THE CYCLIC HOMOLOGY OF CROSSED PRODUCT ALGEBRAS, II. TOPOLOGICAL ALGEBRAS

Jonathan Block, Ezra Getzler and John D.S. Jones

This article is a sequel to [6], in which we constructed a spectral sequence for the cyclic homology of a crossed product algebra $A \rtimes G$, where A is an algebra and G is a discrete group acting on A. In this article, we will show how similar results hold when A is a topological algebra, and G is a Lie group acting differentiably on A. We assume the notation and results of [6], which we will refer to as Part I.

All of the topological vector spaces considered in this article will be locally convex, complete and Hausdorff.

A topological algebra is a topological vector space A with an associative product $m: A \times A \rightarrow A$ which is separately continuous. This definition motivates the introduction of Grothendieck's inductive tensor product $V_{1} \otimes V_{2}$ of two topological vector spaces, which is the completion of the algebraic tensor product $V_{1} \otimes V_{2}$ with respect to the finest compatible tensor product topology, in the sense of Grothendieck ([7], page 89).

Recall some of the properties of the inductive tensor product:
(1) If W is a complete topological vector space, the space $L\left(V_{1} \bar{\otimes} V_{2}, W\right)$ of continuous linear transformations from $V_{1} \bar{\otimes} V_{2}$ to W is isomorphic to the space of separately continuous bilinear maps from $V_{1} \times V_{2}$ to W; in particular, the dual $\left(V_{1} \bar{\otimes} V_{2}\right)^{\prime}$ is isomorphic to the space of separately continuous bilinear forms on $V_{1} \times V_{2}$.
(2) If V_{1} and V_{2} are Fréchet spaces, separately continuous bilinear forms are jointly continuous, so $V_{1} \bar{\otimes} V_{2}$ is equal to the projective tensor product $V_{1} \hat{\otimes} V_{2}$.
(3) If $U=\varliminf_{i} U_{i}$ and $V=\varliminf_{j} V_{j}$ are inductive limits, endowed with the inductive limit topology, then

$$
U \bar{\otimes} V=\varliminf_{i, j} U_{i} \bar{\otimes} V_{j}
$$

also has the inductive limit topology.
(4) If M and N are smooth manifolds and $\mathcal{D}(M)$ and $\mathcal{D}(N)$ are the spaces of compactly supported smooth functions on M and N topologized as the inductive limit of Fréchet spaces, then

$$
\mathcal{D}(M) \bar{\otimes} D(N) \cong \mathcal{D}(M \times N)
$$

This work was partially funded by the NSF and the SERC.

In terms of the inductive tensor product, we see that a topological algebra is a topological vector space with associative product a continuous linear map $m: A \bar{\otimes} A \rightarrow A$. In the rest of this paper, the inductive tensor product will be denoted simply by \otimes, and we will study the Hochschild and cyclic homology constructed using this tensor product.

The action $\rho: G \times A \rightarrow A$ of a Lie group G on a topological algebra A is differentiable [1] if
(1) ρ is continuous;
(2) for each $x \in A$, the map $g \mapsto \rho(g, x)$ is infinitely differentiable;
(3) the image of any compact set of G in the automorphism group of A is equicontinuous.
The crossed product algebra $A \rtimes G$ is defined for a discrete group G acting on an algebra A : for differentiable actions of a Lie group on a topological algebra, the analogue of $A \rtimes G$ is the space $\mathcal{D}(G, A)$ of smooth functions of compact support on G with values in A, with product defined as follows: for $u, v \in \mathcal{D}(G, A)$,

$$
(u v)(g)=\int_{G} u(h)\left(h v\left(h^{-1} g\right)\right) d h
$$

The algebra $\mathcal{D}(G, A)$ does not have an identity unless G is discrete. However, $\mathcal{D}(G, A)$ is a bimodule for the algebra A, with respect to the actions

$$
(a u b)(g)=a u(g)(g b), \quad \text { where } a, b \in A \text { and } u \in \mathcal{D}(G, A),
$$

and we may form the semidirect product $\mathcal{D}^{+}(G, A)$, which fits into the split short-exact sequence

$$
0 \rightarrow \mathcal{D}(G, A) \rightarrow \mathcal{D}^{+}(G, A) \rightarrow A \rightarrow 0
$$

For example, the algebra $\mathcal{D}^{+}(G, \mathbb{C})=\mathcal{D}^{+}(G)$ is the result of adjoining an identity to the convolution algebra $\mathcal{D}(G, \mathbb{C})=\mathcal{D}(G)$. We will apply the construction of Part I to the algebra $\mathcal{D}^{+}(G, A)$. Wodzicki's theory of excision for H-unital algebras [9] will enable us to derive from this a spectral sequence for the cyclic homology of $\mathcal{D}(G, A)$.

