THE CYCLIC HOMOLOGY OF CROSSED PRODUCT ALGEBRAS, II. TOPOLOGICAL ALGEBRAS

JONATHAN BLOCK, EZRA GETZLER AND JOHN D.S. JONES

This article is a sequel to [6], in which we constructed a spectral sequence for the cyclic homology of a crossed product algebra $A \rtimes G$, where A is an algebra and G is a discrete group acting on A. In this article, we will show how similar results hold when A is a topological algebra, and G is a Lie group acting differentiably on A. We assume the notation and results of [6], which we will refer to as Part I.

All of the topological vector spaces considered in this article will be locally convex, complete and Hausdorff.

A topological algebra is a topological vector space A with an associative product $m: A \times A \to A$ which is separately continuous. This definition motivates the introduction of Grothendieck's inductive tensor product $V_1 \otimes V_2$ of two topological vector spaces, which is the completion of the algebraic tensor product $V_1 \otimes V_2$ with respect to the finest *compatible* tensor product topology, in the sense of Grothendieck ([7], page 89).

Recall some of the properties of the inductive tensor product:

- (1) If W is a complete topological vector space, the space $L(V_1 \bar{\otimes} V_2, W)$ of continuous linear transformations from $V_1 \bar{\otimes} V_2$ to W is isomorphic to the space of separately continuous bilinear maps from $V_1 \times V_2$ to W; in particular, the dual $(V_1 \bar{\otimes} V_2)'$ is isomorphic to the space of separately continuous bilinear forms on $V_1 \times V_2$.
- (2) If V_1 and V_2 are Fréchet spaces, separately continuous bilinear forms are jointly continuous, so $V_1 \bar{\otimes} V_2$ is equal to the projective tensor product $V_1 \hat{\otimes} V_2$.
- (3) If $U = \underline{\lim}_i U_i$ and $V = \underline{\lim}_j V_j$ are inductive limits, endowed with the inductive limit topology, then

$$U \bar{\otimes} V = \varinjlim_{i,j} U_i \bar{\otimes} V_j$$

also has the inductive limit topology.

(4) If M and N are smooth manifolds and $\mathcal{D}(M)$ and $\mathcal{D}(N)$ are the spaces of compactly supported smooth functions on M and N topologized as the inductive limit of Fréchet spaces, then

$$\mathfrak{D}(M)\bar{\otimes}D(N)\cong\mathfrak{D}(M\times N).$$

This work was partially funded by the NSF and the SERC.

In terms of the inductive tensor product, we see that a topological algebra is a topological vector space with associative product a continuous linear map $m: A \bar{\otimes} A \to A$. In the rest of this paper, the inductive tensor product will be denoted simply by \otimes , and we will study the Hochschild and cyclic homology constructed using this tensor product.

The action $\rho: G \times A \to A$ of a Lie group G on a topological algebra A is **differentiable** [1] if

- (1) ρ is continuous;
- (2) for each $x \in A$, the map $g \mapsto \rho(g, x)$ is infinitely differentiable;
- (3) the image of any compact set of G in the automorphism group of A is equicontinuous.

The crossed product algebra $A \rtimes G$ is defined for a discrete group G acting on an algebra A: for differentiable actions of a Lie group on a topological algebra, the analogue of $A \rtimes G$ is the space $\mathcal{D}(G,A)$ of smooth functions of compact support on G with values in A, with product defined as follows: for $u, v \in \mathcal{D}(G,A)$,

$$(uv)(g) = \int_G u(h) (hv(h^{-1}g)) dh.$$

The algebra $\mathcal{D}(G, A)$ does not have an identity unless G is discrete. However, $\mathcal{D}(G, A)$ is a bimodule for the algebra A, with respect to the actions

$$(aub)(g) = au(g)(gb)$$
, where $a, b \in A$ and $u \in \mathcal{D}(G, A)$,

and we may form the semidirect product $\mathcal{D}^+(G,A)$, which fits into the split short-exact sequence

$$0 \to \mathcal{D}(G, A) \to \mathcal{D}^+(G, A) \to A \to 0.$$

For example, the algebra $\mathcal{D}^+(G,\mathbb{C}) = \mathcal{D}^+(G)$ is the result of adjoining an identity to the convolution algebra $\mathcal{D}(G,\mathbb{C}) = \mathcal{D}(G)$. We will apply the construction of Part I to the algebra $\mathcal{D}^+(G,A)$. Wodzicki's theory of excision for H-unital algebras [9] will enable us to derive from this a spectral sequence for the cyclic homology of $\mathcal{D}(G,A)$.

