THE CYCLIC HOMOLOGY OF CROSSED PRODUCT ALGEBRAS, I.

EZRA GETZLER AND JOHN D. S. JONES

Introduction

In their article [9] on cyclic homology, Feigin and Tsygan have given a spectral sequence for the cyclic homology of a crossed product algebra, generalizing Burghelea's calculation [4] of the cyclic homology of a group algebra. For an analogous spectral sequence for the Hochschild homology of a crossed product algebra, see Brylinski [2], [3].

In this article, we give a new derivation of this spectral sequence, and generalize it to negative and periodic cyclic homology $\mathrm{HC}_{\bullet}^-(A)$ and $\mathrm{HP}_{\bullet}(A)$. The method of proof is itself of interest, since it involves a natural generalization of the notion of a cyclic module, in which the condition that the morphism $\tau \in \Lambda(\mathbf{n}, \mathbf{n})$ is cyclic of order n+1 is relaxed to the condition that it be invertible. We call this category the **paracyclic category**.

Given a paracyclic module P, we can define a chain complex C(P), with differentials b and B, which respectively lower and raise degree. The condition that the module P is paracyclic translates to the condition on C(P) that 1 - (bB + Bb) is invertible. Our main result is to show that there is an analogue of the Eilenberg-Zilber theorem for bi-paracyclic modules. It is then easy to obtain a new expression for the cyclic homology of a crossed product algebra which leads immediately to the spectral sequence of Feigin and Tsygan.

If M is a module over a commutative ring \mathbf{k} , we will denote by $M^{(k)}$ the iterated tensor product, defined by $M^{(0)} = \mathbf{k}$ and $M^{(k+1)} = M^{(k)} \otimes M$. If M and N are graded modules, we will denote by $M \otimes N$ their graded tensor product.

We would like to thank J. Block, J.-L. Brylinski and C. Kassel for a number of interesting discussions on the results presented here.

1. Paracyclic modules and crossed product algebras

Let A be a unital algebra over a fixed commutative ring \mathbf{k} . Let G be a (discrete) group which acts on A by automorphisms (which we suppose to fix the identity). Recall the definition of the crossed product algebra $A \rtimes G$: the underlying \mathbf{k} -module is $A \otimes \mathbf{k}[G]$, that is, functions from G to A with finite support, and the product is given on elementary tensor products $a \otimes g$ by the formula

$$(a_1 \otimes g_1)(a_2 \otimes g_2) = (a_1(g_1a_2)) \otimes (g_1g_2).$$

This work was partially funded by the NSF and the SERC.

It is easy to check that this product is associative and unital. In the special case $\mathbf{k} \rtimes G$, we obtain the group ring $\mathbf{k}[G]$.

A cyclic module $P(\mathbf{n})$ has an underlying simplicial structure, with face morphisms $d_i: P(\mathbf{n}+\mathbf{1}) \to P(\mathbf{n}), \ 0 \le i \le n$, and degeneracy morphisms $s_i: P(\mathbf{n}-\mathbf{1}) \to P(\mathbf{n}), \ 0 \le i \le n$. In addition, it has morphisms $t: P(\mathbf{n}) \to P(\mathbf{n})$ for each n, such that $t^{n+1} = 1$, and $t \cdot d_i \cdot t^{-1} = d_{i+1}, \ t \cdot s_i \cdot t^{-1} = s_{i-1}$. We denote the morphism $d_n: P(\mathbf{n}) \to P(\mathbf{n})$ by d, and the morphism $t \cdot s_0 \cdot t^{-1}: P(\mathbf{n}-\mathbf{1}) \to P(\mathbf{n})$ by s. The composition $d \cdot s$ is equal to t; it follows that together, the morphisms d and s generate the action of the cyclic category on P.

Connes defines in [5] a cyclic module B^{\natural} for any unital algebra B. This cyclic module has as its n-th space $B^{\natural}(\mathbf{n})$ the **k**-module $B^{(n+1)}$, and the actions of d, s and $t = d \cdot s$ are given by the following formulas:

$$d(a_0, \dots, a_n) = (a_n a_0, a_1, \dots, a_{n-1}),$$

$$s(a_0, \dots, a_n) = (1, a_0, \dots, a_n),$$

$$t(a_0, \dots, a_n) = (a_n, a_0, \dots, a_{n-1}).$$

The goal of this article is to understand the cyclic module $(A \rtimes G)^{\natural}$ associated to the crossed product algebra $A \rtimes G$. This is the cyclic module whose n-th space $(A \rtimes G)^{\natural}(\mathbf{n})$ is $\mathbf{k}[G^{n+1}] \otimes A^{(n+1)}$. Denote the elementary tensor

$$(a_0 \otimes g_0) \otimes \ldots \otimes (a_n \otimes g_n) \in (A \rtimes G)^{\natural}(\mathbf{n})$$

by $(g_0, \ldots, g_n | h_0^{-1} a_0, \ldots, h_n^{-1} a_n)$, where $h_i = g_i \ldots g_n$. This notation is motivated by the fact that in reordering the tensor product so that all of the factors $\mathbf{k}[G]$ occur to the left, we must pass the group elements g_i, \ldots, g_n past the algebra element $a_i \in A$.

