THE CYCLIC HOMOLOGY OF CROSSED PRODUCT ALGEBRAS, I.

Ezra Getzler and John D. S. Jones

Introduction

In their article [9] on cyclic homology, Feigin and Tsygan have given a spectral sequence for the cyclic homology of a crossed product algebra, generalizing Burghelea's calculation [4] of the cyclic homology of a group algebra. For an analogous spectral sequence for the Hochschild homology of a crossed product algebra, see Brylinski [2], [3].

In this article, we give a new derivation of this spectral sequence, and generalize it to negative and periodic cyclic homology $\mathrm{HC}_{\bullet}^{-}(A)$ and $\mathrm{HP} \bullet(A)$. The method of proof is itself of interest, since it involves a natural generalization of the notion of a cyclic module, in which the condition that the morphism $\tau \in \Lambda(\mathbf{n}, \mathbf{n})$ is cyclic of order $n+1$ is relaxed to the condition that it be invertible. We call this category the paracyclic category.

Given a paracyclic module P, we can define a chain complex $\mathrm{C}(P)$, with differentials b and B, which respectively lower and raise degree. The condition that the module P is paracyclic translates to the condition on $\mathrm{C}(P)$ that $1-(b B+B b)$ is invertible. Our main result is to show that there is an analogue of the Eilenberg-Zilber theorem for bi-paracyclic modules. It is then easy to obtain a new expression for the cyclic homology of a crossed product algebra which leads immediately to the spectral sequence of Feigin and Tsygan.

If M is a module over a commutative ring \mathbf{k}, we will denote by $M^{(k)}$ the iterated tensor product, defined by $M^{(0)}=\mathbf{k}$ and $M^{(k+1)}=M^{(k)} \otimes M$. If M and N are graded modules, we will denote by $M \otimes N$ their graded tensor product.

We would like to thank J. Block, J.-L. Brylinski and C. Kassel for a number of interesting discussions on the results presented here.

1. PARACYCLIC MODULES AND CROSSED PRODUCT ALGEBRAS

Let A be a unital algebra over a fixed commutative ring \mathbf{k}. Let G be a (discrete) group which acts on A by automorphisms (which we suppose to fix the identity). Recall the definition of the crossed product algebra $A \rtimes G$: the underlying k-module is $A \otimes \mathbf{k}[G]$, that is, functions from G to A with finite support, and the product is given on elementary tensor products $a \otimes g$ by the formula

$$
\left(a_{1} \otimes g_{1}\right)\left(a_{2} \otimes g_{2}\right)=\left(a_{1}\left(g_{1} a_{2}\right)\right) \otimes\left(g_{1} g_{2}\right)
$$

This work was partially funded by the NSF and the SERC.

It is easy to check that this product is associative and unital. In the special case $\mathbf{k} \rtimes G$, we obtain the group ring $\mathbf{k}[G]$.

A cyclic module $P(\mathbf{n})$ has an underlying simplicial structure, with face morphisms $d_{i}: P(\mathbf{n}+\mathbf{1}) \rightarrow P(\mathbf{n}), 0 \leq i \leq n$, and degeneracy morphisms $s_{i}: P(\mathbf{n}-\mathbf{1}) \rightarrow P(\mathbf{n})$, $0 \leq i \leq n$. In addition, it has morphisms $t: P(\mathbf{n}) \rightarrow P(\mathbf{n})$ for each n, such that $t^{n+1}=1$, and $t \cdot d_{i} \cdot t^{-1}=d_{i+1}, t \cdot s_{i} \cdot t^{-1}=s_{i-1}$. We denote the morphism $d_{n}: P(\mathbf{n}) \rightarrow P(\mathbf{n})$ by d, and the morphism $t \cdot s_{0} \cdot t^{-1}: P(\mathbf{n}-\mathbf{1}) \rightarrow P(\mathbf{n})$ by s. The composition $d \cdot s$ is equal to t; it follows that together, the morphisms d and s generate the action of the cyclic category on P.

Connes defines in [5] a cyclic module B^{\natural} for any unital algebra B. This cyclic module has as its n-th space $B^{\natural}(\mathbf{n})$ the \mathbf{k}-module $B^{(n+1)}$, and the actions of d, s and $t=d \cdot s$ are given by the following formulas:

$$
\begin{aligned}
d\left(a_{0}, \ldots, a_{n}\right) & =\left(a_{n} a_{0}, a_{1}, \ldots, a_{n-1}\right) \\
s\left(a_{0}, \ldots, a_{n}\right) & =\left(1, a_{0}, \ldots, a_{n}\right) \\
t\left(a_{0}, \ldots, a_{n}\right) & =\left(a_{n}, a_{0}, \ldots, a_{n-1}\right) .
\end{aligned}
$$

The goal of this article is to understand the cyclic module $(A \rtimes G)^{\text {घ }}$ associated to the crossed product algebra $A \rtimes G$. This is the cyclic module whose n-th space $(A \rtimes G)^{\natural}(\mathbf{n})$ is $\mathbf{k}\left[G^{n+1}\right] \otimes A^{(n+1)}$. Denote the elementary tensor

$$
\left(a_{0} \otimes g_{0}\right) \otimes \ldots \otimes\left(a_{n} \otimes g_{n}\right) \in(A \rtimes G)^{\mathrm{t}}(\mathbf{n})
$$

by $\left(g_{0}, \ldots, g_{n} \mid h_{0}^{-1} a_{0}, \ldots, h_{n}^{-1} a_{n}\right)$, where $h_{i}=g_{i} \ldots g_{n}$. This notation is motivated by the fact that in reordering the tensor product so that all of the factors $\mathbf{k}[G]$ occur to the left, we must pass the group elements g_{i}, \ldots, g_{n} past the algebra element $a_{i} \in A$.