If A is a topological algebra and V is a topological vector space, define a complex $B_n(A, V) = A^{(n)} \otimes V$, $n \geq 1$, with differential $b' : B_n(A, V) \to B_{n-1}(A, V)$ given by the formula

$$b'(a_1,\ldots,a_n,v) = \sum_{i=1}^{n-1} (-1)^{i-1}(a_1,\ldots,a_i a_{i+1},\ldots,a_n,v).$$

Following Wodzicki ([8], Remark 3, page 402), we say that a topological algebra A is **strongly H-unital** if the complex (B(A, V), b') is acyclic for every topological vector space V. In particular, a unital algebra A is strongly H-unital, since the map

$$s(a_1, \ldots, a_n, v) = (1, a_1, \ldots, a_n, v)$$

provides a contracting homotopy for the complex B(A, V).

The following result is proved in [9].

Lemma 1. In a \mathbb{C} -split short exact sequence of topological algebras

$$0 \to I \to B \to A \to 0$$
,

if two of the algebras are strongly H-unital, then so is the third.

We now have the following result (see Appendix A of [3]).

Proposition 2. If the algebra A is strongly H-unital, then the crossed product algebra $\mathcal{D}(G, A)$ is strongly H-unital.

Proof. Applying Lemma 1 to the short exact sequence

$$0 \to \mathcal{D}(G, A) \to \mathcal{D}(G, A^+) \to \mathcal{D}(G) \to 0$$

we see that it suffices to consider the case where A is unital.

Fix an element $\varphi \in C_c^{\infty}(G)$ such that $\int_G \varphi \, dg = 1$, where dg is the left Haar measure on G. Identify the space $B_n(\mathcal{D}(G,A),V)$ with $C_c^{\infty}(G^n,A^{(n)}\otimes V)$. Define

$$s: B_n(\mathcal{D}(G, A), V) \to B_{n+1}(\mathcal{D}(G, A), V), \quad n \ge 1,$$

by the formula

$$(sf)(g_0,\ldots,g_n,v)=(1\otimes g_0^{-1}\otimes 1\otimes\ldots\otimes 1)(\varphi(g_0)\otimes f(g_0g_1,\ldots,g_n),v).$$

Then s satisfies the formula sb' + b's = 1, and so is a contracting homotopy. \square

If A is an algebra, let C(A) be its cyclic bar complex: this is the mixed complex

$$\mathsf{C}_k(A) = \left\{ \begin{array}{ll} A, & k = 0, \\ A^+ \otimes A^{(k)}, & k > 0, \end{array} \right.$$

with differentials

$$b(a_0, \dots, a_k) = \sum_{i=0}^{k-1} (-1)^i (a_0, \dots, a_i a_{i+1}, \dots, a_k) + (-1)^k (a_k a_0, a_1, \dots, a_{k-1}),$$

$$B(a_0, \dots, a_k) = \sum_{i=0}^k (-1)^{ik} (1, a_i, \dots, a_k, a_0, \dots, a_{i-1}).$$

If A is unital, then C(A) is quasi-isomorphic to $C(A^{\natural})$, the mixed complex obtained by forming the chain complex of the cyclic vector space A^{\natural} . In general,

$$\mathsf{C}(A) = \ker(\mathsf{N}((A^+)^{\natural}) \to \mathsf{N}(\mathbb{C}^{\natural})).$$

If $0 \to I \to B \to A \to 0$ is a C-split extension of algebras, let

$$\mathsf{C}(B,A) = \ker(\mathsf{C}(B) \to \mathsf{C}(A))$$

be the relative cyclic bar complex. One of the main properties of H-unital algebras is that they satisfy homological excision, as expressed by the following proposition (Wodzicki [8], [9]).

