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Introduction

In their article [9] on cyclic homology, Feigin and Tsygan have given a spectral sequence
for the cyclic homology of a crossed product algebra, generalizing Burghelea’s calculation
[4] of the cyclic homology of a group algebra. For an analogous spectral sequence for the
Hochschild homology of a crossed product algebra, see Brylinski [2], [3].

In this article, we give a new derivation of this spectral sequence, and generalize it to
negative and periodic cyclic homology HC−

• (A) and HP•(A). The method of proof is itself
of interest, since it involves a natural generalization of the notion of a cyclic module, in
which the condition that the morphism τ ∈ Λ(n,n) is cyclic of order n + 1 is relaxed to
the condition that it be invertible. We call this category the paracyclic category.

Given a paracyclic module P , we can define a chain complex C(P ), with differentials
b and B, which respectively lower and raise degree. The condition that the module P is
paracyclic translates to the condition on C(P ) that 1− (bB + Bb) is invertible. Our main
result is to show that there is an analogue of the Eilenberg-Zilber theorem for bi-paracyclic
modules. It is then easy to obtain a new expression for the cyclic homology of a crossed
product algebra which leads immediately to the spectral sequence of Feigin and Tsygan.

If M is a module over a commutative ring k, we will denote by M (k) the iterated tensor
product, defined by M (0) = k and M (k+1) = M (k) ⊗M . If M and N are graded modules,
we will denote by M ⊗N their graded tensor product.

We would like to thank J. Block, J.-L. Brylinski and C. Kassel for a number of interesting
discussions on the results presented here.

1. Paracyclic modules and crossed product algebras

Let A be a unital algebra over a fixed commutative ring k. Let G be a (discrete) group
which acts on A by automorphisms (which we suppose to fix the identity). Recall the
definition of the crossed product algebra A o G: the underlying k-module is A ⊗ k[G],
that is, functions from G to A with finite support, and the product is given on elementary
tensor products a⊗ g by the formula

(a1 ⊗ g1)(a2 ⊗ g2) = (a1(g1a2))⊗ (g1g2).

This work was partially funded by the NSF and the SERC.
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It is easy to check that this product is associative and unital. In the special case k o G,
we obtain the group ring k[G].

A cyclic module P (n) has an underlying simplicial structure, with face morphisms
di : P (n + 1) −→ P (n), 0 ≤ i ≤ n, and degeneracy morphisms si : P (n− 1) −→ P (n),
0 ≤ i ≤ n. In addition, it has morphisms t : P (n) −→ P (n) for each n, such that tn+1 = 1,
and t · di · t−1 = di+1, t · si · t−1 = si−1. We denote the morphism dn : P (n) −→ P (n) by d,
and the morphism t · s0 · t−1 : P (n− 1) −→ P (n) by s. The composition d · s is equal to t;
it follows that together, the morphisms d and s generate the action of the cyclic category
on P .

Connes defines in [5] a cyclic module B\ for any unital algebra B. This cyclic module
has as its n-th space B\(n) the k-module B(n+1), and the actions of d, s and t = d · s are
given by the following formulas:

d(a0, . . . , an) = (ana0, a1, . . . , an−1),

s(a0, . . . , an) = (1, a0, . . . , an),

t(a0, . . . , an) = (an, a0, . . . , an−1).

The goal of this article is to understand the cyclic module (A o G)\ associated to the
crossed product algebra A o G. This is the cyclic module whose n-th space (A o G)\(n) is
k[Gn+1]⊗A(n+1). Denote the elementary tensor

(a0 ⊗ g0)⊗ . . .⊗ (an ⊗ gn) ∈ (A o G)\(n)

by (g0, . . . , gn|h−1
0 a0, . . . , h

−1
n an), where hi = gi . . . gn. This notation is motivated by the

fact that in reordering the tensor product so that all of the factors k[G] occur to the left,
we must pass the group elements gi, . . . , gn past the algebra element ai ∈ A.

