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This article is a sequel to [6], in which we constructed a spectral sequence for the cyclic
homology of a crossed product algebra A o G, where A is an algebra and G is a discrete
group acting on A. In this article, we will show how similar results hold when A is a
topological algebra, and G is a Lie group acting differentiably on A. We assume the
notation and results of [6], which we will refer to as Part I.

All of the topological vector spaces considered in this article will be locally convex,
complete and Hausdorff.

A topological algebra is a topological vector space A with an associative product
m : A×A −→ A which is separately continuous. This definition motivates the introduction
of Grothendieck’s inductive tensor product V1⊗V2 of two topological vector spaces, which is
the completion of the algebraic tensor product V1⊗V2 with respect to the finest compatible
tensor product topology, in the sense of Grothendieck ([7], page 89).

Recall some of the properties of the inductive tensor product:

(1) If W is a complete topological vector space, the space L(V1⊗̄V2,W ) of continuous
linear transformations from V1⊗̄V2 to W is isomorphic to the space of separately
continuous bilinear maps from V1 × V2 to W ; in particular, the dual (V1⊗̄V2)′ is
isomorphic to the space of separately continuous bilinear forms on V1 × V2.

(2) If V1 and V2 are Fréchet spaces, separately continuous bilinear forms are jointly
continuous, so V1⊗̄V2 is equal to the projective tensor product V1⊗̂V2.

(3) If U = lim−→i Ui and V = lim←−j Vj are inductive limits, endowed with the inductive
limit topology, then

U⊗̄V = lim−→
i,j

Ui⊗̄Vj

also has the inductive limit topology.
(4) If M and N are smooth manifolds and D(M) and D(N) are the spaces of compactly

supported smooth functions on M and N topologized as the inductive limit of
Fréchet spaces, then

D(M)⊗̄D(N) ∼= D(M ×N).
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In terms of the inductive tensor product, we see that a topological algebra is a topological
vector space with associative product a continuous linear map m : A⊗̄A −→ A. In the rest
of this paper, the inductive tensor product will be denoted simply by ⊗, and we will study
the Hochschild and cyclic homology constructed using this tensor product.

The action ρ : G×A −→ A of a Lie group G on a topological algebra A is differentiable
[1] if

(1) ρ is continuous;
(2) for each x ∈ A, the map g 7→ ρ(g, x) is infinitely differentiable;
(3) the image of any compact set of G in the automorphism group of A is equicontin-

uous.

The crossed product algebra AoG is defined for a discrete group G acting on an algebra
A: for differentiable actions of a Lie group on a topological algebra, the analogue of AoG
is the space D(G, A) of smooth functions of compact support on G with values in A, with
product defined as follows: for u, v ∈ D(G, A),

(uv)(g) =
∫

G

u(h) (hv(h−1g)) dh.

The algebra D(G, A) does not have an identity unless G is discrete. However, D(G, A)
is a bimodule for the algebra A, with respect to the actions

(aub)(g) = au(g)(gb), where a, b ∈ A and u ∈ D(G, A),

and we may form the semidirect product D+(G, A), which fits into the split short-exact
sequence

0 −→ D(G, A) −→ D+(G, A) −→ A −→ 0.

For example, the algebra D+(G, C) = D+(G) is the result of adjoining an identity to the
convolution algebra D(G, C) = D(G). We will apply the construction of Part I to the
algebra D+(G, A). Wodzicki’s theory of excision for H-unital algebras [9] will enable us to
derive from this a spectral sequence for the cyclic homology of D(G, A).

If A is a topological algebra and V is a topological vector space, define a complex
Bn(A, V ) = A(n) ⊗ V , n ≥ 1, with differential b′ : Bn(A, V ) −→ Bn−1(A, V ) given by the
formula

b′(a1, . . . , an, v) =
n−1∑
i=1

(−1)i−1(a1, . . . , aiai+1, . . . , an, v).

Following Wodzicki ([8], Remark 3, page 402), we say that a topological algebra A is
strongly H-unital if the complex (B(A, V ), b′) is acyclic for every topological vector
space V . In particular, a unital algebra A is strongly H-unital, since the map

s(a1, . . . , an, v) = (1, a1, . . . , an, v)

provides a contracting homotopy for the complex B(A, V ).
The following result is proved in [9].
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Lemma 1. In a C-split short exact sequence of topological algebras

0 −→ I −→ B −→ A −→ 0,

if two of the algebras are strongly H-unital, then so is the third.