Proposition 3. If I is strongly H-unital, the map $C(I) \to C(B,A)$ of mixed complexes is a quasi-isomorphism.

Let W be a graded $\mathbb{C}[u]$ -module of finite homological dimension, for example, one of the modules $\mathbb{C}[u]$, $\mathbb{C}[u,u^{-1}]$, $\mathbb{C}[u]/u\mathbb{C}[u]$ and $\mathbb{C}[u,u^{-1}]/u\mathbb{C}[u]$. The cyclic homology of A with coefficients in W is the homology HC(A; W) of the complex

$$(\mathsf{C}(A)\boxtimes W, b+uB).$$

If I is strongly H-unital, then Proposition 3 shows that $HC(I; W) \cong HC(A, B; W)$.

Given a topological algebra A on which a Lie group G acts differentiably, we will define a cylindrical vector space $\mathsf{L}^+(A,G)$, that is, a contravariant functor from Σ to the category of topological vector spaces or, equivalently, a contravariant functor from $\Lambda_{\infty} \times \Lambda_{\infty}$ to the category of topological vector spaces which satisfies the condition $\bar{T} = T^{-1}$. This object will have the property that its diagonal $\Delta(L^+(A,G))$ is naturally isomorphic as a cyclic vector space to $\mathcal{D}^+(G,A^+)^{\sharp}$. The underlying vector spaces of $\mathsf{L}^+(A,G)$ are

$$\mathsf{L}^{+}(A,G)([p],[q]) = \mathcal{D}^{+}(G)^{(p+1)} \otimes (A^{+})^{(q+1)}.$$

The action of the category Σ on $\mathsf{L}^+(A,G)([p],[q])$ is given by the following formulas: if $\varphi \in \mathcal{D}^+(G)^{(p+1)}$ and $a_i \in A^+$, and $\omega = \varphi \otimes a_0 \otimes \ldots \otimes a_q$, then

$$\bar{d}\omega(g_0,\ldots,g_{p-1}) = \varphi(g_0,\ldots,g_{p-1},g_0) \otimes g_p a_0 \otimes \ldots \otimes g_p a_q,$$

$$\bar{s}\omega(g_0,\ldots,g_{p+1}) = \varphi(g_1,\ldots,g_{p+1}) \otimes a_0 \otimes \ldots \otimes a_q,$$

$$d\omega(g_0,\ldots,g_p) = \varphi(g_0,\ldots,g_p) \otimes (g^{-1}a_q)a_0 \otimes a_1 \otimes \ldots \otimes a_{q-1},$$

$$s\omega(g_0,\ldots,g_p) = \varphi(g_0,\ldots,g_p) \otimes 1 \otimes a_0 \otimes \ldots \otimes a_q,$$

where $g = g_0 \dots g_p$. The operator $T = t^{q+1} = \bar{t}^{-p-1}$ is given by the formula

$$T\omega = \varphi(g_0, \dots, g_p) \otimes g^{-1}a_0 \otimes \dots \otimes g^{-1}a_q.$$

The definition of $L^+(A,G)$ is the natural extension to the topological setting of the definition of A
atural G in Part I.

Lemma 4. There is a quasi-isomorphism of mixed complexes

$$\operatorname{Tot}(\mathsf{N}(\mathsf{L}^+(A,G))) \to \mathsf{C}(\mathcal{D}^+(G,A^+)).$$

Proof. This follows from the identification of the cyclic module $\Delta(L^+(A,G))$ with $\mathcal{D}^+(G,A^+)^{\natural}$, combined with Theorem 3.1 of Part I.

We will now use excision to remove the augmentations which were needed in the proof of Lemma 4.