We have the following formulas for d, s and $t=d \cdot s$ acting on the cyclic \mathbf{k}-module $(A \rtimes G)^{\mathrm{t}}$:

$$
\begin{aligned}
d\left(g_{0}, \ldots, g_{n} \mid a_{0}, \ldots, a_{n}\right) & =\left(g_{n} g_{0}, g_{1}, \ldots, g_{n-1} \mid g_{n}\left(\left(g^{-1} a_{n}\right) a_{0}\right), g_{n} a_{1}, \ldots, g_{n} a_{n-1}\right), \\
s\left(g_{0}, \ldots, g_{n} \mid a_{0}, \ldots, a_{n}\right) & =\left(1, g_{0}, \ldots, g_{n} \mid 1, a_{0}, \ldots, a_{n}\right), \\
t\left(g_{0}, \ldots, g_{n} \mid a_{0}, \ldots, a_{n}\right) & =\left(g_{n}, g_{0}, \ldots, g_{n-1} \mid g_{n} g^{-1} a_{n}, g_{n} a_{0}, \ldots, g_{n} a_{n-1}\right),
\end{aligned}
$$

where $g=g_{0} \ldots g_{n}$.
Inspired by the above formulas, we would like to define a bi-cyclic module A Ł G whose diagonal is the above cyclic module. Denote the two sets of generators by ($\bar{d}, \bar{s}, \bar{t}$) and (d, s, t) respectively; the barred and unbarred maps commute with each other. We define $A \not G G(\mathbf{p}, \mathbf{q})$ to be $\mathbf{k}\left[G^{p+1}\right] \otimes A^{(q+1)}$, spanned by elementary tensor products which we denote $\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right)$. The two sets of generators for the bi-cyclic structure should be defined in such a way as to factor each of the generators of the cyclic structure on $\mathrm{C}(A \rtimes G)$ into two pieces, the barred ones acting within $\mathbf{k}\left[G^{p+1}\right]$ and the unbarred ones within
$\mathbf{k}\left[G^{q+1}\right]$. The natural formulas for the action of $(\bar{d}, \bar{s}, \bar{t})$ and (d, s, t) are as follows:

$$
\begin{aligned}
\bar{d}\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right) & =\left(g_{p} g_{0}, g_{1}, \ldots, g_{p-1} \mid g_{p} a_{0}, \ldots, g_{p} a_{q}\right), \\
\bar{s}\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right) & =\left(g_{0}, \ldots, g_{p} \mid 1, a_{0}, \ldots, a_{q}\right), \\
\bar{t}\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right) & =\left(g_{p}, g_{0}, \ldots, g_{p-1} \mid g_{p} a_{0}, \ldots, g_{p} a_{q}\right), \\
d\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right) & =\left(g_{0}, \ldots, g_{p} \mid\left(g^{-1} a_{q}\right) a_{0}, a_{1}, \ldots, a_{q-1}\right), \\
s\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right) & =\left(g_{0}, \ldots, g_{p} \mid 1, a_{0}, \ldots, a_{q}\right), \\
t\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right) & =\left(g_{0}, \ldots, g_{p} \mid g^{-1} a_{q}, a_{0}, \ldots, a_{q-1}\right),
\end{aligned}
$$

where $g=g_{0} \ldots g_{p}$. However, it is easy to see that this does not define a bi-cyclic structure: on $A \curvearrowleft G(\mathbf{p}, \mathbf{q})$, the operators \bar{t}^{p+1} and t^{q+1} are not equal to the identity, although $\bar{t}^{p+1}=$ t^{-q-1}. Let $T=\bar{t}^{p+1}=t^{-q-1}$: it is given by the formula

$$
T\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right)=\left(g_{0}, \ldots, g_{p} \mid g a_{0}, \ldots, g a_{q}\right) .
$$

In order to understand the structure of $A \sharp G$, we use a category related to the cyclic category Λ of Connes. This category Λ_{∞}, which we call the paracyclic category has the same set of objects as the simplicial category Δ, namely the natural numbers \mathbf{n}. Recall that the morphisms $\Delta(\mathbf{n}, \mathbf{m})$ from \mathbf{n} to \mathbf{m} are the monotonically increasing maps from the set $\{0, \ldots, n\}$ to the set $\{0, \ldots, m\}$. Similarly, the morphisms $\Lambda_{\infty}(\mathbf{m}, \mathbf{n})$ from \mathbf{m} to \mathbf{n} in the paracyclic category Λ_{∞} are monotonically increasing maps f from \mathbb{Z} to itself such that

$$
f(i+k(m+1))=f(i)+k(n+1)
$$

for all $k \in \mathbb{Z}$. We identify Δ with the subcategory of Λ_{∞} such that $f \in \Lambda_{\infty}(\mathbf{m}, \mathbf{n})$ lies in Δ if and only if f maps $\{0, \ldots, m\} \subset \mathbb{Z}$ into $\{0, \ldots, n\}$. The paracyclic category has been studied by Fiedorowicz and Loday [8] and Nistor [15]. Dwyer and Kan [7] study the duplicial category, similar to the paracyclic category, except that \mathbb{Z} is replaced by \mathbb{N}. The cyclic category Λ of Connes [5] is the quotient of Λ_{∞} by the relation $T=1$, while the categories Λ_{r} of Feigin-Tsygan and Bökstedt-Hsiang-Madsen [1] are the quotient of Λ_{∞} by the relation $T^{r}=1$.

The category Λ_{∞} is generated by morphisms $\partial: \mathbf{n} \rightarrow \mathbf{n}+\mathbf{1}$,

$$
\partial(k)=k+1 \quad \text { if } 0 \leq k \leq n,
$$

and $\sigma: \mathbf{n} \rightarrow \mathbf{n}-\mathbf{1}$,

$$
\sigma(k)=k \quad \text { if } 0 \leq k \leq n .
$$

The map ∂ is the face map ∂_{n} in the simplicial category Δ, while σ does not lie in Δ. Denote $\sigma \partial$ by τ; it corresponds to the map

$$
\tau(k)=k+1 \quad \text { for all } k \in \mathbb{Z}
$$

The face and degeneracy maps of the simplicial category Δ embedded in Λ_{∞} are given by the formulas

$$
\begin{array}{ll}
\partial_{i}=\tau^{-i-1} \cdot \partial \cdot \tau^{i}: \mathbf{n}-\mathbf{1} \rightarrow \mathbf{n}, & 0 \leq i \leq n, \\
\sigma_{i}=\tau^{i} \cdot \sigma \cdot \tau^{-i-1}: \mathbf{n}+\mathbf{1} \rightarrow \mathbf{n}, & 0 \leq i \leq n .
\end{array}
$$

Since $\sigma=\tau^{-1} \cdot \sigma_{0} \cdot \tau$, we may think of σ as an extra degeneracy σ_{-1}.
Each object \mathbf{n} in the category Λ_{∞} has an automorphism $T=\tau^{n+1}$, and it is easily seen that if f is any morphism in Λ_{∞}, then $T \cdot f=f \cdot T$. This shows that T induces an invertible automorphism of the category Λ_{∞}.