If A is a topological algebra and V is a topological vector space, define a complex $B_{n}(A, V)=A^{(n)} \otimes V, n \geq 1$, with differential $b^{\prime}: B_{n}(A, V) \rightarrow B_{n-1}(A, V)$ given by the formula

$$
b^{\prime}\left(a_{1}, \ldots, a_{n}, v\right)=\sum_{i=1}^{n-1}(-1)^{i-1}\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}, v\right) .
$$

Following Wodzicki ([8], Remark 3, page 402), we say that a topological algebra A is strongly H-unital if the complex $\left(B(A, V), b^{\prime}\right)$ is acyclic for every topological vector space V. In particular, a unital algebra A is strongly H -unital, since the map

$$
s\left(a_{1}, \ldots, a_{n}, v\right)=\left(1, a_{1}, \ldots, a_{n}, v\right)
$$

provides a contracting homotopy for the complex $B(A, V)$.
The following result is proved in [9].

Lemma 1. In a \mathbb{C}-split short exact sequence of topological algebras

$$
0 \rightarrow I \rightarrow B \rightarrow A \rightarrow 0
$$

if two of the algebras are strongly H-unital, then so is the third.
We now have the following result (see Appendix A of [3]).
Proposition 2. If the algebra A is strongly H-unital, then the crossed product algebra $\mathcal{D}(G, A)$ is strongly H-unital.

Proof. Applying Lemma 1 to the short exact sequence

$$
0 \rightarrow \mathcal{D}(G, A) \rightarrow \mathcal{D}\left(G, A^{+}\right) \rightarrow \mathcal{D}(G) \rightarrow 0
$$

we see that it suffices to consider the case where A is unital.
Fix an element $\varphi \in C_{c}^{\infty}(G)$ such that $\int_{G} \varphi d g=1$, where $d g$ is the left Haar measure on G. Identify the space $B_{n}(\mathcal{D}(G, A), V)$ with $C_{c}^{\infty}\left(G^{n}, A^{(n)} \otimes V\right)$. Define

$$
s: B_{n}(\mathcal{D}(G, A), V) \rightarrow B_{n+1}(\mathcal{D}(G, A), V), \quad n \geq 1
$$

by the formula

$$
(s f)\left(g_{0}, \ldots, g_{n}, v\right)=\left(1 \otimes g_{0}^{-1} \otimes 1 \otimes \ldots \otimes 1\right)\left(\varphi\left(g_{0}\right) \otimes f\left(g_{0} g_{1}, \ldots, g_{n}\right), v\right)
$$

Then s satisfies the formula $s b^{\prime}+b^{\prime} s=1$, and so is a contracting homotopy.
If A is an algebra, let $\mathrm{C}(A)$ be its cyclic bar complex: this is the mixed complex

$$
\mathrm{C}_{k}(A)= \begin{cases}A, & k=0 \\ A^{+} \otimes A^{(k)}, & k>0\end{cases}
$$

with differentials

$$
\begin{aligned}
b\left(a_{0}, \ldots, a_{k}\right) & =\sum_{i=0}^{k-1}(-1)^{i}\left(a_{0}, \ldots, a_{i} a_{i+1}, \ldots, a_{k}\right)+(-1)^{k}\left(a_{k} a_{0}, a_{1}, \ldots, a_{k-1}\right) \\
B\left(a_{0}, \ldots, a_{k}\right) & =\sum_{i=0}^{k}(-1)^{i k}\left(1, a_{i}, \ldots, a_{k}, a_{0}, \ldots, a_{i-1}\right)
\end{aligned}
$$

If A is unital, then $\mathrm{C}(A)$ is quasi-isomorphic to $\mathrm{C}\left(A^{\natural}\right)$, the mixed complex obtained by forming the chain complex of the cyclic vector space A^{\natural}. In general,

$$
\mathrm{C}(A)=\operatorname{ker}\left(\mathrm{N}\left(\left(A^{+}\right)^{\natural}\right) \rightarrow \mathrm{N}\left(\mathbb{C}^{\natural}\right)\right)
$$

If $0 \rightarrow I \rightarrow B \rightarrow A \rightarrow 0$ is a \mathbb{C}-split extension of algebras, let

$$
\mathrm{C}(B, A)=\operatorname{ker}(\mathrm{C}(B) \rightarrow \mathrm{C}(A))
$$

be the relative cyclic bar complex. One of the main properties of H-unital algebras is that they satisfy homological excision, as expressed by the following proposition (Wodzicki [8], [9]).

