Haar form was first studied by Rummler10. A Haar form of this type is called a
pure Haar form. Informally, we have a fibration

{Haar forms} −→ {connections} × {Haar measures} × {orientations}

Let E be a vector bundle on M . The connection defines a decomposition of
the space of differential forms on M , according to the number of longitudinal and
transverse indices:

Ωi,j(M,E) = Γ(M,ΛiF ∗ ⊗ Λjτ∗ ⊗ E).

For example, a Haar form α lies in

Ωp,0(M)⊕
∑
n≥2

Ωp−n,n(M),

and α is pure if and only if it lies in Ωp,0(M). A covariant derivative ∇ on E may
be decomposed into three homogeneous components

∇ = ∇1 +∇0 +∇−1,



where ∇s : Ωi,j(M,E) −→ Ωi+s,j−s+1(M,E). To see this, it suffices to check the
result for sections of E and elements of Ω1,0(M) = Γ(M,F ∗), for which it is obvious,
and elements of Ω0,1(M) = Γ(M, τ∗), for which it follows from the fact that F is
integrable.

If α is a Haar form, there is a unique section k ∈ Γ(M, τ∗) such that

d0α− k ∧ α ∈
∑
s≥1

Ωp−s,s+1(M);

we call k the mean curvature of the Haar form α. If α is pure, we see that we
actually have the formula d0α = k∧α. Calling k the mean curvature is justified by
the following result of Rummler10.

Proposition 4.1. Let (M,F ) be a foliation with Haar form α. Let g be any Rie-
mannian metric on M for which the sub-bundles F and τ determined by the con-
nection are orthogonal, and which induces the Haar measure on the bundle F . Then
k equals the mean curvature of the leaves of the foliation determined by F in M .

We say that a Haar form α is taut if its mean curvature vanishes. An example of
a taut Haar form is given by a contact manifold (M,α). Since the two-form dα has
constant rank q, its kernel F is a one-dimensional bundle, which defines a foliation
of M . The differential form α is a taut Haar form for this foliation, and in fact it
is pure as well.

5. The Holonomy Groupoid

The holonomy groupoid G of the foliation (M,F ) is a smooth manifold (al-
though not necessarily Hausdorff) of dimension 2p+q, with smooth maps s : G −→ M
and t : G −→ M called the source and target. We can pull back the foliation on
M by either of these maps: these foliations coincide, and define a foliation on G of
codimension q. If G(2) is the fibre-product

G(2) = {(γ1, γ2) ∈ G2 | t(γ1) = s(γ2)},

then the multiplication map m(γ1, γ2) = γ1 ◦ γ2 is a smooth map from G(2) to G,
and ∂(γ1, γ2) = t(γ1) = s(γ2) is a smooth map from G(2) to M .

Definition 5.1. A G-equivariant vector bundle E on (M,F ) is a vector bundle
E over M along with an isomorphism between the pull-backs s∗E and t∗E on G.

An invariant connection on a G-equivariant bundle E is a connection ∇ on
E such that the two connections s∗∇ and t∗∇ correspond to each other under the
identification of s∗E with t∗E.

An important example of an equivariant bundle is the transverse bundle τ of the
foliation. On this bundle, it is natural to restrict attention to Bott connections.



Definition 5.2. A Bott connection on the transverse bundle τ is a connection
such that

∇ZXτ = [Z,X]τ

for Z ∈ Γ(M,F ) and X ∈ Γ(M,TM). Here, X 7→ Xτ denotes the image of a vector
field under projection to Γ(M, τ).

If Xτ = Yτ , then [Z,X − Y ] ∈ Γ(M,F ), so that

∇ZXτ −∇ZYτ = [Z,X − Y ]τ = 0.

Thus, the above definition is meaningful.

Definition 5.3. The torsion of a Bott connection on the transverse bundle τ is
the section T ∈ Ω0,1(M,End(τ)) given by the formula

T (Xτ )Yτ = ∇XYτ −∇Y Xτ − [X, Y ]τ

for X, Y ∈ Γ(M,TM). (It is easily shown that this is well-defined.)

If E is an equivariant vector bundle on (M,F ), we may define Γc(G, E) in the
same way as in the case E = R: its elements are finite sums of smooth sections of
s∗E of compact support defined in distinguished charts of G (see Connes1). Given
a Haar form α on (M,F ), the convolution e ∗ f of two sections e ∈ C∞

c (G, E) and
f ∈ C∞

c (G, F ) is the section of the equivariant bundle E ⊗ F defined by restricting
e � f ∈ C∞

c (G ×G, E � F ) to G(2) ⊂ G ×G and applying the integral over the fibres
m∗ to the differential form e � f |G(2)∂∗α:

e ∗ f = m∗
(
e � f |G(2)∂∗α

)
.

The following proposition is an easy generalization of the result Connes1, that con-
volution defines an associative product on C∞

c (G).

Proposition 5.4. If Ei are G-equivariant bundles on (M,F ), i = 1, 2, 3, and ei ∈
Γc(G, Ei), then e1 ∗ (e2 ∗ e3)− (e1 ∗ e2) ∗ e3 ∈ Γc(G, E1 ⊗ E2 ⊗ E3) vanishes.

It is on the non-commutative algebra C∞
c (G) that we will define a Poisson struc-

ture, where G is the holonomy groupoid attached to a pre-symplectic manifold M .
If the foliation of M is given by a nowhere-zero vector field X, the convolution
algebra C∞

c (G) is the crossed-product algebra C∞
c (M) o R associated to the flow

of X, as long as the flow has no periodic orbits with holonomy of finite order. This
is why we have employed the algebra C∞

c (M) o R when M is a contact manifold.