A paracyclic k-module P is a contravariant functor from Λ_{∞} to the category of k modules. In particular, a paracyclic module may be considered as a simplicial module, by the inclusion $\Delta \subset \Lambda_{\infty}$. Denote the actions of ∂, σ and τ on a paracyclic module P by d, s and t, and of ∂_{i} and σ_{i} by d_{i} and s_{i}. The category of paracyclic modules has an automorphism T, induced by the automorphism T of the category Λ_{∞}.

We now see that $A \not G G$ is a bi-paracyclic module which satisfies the extra relation $\bar{T}=$ T^{-1}; this implies that the diagonal paracyclic module of $A \nvdash G$ is cyclic. We call a biparacyclic module satisfying this extra relation a cylindrical module. The cylindrical category Σ is the quotient of $\Lambda_{\infty} \times \Lambda_{\infty}$ by the relation $\bar{T}=T^{-1}$; a cylindrical module is a contravariant functor from Σ to the category of modules.

Later, we will be interested in the paracyclic module $A \emptyset G(\mathbf{0}, \mathbf{n})$ which forms the bottom row of the bi-paracyclic module $A \natural G$. This paracyclic module, which we denote A_{G}^{\natural}, is given explicitly by $\mathbf{n} \mapsto \mathbf{k}[G] \otimes A^{(n+1)}$. The group G acts on A_{G}^{\natural} by the formula

$$
h \cdot\left(g \mid a_{0}, \ldots, a_{n}\right)=\left(h g h^{-1} \mid h a_{0}, \ldots, h a_{n}\right) .
$$

Let Λ_{∞}^{n} be the paracyclic set $\mathbf{m} \mapsto \Lambda_{\infty}(\mathbf{m}, \mathbf{n})$, and let $\left|\Lambda_{\infty}^{n}\right|$ be the geometric realization of the simplicial set underlying Λ_{∞}^{n}. In the following proposition, we parametrize the n-simplex Δ^{n} by

$$
\Delta^{n}=\left\{0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1\right\}
$$

(This result is similar to Proposition 2.7 of Dwyer-Hopkins-Kan [6] and Theorem 3.4 of Jones [12], and may be proved in the same way.)
Proposition 1.1. The geometric realization $\left|\Lambda_{\infty}^{n}\right|$ is homeomorphic to $\mathbb{R} \times \Delta^{n}$, with nondegenerate $n+1$-simplices given, for $0 \leq j \leq n$ and $k \in \mathbb{Z}$, by

$$
S_{k}^{j}=\left\{\left(t \mid t_{1}, \ldots, t_{n}\right) \in \mathbb{R} \times \Delta^{n} \mid t_{j} \leq t+k \leq t_{j+1}\right\} .
$$

Each simplex S_{k}^{j} is identified with Δ^{n+1} by the map

$$
\left(t_{1}, \ldots, t_{n+1}\right) \mapsto\left(t_{j}+k \mid t_{j+1}, \ldots, t_{n+1}, t_{1}, \ldots, t_{j-1}\right)
$$

The maps $\partial:\left|\Lambda_{\infty}^{n}\right| \rightarrow\left|\Lambda_{\infty}^{n+1}\right|, \sigma:\left|\Lambda_{\infty}^{n}\right| \rightarrow\left|\Lambda_{\infty}^{n-1}\right|, \tau:\left|\Lambda_{\infty}^{n}\right| \rightarrow\left|\Lambda_{\infty}^{n}\right|$ and $T:\left|\Lambda_{\infty}^{n}\right| \rightarrow\left|\Lambda_{\infty}^{n}\right|$ are given by the formulas

$$
\begin{aligned}
\partial\left(t \mid t_{1}, \ldots, t_{n}\right) & =\left(t \mid t_{1}, \ldots, t_{n}, t_{n}\right), \\
\sigma\left(t \mid t_{1}, \ldots, t_{n}\right) & =\left(t+t_{1} \mid t_{2}-t_{1}, \ldots, t_{n}-t_{1}, t_{n}\right), \\
\tau\left(t \mid t_{1}, \ldots, t_{n}\right) & =\left(t+t_{1} \mid t_{2}-t_{1}, \ldots, t_{n}-t_{1}\right), \\
T\left(t \mid t_{1}, \ldots, t_{n}\right) & =\left(t+1 \mid t_{1}, \ldots, t_{n}\right) .
\end{aligned}
$$

2. Parachain complexes

The following definition is inspired by the definition of a duchain complex due to Dwyer and Kan [7].

Definition 2.1. A parachain complex is a graded \mathbf{k}-module $\left(V_{i}\right)_{i \in \mathbb{N}}$ with two operators $b: V_{i} \rightarrow V_{i-1}$ and $B: V_{i} \rightarrow V_{i+1}$, such that
(1) $b^{2}=B^{2}=0$, and
(2) the operator $T=1-(b B+B b)$ is invertible.

It may be easily checked that T commutes with both b and B. When T is the identity, the two differentials b and B commute; such a parachain complex is called a mixed complex. In the definition of a duchain complex, there is no condition on T : parachain complexes bear the same relationship to paracyclic modules that duchain complexes bear to duplicial modules.