Proposition 3. If I is strongly H-unital, the map $\mathrm{C}(I) \rightarrow \mathrm{C}(B, A)$ of mixed complexes is a quasi-isomorphism.

Let W be a graded $\mathbb{C}[u]$-module of finite homological dimension, for example, one of the modules $\mathbb{C}[u], \mathbb{C}\left[u, u^{-1}\right], \mathbb{C}[u] / u \mathbb{C}[u]$ and $\mathbb{C}\left[u, u^{-1}\right] / u \mathbb{C}[u]$. The cyclic homology of A with coefficients in W is the homology $\operatorname{HC}(A ; W)$ of the complex

$$
(\mathrm{C}(A) \boxtimes W, b+u B) .
$$

If I is strongly H-unital, then Proposition 3 shows that $\mathrm{HC}(I ; W) \cong \mathrm{HC}(A, B ; W)$.
Given a topological algebra A on which a Lie group G acts differentiably, we will define a cylindrical vector space $\mathrm{L}^{+}(A, G)$, that is, a contravariant functor from Σ to the category of topological vector spaces or, equivalently, a contravariant functor from $\Lambda_{\infty} \times \Lambda_{\infty}$ to the category of topological vector spaces which satisfies the condition $\bar{T}=T^{-1}$. This object will have the property that its diagonal $\Delta\left(\mathrm{L}^{+}(A, G)\right)$ is naturally isomorphic as a cyclic vector space to $\mathcal{D}^{+}\left(G, A^{+}\right)^{\natural}$. The underlying vector spaces of $\mathrm{L}^{+}(A, G)$ are

$$
\mathrm{L}^{+}(A, G)([p],[q])=\mathcal{D}^{+}(G)^{(p+1)} \otimes\left(A^{+}\right)^{(q+1)} .
$$

The action of the category Σ on $\mathrm{L}^{+}(A, G)([p],[q])$ is given by the following formulas: if $\varphi \in \mathcal{D}^{+}(G)^{(p+1)}$ and $a_{i} \in A^{+}$, and $\omega=\varphi \otimes a_{0} \otimes \ldots \otimes a_{q}$, then

$$
\begin{aligned}
\bar{d} \omega\left(g_{0}, \ldots, g_{p-1}\right) & =\varphi\left(g_{0}, \ldots, g_{p-1}, g_{0}\right) \otimes g_{p} a_{0} \otimes \ldots \otimes g_{p} a_{q}, \\
\bar{s} \omega\left(g_{0}, \ldots, g_{p+1}\right) & =\varphi\left(g_{1}, \ldots, g_{p+1}\right) \otimes a_{0} \otimes \ldots \otimes a_{q} \\
d \omega\left(g_{0}, \ldots, g_{p}\right) & =\varphi\left(g_{0}, \ldots, g_{p}\right) \otimes\left(g^{-1} a_{q}\right) a_{0} \otimes a_{1} \otimes \ldots \otimes a_{q-1}, \\
s \omega\left(g_{0}, \ldots, g_{p}\right) & =\varphi\left(g_{0}, \ldots, g_{p}\right) \otimes 1 \otimes a_{0} \otimes \ldots \otimes a_{q}
\end{aligned}
$$

where $g=g_{0} \ldots g_{p}$. The operator $T=t^{q+1}=\bar{t}^{-p-1}$ is given by the formula

$$
T \omega=\varphi\left(g_{0}, \ldots, g_{p}\right) \otimes g^{-1} a_{0} \otimes \ldots \otimes g^{-1} a_{q} .
$$

The definition of $\mathrm{L}^{+}(A, G)$ is the natural extension to the topological setting of the definition of $A \sharp G$ in Part I.

Lemma 4. There is a quasi-isomorphism of mixed complexes

$$
\operatorname{Tot}\left(\mathrm{N}\left(\mathrm{~L}^{+}(A, G)\right)\right) \rightarrow \mathrm{C}\left(\mathcal{D}^{+}\left(G, A^{+}\right)\right) .
$$

Proof. This follows from the identification of the cyclic module $\Delta\left(\mathrm{L}^{+}(A, G)\right)$ with $\mathcal{D}^{+}\left(G, A^{+}\right)^{\natural}$, combined with Theorem 3.1 of Part I.

We will now use excision to remove the augmentations which were needed in the proof of Lemma 4.