We have the following formulas for d, s and t = d · s acting on the cyclic k-module
(A o G)\:

d(g0, . . . , gn|a0, . . . , an) = (gng0, g1, . . . , gn−1|gn((g−1an)a0), gna1, . . . , gnan−1),

s(g0, . . . , gn|a0, . . . , an) = (1, g0, . . . , gn|1, a0, . . . , an),

t(g0, . . . , gn|a0, . . . , an) = (gn, g0, . . . , gn−1|gng−1an, gna0, . . . , gnan−1),

where g = g0 . . . gn.
Inspired by the above formulas, we would like to define a bi-cyclic module A\G whose

diagonal is the above cyclic module. Denote the two sets of generators by (d̄, s̄, t̄) and
(d, s, t) respectively; the barred and unbarred maps commute with each other. We define
A\G(p,q) to be k[Gp+1]⊗A(q+1), spanned by elementary tensor products which we denote
(g0, . . . , gp|a0, . . . , aq). The two sets of generators for the bi-cyclic structure should be
defined in such a way as to factor each of the generators of the cyclic structure on C(AoG)
into two pieces, the barred ones acting within k[Gp+1] and the unbarred ones within
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k[Gq+1]. The natural formulas for the action of (d̄, s̄, t̄) and (d, s, t) are as follows:

d̄(g0, . . . , gp|a0, . . . , aq) = (gpg0, g1, . . . , gp−1|gpa0, . . . , gpaq),

s̄(g0, . . . , gp|a0, . . . , aq) = (g0, . . . , gp|1, a0, . . . , aq),

t̄(g0, . . . , gp|a0, . . . , aq) = (gp, g0, . . . , gp−1|gpa0, . . . , gpaq),

d(g0, . . . , gp|a0, . . . , aq) = (g0, . . . , gp|(g−1aq)a0, a1, . . . , aq−1),

s(g0, . . . , gp|a0, . . . , aq) = (g0, . . . , gp|1, a0, . . . , aq),

t(g0, . . . , gp|a0, . . . , aq) = (g0, . . . , gp|g−1aq, a0, . . . , aq−1),

where g = g0 . . . gp. However, it is easy to see that this does not define a bi-cyclic structure:
on A\G(p,q), the operators t̄p+1 and tq+1 are not equal to the identity, although t̄p+1 =
t−q−1. Let T = t̄p+1 = t−q−1: it is given by the formula

T (g0, . . . , gp|a0, . . . , aq) = (g0, . . . , gp|ga0, . . . , gaq).

In order to understand the structure of A\G, we use a category related to the cyclic
category Λ of Connes. This category Λ∞, which we call the paracyclic category has the
same set of objects as the simplicial category ∆, namely the natural numbers n. Recall
that the morphisms ∆(n,m) from n to m are the monotonically increasing maps from the
set {0, . . . , n} to the set {0, . . . ,m}. Similarly, the morphisms Λ∞(m,n) from m to n in
the paracyclic category Λ∞ are monotonically increasing maps f from Z to itself such that

f(i + k(m + 1)) = f(i) + k(n + 1)

for all k ∈ Z. We identify ∆ with the subcategory of Λ∞ such that f ∈ Λ∞(m,n) lies
in ∆ if and only if f maps {0, . . . ,m} ⊂ Z into {0, . . . , n}. The paracyclic category has
been studied by Fiedorowicz and Loday [8] and Nistor [15]. Dwyer and Kan [7] study the
duplicial category, similar to the paracyclic category, except that Z is replaced by N. The
cyclic category Λ of Connes [5] is the quotient of Λ∞ by the relation T = 1, while the
categories Λr of Feigin-Tsygan and Bökstedt-Hsiang-Madsen [1] are the quotient of Λ∞ by
the relation T r = 1.

The category Λ∞ is generated by morphisms ∂ : n −→ n + 1,

∂(k) = k + 1 if 0 ≤ k ≤ n,

and σ : n −→ n− 1,
σ(k) = k if 0 ≤ k ≤ n.

The map ∂ is the face map ∂n in the simplicial category ∆, while σ does not lie in ∆.
Denote σ∂ by τ ; it corresponds to the map

τ(k) = k + 1 for all k ∈ Z.

The face and degeneracy maps of the simplicial category ∆ embedded in Λ∞ are given by
the formulas

∂i = τ−i−1 · ∂ · τ i : n− 1 −→ n, 0 ≤ i ≤ n,

σi = τ i · σ · τ−i−1 : n + 1 −→ n, 0 ≤ i ≤ n.
3



Since σ = τ−1 · σ0 · τ , we may think of σ as an extra degeneracy σ−1.
Each object n in the category Λ∞ has an automorphism T = τn+1, and it is easily

seen that if f is any morphism in Λ∞, then T · f = f · T . This shows that T induces an
invertible automorphism of the category Λ∞.