We have the following formulas for d, s and $t = d \cdot s$ acting on the cyclic **k**-module $(A \rtimes G)^{\natural}$:

$$d(g_0, \dots, g_n | a_0, \dots, a_n) = (g_n g_0, g_1, \dots, g_{n-1} | g_n((g^{-1} a_n) a_0), g_n a_1, \dots, g_n a_{n-1}),$$

$$s(g_0, \dots, g_n | a_0, \dots, a_n) = (1, g_0, \dots, g_n | 1, a_0, \dots, a_n),$$

$$t(g_0, \dots, g_n | a_0, \dots, a_n) = (g_n, g_0, \dots, g_{n-1} | g_n g^{-1} a_n, g_n a_0, \dots, g_n a_{n-1}),$$

where $g = g_0 \dots g_n$.

Inspired by the above formulas, we would like to define a bi-cyclic module $A
mathbb{h} G$ whose diagonal is the above cyclic module. Denote the two sets of generators by $(\bar{d}, \bar{s}, \bar{t})$ and (d, s, t) respectively; the barred and unbarred maps commute with each other. We define $A
mathbb{h} G(\mathbf{p}, \mathbf{q})$ to be $\mathbf{k}[G^{p+1}] \otimes A^{(q+1)}$, spanned by elementary tensor products which we denote $(g_0, \ldots, g_p | a_0, \ldots, a_q)$. The two sets of generators for the bi-cyclic structure should be defined in such a way as to factor each of the generators of the cyclic structure on $C(A \times G)$ into two pieces, the barred ones acting within $\mathbf{k}[G^{p+1}]$ and the unbarred ones within

 $\mathbf{k}[G^{q+1}]$. The natural formulas for the action of $(\bar{d}, \bar{s}, \bar{t})$ and (d, s, t) are as follows:

$$\bar{d}(g_0, \dots, g_p | a_0, \dots, a_q) = (g_p g_0, g_1, \dots, g_{p-1} | g_p a_0, \dots, g_p a_q),
\bar{s}(g_0, \dots, g_p | a_0, \dots, a_q) = (g_0, \dots, g_p | 1, a_0, \dots, a_q),
\bar{t}(g_0, \dots, g_p | a_0, \dots, a_q) = (g_p, g_0, \dots, g_{p-1} | g_p a_0, \dots, g_p a_q),
d(g_0, \dots, g_p | a_0, \dots, a_q) = (g_0, \dots, g_p | (g^{-1} a_q) a_0, a_1, \dots, a_{q-1}),
s(g_0, \dots, g_p | a_0, \dots, a_q) = (g_0, \dots, g_p | 1, a_0, \dots, a_q),
t(g_0, \dots, g_p | a_0, \dots, a_q) = (g_0, \dots, g_p | g^{-1} a_q, a_0, \dots, a_{q-1}),$$

where $g = g_0 \dots g_p$. However, it is easy to see that this does not define a bi-cyclic structure: on $A \natural G(\mathbf{p}, \mathbf{q})$, the operators \bar{t}^{p+1} and t^{q+1} are not equal to the identity, although $\bar{t}^{p+1} = t^{-q-1}$. Let $T = \bar{t}^{p+1} = t^{-q-1}$: it is given by the formula

$$T(g_0, \ldots, g_p | a_0, \ldots, a_q) = (g_0, \ldots, g_p | ga_0, \ldots, ga_q).$$

In order to understand the structure of A
atural G, we use a category related to the cyclic category Λ of Connes. This category Λ_{∞} , which we call the **paracyclic category** has the same set of objects as the simplicial category Δ , namely the natural numbers \mathbf{n} . Recall that the morphisms $\Delta(\mathbf{n}, \mathbf{m})$ from \mathbf{n} to \mathbf{m} are the monotonically increasing maps from the set $\{0, \ldots, n\}$ to the set $\{0, \ldots, m\}$. Similarly, the morphisms $\Lambda_{\infty}(\mathbf{m}, \mathbf{n})$ from \mathbf{m} to \mathbf{n} in the paracyclic category Λ_{∞} are monotonically increasing maps f from \mathbb{Z} to itself such that

$$f(i + k(m+1)) = f(i) + k(n+1)$$

for all $k \in \mathbb{Z}$. We identify Δ with the subcategory of Λ_{∞} such that $f \in \Lambda_{\infty}(\mathbf{m}, \mathbf{n})$ lies in Δ if and only if f maps $\{0, \ldots, m\} \subset \mathbb{Z}$ into $\{0, \ldots, n\}$. The paracyclic category has been studied by Fiedorowicz and Loday [8] and Nistor [15]. Dwyer and Kan [7] study the duplicial category, similar to the paracyclic category, except that \mathbb{Z} is replaced by \mathbb{N} . The cyclic category Λ of Connes [5] is the quotient of Λ_{∞} by the relation T = 1, while the categories Λ_r of Feigin-Tsygan and Bökstedt-Hsiang-Madsen [1] are the quotient of Λ_{∞} by the relation $T^r = 1$.

The category Λ_{∞} is generated by morphisms $\partial: \mathbf{n} \to \mathbf{n} + \mathbf{1}$,

$$\partial(k) = k+1$$
 if $0 \le k \le n$,

and $\sigma: \mathbf{n} \to \mathbf{n} - \mathbf{1}$,

$$\sigma(k) = k$$
 if $0 < k < n$.

The map ∂ is the face map ∂_n in the simplicial category Δ , while σ does not lie in Δ . Denote $\sigma \partial$ by τ ; it corresponds to the map

$$\tau(k) = k + 1$$
 for all $k \in \mathbb{Z}$.