By naturality, there is a map of cylindrical modules

$$\mathsf{L}^+(A,G) \to \mathsf{L}^+(0,G) \cong \mathcal{D}^+(G)^{\natural}.$$

Now suppose that A, and hence $\mathcal{D}^+(G,A)$, is strongly H-unital. By Lemma 4, we see that

$$\operatorname{Tot}(\mathsf{N}\ker(\mathsf{L}^+(A,G)\to\mathcal{D}^+(G)^{\natural}))$$

and $C(\mathcal{D}^+(G, A^+), \mathcal{D}^+(G))$ are quasi-isomorphic, and hence by Proposition 3, quasi-isomorphic to $C(\mathcal{D}^+(G, A))$.

Similarly, there is a map of cylindrical modules

$$\mathsf{L}^+(A,G) \to \mathsf{L}^+(A,1) \cong (A^+)^{\natural},$$

and we see that

$$\operatorname{Tot}(\operatorname{N}\ker(\operatorname{L}^+(A,G)\to \mathcal{D}^+(G)^{\natural}\oplus_{\mathbb{C}^{\natural}}(A^+)^{\natural}))$$

is quasi-isomorphic to $C(\mathcal{D}^+(G, A), A)$, and hence by Proposition 3, quasi-isomorphic to $C(\mathcal{D}(G, A))$. Thus, we see that there is a cylindrical module

$$\mathsf{L}(A,G) = \ker(\mathsf{L}^+(A,G) \to \mathcal{D}^+(G)^{\natural} \oplus_{\mathbb{C}^{\natural}} (A^+)^{\natural})$$

and quasi-isomorphisms of mixed complexes

$$\operatorname{Tot}(\mathsf{N}(\mathsf{L}(A,G))) \simeq \mathsf{C}(\mathcal{D}(G,A)).$$

This proves the following theorem.

Theorem 5. Suppose A is an strongly H-unital topological algebra on which the Lie group G acts differentiably. Let W be a one of the $\mathbb{C}[u]$ modules listed above. Then there is a canonical isomorphism

$$HC(\mathcal{D}(G, A); W) \cong HC(Tot(\mathsf{N}(\mathsf{L}(A, G))); W).$$

Let us use this theorem to derive a spectral sequence for $HC(\mathcal{D}(G,A);W)$. The normalization N(L(A,G)) of L(A,G) has underlying vector spaces

$$\mathsf{N}_{pq}(\mathsf{L}(A,G)) = \left\{ \begin{array}{ll} \mathcal{D}(G) \otimes A, & p = 0, q = 0, \\ \mathcal{D}(G) \otimes A^+ \otimes A^{(q)}, & p = 0, q > 0, \\ \mathcal{D}^+(G) \otimes \mathcal{D}(G)^{(p)} \otimes A, & p > 0, q = 0, \\ \mathcal{D}^+(G) \otimes \mathcal{D}(G)^{(p)} \otimes A^+ \otimes A^{(q)}, & p > 0, q > 0. \end{array} \right.$$

Now, HC(Tot(N(L(A,G))); W) is the homology of the complex

$$(\operatorname{Tot}(\mathsf{N}(\mathsf{L}(A,G))) \boxtimes W, \bar{b} + (b+uB) + uT\bar{B}).$$

We filter this as follows:

$$F_i \operatorname{Tot}_{\bullet}(\mathsf{N}(\mathsf{L}(A,G))) \boxtimes W = \sum_{q \leq i} \mathsf{N}_{\bullet q}(\mathsf{L}(A,G)) \boxtimes W.$$

Denote the resulting spectral sequence by E_{pq}^r . In particular, E_{pq}^0 is isomorphic to $\mathsf{N}_{pq}(\mathsf{L}(A,G))$ as a bigraded vector space, with differential \bar{b} .

Let A_G^{\sharp} be the paracyclic vector space defined by

$$A_G^{\natural}([n]) = \mathsf{L}(A, G)([0], [n]).$$

There is a differentiable action of the group G on A_G^{\natural} compatible with the paracyclic structure, and hence an action of the topological algebra $\mathcal{D}(G)$. The following lemma is straightforward.