A paracyclic k-module P is a contravariant functor from Λ∞ to the category of k-
modules. In particular, a paracyclic module may be considered as a simplicial module,
by the inclusion ∆ ⊂ Λ∞. Denote the actions of ∂, σ and τ on a paracyclic module P
by d, s and t, and of ∂i and σi by di and si. The category of paracyclic modules has an
automorphism T , induced by the automorphism T of the category Λ∞.

We now see that A\G is a bi-paracyclic module which satisfies the extra relation T̄ =
T−1; this implies that the diagonal paracyclic module of A\G is cyclic. We call a bi-
paracyclic module satisfying this extra relation a cylindrical module. The cylindrical
category Σ is the quotient of Λ∞ × Λ∞ by the relation T̄ = T−1; a cylindrical module is
a contravariant functor from Σ to the category of modules.

Later, we will be interested in the paracyclic module A\G(0,n) which forms the bottom
row of the bi-paracyclic module A\G. This paracyclic module, which we denote A\

G, is
given explicitly by n 7→ k[G]⊗A(n+1). The group G acts on A\

G by the formula

h · (g|a0, . . . , an) = (hgh−1|ha0, . . . , han).

Let Λn
∞ be the paracyclic set m 7→ Λ∞(m,n), and let |Λn

∞| be the geometric realization
of the simplicial set underlying Λn

∞. In the following proposition, we parametrize the
n-simplex ∆n by

∆n = {0 ≤ t1 ≤ · · · ≤ tn ≤ 1}.

(This result is similar to Proposition 2.7 of Dwyer-Hopkins-Kan [6] and Theorem 3.4 of
Jones [12], and may be proved in the same way.)

Proposition 1.1. The geometric realization |Λn
∞| is homeomorphic to R×∆n, with non-

degenerate n + 1-simplices given, for 0 ≤ j ≤ n and k ∈ Z, by

Sj
k = {(t|t1, . . . , tn) ∈ R×∆n | tj ≤ t + k ≤ tj+1}.

Each simplex Sj
k is identified with ∆n+1 by the map

(t1, . . . , tn+1) 7→ (tj + k|tj+1, . . . , tn+1, t1, . . . , tj−1)

The maps ∂ : |Λn
∞| −→ |Λn+1

∞ |, σ : |Λn
∞| −→ |Λn−1

∞ |, τ : |Λn
∞| −→ |Λn

∞| and T : |Λn
∞| −→ |Λn

∞|
are given by the formulas

∂(t|t1, . . . , tn) = (t|t1, . . . , tn, tn),

σ(t|t1, . . . , tn) = (t + t1|t2 − t1, . . . , tn − t1, tn),

τ(t|t1, . . . , tn) = (t + t1|t2 − t1, . . . , tn − t1),

T (t|t1, . . . , tn) = (t + 1|t1, . . . , tn).
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2. Parachain complexes

The following definition is inspired by the definition of a duchain complex due to Dwyer
and Kan [7].

Definition 2.1. A parachain complex is a graded k-module (Vi)i∈N with two operators
b : Vi −→ Vi−1 and B : Vi −→ Vi+1, such that

(1) b2 = B2 = 0, and
(2) the operator T = 1− (bB + Bb) is invertible.

It may be easily checked that T commutes with both b and B. When T is the identity, the
two differentials b and B commute; such a parachain complex is called a mixed complex.
In the definition of a duchain complex, there is no condition on T : parachain complexes
bear the same relationship to paracyclic modules that duchain complexes bear to duplicial
modules.

If V• is a graded vector space, let V•[[u]] be the graded vector space of formal power
series in a variable u of degree −2 with coefficients in V•. If V• is a mixed complex, one
considers the associated complex V•[[u]] with differential b+uB; this motivates considering
the operator b + uB on V•[[u]] even when V• is only a paracyclic module.

Definition 2.2. A morphism between parachain complexes V• and Ṽ• is a map from V•[[u]]
to Ṽ•[[u]] homogeneous of degree 0,

f =
∞∑

k=0

ukfk,

such that (b̃ + uB̃) · f = f · (b + uB).

Without introducing the operator b + uB, a morphism f : V• −→ Ṽ• may be defined as
a sequence of maps fk : Vi −→ Ṽi+2k, k ≥ 0, such that

b̃ · fk + B̃ · fk−1 = fk · b + fk−1 ·B.

