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If A is a Banach ∗-algebra, an odd theta-summable Fredholm module over A
consists of the following data: a Hilbert space H, a continuous ∗-representation ρ
of A on H, and a self-adjoint operator D on H such that

(1) there is a constant C such that ‖[D, ρ(a)]‖ ≤ C‖a‖ for all a ∈ A, and
(2) if t > 0, then the operator e−tD2

is trace class.
Such a Fredholm module determines a class [D] in the group K−1(A), which might
be thought of as an odd-dimensional chain on the non-commutative space with
function algebra A.

Dually, unitary matrices g ∈ UN (A) with entries in A represent elements of the
group K1(A).

If A0 and A1 are self-adjoint operators on H with the same spectrum (including
multiplicities), the spectral flow sf(A0, A1), introduced by Atiyah-Patodi-Singer
[1], is the integer which counts the number of eigenvalues crossing zero from below
minus the number crossing zero from above, as we travel along the family Au =
(1− u)A0 + uA1 in the direction of increasing u.

If D is an odd theta-summable Fredholm module over D and g ∈ UN (A) is a
unitary matrix with entries in A, the spectral flow defines a pairing

〈D, g〉 = sf(D, g−1Dg)

between K−1(A) and K1(A), with values in the integers. This pairing is a homo-
topy invariant function of D and g. In Section 2, we derive the following formula:

sf(D, g−1Dg) =
1

π1/2

∫ 1

0

Tr
(
Ḋue−D

2
u
)
du,

where Du = (1− u)D + ug−1Dg and Ḋu = g−1[D, g].
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An elementary example is the operator

D =
1

2πi

d

dt

on the Hilbert space L2(S1), where S1 is the circle parametrized by t ∈ [0, 1]. If
g : S1 −→ S1 ⊂ C is a differentiable map from S1 to the unit circle in the complex
plane, then the spectral flow sf(D, g−1Dg) equals the degree deg(g) of g. Indeed,
this is clear if g(t) = e2πint, since

Du =
1

2πi

d

dt
+ ν,

and follows for general g since sf(D, g−1Dg) is invariant under homotopies of g.
Our goal in this article is to express 〈D, g〉 in terms of the Chern character

Ch∗(D) of D in entire cyclic cohomology introduced by Jaffe-Lesniewski-Oster-
walder [11] and the Chern character Ch∗(g) of g in entire cyclic homology, which
we discuss in Section 3. In Section 4, we will prove the following formula:

〈D, g〉 = (Ch∗(D),Ch∗(g)).

This is the analogue for odd K-theory of the formula of Connes and Getzler-
Szenes [7] for the index pairing in even K-theory: if D is an even theta-summable
Fredholm module over A, and p ∈ MN (A) is an idempotent matrix with values in
A, then

〈D, p〉 = (Ch∗(D),Ch∗(p)),

where Ch∗(p) is the Chern character of the idempotent p, introduced by Hood and
Jones [10].

Since the odd Chern character is less well known than the even Chern character,
we have included, by way of an introduction, an expository Section 1, in which we
discuss the odd Chern character in differential geometry. The main result of this
section, that two different formulas for this Chern character are equal, is a model
for the proof of the formula for 〈D, g〉.

I am grateful to D. Quillen for suggesting to me the problem of calculating
(Ch∗(D),Ch∗(p)), to J. Kaminker for explaining the relevance of spectral flow,
and to M. Vergne and the Laboratoire de Mathématiques of the Ecole Normale
Supérieure for inviting me to lecture on this work.

Notation

We will denote by C(q) the complex Clifford algebra with odd generators ci,
1 ≤ i ≤ q, and relations

cicj + cjci = 2δij .
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This is a Z/2-graded ∗-algebra, with c∗i = ci.
If E is a graded module for C(q), denote by EndC(q)(E) the algebra of endo-

morphisms of E which (graded) commute with the action of C(q) or, equivalently,
with the generators ci. The Clifford supertrace of an operator A ∈ L1

C(q)(E) is
defined by the formula (see Getzler [5] for the justification)

StrC(q)(A) = (4π)−q/2 Str(c1 . . . cqA).

It is easily verified that this is a supertrace on EndC(q)(E).
We will denote by ∆n the n-simplex

∆n = {(σ0, . . . , σn) ∈ [0, 1]n | σ0 + · · ·+ σn = 1}

with measure dσ = dσ1 . . . dσn.

1. The odd Chern character in differential geometry

If M is a smooth manifold, an element of K−1(M) may be represented by a
differentiable map from M to the general linear group GLN (C), for N sufficiently
large. In this section, we will represent the Chern character of such an element of
K−1(M) by a closed differential form; this is the odd analogue of the Chern-Weil
formula for the Chern character of a vector bundle in terms of a connection.

If ∇0 and ∇1 are two connections on a vector bundle E , their Chern-Simons
form is the differential form of odd degree

cs(∇0,∇1) =
∫ 1

0

Tr
(
∇̇ue∇

2
u
)
du,

where ∇u = (1−u)∇0 +u∇1 and ∇̇u = ∇1−∇0. This is the integral of the Chern
character form Ch(∇̃) = Tr(e∇̃

2
) over the fibres of the projection [0, 1]×M −→ M ,

where ∇̃ is the connection, on the trivial bundle of rank N over [0, 1]×M , given
by the formula

∇̃ = du
∂

∂u
+∇u.