Lemma 6. For each $q \geq 0$, there is a short exact sequence of complexes

$$0 \to C_p(\mathfrak{D}(G), \mathsf{N}_q(A_G^{\natural}) \boxtimes W) \to E_{pq}^0 \to B_p(\mathfrak{D}(G)) \otimes \mathsf{C}_q(A) \boxtimes W \to 0,$$

with respective differentials the Hochschild boundary δ , the differential induced on E_{pq}^0 by \bar{b} , and the differential b' on $B(\mathcal{D}(G))$. Thus, since $\mathcal{D}(G)$ is strongly H-unital, so that $B_p(\mathcal{D}(G)) \otimes C_q(A) \boxtimes W$ is acyclic, we see that

$$E_{pq}^1 \cong H_p(\mathfrak{D}(G), \mathsf{N}_q(A_G^{\natural}) \boxtimes W).$$

By the work of Blanc [1], we may identify the Hochschild homology group $H_{\bullet}(\mathcal{D}(G), M)$ with the differentiable homology group $H_{\bullet}(G, M)$. Thus, we obtain our final result.

Corollary 7. There is a spectral sequence with E_{pq}^1 -term

$$H_p(G, \mathsf{N}_q(A_G^{\natural}) \boxtimes W) = \left\{ \begin{array}{ll} H_p(G, A \boxtimes W), & q = 0, \\ H_p(G, A^+ \otimes A^{(q)} \boxtimes W), & q > 0, \end{array} \right.$$

and differential b + uB, converging to the cyclic homology group $HC(\mathcal{D}(G, A); W)$.

In particular, if G is compact, $E_{pq}^1 = 0$ for p > 0, so this spectral sequence collapses, and we see that $HC_{\bullet}(\mathcal{D}^+(G,A);W) = H_{\bullet}(\mathsf{C}_{\bullet}^G(A) \otimes W, b + uB)$ may be calculated by means of the **equivariant cyclic bar complex**

$$\mathsf{C}_n^G(A) = \left\{ \begin{array}{ll} H_0(G, A \boxtimes W), & n = 0, \\ H_0(G, A^+ \otimes A^{(n)} \boxtimes W), & n > 0. \end{array} \right.$$

This result generalizes those of Block [2] and Brylinski [4], [Brylinski Koszul].

References

- 1. P. Blanc, (Co)homologie differentiable et changement de groupes, Astérisque **124–125** (1985), 13–29.
- 2. J. Block, Excision in cyclic homology of topological algebras, Harvard University thesis, 1987.
- 3. J. Block and E. Getzler, Equivariant cyclic homology and equivariant differential forms, Ann. Sci. E.N.S. (1993).
- 4. J.-L. Brylinski, Algebras associated with group actions and ther homology, Brown preprint, 1987.
- 5. J.-L. Brylinski, Cyclic homology and equivariant theories, Ann. Inst. Fourier **37** (1987), 15–28.
- 6. E. Getzler and J.D.S. Jones, *The cyclic homology of crossed product algebras*, *I.*, J. Reine Ang. Math. (1993).
- 7. A. Grothendieck, *Topological tensor products and nuclear spaces*, Memoirs of the A.M.S. **16** (1955).
- 8. M. Wodzicki, The long exact sequence in cyclic homology associated with an extension of algebras, C. R. Acad. Sci. Paris, Sec. A **306** (1988), 399-403.

9. M. Wodzicki, Excision in cyclic homology and rational algebraic K-theory, Ann. Math. 129 (1989), 591–639.

Dept. of Mathematics, U. of Pennsylvania, Philadelphia, Penn. 19104 USA $E\text{-}mail\ address:\ blockj@math.upenn.edu$

Dept. of Mathematics, MIT, Cambridge, Mass. 02139 USA $\emph{E-mail address}: \texttt{getzler@math.mit.edu}$

 $\label{eq:mathematics} \mbox{Mathematics Institute, University of Warwick, Coventry CV4 7AL, England $E\text{-}mail\ address:}\ \mbox{jdsj@maths.warwick.ac.uk}$