6. The Poisson Bracket

If (M,F ) is a foliation with Haar form α, and if E is an equivariant bundle on
E with invariant connection ∇, let

∇0 : Γc(G, E) −→ Ω0,1
c (G, E)

be the zero-component of the connection s∗∇ = t∗∇ : Γc(M,E) −→ Ω1
c(G, E). The

following result shows that ∇0 violates Leibniz’s rule by a term involving the mean
curvature of the Haar form α.

Proposition 6.1. If E and F are equivariant bundles with invariant connections,
and e ∈ Γc(G, E) and f ∈ Γc(G, F ), we have the formula

∇0(e ∗ f) = (∇0e) ∗ f + e ∗ (∇0f) + e ∗ (t∗k)f.

Proof. If we apply Leibniz’s rule to the formula e ∗ f = m∗(e � f |G(2)∂∗α), we see
that

∇0(e ∗ f) = m∗
((
∇0e � f |G(2) + e �∇0f |G(2)

)
∂∗α

)
+ m∗

(
e � f |G(2)∂∗d0α

)
= (∇0e) ∗ f + e ∗ (∇0f) + m∗

(
e � f |G(2)∂∗k ∧ ∂∗α

)
. �

Corollary 6.2. The operator

De = ∇0e +
1
2
(
(t∗k)e + e(s∗k)

)
satisfies Leibniz’s rule: D(e ∗ f) = (De) ∗ f + e ∗ (Df).

We can now define a two-cocycle on the convolution algebra C∞
c (G) associated

to a presymplectic manifold (M,ω) with Haar form α; this will be our candidate
Poisson bracket. Using the invariant two-form ω, we obtain an isomorphism between
the bundles τ and τ∗ on G and hence a skew symmetric form on τ∗, which we denote
by Λ. Then the Poisson bracket of two functions f1 and f2 ∈ C∞

c (G) is defined by
the formula

{f1, f2} = 〈Λ, Df1 ∗Df2〉 .
Note that {f∗1 , f∗2 } = −{f2, f1}∗. The following result generalizes Proposition 2.1,
and its proof is essentially the same.

Proposition 6.3. The Poisson bracket is a two-cocycle, that is, for all fi ∈ C∞
c (G),

it satisfies the formula

f0 ∗ {f1, f2} − {f0 ∗ f1, f2}+ {f0, f1 ∗ f2} − {f0, f1} ∗ f2 = 0.

We can show that the Poisson bracket introduced above is a Poisson structure on
C∞

c (G), as long as there is an invariant Bott connection on the transverse bundle τ .
The following construction is once more inspired by similar results of Lichnerowicz.



Definition 6.4. Let (M,ω) be a presymplectic manifold. A presymplectic con-
nection on M is an invariant Bott connection on τ such that ∇Λ = 0.

Proposition 6.5. Let (M,ω) be a presymplectic manifold. There is a polynomial
map from the space of invariant Bott connections on τ to the space of presymplectic
connections.

Proof. We will give an explicit formula which, given an invariant Bott connection,
produces another connection which is an invariant Bott connection, is torsion-free,
and satisfies the equation ∇ω = 0. Since this equation implies that ∇Λ = 0, this
will give a proof of the proposition.

We start by replacing ∇ by the torsion-free connection ∇′ = ∇ − 1
2T , where

T ∈ Ω0,1(M,End(τ)) is the torsion of the connection ∇. Note that ∇′ is an invariant
Bott connection.

The longitudinal covariant derivative ∇′ω vanishes, because ω is invariant under
the holonomy groupoid and ∇′ is a Bott connection. It follows that S, defined by
the equation

ω(S(Z)X, Y ) =
1
3
{(∇′

Zω)(X, Y ) + (∇′
Xω)(Z, Y )} ,

is an element of S ∈ Ω0,1(M,End(τ)).
We define a new torsion-free, invariant Bott connection by the formula ∇′′ =

∇′ + S. It follows that

(∇′′
Zω)(X, Y ) = (∇′

Zω)(X, Y )− ω(S(Z)X, Y )− ω(X, S(Z)Y )

=
1
3
{(∇′

Xω)(Y,Z) + (∇′
Y ω)(Z,X) + (∇′

Zω)(X, Y )}

= dω(X, Y, Z) = 0,

since ∇′ is torsion-free and dω = 0. This shows that ∇′′ω = 0. �

Thus, suppose that we have a presymplectic connection ∇ on M . Denote by

D2 : C∞
c (G) −→ Γc(G, τ∗ ⊗ τ∗)

the composition of D : C∞
c (G) −→ Γc(G, τ∗) with Dτ∗ : Γc(G, τ∗) −→ Γc(G, τ∗ ⊗ τ∗);

since ∇ is torsion-free, D2 actually takes values in Γc(G, S2τ∗). Let P2 be the
two-cochain on C∞

c (G) defined by the formula

P2(f, g)) =
〈
Λ⊗ Λ, D2f ∗D2g

〉
,

where the tensor Λ⊗Λ is paired with S2τ∗ ⊗ S2τ∗ by ΛijΛklαikβjl. The following
result is a generalization of Proposition 2.3.



Proposition 6.6. Let ∇ be a presymplectic connection on (M,ω). Then

{{f, g}, h} − {f, {g, h}} = f ∗ P2(g, h)− P2(f ∗ g, h) + P2(f, g ∗ h)− P2(f, g) ∗ h,

so that the two-cochain P (f, g) = {f, g} defines a Poisson structure on the algebra
C∞

c (G).
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