The differential form cs(d, d + ω) satisfies the transgression formula

d cs(∇0,∇1) = Ch(∇1)− Ch(∇0).

To define the Chern character of an element of K−1(M) represented as a differ-
entiable map g : M −→ GLN (C), we introduce a family of connections ∇u = d+uω
on the trivial bundle M × CN , where ω = g−1(dg) ∈ Ω1(M, glN (C)). Note that
∇0 = d, while ∇1 = g−1dg is gauge equivalent to d, and hence both connections
have vanishing curvature. This shows that d cs(d, d + ω) = 0.
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Definition 1.1. The Chern character Ch(g) of a differentiable map g : M −→
GLN (C) is the odd differential form cs(d, g−1dg).

Since dω + ω2 = 0, the curvature of the connection ∇u is given by the formula

∇2
u = −u(1− u)ω2.

Note that Tr(ω2k) = 1
2 Tr[ω, ω2k−1] = 0 for k > 0, so that the integrand in the

Chern-Simons class of the family of connections ∇u is given by the formula

Tr
(
ω e∇

2
u
)

=
∞∑

k=0

(−1)k

k!
uk(1− u)k Tr(ω2k+1).

The explicit formula for Ch(g) follows from the definition of the beta-function: if
s, t > 0, then

B(s, t) =
Γ(s) Γ(t)
Γ(s + t)

=
∫ 1

0

us−1(1− u)t−1 du.

In this way, we obtain the following result.

Proposition 1.2. The odd Chern character is a closed differential form of odd
degree, given by the formula

Ch(g) =
∞∑

k=0

(−1)k k!
(2k + 1)!

Tr(ω2k+1).

It follows from this formula that Ch(g) + Ch(g−1) = 0.
Let gt, t ∈ [0, 1], be a differentiable family of maps from M to GLN (C). This

may be thought of as a differentiable map g̃ from [0, 1] × M to GLN (C), and as
such, it has a Chern character Ch(g̃). This may be decomposed

Ch(g̃) = Ch(gt) + dt ∧ C̃h(gt),

where Ch(gt) and C̃h(gt) are independent of dt.

Proposition 1.3. The secondary Chern character C̃h(gt) is given by the formula

C̃h(gt) =
∞∑

k=0

(−1)k k!
(2k)!

Tr
(
g−1

t ġt ∧ ω2k
t

)
,

and satisfies the transgression formula

∂

∂t
Ch(gt) = d C̃h(gt).
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Proof. Observe that
ω̃ = ωt + g−1

t ġt dt.

From this, we see that

ω̃2k+1 = ω2k+1
t +

2k+1∑
i=0

ωi
t ∧ g−1

t ġt dt ∧ ω2k−i
t .

Taking the trace of both sides gives

Tr(ω̃2k+1) = Tr(ω2k+1
t ) + (2k + 1)dt ∧ Tr(g−1

t ġt ∧ ω2k
t ),

from which the formula for C̃h(gt) follows.
The transgression formula is a consequence of the fact that Ch(g̃) is closed:(

dt ∧ ∂

∂t
+ d

)
Ch(g̃) = d Ch(gt) + dt ∧

(
∂

∂t
Ch(gt)− d C̃h(gt)

)
. �

This proposition shows that the cohomology class of Ch(g) depends only on the
homotopy class of the map g : M −→ GLN (C). Since Ch(g ⊕ h) = Ch(g) + Ch(h),
it follows that the odd Chern character defines a homomorphism

Ch : K−1(M) −→
∞⊕

i=0

H2i+1(M, C).

The Atiyah-Hirzebruch spectral sequence shows that this is an isomorphism after
tensoring with C.

In the special case where M is the circle S1, the Chern character Ch(g) is given
by the formula

Ch(g) = Tr(g−1(dg)) = d log det(g),

so that the Chern character is related to the degree by the formula

1
2πi

∫
S1

Ch(g) = deg(det(g) : S1 −→ GL1(C)).

This formula has a generalization for any odd-dimensional sphere.

Proposition 1.4. If g : S2k−1 −→ GLN (C) is a differentiable map, then there is
an integer such that

1
(−2πi)k

∫
S2k−1

Ch(g) = −deg(g).
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Proof. Let C(2k) be the Clifford algebra of R2k, and let S± be the associated half
spinor representations, of rank 2k−1. Let xi be the basis of R2k, and denote c(xi)
by ci. By Bott periodicity, the map from S2k−1 to GL2k−1(C) given by the formula

g(x) = c2kc(x) ∈ GL2k−1(C) ⊂ End(S+)

has degree 1, and generates π2k−1(GLN (C)) for N large. Thus, it suffices to prove
the theorem for this map g.

The formula for ω2k−1 over all of S2k−1 follows from its value at y = (0, . . . , 0, 1),
since ω is equivariant under the action of SO(2k). But

ω(y) = −
2k∑
i=1

c2kci dxi,

and it follows that, modulo terms proportional dx2k,

ω(y)2k−1 = −
∑

π∈S2k−1

c2kcπ(1)dxπ(1) . . . c2kcπ(2k−1)dxπ(2k−1)

=
∑

π∈S2k−1

dxπ(1) ∧ . . . ∧ dxπ(2k−1) cπ(1) . . . cπ(2k−1)c2k

= (−1)k(2k − 1)! dx1 ∧ . . . ∧ dx2k−1 c1 . . . c2k.