The face and degeneracy maps of the simplicial category Δ embedded in Λ_{∞} are given by the formulas

$$\begin{split} &\partial_i = \tau^{-i-1} \cdot \partial \cdot \tau^i : \mathbf{n} - \mathbf{1} \to \mathbf{n}, \quad 0 \le i \le n, \\ &\sigma_i = \tau^i \cdot \sigma \cdot \tau^{-i-1} : \mathbf{n} + \mathbf{1} \to \mathbf{n}, \quad 0 \le i \le n. \end{split}$$

Since $\sigma = \tau^{-1} \cdot \sigma_0 \cdot \tau$, we may think of σ as an extra degeneracy σ_{-1} .

Each object **n** in the category Λ_{∞} has an automorphism $T = \tau^{n+1}$, and it is easily seen that if f is any morphism in Λ_{∞} , then $T \cdot f = f \cdot T$. This shows that T induces an invertible automorphism of the category Λ_{∞} .

A paracyclic k-module P is a contravariant functor from Λ_{∞} to the category of k-modules. In particular, a paracyclic module may be considered as a simplicial module, by the inclusion $\Delta \subset \Lambda_{\infty}$. Denote the actions of ∂ , σ and τ on a paracyclic module P by d, s and t, and of ∂_i and σ_i by d_i and s_i . The category of paracyclic modules has an automorphism T, induced by the automorphism T of the category Λ_{∞} .

We now see that $A
mathbb{i} G$ is a bi-paracyclic module which satisfies the extra relation $\overline{T} = T^{-1}$; this implies that the diagonal paracyclic module of $A
mathbb{i} G$ is cyclic. We call a bi-paracyclic module satisfying this extra relation a **cylindrical** module. The cylindrical category Σ is the quotient of $\Lambda_{\infty} \times \Lambda_{\infty}$ by the relation $\overline{T} = T^{-1}$; a cylindrical module is a contravariant functor from Σ to the category of modules.

Later, we will be interested in the paracyclic module $A
mathbb{q} G(\mathbf{0}, \mathbf{n})$ which forms the bottom row of the bi-paracyclic module $A
mathbb{q} G$. This paracyclic module, which we denote A_G^{\sharp} , is given explicitly by $\mathbf{n} \mapsto \mathbf{k}[G] \otimes A^{(n+1)}$. The group G acts on A_G^{\sharp} by the formula

$$h \cdot (g|a_0, \dots, a_n) = (hgh^{-1}|ha_0, \dots, ha_n).$$

Let Λ_{∞}^n be the paracyclic set $\mathbf{m} \mapsto \Lambda_{\infty}(\mathbf{m}, \mathbf{n})$, and let $|\Lambda_{\infty}^n|$ be the geometric realization of the simplicial set underlying Λ_{∞}^n . In the following proposition, we parametrize the n-simplex Δ^n by

$$\Delta^n = \{0 \le t_1 \le \dots \le t_n \le 1\}.$$

(This result is similar to Proposition 2.7 of Dwyer-Hopkins-Kan [6] and Theorem 3.4 of Jones [12], and may be proved in the same way.)

Proposition 1.1. The geometric realization $|\Lambda_{\infty}^n|$ is homeomorphic to $\mathbb{R} \times \Delta^n$, with non-degenerate n+1-simplices given, for $0 \leq j \leq n$ and $k \in \mathbb{Z}$, by

$$S_k^j = \{(t|t_1, \dots, t_n) \in \mathbb{R} \times \Delta^n \mid t_j \le t + k \le t_{j+1}\}.$$

Each simplex S_k^j is identified with Δ^{n+1} by the map

$$(t_1,\ldots,t_{n+1})\mapsto (t_j+k|t_{j+1},\ldots,t_{n+1},t_1,\ldots,t_{j-1})$$

The maps $\partial: |\Lambda_{\infty}^n| \to |\Lambda_{\infty}^{n+1}|, \ \sigma: |\Lambda_{\infty}^n| \to |\Lambda_{\infty}^{n-1}|, \ \tau: |\Lambda_{\infty}^n| \to |\Lambda_{\infty}^n| \ and \ T: |\Lambda_{\infty}^n| \to |\Lambda_{\infty}^n|$ are given by the formulas

$$\partial(t|t_1, \dots, t_n) = (t|t_1, \dots, t_n, t_n),$$

$$\sigma(t|t_1, \dots, t_n) = (t + t_1|t_2 - t_1, \dots, t_n - t_1, t_n),$$

$$\tau(t|t_1, \dots, t_n) = (t + t_1|t_2 - t_1, \dots, t_n - t_1),$$

$$T(t|t_1, \dots, t_n) = (t + 1|t_1, \dots, t_n).$$

2. Parachain complexes

The following definition is inspired by the definition of a duchain complex due to Dwyer and Kan [7].

Definition 2.1. A parachain complex is a graded k-module $(V_i)_{i \in \mathbb{N}}$ with two operators $b: V_i \to V_{i-1}$ and $B: V_i \to V_{i+1}$, such that

- (1) $b^2 = B^2 = 0$, and
- (2) the operator T = 1 (bB + Bb) is invertible.

It may be easily checked that T commutes with both b and B. When T is the identity, the two differentials b and B commute; such a parachain complex is called a **mixed complex**. In the definition of a duchain complex, there is no condition on T: parachain complexes bear the same relationship to paracyclic modules that duchain complexes bear to duplicial modules.