The composition of two parachain complex maps is a parachain complex map, and a
map of parachain complexes f satisfies T̃ · fi = fi · T . Thus, the operator T defines an
action of Z on the category of parachain complexes.

There is a functor C from paracyclic modules to parachain complexes, with underlying
graded module Cn(P ) = P (n) and operators b =

∑n
i=0(−1)idi and B = (1−(−1)n+1t)sN ;

here N is the norm operator N =
∑n

i=0(−1)inti.
The proof of the following theorem is close to the discussion of Section 1 of [14].

Theorem 2.3. The functor P 7→ C(P ) is a Z-equivariant functor from the category of
paracyclic k-modules to the category of parachain complexes over k, that is,

(1) b2 = B2 = 0,
(2) bB + Bb = 1− T , and
(3) it intertwines the natural transformations T of these two categories.
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Proof. The proof that b2 = 0 is the same as usual, since it only depends on the underlying
simplicial module structure on P .

The operator B2 : Cn(P ) −→ Cn+2(P ) is given by

B2 = (1− (−1)n+2t)sN(1− (−1)n+1t)sN

= (1− (−1)n+2t)s(1− T )sN

= (1− (−1)n+2t)ssN(1− T )

= (sn − (−1)n+2sn+1)sN(1− T ),

which shows that B2 is zero in the associated chain complex. Here, we have used the
formulas (1− (−1)nt)N = 1− T , ss = sns and

ts = T−1(ts)T = t−n−1stn+1 = sn+1.

To calculate bB + Bb, we introduce the operator b′ =
∑n

i=1(−1)idi on Cn(P ).

Lemma 2.4. If P is a paracyclic module, then on C(P )n we have the formulas
(1) b(1− (−1)nt) = (1− (−1)n−1t)b′,
(2) Nb = b′N , and
(3) sb′ + b′s = 1.

Proof. The first formula is proved in the same way as in [14]. The operators b and b′ on
Cn(P ) are given by

b =
n∑

i=0

(−1)itidt−i−1, b′ =
n−1∑
i=0

(−1)itidt−i−1.

Thus,

b(1− (−1)nt) =
n∑

i=0

(−1)n−itid(t−i−1 − (−1)nt−i)

= −(−1)nd + (1− (−1)n−1t)
n−1∑
i=0

(−1)itidt−i−1 + (−1)ntndt−n−1.

However, tndt−n−1 = d, and the formula follows.
We leave the proof of the second formula to the reader. To prove the third formula, we

use the fact that on n,
τ−i−1∂τ iσ = στ−i−2∂τ i+1

for 0 ≤ i ≤ n− 1. Thus, it follows that

sb′ =
n−1∑
i=0

(−1)istidt−i−1 =
p−1∑
i=0

(−1)iti+1dt−i−2s = 1− b′s. �
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As a corollary of this lemma, we see that on Cn(P ),

bB = (1− (−1)nt)b′sN, and

Bb = (1− (−1)nt)sb′N,

and hence that

Bb + bB = (1− (−1)nt)(sb′ + b′s)N = (1− (−1)nt)N

= 1− tn+1 = 1− T.

This completes the proof of the theorem. �

A multi-parachain complex is a Nk-graded module Vn1...nk
with operators

bi : Vn1...ni...nk
−→ Vn1...ni−1...nk

,

Bi : Vn1...ni...nk
−→ Vn1...ni+1...nk

.

The operators {bi, Bi} and {bj , Bj} are required to (graded) commute if i and j are not
equal, while Ti = 1− (biBi + Bibi) is required to be invertible.

There is a functor V 7→ Tot(V ) from multiparachain complexes to parachain complexes,
which we will call the total parachain complex. It is formed by setting

Totn(V ) =
∑

n1+···+nk=n

Vn1...nk
,

with operators

Tot(b) =
k∑

i=1

bi,

Tot(B) =
n∑

i=1

Ti+1 . . . TkBi.

The definition of Tot(B) on Tot(V ) may seem a little strange, but is justified by the
following lemma, which shows that Tot(V ) is a parachain complex.

Lemma 2.5. The total T -operator Tot(T ) = T1 . . . Tk.