Since ikc1 . . . c2k acts by ±1 on S±, we see that TrS+(c1 . . . c2k) = (−i)k2k−1, so
that

Ch(g)[2k−1] = (−1)k−1 (k − 1)!
(2k − 1)!

Tr(ω2k−1)

= −1
2
(−2i)k(k − 1)! vol,

where vol is the Riemannian volume form on S2k−1. But the volume of the sphere
S2k−1 equals 2πk/(k − 1)!, and we see that

1
(−2πi)k

∫
S2k−1

Ch(g) = −1,

as was to be shown. �

There is another formula for the odd Chern character Ch(g), obtained by asso-
ciating to g a superconnection on the trivial Z/2-graded vector bundle E over
[0,∞)×M with fibre CN |N = CN ⊕ CN . Consider the odd endomorphism of E ,

p =
(

0 −g−1

g 0

)
,
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satisfying p2 = −1. Denoting the coordinate of [0,∞) by s, we introduce the
superconnection

A = d + sp

on E , with curvature A2 = s dp−s2+ds p. The Chern form Ch(A) of the supercon-
nection A is the even differential form Str(eA2

) on [0,∞)×M . If α is a differential
form on [0,∞) × M , denote by

∫∞
0

α the integral of α along the fibres of the
projection of [0,∞)×M to M .

Proposition 1.5. ∫ ∞

0

Ch(A) = Ch(g)

Proof. Since Str
(
(dp)2k

)
= 0, we see that

Str(eA2
) =

∞∑
k=0

1
(2k + 1)!

Str
(
p(dp)2k+1

)
s2k+1e−s2

ds,

and hence∫ ∞

0

Str(eA2
) =

∞∑
k=0

1
(2k + 1)!

Str
(
p(dp)2k+1

) ∫ ∞

0

s2k+1e−s2
ds.

The change of variables t = s2 gives∫ ∞

0

s2k+1e−s2
ds =

1
2

∫ ∞

0

tke−t dt =
k!
2

.

Denote g−1(dg) by ω, and (dg)g−1 = gωg−1 by ω̃. Taking care to observe the sign
rule for graded tensor products, we see that

(dp)2 =
(
−ω2 0

0 −ω̃2

)
, and

p(dp) =
(

ω 0
0 −ω̃

)
,

from which we see that

Str
(
p(dp)2k+1

)
= (−1)k Str

(
ω2k+1 0

0 −ω̃2k+1

)
= 2(−1)k Str(ω2k+1).

The result follows. �
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The coincidence between the two formulas for the odd Chern character may be
partially explained by extending the superconnection A to the trivial Z/2-graded
bundle with fibre CN |N over the product [0, 1]× [0,∞)×M . This superconnection,
which we again denote A, is given by the formula

A = d + up dp + sp =
(

d + uω −sg−1

sg d− uω̃

)
,

and has curvature

A2 = u(1− u)(dp)2 + du ∧ p dp + s(1− 2u) dp + ds p− s2.

If s > 0, denote by
∫

γs
Str(eA2

) ∈ Ω∗(M) the integral of the differential form

Str(eA2
), over the fibres of the projection [0, 1] × {s} ×M −→ M , oriented in the

the direction of increasing u. We see from the explicit formula for A2 that∫
γs

Str(eA2
) = O(e−s2/2)

as s −→∞, while ∫
γ0

Str(eA2
) = Ch(g)− Ch(g−1) = 2 Ch(g).

Similarly, if u ∈ [0, 1], denote by
∫
Γu

Str(eA2
) ∈ Ω∗(M) the integral of Str(eA2

),
over the fibres of the projection {u} × [0,∞) × M −→ M , oriented in the the
direction of increasing s. Examination of the formula for A2 shows that∫

Γ0

Str(eA2
) = −

∫
Γ1

Str(eA2
) =

∫ ∞

0

Ch(A).

Finally, denote by
∫
[0,1]×[0,∞)

Str(eA2
) the integral of Str(eA2

) over the fibres of
the projection [0, 1]× [0,∞)×M −→ M . Then Stokes’s theorem shows that∫

Γ0

Str(eA2
)−

∫
Γ1

Str(eA2
)

=
∫

γ0

Str(eA2
)− lim

s−→∞

∫
γs

Str(eA2
) + d

∫
[0,1]×[0,∞)

Str(eA2
).