If V_{\bullet} is a graded vector space, let $V_{\bullet}[\![u]\!]$ be the graded vector space of formal power series in a variable u of degree -2 with coefficients in V_{\bullet} . If V_{\bullet} is a mixed complex, one considers the associated complex $V_{\bullet}[\![u]\!]$ with differential b+uB; this motivates considering the operator b+uB on $V_{\bullet}[\![u]\!]$ even when V_{\bullet} is only a paracyclic module.

Definition 2.2. A morphism between parachain complexes V_{\bullet} and \tilde{V}_{\bullet} is a map from $V_{\bullet}[\![u]\!]$ to $\tilde{V}_{\bullet}[\![u]\!]$ homogeneous of degree 0,

$$f = \sum_{k=0}^{\infty} u^k f_k,$$

such that $(\tilde{b} + u\tilde{B}) \cdot f = f \cdot (b + uB)$.

Without introducing the operator b+uB, a morphism $f:V_{\bullet}\to \tilde{V}_{\bullet}$ may be defined as a sequence of maps $f_k:V_i\to \tilde{V}_{i+2k},\ k\geq 0$, such that

$$\tilde{b} \cdot f_k + \tilde{B} \cdot f_{k-1} = f_k \cdot b + f_{k-1} \cdot B.$$

The composition of two parachain complex maps is a parachain complex map, and a map of parachain complexes f satisfies $\tilde{T} \cdot f_i = f_i \cdot T$. Thus, the operator T defines an action of \mathbb{Z} on the category of parachain complexes.

There is a functor C from paracyclic modules to parachain complexes, with underlying graded module $C_n(P) = P(\mathbf{n})$ and operators $b = \sum_{i=0}^n (-1)^i d_i$ and $B = (1 - (-1)^{n+1} t) sN$; here N is the norm operator $N = \sum_{i=0}^n (-1)^{in} t^i$.

The proof of the following theorem is close to the discussion of Section 1 of [14].

Theorem 2.3. The functor $P \mapsto \mathsf{C}(P)$ is a \mathbb{Z} -equivariant functor from the category of paracyclic \mathbf{k} -modules to the category of parachain complexes over \mathbf{k} , that is,

- $(1) \ b^2 = B^2 = 0,$
- (2) bB + Bb = 1 T, and
- (3) it intertwines the natural transformations T of these two categories.

Proof. The proof that $b^2 = 0$ is the same as usual, since it only depends on the underlying simplicial module structure on P.

The operator $B^2: \mathsf{C}_n(P) \to \mathsf{C}_{n+2}(P)$ is given by

$$B^{2} = (1 - (-1)^{n+2}t)sN(1 - (-1)^{n+1}t)sN$$

$$= (1 - (-1)^{n+2}t)s(1 - T)sN$$

$$= (1 - (-1)^{n+2}t)ssN(1 - T)$$

$$= (s_{n} - (-1)^{n+2}s_{n+1})sN(1 - T),$$

which shows that B^2 is zero in the associated chain complex. Here, we have used the formulas $(1-(-1)^n t)N=1-T$, $ss=s_n s$ and

$$ts = T^{-1}(ts)T = t^{-n-1}st^{n+1} = s_{n+1}.$$

To calculate bB + Bb, we introduce the operator $b' = \sum_{i=1}^{n} (-1)^{i} d_{i}$ on $C_{n}(P)$.

Lemma 2.4. If P is a paracyclic module, then on $C(P)_n$ we have the formulas

- (1) $b(1-(-1)^n t) = (1-(-1)^{n-1}t)b',$
- (2) Nb = b'N, and
- (3) sb' + b's = 1.

Proof. The first formula is proved in the same way as in [14]. The operators b and b' on $C_n(P)$ are given by

$$b = \sum_{i=0}^{n} (-1)^{i} t^{i} dt^{-i-1}, \quad b' = \sum_{i=0}^{n-1} (-1)^{i} t^{i} dt^{-i-1}.$$

Thus,

$$\begin{split} b(1-(-1)^nt) &= \sum_{i=0}^n (-1)^{n-i}t^id(t^{-i-1}-(-1)^nt^{-i}) \\ &= -(-1)^nd + (1-(-1)^{n-1}t)\sum_{i=0}^{n-1} (-1)^it^idt^{-i-1} + (-1)^nt^ndt^{-n-1}. \end{split}$$

However, $t^n dt^{-n-1} = d$, and the formula follows.

We leave the proof of the second formula to the reader. To prove the third formula, we use the fact that on \mathbf{n} ,

$$\tau^{-i-1}\partial \tau^i \sigma = \sigma \tau^{-i-2}\partial \tau^{i+1}$$

for $0 \le i \le n-1$. Thus, it follows that

$$sb' = \sum_{i=0}^{n-1} (-1)^i st^i dt^{-i-1} = \sum_{i=0}^{p-1} (-1)^i t^{i+1} dt^{-i-2} s = 1 - b's. \quad \Box$$

As a corollary of this lemma, we see that on $C_n(P)$,

$$bB = (1 - (-1)^n t)b'sN$$
, and $Bb = (1 - (-1)^n t)sb'N$,

and hence that

$$Bb + bB = (1 - (-1)^n t)(sb' + b's)N = (1 - (-1)^n t)N$$
$$= 1 - t^{n+1} = 1 - T.$$

This completes the proof of the theorem. \Box

A multi-parachain complex is a \mathbb{N}^k -graded module $V_{n_1...n_k}$ with operators

$$b_i: V_{n_1...n_i...n_k} \to V_{n_1...n_i-1...n_k},$$

$$B_i: V_{n_1...n_i...n_k} \to V_{n_1...n_i+1...n_k}.$$

The operators $\{b_i, B_i\}$ and $\{b_j, B_j\}$ are required to (graded) commute if i and j are not equal, while $T_i = 1 - (b_i B_i + B_i b_i)$ is required to be invertible.