Proof. The proof uses the fact that {bi, Bi} and {bj , Bj} commute for i 6= j. Thus, we see
that

1− (Tot(b) Tot(B) + Tot(B) Tot(b)) = 1−
k∑

i=1

[bi, Bi]Ti+1 . . . Tk

= 1−
k∑

i=1

(1− Ti)Ti+1 . . . Tk,
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from which the lemma follows. �

We are most interested in the special case of biparachain complexes. We will denote b1

and b2 by b̄ and b, and B1 and B2 by B̄ and B. When T̄ = T−1, we call a bi-parachain
complex V a cylindrical complex; in this case, the above lemma shows that Tot(T ) = 1,
that is, Tot(V ) is a mixed complex.

Finally, we have the normalized chain functor N from paracyclic modules to parachain
complexes, with underlying graded module

Nn(P ) = P (n)/
n∑

i=0

im(si),

and operators b, B induced by those on C(P ). It is a standard result that the quotient
map (C(P ), b) −→ (N(P ), b) is a quasi-isomorphism of complexes. More generally, if P is
a multi-paracyclic module, we denote by N(P ) the multi-paracyclic complex obtained by
normalizing successively in all directions.

3. The Eilenberg-Zilber theorem for paracyclic modules

Let P (p,q) be a bi-paracyclic module, and let C(P ) be the biparachain complex obtained
by forming the chain complex successively in both directions. Let Tot(C(P )) be the total
parachain complex of C(P ): by the above results, if P is a cylindrical module, Tot(C(P ))
is a mixed complex. Using the diagonal embedding of Λ∞ into Λ∞ ×Λ∞, we see that the
diagonal n 7→ P (n,n) is a paracyclic object, which we will denote by ∆P (n). The action
of Λ∞ on ∆P (n) is generated by the maps d̄d, s̄s and t̄t.

The shuffle product is a natural map from the total complex (Tot(C(P )),Tot(b)) to the
chain complex of the diagonal (C(∆P ), b), which is an equivalence of complexes; this is
proved using the method of acyclic models. This product was extended to a map of mixed
complexes by Hood and Jones [11] when P is bi-cyclic; see also our paper [10], where we
give explicit formulas for this map. We will give explicit formulas on normalized chains; to
extend these results to the unnormalized chains, we may apply the results of Kassel [13],
who shows how to construct a homotopy inverse to the normalization map.

Theorem 3.1. Let P be a bi-paracyclic module. There is a natural quasi-isomorphism
f0 + uf1 : Tot(C(P )) −→ C(∆P ) of parachain complexes such that f0 : Tot(C(P ))• −→
C(∆P )• is the shuffle map.

Proof. We must construct a map

f1 : Tot•(C(P )) −→ C•+2(∆P )

to satisfy the following two formulas:

b · f1 = f1 · (b + b̄)−B · f0 + f0 · (B + B̄),

B · f1 = f1 · (B + B̄).

The fact that f = f0 + uf1 is a quasi-isomorphism then follows by a standard argument
from the fact that it is true for the shuffle product f0.
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Figure 3.1

Let ιn be the non-degenerate n-simplex in Λn
∞, corresponding to the identity map on

the object n ∈ Λ∞. This simplex corresponds to the geometric simplex

{(0|t1, . . . , tn) | 0 ≤ t1 ≤ · · · ≤ tn ≤ 1} ⊂ |Λn
∞|,

in the geometric realization of Λn
∞, as described in Proposition 1.1. By definition, the non-

degenerate simplices of Λn
∞ are in one-to-one correspondence with the morphisms of Λ∞

with range n, and these simplices are obtained by applying the corresponding morphism
of the opposite category Λop

∞ to ιn.
If X is a paracyclic set, the chains on X with values in k, written k[X], form a paracyclic

module in an evident way. Similarly, the module of chains on the bi-parayclic set Λp
∞×Λq

∞
is a bi-paracyclic module, which we denote by k[Λp

∞ × Λq
∞]. The following result is the

analogue of Lemma 2.1 of Hood and Jones [11].

Lemma 3.3. If P is a bi-paracyclic module and x ∈ P (p,q), there is a unique map of
bi-paracyclic modules ix : k[Λp

∞ × Λq
∞] −→ V such that ix(ιp × ιq) = x.

From this lemma and the fact that f1 is to be natural, we see that it suffices to define f1

on the elements ιp× ιq ∈ k[Λp
∞×Λq

∞]. The following argument may be better understood
by reference to Figure 3.1.