Proposition 1.5 shows that the exact differential form d
∫
[0,1]×[0,∞)

Str(eA2
) is in

fact equal to zero.
The goal of this paper is to “quantize” the calculations of this section: we

replace the manifold by a Banach algebra A, the differential forms by entire cyclic
chains Cω(A), and the exterior differential by a theta-summable Fredholm module
D over A. The analogue of the Chern-Simons class cs(d, g−1dg) will be the spectral
flow sf(D, g−1Dg) between the operators D and g−1Dg = D + g−1[D, g], while the
analogue of Proposition 1.5 will give the desired formula for this integer as a pairing
in entire cyclic homology.
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2. Spectral flow

Let D0 be a theta-summable Fredholm operator on a Hilbert space H, that is,
a self-adjoint operator such that e−tD2

is trace class for all t > 0. In this section,
we will study the affine Banach manifold Φ modelled on L∗(H), the real Banach
space of self-adjoint bounded linear operators on H,

Φ = {D = D0 + A | A ∈ L∗(H)},

which is a space of “connections.” Let G be the “gauge group”

G = {g ∈ U(H) | ‖[D0, g]‖ < ∞}.

This group acts on Φ by conjugation:

g · (D0 + A) = g−1(D0 + A)g = D0 + g−1[D0, g] + g−1Ag.

There is an evident stratification of Φ by G-invariant sets

Φk = {D | dim ker(D) = k}.

Denote by Grk(H) the Banach manifold of rank k subspaces of the Hilbert space
H, and by Grk(H) the Banach manifold of corank k subspaces of H.

Theorem 2.1. The stratification {Φk} of Φ has the following properties.
(1) Each Φk is a submanifold of Φ of finite codimension k(k + 1)/2, and the

closure of Φk equals Φk ∪ Φk+1 ∪ . . . .
(2) (local finiteness) Each point in Φ has a neighbourhood meeting finitely

many strata Φk.
(3) (Whitney’s Condition B) Let k < `. If (xi) ⊂ Φk and (yi) ⊂ Φ` are

sequences converging to y ∈ Φ`, such that the tangent lines xiyi converge
to L ∈ Gr1(H), and the tangent spaces Txi

Φk converge to T ∈ Grk(H),
then L ⊂ T .

Furthermore, the submanifolds Φk are cooriented, that is, the normal bundle of the
embedding Φk ↪→ Φ is an orientable vector bundle.

Proof. We follow closely the proof of Lemme 1 on page 295 of Ruget [13]. If
D1 ∈ Φk, let H0 ∈ Grk(H) be the kernel of D1, and let H1 be its orthogonal
complement. For D ∈ Φ, we write, with respect to the decompositionH = H0⊕H1,

D =
(

a b
c d

)
,

where a ∈ L∗(H0), b ∈ L(H1,H0), c = b∗, and d ∈ L∗(H1). Let U ⊂ Φ be the
neighbourhood of D1 on which d is invertible. Consider the map

F (D) = a− bd−1c : U −→ L∗(H0),
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which is clearly a submersion.
The stratification of L∗(H0) by subsets {Vi | 0 ≤ i ≤ k}, where

Vi = {A ∈ L∗(H0) | dim ker(A) = i},

is a Whitney stratification (see Section 1.2 of Gibson et al. [8]). Since Φi ∩ U =
F−1(Vi), we see that the stratification {Φi ∩ U | 0 ≤ i ≤ k} is a Whitney stratifi-
cation of U . Since sets of the form U cover Φ, properties (2-3) of the stratification
follow.

Since Vk = {0}, we see that Φk ∩ U = F−1(0); thus Φk ∩ U is a submanifold
of Φ of codimension equal to the dimension of L∗(H0), namely k(k + 1)/2. This
also shows that Φk is a cooriented submanifold of Φ, since the normal bundle of
the embedding {0} ↪→ L∗(H0) is canonically oriented. �

Corollary 2.2. There is a fundamental class [Φ1] ∈ H1(Φ,Φ0).

Proof. By the above theorem, the stratum Φ1 is a cooriented codimension 1 sub-
manifold of Φ. The boundary of Φ1 is the union of strata

∂Φ1 = Φ1\Φ1 = Φ2 ∪ Φ3 ∪ . . . ,

and thus has codimension 3 in Φ. Since codim(∂Φ1) ≥ codim(Φ1), Proposition
2.3 of Ruget [13] is applicable, and shows the existence of the fundamental class
of Φ1 in Φ. �

Let I = [0, 1] be the unit interval, with boundary ∂I = {0, 1}. It follows from
Corollary 2.2 that if γ : (I, ∂I) −→ (Φ,Φ0) is a path in Φ whose endpoints lie in
Φ0, there is a well-defined intersection number #(γ, Φ1) ∈ Z between γ and Φ1,
defined by integrating the pull-back γ∗[Φ1] ∈ H1(I, ∂I) over the fundamental class
[I] ∈ H1(I, ∂I) of (I, ∂I).

Definition 2.3. (Atiyah-Patodi-Singer [1]) If D0 and D1 are two elements of Φ0,
and γ is the path γt = (1 − t)D0 + tD1 joining them, then the spectral flow
sf(D0,D1) ∈ Z is the intersection number #(γ, Φ1) of γ with the submanifold Φ1.

Our goal in this section is to prove an analytic formula for sf(D0,D1). Our
approach is inspired by that of Bismut and Freed [3], who work in the setting of
Dirac operators. We start by defining an analogue of the eta-invariant of Atiyah-
Patodi-Singer. Recall that if D is a Dirac operator on a compact oriented odd
dimensional manifold, the eta-invariant is the number

η =
1

π1/2

∫ ∞

0

Tr(De−tD2
) t−1/2 dt.