There is a functor $V \mapsto \text{Tot}(V)$ from multiparachain complexes to parachain complexes, which we will call the **total parachain complex**. It is formed by setting

$$\operatorname{Tot}_n(V) = \sum_{n_1 + \dots + n_k = n} V_{n_1 \dots n_k},$$

with operators

$$Tot(b) = \sum_{i=1}^{k} b_i,$$

$$Tot(B) = \sum_{i=1}^{n} T_{i+1} \dots T_k B_i.$$

The definition of Tot(B) on Tot(V) may seem a little strange, but is justified by the following lemma, which shows that Tot(V) is a parachain complex.

Lemma 2.5. The total T-operator $Tot(T) = T_1 \dots T_k$.

Proof. The proof uses the fact that $\{b_i, B_i\}$ and $\{b_j, B_j\}$ commute for $i \neq j$. Thus, we see that

$$1 - (\text{Tot}(b) \text{ Tot}(B) + \text{Tot}(B) \text{ Tot}(b)) = 1 - \sum_{i=1}^{k} [b_i, B_i] T_{i+1} \dots T_k$$
$$= 1 - \sum_{i=1}^{k} (1 - T_i) T_{i+1} \dots T_k,$$

from which the lemma follows. \Box

We are most interested in the special case of biparachain complexes. We will denote b_1 and b_2 by \bar{b} and b, and b_1 and b_2 by \bar{b} and b. When $\bar{T} = T^{-1}$, we call a bi-parachain complex V a **cylindrical complex**; in this case, the above lemma shows that Tot(T) = 1, that is, Tot(V) is a mixed complex.

Finally, we have the normalized chain functor N from paracyclic modules to parachain complexes, with underlying graded module

$$N_n(P) = P(\mathbf{n}) / \sum_{i=0}^n \operatorname{im}(s_i),$$

and operators b, B induced by those on C(P). It is a standard result that the quotient map $(C(P), b) \to (N(P), b)$ is a quasi-isomorphism of complexes. More generally, if P is a multi-paracyclic module, we denote by N(P) the multi-paracyclic complex obtained by normalizing successively in all directions.

3. The Eilenberg-Zilber theorem for paracyclic modules

Let $P(\mathbf{p}, \mathbf{q})$ be a bi-paracyclic module, and let C(P) be the biparachain complex obtained by forming the chain complex successively in both directions. Let Tot(C(P)) be the total parachain complex of C(P): by the above results, if P is a cylindrical module, Tot(C(P))is a mixed complex. Using the diagonal embedding of Λ_{∞} into $\Lambda_{\infty} \times \Lambda_{\infty}$, we see that the diagonal $\mathbf{n} \mapsto P(\mathbf{n}, \mathbf{n})$ is a paracyclic object, which we will denote by $\Delta P(\mathbf{n})$. The action of Λ_{∞} on $\Delta P(\mathbf{n})$ is generated by the maps $\bar{d}d$, $\bar{s}s$ and $\bar{t}t$.

The shuffle product is a natural map from the total complex $(\text{Tot}(\mathsf{C}(P)), \text{Tot}(b))$ to the chain complex of the diagonal $(\mathsf{C}(\Delta P), b)$, which is an equivalence of complexes; this is proved using the method of acyclic models. This product was extended to a map of mixed complexes by Hood and Jones [11] when P is bi-cyclic; see also our paper [10], where we give explicit formulas for this map. We will give explicit formulas on normalized chains; to extend these results to the unnormalized chains, we may apply the results of Kassel [13], who shows how to construct a homotopy inverse to the normalization map.

Theorem 3.1. Let P be a bi-paracyclic module. There is a natural quasi-isomorphism $f_0 + uf_1 : \operatorname{Tot}(\mathsf{C}(P)) \to \mathsf{C}(\Delta P)$ of parachain complexes such that $f_0 : \operatorname{Tot}(\mathsf{C}(P))_{\bullet} \to \mathsf{C}(\Delta P)_{\bullet}$ is the shuffle map.

Proof. We must construct a map

$$f_1: \operatorname{Tot}_{\bullet}(\mathsf{C}(P)) \to \mathsf{C}_{\bullet+2}(\Delta P)$$

to satisfy the following two formulas:

$$b \cdot f_1 = f_1 \cdot (b + \bar{b}) - B \cdot f_0 + f_0 \cdot (B + \bar{B}),$$

 $B \cdot f_1 = f_1 \cdot (B + \bar{B}).$

The fact that $f = f_0 + uf_1$ is a quasi-isomorphism then follows by a standard argument from the fact that it is true for the shuffle product f_0 .