We now have the following result (see Appendix A of [3]).

Proposition 2. If the algebra A is strongly H-unital, then the crossed product algebra
D(G, A) is strongly H-unital.

Proof. Applying Lemma 1 to the short exact sequence

0 −→ D(G, A) −→ D(G, A+) −→ D(G) −→ 0,

we see that it suffices to consider the case where A is unital.
Fix an element ϕ ∈ C∞

c (G) such that
∫

G
ϕ dg = 1, where dg is the left Haar measure

on G. Identify the space Bn(D(G, A), V ) with C∞
c (Gn, A(n) ⊗ V ). Define

s : Bn(D(G, A), V ) −→ Bn+1(D(G, A), V ), n ≥ 1,

by the formula

(sf)(g0, . . . , gn, v) = (1⊗ g−1
0 ⊗ 1⊗ . . .⊗ 1)(ϕ(g0)⊗ f(g0g1, . . . , gn), v).

Then s satisfies the formula sb′ + b′s = 1, and so is a contracting homotopy. �

If A is an algebra, let C(A) be its cyclic bar complex: this is the mixed complex

Ck(A) =
{

A, k = 0,

A+ ⊗A(k), k > 0,

with differentials

b(a0, . . . , ak) =
k−1∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , ak) + (−1)k(aka0, a1, . . . , ak−1),

B(a0, . . . , ak) =
k∑

i=0

(−1)ik(1, ai, . . . , ak, a0, . . . , ai−1).

If A is unital, then C(A) is quasi-isomorphic to C(A\), the mixed complex obtained by
forming the chain complex of the cyclic vector space A\. In general,

C(A) = ker(N((A+)\) −→ N(C\)).

If 0 −→ I −→ B −→ A −→ 0 is a C-split extension of algebras, let

C(B,A) = ker(C(B) −→ C(A))

be the relative cyclic bar complex. One of the main properties of H-unital algebras is that
they satisfy homological excision, as expressed by the following proposition (Wodzicki [8],
[9]).
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Proposition 3. If I is strongly H-unital, the map C(I) −→ C(B,A) of mixed complexes is
a quasi-isomorphism.

Let W be a graded C[u]-module of finite homological dimension, for example, one of
the modules C[u], C[u, u−1], C[u]/uC[u] and C[u, u−1]/uC[u]. The cyclic homology of A
with coefficients in W is the homology HC(A;W ) of the complex(

C(A) � W, b + uB
)
.

If I is strongly H-unital, then Proposition 3 shows that HC(I;W ) ∼= HC(A,B;W ).
Given a topological algebra A on which a Lie group G acts differentiably, we will define

a cylindrical vector space L+(A,G), that is, a contravariant functor from Σ to the category
of topological vector spaces or, equivalently, a contravariant functor from Λ∞×Λ∞ to the
category of topological vector spaces which satisfies the condition T̄ = T−1. This object
will have the property that its diagonal ∆(L+(A,G)) is naturally isomorphic as a cyclic
vector space to D+(G, A+)\. The underlying vector spaces of L+(A,G) are

L+(A,G)([p], [q]) = D+(G)(p+1) ⊗ (A+)(q+1).

The action of the category Σ on L+(A,G)([p], [q]) is given by the following formulas: if
ϕ ∈ D+(G)(p+1) and ai ∈ A+, and ω = ϕ⊗ a0 ⊗ . . .⊗ aq, then

d̄ω(g0, . . . , gp−1) = ϕ(g0, . . . , gp−1, g0)⊗ gpa0 ⊗ . . .⊗ gpaq,

s̄ω(g0, . . . , gp+1) = ϕ(g1, . . . , gp+1)⊗ a0 ⊗ . . .⊗ aq,

dω(g0, . . . , gp) = ϕ(g0, . . . , gp)⊗ (g−1aq)a0 ⊗ a1 ⊗ . . .⊗ aq−1,

sω(g0, . . . , gp) = ϕ(g0, . . . , gp)⊗ 1⊗ a0 ⊗ . . .⊗ aq,

where g = g0 . . . gp. The operator T = tq+1 = t̄−p−1 is given by the formula

Tω = ϕ(g0, . . . , gp)⊗ g−1a0 ⊗ . . .⊗ g−1aq.

The definition of L+(A,G) is the natural extension to the topological setting of the defini-
tion of A\G in Part I.

Lemma 4. There is a quasi-isomorphism of mixed complexes

Tot(N(L+(A,G))) −→ C(D+(G, A+)).