The image of ιp × ιq under the map B is the chain

{0} × [0, 1]×∆p ×∆q ⊂ R2 ×∆p ×∆q.
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Similarly, its image under the map TB̄ is the chain

[0, 1]× {1} ×∆p ×∆q.

Finally, B · f0(ιp × ιq) is the chain

{(t, t) | t ∈ [0, 1]} ×∆p ×∆q.

From this, we see that f0 · (TB̄ + B)−B · f0 applied to ιp × ιq is the chain

∂K ×∆p ×∆q,

where K is the triangle {(s, t) | 0 ≤ t ≤ s ≤ 1} ⊂ R2. It is now obvious that in order for
the formula

b · f1 − f1 · (b + b̄) = f0 · (TB̄ + B)−B · f0

to hold when applied to ιp × ιq, we must choose f1(ιp × ιq) to equal the simplicial chain
corresponding to the geometric chain

K ×∆p ×∆q.

This may be done uniquely, because we work in the normalized chain complex. An explicit
formula for this chain may be given in terms of the cyclic shuffles introduced in [10]; we see
from these formulas or by a geometric argument that f1 ·B = f1 · B̄ = B · f1 = 0 modulo
degenerate chains. �

4. Application to the cyclic homology of crossed product algebras

Recall the definition of the cyclic homology of a mixed complex (V, b, B). Let W be a
graded module over the polynomial ring k[u], where deg(u) = −2; we will always assume
that W has finite homological dimension. If C• is a mixed complex, we denote C•[[u]]⊗k[u]W
by C• � W . We define the cyclic homology of the mixed complex C• with coefficients in
W to be

HC(C•;W ) = H•
(
C• � W, b + uB

)
.

In the particular case where V = C(A\), we write

HC•(A;W ) = HC•(C(A\);W ).

If f : C• −→ C̃• is a map of mixed complexes, it induces a map of cyclic homology

f : HC(C•;W ) −→ HC(C̃•;W ).

We say that f is a quasi-isomorphism (and write f : C• ' C̃•) if f induces an isomor-
phism of homology

f : H•(C•, b) ∼= H•(C̃•, b̃).
10



If f : C• ' C̃• is a quasi-isomorphism of mixed complexes, and W is a graded k[u]-module
of finite homological dimension, we obtain isomorphisms of cyclic homology

f : HC(C•;W ) ∼= HC(C̃•;W ).

Let us list some examples of cyclic homology with different coefficients W :

(1) W = k[u] gives negative cyclic homology HC−
• (A);

(2) W = k[u, u−1] gives periodic cyclic homology HP•(A);
(3) W = k[u, u−1]/uk[u] gives cyclic homology HC•(A);
(4) W = k[u]/uk[u] gives the Hochschild homology HH•(A).

Using the Eilenberg-Zilber Theorem for parachain complexes (Theorem 3.1), we obtain
the following theorem.

Theorem 4.1. Let A be a unital algebra over the commutative ring k, and let G be a
discrete group which acts on A. There is a quasi-isomorphism of mixed complexes

f0 + uf1 : Tot(N(A\G)) ' N((A o G)\).

Thus, we obtain isomorphism of cyclic homology groups

HC•(A o G;W ) = HC•(Tot(N(A\G));W ).

It is also possible to take the unnormalized chain complex C(A\G) in this theorem, since
this is quasi-isomorphic to the normalized chain complex. This allows us to restate our
result in the following more explicit form.

Corollary 4.2. There are operators b, b̄, B and B̄ on the complex

Totn(C(A\G)) =
∑

p+q=n

k[Gp+1]⊗A(q+1)

such that the homology of the complex(
Tot(C(A\G)) � W, b + b̄ + u(B + TB̄)

)
is the cyclic homology HC•(A o G;W ).

The above theorem leads to the spectral sequence of Feigin and Tsygan, converging to
HC•(A o G;W ) (see Appendix 6 of [9]). We filter the complex C(A\G) by subspaces

F i
pq Tot(C(A\G)) � W =

∑
q≤i

k[Gp+1]⊗A(q+1) � W.