Figure 3.1

Let ι_n be the non-degenerate n-simplex in Λ_{∞}^n , corresponding to the identity map on the object $\mathbf{n} \in \Lambda_{\infty}$. This simplex corresponds to the geometric simplex

$$\{(0|t_1,\ldots,t_n)\,|\,0\leq t_1\leq\cdots\leq t_n\leq 1\}\subset |\Lambda^n_\infty|,$$

in the geometric realization of Λ_{∞}^n , as described in Proposition 1.1. By definition, the nondegenerate simplices of Λ_{∞}^n are in one-to-one correspondence with the morphisms of Λ_{∞} with range \mathbf{n} , and these simplices are obtained by applying the corresponding morphism of the opposite category $\Lambda_{\infty}^{\text{op}}$ to ι_n .

If X is a paracyclic set, the chains on X with values in \mathbf{k} , written $\mathbf{k}[X]$, form a paracyclic module in an evident way. Similarly, the module of chains on the bi-parayclic set $\Lambda^p_{\infty} \times \Lambda^q_{\infty}$ is a bi-paracyclic module, which we denote by $\mathbf{k}[\Lambda^p_{\infty} \times \Lambda^q_{\infty}]$. The following result is the analogue of Lemma 2.1 of Hood and Jones [11].

Lemma 3.3. If P is a bi-paracyclic module and $x \in P(p,q)$, there is a unique map of bi-paracyclic modules $i_x : \mathbf{k}[\Lambda^p_\infty \times \Lambda^q_\infty] \to V$ such that $i_x(\iota_p \times \iota_q) = x$.

From this lemma and the fact that f_1 is to be natural, we see that it suffices to define f_1 on the elements $\iota_p \times \iota_q \in \mathbf{k}[\Lambda^p_\infty \times \Lambda^q_\infty]$. The following argument may be better understood by reference to Figure 3.1.

The image of $\iota_p \times \iota_q$ under the map B is the chain

$$\{0\} \times [0,1] \times \Delta^p \times \Delta^q \subset \mathbb{R}^2 \times \Delta^p \times \Delta^q.$$

Similarly, its image under the map $T\bar{B}$ is the chain

$$[0,1] \times \{1\} \times \Delta_p \times \Delta_q$$
.

Finally, $B \cdot f_0(\iota_p \times \iota_q)$ is the chain

$$\{(t,t) \mid t \in [0,1]\} \times \Delta^p \times \Delta^q.$$

From this, we see that $f_0 \cdot (T\bar{B} + B) - B \cdot f_0$ applied to $\iota_p \times \iota_q$ is the chain

$$\partial K \times \Delta^p \times \Delta^q$$
.

where K is the triangle $\{(s,t) \mid 0 \le t \le s \le 1\} \subset \mathbb{R}^2$. It is now obvious that in order for the formula

$$b \cdot f_1 - f_1 \cdot (b + \bar{b}) = f_0 \cdot (T\bar{B} + B) - B \cdot f_0$$

to hold when applied to $\iota_p \times \iota_q$, we must choose $f_1(\iota_p \times \iota_q)$ to equal the simplicial chain corresponding to the geometric chain

$$K \times \Lambda^p \times \Lambda^q$$

This may be done uniquely, because we work in the normalized chain complex. An explicit formula for this chain may be given in terms of the cyclic shuffles introduced in [10]; we see from these formulas or by a geometric argument that $f_1 \cdot B = f_1 \cdot \bar{B} = B \cdot f_1 = 0$ modulo degenerate chains. \square

4. Application to the cyclic homology of crossed product algebras

Recall the definition of the cyclic homology of a mixed complex (V, b, B). Let W be a graded module over the polynomial ring $\mathbf{k}[u]$, where $\deg(u) = -2$; we will always assume that W has finite homological dimension. If C_{\bullet} is a mixed complex, we denote $C_{\bullet}[\![u]\!] \otimes_{\mathbf{k}[u]} W$ by $C_{\bullet} \boxtimes W$. We define the cyclic homology of the mixed complex C_{\bullet} with coefficients in W to be

$$HC(C_{\bullet}; W) = H_{\bullet}(C_{\bullet} \boxtimes W, b + uB).$$

In the particular case where $V = C(A^{\sharp})$, we write

$$\mathrm{HC}_{\bullet}(A;W) = \mathrm{HC}_{\bullet}(\mathsf{C}(A^{\natural});W).$$

If $f: C_{\bullet} \to \tilde{C}_{\bullet}$ is a map of mixed complexes, it induces a map of cyclic homology

$$f: \mathrm{HC}(C_{\bullet}; W) \to \mathrm{HC}(\tilde{C}_{\bullet}; W).$$

We say that f is a quasi-isomorphism (and write $f: C_{\bullet} \simeq \tilde{C}_{\bullet}$) if f induces an isomorphism of homology

$$f: H_{\bullet}(C_{\bullet}, b) \cong H_{\bullet}(\tilde{C}_{\bullet}, \tilde{b}).$$

If $f: C_{\bullet} \simeq \tilde{C}_{\bullet}$ is a quasi-isomorphism of mixed complexes, and W is a graded $\mathbf{k}[u]$ -module of finite homological dimension, we obtain isomorphisms of cyclic homology

$$f: \mathrm{HC}(C_{\bullet}; W) \cong \mathrm{HC}(\tilde{C}_{\bullet}; W).$$

Let us list some examples of cyclic homology with different coefficients W:

- (1) $W = \mathbf{k}[u]$ gives negative cyclic homology $\mathrm{HC}_{\bullet}^{-}(A)$;
- (2) $W = \mathbf{k}[u, u^{-1}]$ gives periodic cyclic homology $HP_{\bullet}(A)$;
- (3) $W = \mathbf{k}[u, u^{-1}]/u\mathbf{k}[u]$ gives cyclic homology $HC_{\bullet}(A)$;
- (4) $W = \mathbf{k}[u]/u\mathbf{k}[u]$ gives the Hochschild homology $HH_{\bullet}(A)$.