Proof. This follows from the identification of the cyclic module ∆(L+(A,G)) with D+(G, A+)\,
combined with Theorem 3.1 of Part I. �

We will now use excision to remove the augmentations which were needed in the proof
of Lemma 4.

By naturality, there is a map of cylindrical modules

L+(A,G) −→ L+(0, G) ∼= D+(G)\.
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Now suppose that A, and hence D+(G, A), is strongly H-unital. By Lemma 4, we see that

Tot(N ker(L+(A,G) −→ D+(G)\))

and C(D+(G, A+),D+(G)) are quasi-isomorphic, and hence by Proposition 3, quasi-isomorphic
to C(D+(G, A)).

Similarly, there is a map of cylindrical modules

L+(A,G) −→ L+(A, 1) ∼= (A+)\,

and we see that
Tot(N ker(L+(A,G) −→ D+(G)\ ⊕C\ (A+)\))

is quasi-isomorphic to C(D+(G, A), A), and hence by Proposition 3, quasi-isomorphic to
C(D(G, A)). Thus, we see that there is a cylindrical module

L(A,G) = ker(L+(A,G) −→ D+(G)\ ⊕C\ (A+)\)

and quasi-isomorphisms of mixed complexes

Tot(N(L(A,G))) ' C(D(G, A)).

This proves the following theorem.

Theorem 5. Suppose A is an strongly H-unital topological algebra on which the Lie group
G acts differentiably. Let W be a one of the C[u] modules listed above. Then there is a
canonical isomorphism

HC(D(G, A);W ) ∼= HC(Tot(N(L(A,G)));W ).

Let us use this theorem to derive a spectral sequence for HC(D(G, A);W ). The nor-
malization N(L(A,G)) of L(A,G) has underlying vector spaces

Npq(L(A,G)) =


D(G)⊗A, p = 0, q = 0,

D(G)⊗A+ ⊗A(q), p = 0, q > 0,

D+(G)⊗D(G)(p) ⊗A, p > 0, q = 0,

D+(G)⊗D(G)(p) ⊗A+ ⊗A(q), p > 0, q > 0.

Now, HC(Tot(N(L(A,G)));W ) is the homology of the complex(
Tot(N(L(A,G))) � W, b̄ + (b + uB) + uTB̄

)
.

We filter this as follows:

Fi Tot•(N(L(A,G))) � W =
∑
q≤i

N•q(L(A,G)) � W.

Denote the resulting spectral sequence by Er
pq. In particular, E0

pq is isomorphic to Npq(L(A,G))
as a bigraded vector space, with differential b̄.

Let A\
G be the paracyclic vector space defined by

A\
G([n]) = L(A,G)([0], [n]).

There is a differentiable action of the group G on A\
G compatible with the paracyclic

structure, and hence an action of the topological algebra D(G). The following lemma is
straightforward.
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Lemma 6. For each q ≥ 0, there is a short exact sequence of complexes

0 −→ Cp

(
D(G),Nq(A

\
G) � W

)
−→ E0

pq −→ Bp(D(G))⊗ Cq(A) � W −→ 0,

with respective differentials the Hochschild boundary δ, the differential induced on E0
pq by

b̄, and the differential b′ on B(D(G)). Thus, since D(G) is strongly H-unital, so that
Bp(D(G))⊗ Cq(A) � W is acyclic, we see that

E1
pq
∼= Hp(D(G),Nq(A

\
G) � W ).

By the work of Blanc [1], we may identify the Hochschild homology group H•(D(G),M)
with the differentiable homology group H•(G, M). Thus, we obtain our final result.

Corollary 7. There is a spectral sequence with E1
pq-term

Hp(G, Nq(A
\
G) � W ) =

{
Hp(G, A � W ), q = 0,

Hp(G, A+ ⊗A(q) � W ), q > 0,

and differential b + uB, converging to the cyclic homology group HC(D(G, A);W ).

In particular, if G is compact, E1
pq = 0 for p > 0, so this spectral sequence collapses, and

we see that HC•(D+(G, A);W ) = H•(CG
• (A)⊗W, b + uB) may be calculated by means of

the equivariant cyclic bar complex

CG
n (A) =

{
H0(G, A � W ), n = 0,

H0(G, A+ ⊗A(n) � W ), n > 0.

This result generalizes those of Block [2] and Brylinski [4], [BrylinskiKoszul].
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