If V_{\bullet} is a graded vector space, let $V_{\bullet} \llbracket u \rrbracket$ be the graded vector space of formal power series in a variable u of degree -2 with coefficients in V_{\bullet}. If V_{\bullet} is a mixed complex, one considers the associated complex $V_{\bullet} \llbracket u \rrbracket$ with differential $b+u B$; this motivates considering the operator $b+u B$ on $V_{\bullet} \llbracket u \rrbracket$ even when V_{\bullet} is only a paracyclic module.
Definition 2.2. A morphism between parachain complexes V_{\bullet} and \tilde{V}_{\bullet} is a map from $V_{\bullet} \llbracket u \rrbracket$ to $\tilde{V} \bullet \llbracket \rrbracket$ homogeneous of degree 0 ,

$$
f=\sum_{k=0}^{\infty} u^{k} f_{k}
$$

such that $(\tilde{b}+u \tilde{B}) \cdot f=f \cdot(b+u B)$.
Without introducing the operator $b+u B$, a morphism $f: V_{\bullet} \rightarrow \tilde{V}_{\bullet}$ may be defined as a sequence of maps $f_{k}: V_{i} \rightarrow \tilde{V}_{i+2 k}, k \geq 0$, such that

$$
\tilde{b} \cdot f_{k}+\tilde{B} \cdot f_{k-1}=f_{k} \cdot b+f_{k-1} \cdot B
$$

The composition of two parachain complex maps is a parachain complex map, and a map of parachain complexes f satisfies $\tilde{T} \cdot f_{i}=f_{i} \cdot T$. Thus, the operator T defines an action of \mathbb{Z} on the category of parachain complexes.

There is a functor C from paracyclic modules to parachain complexes, with underlying graded module $\mathrm{C}_{n}(P)=P(\mathbf{n})$ and operators $b=\sum_{i=0}^{n}(-1)^{i} d_{i}$ and $B=\left(1-(-1)^{n+1} t\right) s N$; here N is the norm operator $N=\sum_{i=0}^{n}(-1)^{i n} t^{i}$.

The proof of the following theorem is close to the discussion of Section 1 of [14].
Theorem 2.3. The functor $P \mapsto C(P)$ is a \mathbb{Z}-equivariant functor from the category of paracyclic \mathbf{k}-modules to the category of parachain complexes over \mathbf{k}, that is,
(1) $b^{2}=B^{2}=0$,
(2) $b B+B b=1-T$, and
(3) it intertwines the natural transformations T of these two categories.

Proof. The proof that $b^{2}=0$ is the same as usual, since it only depends on the underlying simplicial module structure on P.

The operator $B^{2}: \mathrm{C}_{n}(P) \rightarrow \mathrm{C}_{n+2}(P)$ is given by

$$
\begin{aligned}
B^{2} & =\left(1-(-1)^{n+2} t\right) s N\left(1-(-1)^{n+1} t\right) s N \\
& =\left(1-(-1)^{n+2} t\right) s(1-T) s N \\
& =\left(1-(-1)^{n+2} t\right) s s N(1-T) \\
& =\left(s_{n}-(-1)^{n+2} s_{n+1}\right) s N(1-T)
\end{aligned}
$$

which shows that B^{2} is zero in the associated chain complex. Here, we have used the formulas $\left(1-(-1)^{n} t\right) N=1-T$, $s s=s_{n} s$ and

$$
t s=T^{-1}(t s) T=t^{-n-1} s t^{n+1}=s_{n+1}
$$

To calculate $b B+B b$, we introduce the operator $b^{\prime}=\sum_{i=1}^{n}(-1)^{i} d_{i}$ on $\mathrm{C}_{n}(P)$.
Lemma 2.4. If P is a paracyclic module, then on $\mathrm{C}(P)_{n}$ we have the formulas
(1) $b\left(1-(-1)^{n} t\right)=\left(1-(-1)^{n-1} t\right) b^{\prime}$,
(2) $N b=b^{\prime} N$, and
(3) $s b^{\prime}+b^{\prime} s=1$.

Proof. The first formula is proved in the same way as in [14]. The operators b and b^{\prime} on $\mathrm{C}_{n}(P)$ are given by

$$
b=\sum_{i=0}^{n}(-1)^{i} t^{i} d t^{-i-1}, \quad b^{\prime}=\sum_{i=0}^{n-1}(-1)^{i} t^{i} d t^{-i-1} .
$$

Thus,

$$
\begin{aligned}
b\left(1-(-1)^{n} t\right) & =\sum_{i=0}^{n}(-1)^{n-i} t^{i} d\left(t^{-i-1}-(-1)^{n} t^{-i}\right) \\
& =-(-1)^{n} d+\left(1-(-1)^{n-1} t\right) \sum_{i=0}^{n-1}(-1)^{i} t^{i} d t^{-i-1}+(-1)^{n} t^{n} d t^{-n-1}
\end{aligned}
$$

However, $t^{n} d t^{-n-1}=d$, and the formula follows.
We leave the proof of the second formula to the reader. To prove the third formula, we use the fact that on \mathbf{n},

$$
\tau^{-i-1} \partial \tau^{i} \sigma=\sigma \tau^{-i-2} \partial \tau^{i+1}
$$

for $0 \leq i \leq n-1$. Thus, it follows that

$$
s b^{\prime}=\sum_{i=0}^{n-1}(-1)^{i} s t^{i} d t^{-i-1}=\sum_{i=0}^{p-1}(-1)^{i} t^{i+1} d t^{-i-2} s=1-b^{\prime} s
$$

As a corollary of this lemma, we see that on $\mathrm{C}_{n}(P)$,

$$
\begin{aligned}
b B & =\left(1-(-1)^{n} t\right) b^{\prime} s N, \quad \text { and } \\
B b & =\left(1-(-1)^{n} t\right) s b^{\prime} N,
\end{aligned}
$$

and hence that

$$
\begin{aligned}
B b+b B & =\left(1-(-1)^{n} t\right)\left(s b^{\prime}+b^{\prime} s\right) N=\left(1-(-1)^{n} t\right) N \\
& =1-t^{n+1}=1-T
\end{aligned}
$$

This completes the proof of the theorem.
A multi-parachain complex is a \mathbb{N}^{k}-graded module $V_{n_{1} \ldots n_{k}}$ with operators

$$
\begin{aligned}
& b_{i}: V_{n_{1} \ldots n_{i} \ldots n_{k}} \rightarrow V_{n_{1} \ldots n_{i}-1 \ldots n_{k}} \\
& B_{i}: V_{n_{1} \ldots n_{i} \ldots n_{k}} \rightarrow V_{n_{1} \ldots n_{i}+1 \ldots n_{k}}
\end{aligned}
$$

The operators $\left\{b_{i}, B_{i}\right\}$ and $\left\{b_{j}, B_{j}\right\}$ are required to (graded) commute if i and j are not equal, while $T_{i}=1-\left(b_{i} B_{i}+B_{i} b_{i}\right)$ is required to be invertible.