However, the existence of this eta-invariant relies on special properties of differ-
ential operators, so we need to regularize this formula, by truncating the integral
near t = 0: if ε > 0, let

ηε =
1

π1/2

∫ ∞

ε

Tr(De−tD2
) t−1/2 dt.

10



We also introduce a one-form αε on Φ, defined by the formula

αε(X) = −(ε/π)1/2 Tr
(
Xe−εD2)

, where X ∈ TDΦ ∼= L∗(H).

Both εε and αε are invariant under the action of G.
The following lemma will be used in estimating the derivatives of ηε.

Lemma 2.4. If D = D0 + A ∈ Φ, where D is a theta-summable operator and
A ∈ L∗(H), then for t > 0 and s ≥ 0,

Tr(|D|se−tD2
) ≤


et‖A‖2 Tr(e−tD2

0/4), s = 0,(
s

et

)s/2

et‖A‖2 Tr(e−tD2
0/4), s > 0.

Proof. Since D2 = (D0 + A)2 = (1− ε2)D2
0 + (εD0 + ε−1A)2 + (1− ε−2)A2, we see

that
D2 ≥ (1− ε2)D2

0 − ε−2‖A‖2.

If A ≥ B are self-adjoint, then eA ≥ eB . As in the proof of Theorem C of Getzler-
Szenes [7], we see that

Tr(e−tD2
) ≤ eε−2t‖A‖2 Tr(e−(1−ε2)tD2

0).

Set ε = 2−1/2; this proves the lemma for s = 0.
If s > 0, apply the Hölder inequality

Tr
(
|D|se−tD2)

≤
∥∥|D|se−tD2/2

∥∥ Tr(e−tD2/2).

Since |λ|se−tλ2/2 ≤ (s/et)−s/2, the result follows. �

Proposition 2.5.

(1) αε has a locally bounded first derivative, and dαε = 0.
(2) The regularized eta-invariant ηε has a locally bounded second derivative on

Φ0, and dηε = 2αε.

Proof. In the proof that αε has locally bounded first derivative, we set ε = 1: the
general case follows by replacing D0 by ε1/2D0.

The derivative of α is given by the formula

∇Y α(X) =
1

π1/2

∫ 1

0

Tr
(
Xe−σD2

(DY + Y D)e−(1−σ)D2)
dσ

=
1

π1/2

(
a(D, X, Y ) + a(D, Y,X)

)
,
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where

a(D, X, Y ) =
∫ 1

0

Tr
(
XDe−σD2

Y e−(1−σ)D2)
dσ.

We apply the Hölder inequality for the trace: if σ0 + · · ·+ σk = 1,

Tr(A0 . . . Ak) ≤ Tr
(
|A|σ

−1
0

)σ0
. . .Tr

(
|Ak|σ

−1
k

)σk .

It follows that, with D = D0 + A,

|a(D, X, Y )| ≤ ‖X‖ ‖Y ‖
∫ 1

0

Tr
(
|D|σ

−1
e−D

2)σ Tr
(
e−D

2)1−σ
dσ

≤ ‖X‖ ‖Y ‖ e‖A‖
2

Tr(e−D
2
0/4)

∫ 1

0

(eσ)−1/2 dσ,

where on the last line we have applied Lemma 2.4. This shows that the derivative
of αε is locally bounded.

We now show that dηε = αε on Φε. If X is a tangent vector to Φ,

dηε(X) =
1

π1/2

∫ ∞

ε

Tr(Xe−tD2
) t−1/2 dt

− 1
π1/2

∫ ∞

ε

∫ 1

0

Tr(De−stD2
t(DX + XD)e−(1−s)tD2

) t−1/2 ds dt

=
1

π1/2

∫ ∞

ε

Tr(Xe−tD2
) t−1/2 dt− 2

π1/2

∫ ∞

ε

Tr(XD2e−tD2
) t1/2 dt.

A little manipulation shows that∫ ∞

ε

Tr(XD2e−tD2
) t1/2 dt = −

∫ ∞

ε

d

dt
Tr(Xe−tD2

) t1/2 dt

=
∫ ∞

ε

Tr(Xe−tD2
)

d(t1/2)
dt

dt− Tr(Xe−tD2
) t1/2

∣∣∣t=∞
t=ε

=
1
2

∫ ∞

ε

Tr(Xe−tD2
) t−1/2 dt + ε1/2 Tr(Xe−εD2

).

In the last step, we have used the fact that D is invertible, and hence that
Tr(Xe−tD2

) decays exponentially as t −→ ∞: if λ0 is the lowest eigenvalue of
D,

|Tr(Xe−tD2
)| ≤ ‖X‖ ‖e−(t−1)D2

‖ Tr(e−D
2
) = O(e−tλ2

0).

The formula dηε = 2αε on Φ0 follows. In particular, since dηε has a locally bounded
first derivative, it follows that ηε has a locally bounded second derivative.

It only remains to show that dαε = 0. This can be shown explicitly, but it also
suffices to observe that αε is exact on Φ0, which is the complement of a set of
codimension one, and it has a locally bounded first derivative. �

From this proposition follows an analytic formula for the spectral flow.
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Theorem 2.6. Let γ(u) = Du be a differentiable family of operators in Φ, such
that D0 and D1 are invertible. Then

sf(D0,D1) = −
∫

γ

αε +
1
2
ηε(D1)−

1
2
η(D0)

=
(

ε

π

)1/2 ∫ 1

0

Tr
(
Ḋue−εDu

)
du +

1
2
ηε(D1)−

1
2
η(D0).