Recall the paracyclic module A\
G(n) = A\G(0,n) ∼= k[G] ⊗ A(n+1) of Section 1. If M is

a G-module, let Cp(G, M) = k[Gp]⊗M be the space of p-chains on G with values in M ,
with boundary δ : Cp(G, M) −→ Cp−1(G, M).
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Lemma 4.3. The E0-term of the spectral sequence is isomorphic to the complex

E0
pq = Cp(G, Cq(A

\
G) � W ).

Proof. Consider the map β from Cpq(A\G) to Cp(G, Cq(A
\
G)) given by the formula

(g0, . . . , gp|a0, . . . , aq) 7→ (g1, . . . , gp|g|a0, . . . , aq),

where g = g0 . . . gp. It is easily seen that

(βb̄β−1)(g1, . . . , gp|g|a0, . . . , aq) =(g2, . . . , gp|g|a0, . . . , aq)

+
p−1∑
i=1

(−1)i(g1, . . . , gigi+1, . . . , gp|g|a0, . . . , aq)

+ (−1)p(g1, . . . , gp−1|gpgg−1
p |gpa0, . . . , gpaq),

which is just the boundary for group homology with coefficients in Cq(A
\
G). �

Although we do not use it, let us state the formula for βB̄β−1:

(βB̄β−1)(g1, . . . , gp|g|a0, . . . , aq) = (1, g1, . . . , gp|g|a0, . . . , aq)

+
p∑

i=1

(−1)pi(gi . . . gp) · (1, gi+1, . . . , gp, g(g1 . . . gp)−1, g1, . . . , gi−1|g|a0, . . . , aq).

It follows from Lemma 4.3 that the E1-term of the spectral sequence is

E1
pq = Hp(G, Cq(A

\
G) � W ).

The following lemma enables us to give the differential d1 a natural interpretation.

Lemma 4.4. The homology spaces Hp(G, A\
G) are cyclic modules, with respect to the cyclic

structure induced by the maps

d(g|a0, . . . , aq) = (g|(g−1aq)a0, a1, . . . , aq−1),

s(g|a0, . . . , aq) = (g|1, a0, . . . , aq),

acting on A\
G.

Proof. If we apply the chain functor C along the G-axis of the bi-paracyclic module A\G, we
obtain the paracyclic parachain chain complex (Cp(G, A\

G), b̄, B̄), where b̄ is the homology
boundary. The operator TB̄ gives a chain homotopy of T to the identity, since

b̄B̄ + B̄b̄ = 1− T̄ = 1− T−1,

showing that Hp(G, A\
G) is a cyclic module for each p. �

We see that the differential d1 is just the differential b + uB associated to the cyclic
module H•(G, A\

G). This completes the proof of the following theorem.
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Theorem 4.5. By means of the isomorphism

Hp(G, Cq(A
\
G) � W ) ∼= Cq(Hp(G, A\

G)) � W,

the E2-term of the spectral sequence may be identified with the cyclic homology

HCq(Hp(G, A\
G);W )

of the cyclic module H•(G, A\
G).

To see the relationship between this spectral sequence and that of Feigin and Tsygan,
we observe that the G-module A\

G decomposes into a direct sum over the conjugacy classes
[g] = {hgh−1 | h ∈ G} of G:

A\
G =

∑
[g]

A\
[g],

where A\
[g] is the paracyclic G-module such that A\

[g](n) consists of all functions from the
conjugacy class [g] to A(n+1). Choose an arbitrary element g ∈ [g], and let A\

g be the stalk
of A\

G over g. This paracyclic module is acted on by the centralizer Gg of g, and it is easily
seen that

A\
[g]
∼= IndG

Gg A\
g

is an induced module. Shapiro’s Lemma now shows that

Hp(G, A\
G) ∼=

∑
[g]

Hp(Gg, A\
g),

from which Feigin and Tsygan’s form of the spectral sequence follows easily.
Now suppose the order |G| of the group G is finite and invertible in k. It follows that

E2
pq = 0 if p > 0, and our spectral sequence collapses. The only remaining contribution to

E2 comes from the cyclic module H0(G, A\
G) of coinvariants in A\

G, introduced by Brylinski
[2].

Proposition 4.6. If G is finite and |G| is invertible in k, then there is a natural isomor-
phism of cyclic homology and

HC•(A o G;W ) = HC•(H0(G, A\
G);W ),

where H0(G, A\
G) is the cyclic module

H0(G, A\
G)(n) = H0

(
G,k[G]⊗A(n+1)

)
.
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