By naturality, there is a map of cylindrical modules

$$
\mathrm{L}^{+}(A, G) \rightarrow \mathrm{L}^{+}(0, G) \cong \mathcal{D}^{+}(G)^{\natural}
$$

Now suppose that A, and hence $\mathcal{D}^{+}(G, A)$, is strongly H-unital. By Lemma 4, we see that

$$
\operatorname{Tot}\left(\mathrm{N} \operatorname{ker}\left(\mathrm{~L}^{+}(A, G) \rightarrow \mathcal{D}^{+}(G)^{\mathrm{\natural}}\right)\right)
$$

and $\mathrm{C}\left(\mathcal{D}^{+}\left(G, A^{+}\right), \mathcal{D}^{+}(G)\right)$ are quasi-isomorphic, and hence by Proposition 3, quasi-isomorphic to $\mathrm{C}\left(\mathcal{D}^{+}(G, A)\right)$.

Similarly, there is a map of cylindrical modules

$$
\mathrm{L}^{+}(A, G) \rightarrow \mathrm{L}^{+}(A, 1) \cong\left(A^{+}\right)^{\natural},
$$

and we see that

$$
\operatorname{Tot}\left(\mathrm{N} \operatorname{ker}\left(\mathrm{~L}^{+}(A, G) \rightarrow \mathcal{D}^{+}(G)^{\mathfrak{\natural}} \oplus_{\mathbb{C}^{\natural}}\left(A^{+}\right)^{\mathfrak{\natural}}\right)\right)
$$

is quasi-isomorphic to $\mathrm{C}\left(\mathcal{D}^{+}(G, A), A\right)$, and hence by Proposition 3, quasi-isomorphic to $\mathrm{C}(\mathcal{D}(G, A))$. Thus, we see that there is a cylindrical module

$$
\mathrm{L}(A, G)=\operatorname{ker}\left(\mathrm{L}^{+}(A, G) \rightarrow \mathcal{D}^{+}(G)^{\natural} \oplus_{\mathbb{C}^{\natural}}\left(A^{+}\right)^{\mathfrak{\natural}}\right)
$$

and quasi-isomorphisms of mixed complexes

$$
\operatorname{Tot}(\mathrm{N}(\mathrm{~L}(A, G))) \simeq \mathrm{C}(\mathcal{D}(G, A))
$$

This proves the following theorem.
Theorem 5. Suppose A is an strongly H-unital topological algebra on which the Lie group G acts differentiably. Let W be a one of the $\mathbb{C}[u]$ modules listed above. Then there is a canonical isomorphism

$$
\mathrm{HC}(\mathcal{D}(G, A) ; W) \cong \mathrm{HC}(\operatorname{Tot}(\mathrm{~N}(\mathrm{~L}(A, G))) ; W)
$$

Let us use this theorem to derive a spectral sequence for $\operatorname{HC}(\mathcal{D}(G, A) ; W)$. The normalization $\mathrm{N}(\mathrm{L}(A, G))$ of $\mathrm{L}(A, G)$ has underlying vector spaces

$$
\mathrm{N}_{p q}(\mathrm{~L}(A, G))= \begin{cases}\mathcal{D}(G) \otimes A, & p=0, q=0 \\ \mathcal{D}(G) \otimes A^{+} \otimes A^{(q)}, & p=0, q>0 \\ \mathcal{D}^{+}(G) \otimes \mathcal{D}(G)^{(p)} \otimes A, & p>0, q=0 \\ \mathcal{D}^{+}(G) \otimes \mathcal{D}(G)^{(p)} \otimes A^{+} \otimes A^{(q)}, & p>0, q>0\end{cases}
$$

Now, $\mathrm{HC}(\operatorname{Tot}(\mathrm{N}(\mathrm{L}(A, G))) ; W)$ is the homology of the complex

$$
(\operatorname{Tot}(\mathrm{N}(\mathrm{~L}(A, G))) \boxtimes W, \bar{b}+(b+u B)+u T \bar{B}) .
$$

We filter this as follows:

$$
F_{i} \operatorname{Tot}_{\bullet}(\mathrm{N}(\mathrm{~L}(A, G))) \boxtimes W=\sum_{q \leq i} \mathrm{~N}_{\bullet} q(\mathrm{~L}(A, G)) \boxtimes W
$$

Denote the resulting spectral sequence by $E_{p q}^{r}$. In particular, $E_{p q}^{0}$ is isomorphic to $\mathrm{N}_{p q}(\mathrm{~L}(A, G))$ as a bigraded vector space, with differential \bar{b}.