Proof. Since the differential form αε is closed, it follows that the integral
∫

γ
αε

is invariant under isotopies of the differentiable path γ fixing the endpoints. By
Theorem 2.2, there is an isotopy from γ to a path transversal to Φ1: thus, we may
as well suppose that it is γ which is transversal to Φ1.

Let 0 < u1 < · · · < uk < 1 be the sequence of times at which γ(u) intersects
Φ1. By Proposition 2.5, γ∗ηε is a differentiable function of u ∈ [0, 1], except at the
points ui. Since the function

ηε(λ) =
1

π1/2

∫ ∞

ε

λe−uλ2
u−1/2 du

satisfies ηε(0±) = ±1, we see that

sf(D0,D1) =
1
2

k∑
i=1

(
lim

u−→ui+
ηε(Du)− lim

u−→ui−
ηε(Du)

)
=

1
2

(
−

∫
γ

dηε + ηε(D1)− ηε(D0)
)

,

where in the second line we have applied the fundamental theorem of calculus.
The theorem follows from the formula dηε = 2αε. �

Corollary 2.7. If D is a theta-summable Fredholm operator and g ∈ G, then for
ε > 0,

sf(D, g−1Dg) =
(

ε

π

)1/2 ∫ 1

0

Tr
(
Ḋue−εD2

u
)
du,

where Du = (1− u)D + ug−1Dg.

Proof. Since ηε is invariant under the action of G, the terms ηε(D) and ηε(g−1Dg)
cancel in the formula of Theorem 2.6. �

As an application of this result, we outline a calculation of the spectral flow
sf(D, g−1Dg) in the special case where D is the Dirac operator on a compact odd
dimensional spin-manifold of dimension 2k + 1, and g is a differentiable map from
M to U(N). The Dirac operator is i−1 times the composition

Γ(M,S) ∇S−−→ Γ(M,T ∗M ⊗ S) c−→ Γ(M,S)
13



and is a self-adjoint operator. (Here, ∇S is the natural connection on the spinor
bundle S over M induced by the Levi-Civita connection on the tangent bundle
TM .) Note that our conventions differ from those of Berline-Getzler-Vergne [2],
since we use the Clifford algebra such that c(v)2 = |v|2.

If S is the spinor module for the Clifford algebra C(2k + 1) and Tr denotes the
trace over S, and if 1 ≤ i1 < · · · < im ≤ 2k + 1, then

Tr(ci1 . . . cim) =


(2i)k, m = 2k + 1,

0, 0 < m < 2k + 1,

2k, m = 0.

Since the operator Ḋue−εD2
u involves an odd number of Clifford variables, we see

that only the coefficient of c1 . . . c2k+1 with respect to any local orthonormal frame
of the tangent bundle contributes to the trace Tr(Ḋue−εD2

u). Thus, we may apply
the same asymptotic analysis as is used to prove the Atiyah-Singer index theorem
in Chapter 4 of [2]. This shows that we may make the following replacements:

ε1/2Ḋu = i−1ε1/2c(ω) exterior multiplication by i−1ω

e−εD2
u Â(M) ∧ e(d+uω)2

Tr(. . . )
(2i)k

(4π)k+1/2

∫
M

Tr(. . . ) =
−iπ1/2

(−2πi)k+1

∫
M

Tr(. . . )

where

Â(M) = det1/2
( R/2

sinhR/2

)
,

and R ∈ Ω2(M,End(T ∗M)) is the Riemannian curvature. This allows us to replace(
ε

π

)1/2 ∫ 1

0

Tr
(
Ḋue−εD2

u
)
du

by

− 1
(−2πi)k+1

∫ 1

0

∫
M

Â(M) ∧ Tr(ωe(d+uω)2) du = − 1
(−2πi)k+1

∫
M

Â(M) ∧ Ch(g).

Here, the integral over u is calculated by the same method as in the proof of
Proposition 1.2. Thus, we obtain the following result.

Theorem 2.8. Let M be a compact spin-manifold of dimension 2k+1, with Dirac
operator D. If g is a differentiable map from M to U(N), then

sf(D, g−1Dg) = − 1
(−2πi)k+1

∫
M

Â(M) ∧ Ch(g).

Note that if M is the sphere S2k+1, then Â(M) = 1, and we see by Proposition
1.4 that

sf(D, g−1Dg) = − 1
(−2πi)k+1

∫
M

Ch(g) = deg(g),

generalizing the well-known result for the circle.
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3. The odd Chern character in cyclic homology

If A is an algebra over a ring R, the space of cyclic chains of degree n is defined
to be

Cn(A) = A⊗ (A/R)⊗n.