There is a functor $V \mapsto \operatorname{Tot}(V)$ from multiparachain complexes to parachain complexes, which we will call the total parachain complex. It is formed by setting

$$
\operatorname{Tot}_{n}(V)=\sum_{n_{1}+\cdots+n_{k}=n} V_{n_{1} \ldots n_{k}},
$$

with operators

$$
\begin{aligned}
\operatorname{Tot}(b) & =\sum_{i=1}^{k} b_{i}, \\
\operatorname{Tot}(B) & =\sum_{i=1}^{n} T_{i+1} \ldots T_{k} B_{i} .
\end{aligned}
$$

The definition of $\operatorname{Tot}(B)$ on $\operatorname{Tot}(V)$ may seem a little strange, but is justified by the following lemma, which shows that $\operatorname{Tot}(V)$ is a parachain complex.

Lemma 2.5. The total T-operator $\operatorname{Tot}(T)=T_{1} \ldots T_{k}$.
Proof. The proof uses the fact that $\left\{b_{i}, B_{i}\right\}$ and $\left\{b_{j}, B_{j}\right\}$ commute for $i \neq j$. Thus, we see that

$$
\begin{aligned}
1-(\operatorname{Tot}(b) \operatorname{Tot}(B)+\operatorname{Tot}(B) \operatorname{Tot}(b)) & =1-\sum_{i=1}^{k}\left[b_{i}, B_{i}\right] T_{i+1} \ldots T_{k} \\
& =1-\sum_{i=1}^{k}\left(1-T_{i}\right) T_{i+1} \ldots T_{k}
\end{aligned}
$$

from which the lemma follows.
We are most interested in the special case of biparachain complexes. We will denote b_{1} and b_{2} by \bar{b} and b, and B_{1} and B_{2} by \bar{B} and B. When $\bar{T}=T^{-1}$, we call a bi-parachain complex V a cylindrical complex; in this case, the above lemma shows that $\operatorname{Tot}(T)=1$, that is, $\operatorname{Tot}(V)$ is a mixed complex.

Finally, we have the normalized chain functor N from paracyclic modules to parachain complexes, with underlying graded module

$$
\mathrm{N}_{n}(P)=P(\mathbf{n}) / \sum_{i=0}^{n} \operatorname{im}\left(s_{i}\right),
$$

and operators b, B induced by those on $\mathrm{C}(P)$. It is a standard result that the quotient map $(\mathrm{C}(P), b) \rightarrow(\mathrm{N}(P), b)$ is a quasi-isomorphism of complexes. More generally, if P is a multi-paracyclic module, we denote by $\mathrm{N}(P)$ the multi-paracyclic complex obtained by normalizing successively in all directions.

3. The Eilenberg-Zilber theorem for paracyclic modules

Let $P(\mathbf{p}, \mathbf{q})$ be a bi-paracyclic module, and let $\mathrm{C}(P)$ be the biparachain complex obtained by forming the chain complex successively in both directions. Let $\operatorname{Tot}(\mathrm{C}(P))$ be the total parachain complex of $\mathrm{C}(P)$: by the above results, if P is a cylindrical module, $\operatorname{Tot}(\mathrm{C}(P))$ is a mixed complex. Using the diagonal embedding of Λ_{∞} into $\Lambda_{\infty} \times \Lambda_{\infty}$, we see that the diagonal $\mathbf{n} \mapsto P(\mathbf{n}, \mathbf{n})$ is a paracyclic object, which we will denote by $\Delta P(\mathbf{n})$. The action of Λ_{∞} on $\Delta P(\mathbf{n})$ is generated by the maps $\bar{d} d, \bar{s} s$ and $\bar{t} t$.

The shuffle product is a natural map from the total complex $(\operatorname{Tot}(\mathrm{C}(P)), \operatorname{Tot}(b))$ to the chain complex of the diagonal $(C(\Delta P), b)$, which is an equivalence of complexes; this is proved using the method of acyclic models. This product was extended to a map of mixed complexes by Hood and Jones [11] when P is bi-cyclic; see also our paper [10], where we give explicit formulas for this map. We will give explicit formulas on normalized chains; to extend these results to the unnormalized chains, we may apply the results of Kassel [13], who shows how to construct a homotopy inverse to the normalization map.

Theorem 3.1. Let P be a bi-paracyclic module. There is a natural quasi-isomorphism $f_{0}+u f_{1}: \operatorname{Tot}(C(P)) \rightarrow C(\Delta P)$ of parachain complexes such that $f_{0}: \operatorname{Tot}(\mathrm{C}(P)) \cdot \rightarrow$ $\mathrm{C}(\Delta P)$. is the shuffle map.
Proof. We must construct a map

$$
f_{1}: \operatorname{Tot}_{\bullet}(\mathrm{C}(P)) \rightarrow \mathrm{C}_{\bullet+2}(\Delta P)
$$

to satisfy the following two formulas:

$$
\begin{aligned}
b \cdot f_{1} & =f_{1} \cdot(b+\bar{b})-B \cdot f_{0}+f_{0} \cdot(B+\bar{B}), \\
B \cdot f_{1} & =f_{1} \cdot(B+\bar{B}) .
\end{aligned}
$$

The fact that $f=f_{0}+u f_{1}$ is a quasi-isomorphism then follows by a standard argument from the fact that it is true for the shuffle product f_{0}.