Let A_{G}^{\natural} be the paracyclic vector space defined by

$$
A_{G}^{\natural}([n])=\mathrm{L}(A, G)([0],[n]) .
$$

There is a differentiable action of the group G on A_{G}^{\natural} compatible with the paracyclic structure, and hence an action of the topological algebra $\mathcal{D}(G)$. The following lemma is straightforward.

Lemma 6. For each $q \geq 0$, there is a short exact sequence of complexes

$$
0 \rightarrow C_{p}\left(\mathcal{D}(G), \mathrm{N}_{q}\left(A_{G}^{\natural}\right) \boxtimes W\right) \rightarrow E_{p q}^{0} \rightarrow B_{p}(\mathcal{D}(G)) \otimes \mathrm{C}_{q}(A) \boxtimes W \rightarrow 0
$$

with respective differentials the Hochschild boundary δ, the differential induced on $E_{p q}^{0}$ by \bar{b}, and the differential b^{\prime} on $B(\mathcal{D}(G))$. Thus, since $\mathcal{D}(G)$ is strongly H-unital, so that $B_{p}(\mathcal{D}(G)) \otimes \mathrm{C}_{q}(A) \boxtimes W$ is acyclic, we see that

$$
E_{p q}^{1} \cong H_{p}\left(\mathcal{D}(G), \mathrm{N}_{q}\left(A_{G}^{\natural}\right) \boxtimes W\right) .
$$

By the work of Blanc [1], we may identify the Hochschild homology group $H_{\bullet}(\mathcal{D}(G), M)$ with the differentiable homology group $H_{\bullet}(G, M)$. Thus, we obtain our final result.

Corollary 7. There is a spectral sequence with $E_{p q}^{1}$-term

$$
H_{p}\left(G, \mathrm{~N}_{q}\left(A_{G}^{\natural}\right) \boxtimes W\right)= \begin{cases}H_{p}(G, A \boxtimes W), & q=0, \\ H_{p}\left(G, A^{+} \otimes A^{(q)} \boxtimes W\right), & q>0,\end{cases}
$$

and differential $b+u B$, converging to the cyclic homology group $\operatorname{HC}(\mathcal{D}(G, A) ; W)$.
In particular, if G is compact, $E_{p q}^{1}=0$ for $p>0$, so this spectral sequence collapses, and we see that $\mathrm{HC}_{\bullet}\left(\mathcal{D}^{+}(G, A) ; W\right)=H_{\bullet}\left(\mathrm{C}_{\bullet}^{G}(A) \otimes W, b+u B\right)$ may be calculated by means of the equivariant cyclic bar complex

$$
\mathrm{C}_{n}^{G}(A)= \begin{cases}H_{0}(G, A \boxtimes W), & n=0 \\ H_{0}\left(G, A^{+} \otimes A^{(n)} \boxtimes W\right), & n>0\end{cases}
$$

This result generalizes those of Block [2] and Brylinski [4], [BrylinskiKoszul].

References

1. P. Blanc, (Co)homologie differentiable et changement de groupes, Astérisque 124-125 (1985), 13-29.
2. J. Block, Excision in cyclic homology of topological algebras, Harvard University thesis, 1987.
3. J. Block and E. Getzler, Equivariant cyclic homology and equivariant differential forms, Ann. Sci. E.N.S. (1993).
4. J.-L. Brylinski, Algebras associated with group actions and ther homology, Brown preprint, 1987.
5. J.-L. Brylinski, Cyclic homology and equivariant theories, Ann. Inst. Fourier 37 (1987), 15-28.
6. E. Getzler and J.D.S. Jones, The cyclic homology of crossed product algebras, I., J. Reine Ang. Math. (1993).
7. A. Grothendieck, Topological tensor products and nuclear spaces, Memoirs of the A.M.S. 16 (1955).
8. M. Wodzicki, The long exact sequence in cyclic homology associated with an extension of algebras, C. R. Acad. Sci. Paris, Sec. A 306 (1988), 399-403.
9. M. Wodzicki, Excision in cyclic homology and rational algebraic K-theory, Ann. Math. 129 (1989), 591-639.

Dept. of Mathematics, U. of Pennsylvania, Philadelphia, Penn. 19104 USA
E-mail address: blockj@math.upenn.edu
Dept. of Mathematics, MIT, Cambridge, Mass. 02139 USA
E-mail address: getzler@math.mit.edu

Mathematics Institute, University of Warwick, Coventry CV4 7AL, England
E-mail address: jdsj@maths.warwick.ac.uk