Denote the element a0 ⊗ . . . ⊗ an of Cn(A) by (a0, . . . , an). Sometimes, we will
write this as (a0, . . . , an)n in order to make the degree n explicit. The operators
b : Cn(A) −→ Cn−1(A) and B : Cn(A) −→ Cn+1(A) are given by the formulas

b(a0, . . . , ak) =
n∑

i=1

(−1)i(a0, . . . , ai+1ai, . . . , an),

+ (−1)n+1(ana0, a1, . . . , an−1)

B(a0, . . . , an) =
n∑

i=0

(−1)ni(1, ai, . . . , an, a0, . . . , ai−1).

It is a standard calculation that the operators b and B are well defined, and that
b2 = B2 = bB + Bb = 0.

From the spaces Cn(A), we may form the graded vector space C∗(A)[[u]], of
which the degree n summand consists of power series

cn + ucn+2 + u2un+4 + . . .

where ci ∈ Ci(A): thus, we treat u as a formal variable of degree −2. On C∗(A)[[u]],
we have the differential b+uB, of total degree −1. The homology of this operator
is the negative cyclic homology HC−∗ (A) of Goodwillie [9] and Jones [12].

In order to define the Chern character of an invertible matrix, we start by
considering the universal example, the element x in the group algebra R[x, x−1]
of the infinite cyclic group. The universal Chern character is the degree 1 cyclic
chain on R[x, x−1] given by the formula

Ch∗(x) =
∞∑

k=0

ukk! (x−1, x, . . . , x−1, x)2k+1.

Proposition 3.1.
(1) (b + uB) Ch∗(x) = 0

(2) (b + uB)
∞∑

k=0

ukk! (1, x−1, x, . . . , x−1, x)2k+2 + Ch∗(x) + Ch∗(x−1) = 0

Proof. It is easily seen that

b(x−1, x, . . . , x−1, x)2k+1 = −(1, x−1, x, . . . , x−1, x)2k + (1, x, x−1, . . . , x, x−1)2k.
15



On the other hand,

B(x−1, x, . . . , x−1, x)2k+1

= (k + 1)(1, x−1, x, . . . , x−1, x)2k+2 − (k + 1)(1, x, x−1, . . . , x, x−1)2k+2.

From this, the formula (b + uB) Ch∗(x) = 0 follows immediately.
A similar calculation shows that

b(1, x−1, x, . . . , x−1, x)2k+2 = −(x−1, x, . . . , x−1, x)2k+1 + (x, x−1, . . . , x, x−1)2k+1,

while B(1, x−1, x, . . . , x−1, x)2k+2 = 0. From this, part (2) follows. �

Now, suppose that g ∈ GLN (A) is an invertible matrix with entries in A. Then
the map x 7→ g induces a map from R[x, x−1] to the algebra of square matrices
MN (A) with entries in A, and hence a map of mixed complexes Cn(R[x, x−1]) −→
Cn(MN (A)). The trace map

Tr(a0, . . . , an) =
∑

0≤i0,...,in≤N

((a0)i0i1 , (a1)i1i2 , . . . , (an)ini0)

induces a map of mixed complexes Cn(MN (A)) −→ Cn(A). The image of Ch∗(x)
under the composition of these maps is the Chern character of the invertible ele-
ment g ∈ GLN (A), and is denoted by Ch∗(g).

It is instructive to analyse this Chern character in the special case that A =
C∞(M) is the algebra of differentiable functions on M . In this case, there is a
map of complexes

α :
(
C∗(C∞(M))[[u]], b + uB

)
−→

(
Ω∗(M)[[u]], d

)
,

defined by the formula

α(a0, . . . , an) =
1

un n!
a0 da1 . . . dan.

If g is a differentiable map of from M to the Lie group GLN (C), it is easily checked
that the image of Ch∗(g) in Ω∗(M)[[u]] is the Chern character Ch(g) of Section 1.

The odd Chern character may also be studied in the setting of entire cyclic
homology. We now suppose that A is a Banach algebra, and n-chains are now de-
fined using the projective tensor product rather than the algebraic tensor product.
The Z/2-graded toplogical vector space Cω

±(A) of entire cyclic chains is the space
of series of chains c0 + c1 + c2 + . . . such that the norm

‖c0 + c1 + c2 + . . . ‖λ = sup
n

λn

Γ(n/2)
‖cn‖

is finite for some λ > 0.The operators b and B, defined by the same formulas as
before, are bounded on Cω

±(A), and the homology of the operator b + B is the
entire cyclic homology, denoted Hω

∗ (A).
16



Proposition 3.2. If g ∈ GLN (A), then

Ch∗(g) =
∞∑

k=0

k! Tr(g−1, g, . . . , g−1, g)2k+1

is a closed element of Cω
−(A).

Proof. Indeed, the norm of Ch2k+1(g) is bounded by k!‖g−1‖k+1‖g‖k+1, so that
‖Ch∗(g)‖λ is finite for λ < (4‖g−1‖ ‖g‖)−1. �

The following result, analogous to Proposition 1.3, shows that the odd Chern
character in cyclic homology is homotopy invariant. We omit the proof, which is
straightforward.

Proposition 3.3. Let A be a Banach algebra. If gt : [0, 1] −→∈ GLN (A) is a
differentiable family of invertible matrices with entries in A, denote by C̃h∗(gt)
the entire cyclic chain

C̃h∗(gt) =
∞∑

k=0

k!
k∑

i=0

Tr(g−1, g, . . . , g−1, g, g−1ġ, g−1, g, . . . , g−1, g)2k+2

Then we have the formula
d

dt
Ch∗(gt) = (b + B)C̃h∗(gt).