Figure 3.1

Let ι_{n} be the non-degenerate n-simplex in Λ_{∞}^{n}, corresponding to the identity map on the object $\mathbf{n} \in \Lambda_{\infty}$. This simplex corresponds to the geometric simplex

$$
\left\{\left(0 \mid t_{1}, \ldots, t_{n}\right) \mid 0 \leq t_{1} \leq \cdots \leq t_{n} \leq 1\right\} \subset\left|\Lambda_{\infty}^{n}\right|,
$$

in the geometric realization of Λ_{∞}^{n}, as described in Proposition 1.1. By definition, the nondegenerate simplices of Λ_{∞}^{n} are in one-to-one correspondence with the morphisms of Λ_{∞} with range \mathbf{n}, and these simplices are obtained by applying the corresponding morphism of the opposite category $\Lambda_{\infty}^{\mathrm{op}}$ to ι_{n}.

If X is a paracyclic set, the chains on X with values in \mathbf{k}, written $\mathbf{k}[X]$, form a paracyclic module in an evident way. Similarly, the module of chains on the bi-parayclic set $\Lambda_{\infty}^{p} \times \Lambda_{\infty}^{q}$ is a bi-paracyclic module, which we denote by $\mathbf{k}\left[\Lambda_{\infty}^{p} \times \Lambda_{\infty}^{q}\right]$. The following result is the analogue of Lemma 2.1 of Hood and Jones [11].

Lemma 3.3. If P is a bi-paracyclic module and $x \in P(\mathbf{p}, \mathbf{q})$, there is a unique map of bi-paracyclic modules $i_{x}: \mathbf{k}\left[\Lambda_{\infty}^{p} \times \Lambda_{\infty}^{q}\right] \rightarrow V$ such that $i_{x}\left(\iota_{p} \times \iota_{q}\right)=x$.

From this lemma and the fact that f_{1} is to be natural, we see that it suffices to define f_{1} on the elements $\iota_{p} \times \iota_{q} \in \mathbf{k}\left[\Lambda_{\infty}^{p} \times \Lambda_{\infty}^{q}\right]$. The following argument may be better understood by reference to Figure 3.1.

The image of $\iota_{p} \times \iota_{q}$ under the map B is the chain

$$
\{0\} \times[0,1] \times \Delta^{p} \times \Delta_{9}^{q} \subset \mathbb{R}^{2} \times \Delta^{p} \times \Delta^{q} .
$$

Similarly, its image under the map $T \bar{B}$ is the chain

$$
[0,1] \times\{1\} \times \Delta_{p} \times \Delta_{q}
$$

Finally, $B \cdot f_{0}\left(\iota_{p} \times \iota_{q}\right)$ is the chain

$$
\{(t, t) \mid t \in[0,1]\} \times \Delta^{p} \times \Delta^{q} .
$$

From this, we see that $f_{0} \cdot(T \bar{B}+B)-B \cdot f_{0}$ applied to $\iota_{p} \times \iota_{q}$ is the chain

$$
\partial K \times \Delta^{p} \times \Delta^{q}
$$

where K is the triangle $\{(s, t) \mid 0 \leq t \leq s \leq 1\} \subset \mathbb{R}^{2}$. It is now obvious that in order for the formula

$$
b \cdot f_{1}-f_{1} \cdot(b+\bar{b})=f_{0} \cdot(T \bar{B}+B)-B \cdot f_{0}
$$

to hold when applied to $\iota_{p} \times \iota_{q}$, we must choose $f_{1}\left(\iota_{p} \times \iota_{q}\right)$ to equal the simplicial chain corresponding to the geometric chain

$$
K \times \Delta^{p} \times \Delta^{q}
$$

This may be done uniquely, because we work in the normalized chain complex. An explicit formula for this chain may be given in terms of the cyclic shuffles introduced in [10]; we see from these formulas or by a geometric argument that $f_{1} \cdot B=f_{1} \cdot \bar{B}=B \cdot f_{1}=0$ modulo degenerate chains.

4. Application to the cyclic homology of crossed product algebras

Recall the definition of the cyclic homology of a mixed complex (V, b, B). Let W be a graded module over the polynomial ring $\mathbf{k}[u]$, where $\operatorname{deg}(u)=-2$; we will always assume that W has finite homological dimension. If $C \bullet$ is a mixed complex, we denote $C \bullet \llbracket u \rrbracket \otimes_{\mathbf{k}[u]} W$ by $C \bullet \boxtimes$. We define the cyclic homology of the mixed complex $C \bullet$ with coefficients in W to be

$$
\mathrm{HC}\left(C_{\bullet} ; W\right)=H_{\bullet}\left(C_{\bullet} \boxtimes W, b+u B\right)
$$

In the particular case where $V=\mathrm{C}\left(A^{\natural}\right)$, we write

$$
\operatorname{HC} \cdot(A ; W)=\operatorname{HC} \cdot\left(\mathrm{C}\left(A^{\natural}\right) ; W\right) .
$$

If $f: C_{\bullet} \rightarrow \tilde{C}$ • is a map of mixed complexes, it induces a map of cyclic homology

$$
f: \operatorname{HC}\left(C_{\bullet} ; W\right) \rightarrow \operatorname{HC}\left(\tilde{C}_{\bullet} ; W\right)
$$

We say that f is a quasi-isomorphism (and write $f: C_{\bullet} \simeq \tilde{C}_{\bullet}$) if f induces an isomorphism of homology

$$
f: H_{\bullet}\left(C_{\bullet}, b\right) \cong H_{\bullet}\left(\tilde{C}_{\bullet}, \tilde{b}\right) .
$$

If $f: C_{\bullet} \simeq \tilde{C}_{\bullet}$ is a quasi-isomorphism of mixed complexes, and W is a graded $\mathbf{k}[u]$-module of finite homological dimension, we obtain isomorphisms of cyclic homology

$$
f: \mathrm{HC}(C \bullet ; W) \cong \mathrm{HC}(\tilde{C} \bullet ; W)
$$

Let us list some examples of cyclic homology with different coefficients W :
(1) $W=\mathbf{k}[u]$ gives negative cyclic homology $\mathrm{HC}_{\bullet}^{-}(A)$;
(2) $W=\mathbf{k}\left[u, u^{-1}\right]$ gives periodic cyclic homology HP•(A);
(3) $W=\mathbf{k}\left[u, u^{-1}\right] / u \mathbf{k}[u]$ gives cyclic homology HC. (A);
(4) $W=\mathbf{k}[u] / u \mathbf{k}[u]$ gives the Hochschild homology HH•(A).