Using the Eilenberg-Zilber Theorem for parachain complexes (Theorem 3.1), we obtain the following theorem.

Theorem 4.1. Let A be a unital algebra over the commutative ring \mathbf{k} , and let G be a discrete group which acts on A. There is a quasi-isomorphism of mixed complexes

$$f_0 + uf_1 : \operatorname{Tot}(\mathsf{N}(A
atural G)) \simeq \mathsf{N}((A \rtimes G)^{
atural}).$$

Thus, we obtain isomorphism of cyclic homology groups

$$HC_{\bullet}(A \rtimes G; W) = HC_{\bullet}(Tot(N(A \natural G)); W).$$

It is also possible to take the unnormalized chain complex $C(A \natural G)$ in this theorem, since this is quasi-isomorphic to the normalized chain complex. This allows us to restate our result in the following more explicit form.

Corollary 4.2. There are operators b, \bar{b} , B and \bar{B} on the complex

$$\operatorname{Tot}_n(\mathsf{C}(A \natural G)) = \sum_{p+q=n} \mathbf{k}[G^{p+1}] \otimes A^{(q+1)}$$

such that the homology of the complex

$$(\operatorname{Tot}(\mathsf{C}(A
atural G)) \boxtimes W, b + \bar{b} + u(B + T\bar{B}))$$

is the cyclic homology $HC_{\bullet}(A \rtimes G; W)$.

The above theorem leads to the spectral sequence of Feigin and Tsygan, converging to $\mathrm{HC}_{\bullet}(A \rtimes G; W)$ (see Appendix 6 of [9]). We filter the complex $\mathsf{C}(A \natural G)$ by subspaces

$$F_{pq}^{i}\operatorname{Tot}(\mathsf{C}(A
atural G))\boxtimes W=\sum_{q\leq i}\mathbf{k}[G^{p+1}]\otimes A^{(q+1)}\boxtimes W.$$

Recall the paracyclic module $A_G^{\natural}(\mathbf{n}) = A\natural G(\mathbf{0}, \mathbf{n}) \cong \mathbf{k}[G] \otimes A^{(n+1)}$ of Section 1. If M is a G-module, let $C_p(G, M) = \mathbf{k}[G^p] \otimes M$ be the space of p-chains on G with values in M, with boundary $\delta: C_p(G, M) \to C_{p-1}(G, M)$.

Lemma 4.3. The E^0 -term of the spectral sequence is isomorphic to the complex

$$E_{pq}^0 = C_p(G, \mathsf{C}_q(A_G^{\natural}) \boxtimes W).$$

Proof. Consider the map β from $\mathsf{C}_{pq}(A \natural G)$ to $C_p(G, \mathsf{C}_q(A_G^{\natural}))$ given by the formula

$$(g_0, \ldots, g_p | a_0, \ldots, a_q) \mapsto (g_1, \ldots, g_p | g | a_0, \ldots, a_q),$$

where $g = g_0 \dots g_p$. It is easily seen that

$$(\beta \bar{b} \beta^{-1})(g_1, \dots, g_p | g | a_0, \dots, a_q) = (g_2, \dots, g_p | g | a_0, \dots, a_q)$$

$$+ \sum_{i=1}^{p-1} (-1)^i (g_1, \dots, g_i g_{i+1}, \dots, g_p | g | a_0, \dots, a_q)$$

$$+ (-1)^p (g_1, \dots, g_{p-1} | g_p g_p^{-1} | g_p a_0, \dots, g_p a_q),$$

which is just the boundary for group homology with coefficients in $C_q(A_G^{\natural})$. \square Although we do not use it, let us state the formula for $\beta \bar{B} \beta^{-1}$:

$$(\beta \bar{B}\beta^{-1})(g_1, \dots, g_p|g|a_0, \dots, a_q) = (1, g_1, \dots, g_p|g|a_0, \dots, a_q)$$

$$+ \sum_{i=1}^p (-1)^{pi}(g_i \dots g_p) \cdot (1, g_{i+1}, \dots, g_p, g(g_1 \dots g_p)^{-1}, g_1, \dots, g_{i-1}|g|a_0, \dots, a_q).$$

It follows from Lemma 4.3 that the E^1 -term of the spectral sequence is

$$E_{pq}^1 = H_p(G, \mathsf{C}_q(A_G^{\natural}) \boxtimes W).$$

The following lemma enables us to give the differential d^1 a natural interpretation.

Lemma 4.4. The homology spaces $H_p(G, A_G^{\natural})$ are cyclic modules, with respect to the cyclic structure induced by the maps

$$d(g|a_0, \dots, a_q) = (g|(g^{-1}a_q)a_0, a_1, \dots, a_{q-1}),$$

$$s(g|a_0, \dots, a_q) = (g|1, a_0, \dots, a_q),$$

acting on A_G^{\natural} .