Using the Eilenberg-Zilber Theorem for parachain complexes (Theorem 3.1), we obtain the following theorem.

Theorem 4.1. Let A be a unital algebra over the commutative ring \mathbf{k}, and let G be a discrete group which acts on A. There is a quasi-isomorphism of mixed complexes

$$
f_{0}+u f_{1}: \operatorname{Tot}(\mathrm{N}(A \natural G)) \simeq \mathrm{N}\left((A \rtimes G)^{\natural}\right) .
$$

Thus, we obtain isomorphism of cyclic homology groups

$$
\operatorname{HC} \cdot(A \rtimes G ; W)=\mathrm{HC} \cdot(\operatorname{Tot}(\mathrm{~N}(A \natural G)) ; W) .
$$

It is also possible to take the unnormalized chain complex $\mathrm{C}(A \natural G)$ in this theorem, since this is quasi-isomorphic to the normalized chain complex. This allows us to restate our result in the following more explicit form.

Corollary 4.2. There are operators b, \bar{b}, B and \bar{B} on the complex

$$
\operatorname{Tot}_{n}(\mathrm{C}(A \sharp G))=\sum_{p+q=n} \mathbf{k}\left[G^{p+1}\right] \otimes A^{(q+1)}
$$

such that the homology of the complex

$$
(\operatorname{Tot}(\mathrm{C}(A \natural G)) \boxtimes W, b+\bar{b}+u(B+T \bar{B}))
$$

is the cyclic homology $\mathrm{HC} \cdot(A \rtimes G ; W)$.
The above theorem leads to the spectral sequence of Feigin and Tsygan, converging to HC. $(A \rtimes G ; W)$ (see Appendix 6 of [9]). We filter the complex $\mathrm{C}(A \natural G)$ by subspaces

$$
F_{p q}^{i} \operatorname{Tot}(\mathrm{C}(A \curvearrowleft G)) \boxtimes W=\sum_{q \leq i} \mathbf{k}\left[G^{p+1}\right] \otimes A^{(q+1)} \boxtimes W .
$$

Recall the paracyclic module $A_{G}^{\natural}(\mathbf{n})=A \natural G(\mathbf{0}, \mathbf{n}) \cong \mathbf{k}[G] \otimes A^{(n+1)}$ of Section 1. If M is a G-module, let $C_{p}(G, M)=\mathbf{k}\left[G^{p}\right] \otimes M$ be the space of p-chains on G with values in M, with boundary $\delta: C_{p}(G, M) \rightarrow C_{p-1}(G, M)$.

Lemma 4.3. The E^{0}-term of the spectral sequence is isomorphic to the complex

$$
E_{p q}^{0}=C_{p}\left(G, \mathrm{C}_{q}\left(A_{G}^{\natural}\right) \boxtimes W\right) .
$$

Proof. Consider the map β from $\mathrm{C}_{p q}(A \natural G)$ to $C_{p}\left(G, \mathrm{C}_{q}\left(A_{G}^{\natural}\right)\right)$ given by the formula

$$
\left(g_{0}, \ldots, g_{p} \mid a_{0}, \ldots, a_{q}\right) \mapsto\left(g_{1}, \ldots, g_{p}|g| a_{0}, \ldots, a_{q}\right)
$$

where $g=g_{0} \ldots g_{p}$. It is easily seen that

$$
\begin{aligned}
\left(\beta \bar{b} \beta^{-1}\right)\left(g_{1}, \ldots, g_{p}|g| a_{0}, \ldots, a_{q}\right)= & \left(g_{2}, \ldots, g_{p}|g| a_{0}, \ldots, a_{q}\right) \\
& +\sum_{i=1}^{p-1}(-1)^{i}\left(g_{1}, \ldots, g_{i} g_{i+1}, \ldots, g_{p}|g| a_{0}, \ldots, a_{q}\right) \\
& +(-1)^{p}\left(g_{1}, \ldots, g_{p-1}\left|g_{p} g g_{p}^{-1}\right| g_{p} a_{0}, \ldots, g_{p} a_{q}\right),
\end{aligned}
$$

which is just the boundary for group homology with coefficients in $\mathrm{C}_{q}\left(A_{G}^{\natural}\right)$.
Although we do not use it, let us state the formula for $\beta \bar{B} \beta^{-1}$:

$$
\begin{aligned}
& \left(\beta \bar{B} \beta^{-1}\right)\left(g_{1}, \ldots, g_{p}|g| a_{0}, \ldots, a_{q}\right)=\left(1, g_{1}, \ldots, g_{p}|g| a_{0}, \ldots, a_{q}\right) \\
& \quad+\sum_{i=1}^{p}(-1)^{p i}\left(g_{i} \ldots g_{p}\right) \cdot\left(1, g_{i+1}, \ldots, g_{p}, g\left(g_{1} \ldots g_{p}\right)^{-1}, g_{1}, \ldots, g_{i-1}|g| a_{0}, \ldots, a_{q}\right) .
\end{aligned}
$$

It follows from Lemma 4.3 that the E^{1}-term of the spectral sequence is

$$
E_{p q}^{1}=H_{p}\left(G, \mathrm{C}_{q}\left(A_{G}^{\natural}\right) \boxtimes W\right) .
$$