Proof. If we apply the chain functor C along the G-axis of the bi-paracyclic module A
atural G, we obtain the paracyclic parachain chain complex $(C_p(G, A_G^{\natural}), \bar{b}, \bar{B})$, where \bar{b} is the homology boundary. The operator $T\bar{B}$ gives a chain homotopy of T to the identity, since

$$\bar{b}\bar{B} + \bar{B}\bar{b} = 1 - \bar{T} = 1 - T^{-1},$$

showing that $H_p(G, A_G^{\sharp})$ is a cyclic module for each p. \square

We see that the differential d^1 is just the differential b + uB associated to the cyclic module $H_{\bullet}(G, A_G^{\natural})$. This completes the proof of the following theorem.

Theorem 4.5. By means of the isomorphism

$$H_p(G, \mathsf{C}_q(A_G^{\natural}) \boxtimes W) \cong \mathsf{C}_q(H_p(G, A_G^{\natural})) \boxtimes W,$$

the E^2 -term of the spectral sequence may be identified with the cyclic homology

$$\mathrm{HC}_q(H_p(G, A_G^{\natural}); W)$$

of the cyclic module $H_{\bullet}(G, A_G^{\natural})$.

To see the relationship between this spectral sequence and that of Feigin and Tsygan, we observe that the G-module A_G^{\natural} decomposes into a direct sum over the conjugacy classes $[g] = \{hgh^{-1} \mid h \in G\}$ of G:

$$A_G^{\natural} = \sum_{[g]} A_{[g]}^{\natural},$$

where $A_{[g]}^{\natural}$ is the paracyclic G-module such that $A_{[g]}^{\natural}(\mathbf{n})$ consists of all functions from the conjugacy class [g] to $A^{(n+1)}$. Choose an arbitrary element $g \in [g]$, and let A_g^{\natural} be the stalk of A_G^{\natural} over g. This paracyclic module is acted on by the centralizer G^g of g, and it is easily seen that

$$A_{[q]}^{\natural} \cong \operatorname{Ind}_{G^g}^G A_g^{\natural}$$

is an induced module. Shapiro's Lemma now shows that

$$H_p(G, A_G^{\natural}) \cong \sum_{[g]} H_p(G^g, A_g^{\natural}),$$

from which Feigin and Tsygan's form of the spectral sequence follows easily.

Now suppose the order |G| of the group G is finite and invertible in \mathbf{k} . It follows that $E_{pq}^2 = 0$ if p > 0, and our spectral sequence collapses. The only remaining contribution to E^2 comes from the cyclic module $H_0(G, A_G^{\natural})$ of coinvariants in A_G^{\natural} , introduced by Brylinski [2].

Proposition 4.6. If G is finite and |G| is invertible in \mathbf{k} , then there is a natural isomorphism of cyclic homology and

$$\mathrm{HC}_{\bullet}(A \rtimes G; W) = \mathrm{HC}_{\bullet}(H_0(G, A_G^{\sharp}); W),$$

where $H_0(G, A_G^{\natural})$ is the cyclic module

$$H_0(G, A_G^{\sharp})(\mathbf{n}) = H_0(G, \mathbf{k}[G] \otimes A^{(n+1)}).$$

References

- 1. M. Bökstedt, W.C. Hsiang and I. Madsen, *The cyclotomic trace and algebraic K-theory of spaces*, Aarhus preprint, 1989.
- 2. J.-L. Brylinski, Algebras associated with group actions and ther homology, Brown preprint, 1987.
- 3. J.-L. Brylinski, Cyclic homology and equivariant theories, Ann. Inst. Fourier **37** (1987), 15–28.
- 4. D. Burghelea, *The cyclic homology of the group rings*, Comment. Math. Helv. **60** (1985), 354–365.
- 5. A. Connes, Cohomologie cyclique et foncteurs EXTⁿ, C. R. Acad. Sci. Paris **296** (1983), 953–958.
- 6. W. G. Dwyer, M. L. Hopkins and D. M. Kan, *The homotopy theory of cyclic sets*, Trans. Amer. Math. Soc. **291** (1985), 281–289.
- 7. W. G. Dwyer and D. M. Kan, *Normalizing the cyclic modules of Connes*, Comment. Math. Helvitici **60** (1985), 582–600.
- 8. Z. Fiedorowicz and J.L. Loday, Crossed simplicial groups and their associated homology, Trans. Amer. Math. Soc. (1992).
- 9. B. L. Feigin and B. L. Tsygan, *Additive K-theory*, In "K-Theory, Arithmetic and Geometry", Lecture Notes in Mathematics **1289** (Yu. I. Manin, ed.), 1986, pp. 67–209.
- 10. E. Getzler and J. D. S. Jones, A_{∞} -algebras and the cyclic bar complex, Ill. Jour. Math. **34** (1989), 256–283.
- 11. C. E. Hood and J. D. S. Jones, Some algebraic properties of cyclic homology groups, K-theory 1, 361–384.
- 12. J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987), 403–423.
- 13. C. Kassel, *Homologie cyclique*, caractère de Chern et lemme de perturbation, J. Reine angew. Math **408** (1990), 159–180.
- 14. J. L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helvitici **59** (1984), 565–591.
- 15. V. Nistor, Group homology and the cyclic homology of crossed products, Invent. Math. **99** (1989), 411–424.

DEPT. OF MATHEMATICS, MIT, CAMBRIDGE, MASS. 02139 USA *E-mail address*: getzler@math.mit.edu

MATHEMATICS INSTITUTE, UNIVERSITY OF WARWICK, COVENTRY CV4 7AL, ENGLAND $E\text{-}mail\ address:}$ jdsj@maths.warwick.ac.uk