The following lemma enables us to give the differential d^{1} a natural interpretation.
Lemma 4.4. The homology spaces $H_{p}\left(G, A_{G}^{\natural}\right)$ are cyclic modules, with respect to the cyclic structure induced by the maps

$$
\begin{aligned}
d\left(g \mid a_{0}, \ldots, a_{q}\right) & =\left(g \mid\left(g^{-1} a_{q}\right) a_{0}, a_{1}, \ldots, a_{q-1}\right) \\
s\left(g \mid a_{0}, \ldots, a_{q}\right) & =\left(g \mid 1, a_{0}, \ldots, a_{q}\right)
\end{aligned}
$$

acting on A_{G}^{\natural}.
Proof. If we apply the chain functor C along the G-axis of the bi-paracyclic module $A \sharp G$, we obtain the paracyclic parachain chain complex $\left(C_{p}\left(G, A_{G}^{\natural}\right), \bar{b}, \bar{B}\right)$, where \bar{b} is the homology boundary. The operator $T \bar{B}$ gives a chain homotopy of T to the identity, since

$$
\bar{b} \bar{B}+\bar{B} \bar{b}=1-\bar{T}=1-T^{-1},
$$

showing that $H_{p}\left(G, A_{G}^{\natural}\right)$ is a cyclic module for each p.
We see that the differential d^{1} is just the differential $b+u B$ associated to the cyclic module $H_{\bullet}\left(G, A_{G}^{\natural}\right)$. This completes the proof of the following theorem.

Theorem 4.5. By means of the isomorphism

$$
H_{p}\left(G, \mathrm{C}_{q}\left(A_{G}^{\natural}\right) \boxtimes W\right) \cong \mathrm{C}_{q}\left(H_{p}\left(G, A_{G}^{\natural}\right)\right) \boxtimes W,
$$

the E^{2}-term of the spectral sequence may be identified with the cyclic homology

$$
\mathrm{HC}_{q}\left(H_{p}\left(G, A_{G}^{\natural}\right) ; W\right)
$$

of the cyclic module $H_{\bullet}\left(G, A_{G}^{\natural}\right)$.
To see the relationship between this spectral sequence and that of Feigin and Tsygan, we observe that the G-module A_{G}^{\natural} decomposes into a direct sum over the conjugacy classes $[g]=\left\{h g h^{-1} \mid h \in G\right\}$ of $G:$

$$
A_{G}^{\natural}=\sum_{[g]} A_{[g]}^{\natural},
$$

where $A_{[g]}^{\natural}$ is the paracyclic G-module such that $A_{[g]}^{\natural}(\mathbf{n})$ consists of all functions from the conjugacy class $[g]$ to $A^{(n+1)}$. Choose an arbitrary element $g \in[g]$, and let A_{g}^{\natural} be the stalk of A_{G}^{\natural} over g. This paracyclic module is acted on by the centralizer G^{g} of g, and it is easily seen that

$$
A_{[g]}^{\natural} \cong \operatorname{Ind}_{G^{g}}^{G} A_{g}^{\natural}
$$

is an induced module. Shapiro's Lemma now shows that

$$
H_{p}\left(G, A_{G}^{\natural}\right) \cong \sum_{[g]} H_{p}\left(G^{g}, A_{g}^{\natural}\right),
$$

from which Feigin and Tsygan's form of the spectral sequence follows easily.
Now suppose the order $|G|$ of the group G is finite and invertible in \mathbf{k}. It follows that $E_{p q}^{2}=0$ if $p>0$, and our spectral sequence collapses. The only remaining contribution to E^{2} comes from the cyclic module $H_{0}\left(G, A_{G}^{\natural}\right)$ of coinvariants in A_{G}^{\natural}, introduced by Brylinski [2].

Proposition 4.6. If G is finite and $|G|$ is invertible in \mathbf{k}, then there is a natural isomorphism of cyclic homology and

$$
\mathrm{HC} \bullet(A \rtimes G ; W)=\mathrm{HC}_{\bullet}\left(H_{0}\left(G, A_{G}^{\natural}\right) ; W\right),
$$

where $H_{0}\left(G, A_{G}^{\natural}\right)$ is the cyclic module

$$
H_{0}\left(G, A_{G}^{\natural}\right)(\mathbf{n})=H_{0}\left(G, \mathbf{k}[G] \otimes A^{(n+1)}\right)
$$

References

1. M. Bökstedt, W.C. Hsiang and I. Madsen, The cyclotomic trace and algebraic K-theory of spaces, Aarhus preprint, 1989.
2. J.-L. Brylinski, Algebras associated with group actions and ther homology, Brown preprint, 1987.
3. J.-L. Brylinski, Cyclic homology and equivariant theories, Ann. Inst. Fourier 37 (1987), 15-28.
4. D. Burghelea, The cyclic homology of the group rings, Comment. Math. Helv. 60 (1985), 354-365.
5. A. Connes, Cohomologie cyclique et foncteurs EXT ${ }^{n}$, C. R. Acad. Sci. Paris 296 (1983), 953-958.
6. W. G. Dwyer, M. L. Hopkins and D. M. Kan, The homotopy theory of cyclic sets, Trans. Amer. Math. Soc. 291 (1985), 281-289.
7. W. G. Dwyer and D. M. Kan, Normalizing the cyclic modules of Connes, Comment. Math. Helvitici 60 (1985), 582-600.
8. Z. Fiedorowicz and J.L. Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. (1992).
9. B. L. Feigin and B. L. Tsygan, Additive K-theory, In " K-Theory, Arithmetic and Geometry", Lecture Notes in Mathematics 1289 (Yu. I. Manin, ed.), 1986, pp. 67-209.
10. E. Getzler and J. D. S. Jones, A_{∞}-algebras and the cyclic bar complex, Ill. Jour. Math. 34 (1989), 256-283.
11. C. E. Hood and J. D. S. Jones, Some algebraic properties of cyclic homology groups, K-theory 1, 361-384.
12. J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403-423.
13. C. Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine angew. Math 408 (1990), 159-180.
14. J. L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helvitici 59 (1984), 565-591.
15. V. Nistor, Group homology and the cyclic homology of crossed products, Invent. Math. 99 (1989), 411-424.

Dept. of Mathematics, MIT, Cambridge, Mass. 02139 USA
E-mail address: getzler@math.mit.edu

Mathematics Institute, University of Warwick, Coventry CV4 7AL, England
E-mail address: jdsj@maths.warwick.ac.uk