Thus, the homology class of Ch∗(g) is homotopy invariant in the entire cyclic
homology group Hω

−(A).

Appendix. Another approach to the odd Chern character

There is an alternative approach to the universal Chern character Ch∗(x) which
makes use of the product on the cyclic bar complex of a graded commutative
algebra which was constructed in Getzler-Jones [6]. We will show that the universal
Chern character is the analogue of the Maurer-Cartan form. This calculation is
related to Fedosov’s construction of the Chern character of an idempotent [4].

Recall that in the article [6], we constructed multilinear operators

Bk : C∗(A)⊗k −→ C∗(A),

such that B1 is the just the usual operator B, and the higher Bk share with B
the property that their image lies in the space of chains of the form (1, a1, . . . , an),
and they vanish on chains of this form. As a simple example,

B2((x), (y)) = (1, x, y).

If A is commutative, we define a product on C∗(A)[[u]] by the formula

α1 ◦ α2 = α1 ∗ α2 − (−1)|α1|uB2(α1, α2),

where α1 ∗ α2 is the shuffle product.
17



Lemma 3.4. The right inverse of the chain (x) ∈ C∗(C[x, x−1])[[u]] for the product
◦ is given by the formula

(x)−1 =
∞∑

k=0

ukk! (x−1, x, . . . , x, x−1)2k.

Proof. Observe that (x) ◦ (x−1) = (1) − u(1, x, x−1). It follows that the right
inverse of (x) is given by the series

∞∑
k=0

uk(x−1) ◦ (1, x, x−1)k.

An easy induction shows that

(1, x, x−1)k = k! (1, x, x−1, . . . , x, x−1)2k,

and the formula follows. �

Corollary 3.5. u Ch∗(x) = (b + uB)(x) ◦ (x)−1

Proof. Note that u−1(b + uB)(x) = (1, x). From the lemma, we see that

(1, x) ◦ (x)−1 =
∞∑

k=0

ukk! (1, x) ◦ (x−1, x, . . . , x, x−1)2k

=
∞∑

k=0

ukk! (x−1, x, . . . , x−1, x)2k+1

= Ch∗(x). �

4. Theta-summable Fredholm modules

In this section, we will give a formula for the spectral flow in terms of entire
cyclic homology. Recall from the introduction that an odd theta-summable Fred-
holm module over a Banach ∗-algebra A consists of a ∗-representation of A on a
Hilbert space H together with a theta-summable Fredholm operator D on H such
that ‖[D, ρ(a)]‖ ≤ C‖a‖ for all a ∈ A, for some constant C.

Let us introduce the more general notion of a degree q theta-sumable Fredholm
module: this is a theta-summable Fredholm module such that the underlying
Hilbert space E is a Hilbert module for C(q), and the Fredholm operator D and
representation ρ ofA commute with the action of C(q). In fact, we prefer to change
our conventions slightly by taking the Fredholm operator D to be skew-adjoint.
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Given an odd theta-summable Fredholm module, we may replace the Hilbert
space H by a Z/2-graded Hilbert space E = H ⊗ C1|1, such that E+ ∼= E− ∼= H.
This is a module over the Clifford algebra C(1), with generator given by the matrix

c1 =
(

0 1
1 0

)
.

Elements a ∈ A act diagonally on E . Define the operator D to be the matrix

D =
(

0 −D
D 0

)
; it is skew-adjoint, odd, and (graded) commutes with the action

of C(1). Thus, D defines a degree 1 theta-summable Fredholm module for A.
Suppose D is a degree q theta-summable Fredholm module. Define a multilinear

form on LC(q)(E) by the formula

〈A0, . . . , An〉 =
∫

∆n

StrC(q)

(
A0e

σ0D2
. . . AneσnD2)

dσ;

recall that StrC(q)(A) = (4π)−q/2 Str(c1 . . . cqA).

Definition 4.1. The Chern character of a degree q theta-summable Fredholm
module is the entire cyclic cocycle on A given by the formula

Chn(D)(a0, . . . , an) = 〈a0, [D, a1], . . . , [D, an]〉.

Note that Ch∗(D) is even (odd) if q is even (odd). In the special case that D is
the degree 1 Fredholm module constructed as above from an odd Fredholm module,
we define Ch∗(D) to equal Ch∗(D).The following formula is an easy exercise.

Proposition 4.2. The Chern character of an odd theta-summable Fredholm mod-
ule (D,H) is the odd entrire cyclic cochain given by the formula

Ch2k+1(D)(a0, . . . , a2k+1)

=
(−1)k

π1/2

∫
∆2k+1

Tr
(
a0e

−σ0D
2
[D, a1]e−σ1D

2
. . . [D, a2k+1]e−σ2k+1D

2)
dσ.

The main result of this article is the following formula.

Theorem 4.3. Let D be an odd theta-summable Fredholm module over the Banach
∗-algebra A. If g ∈ UN (A) is a unitary matrix with values in A, then

sf(D, g−1Dg) = (Ch∗(D),Ch∗(g)).

Proof. The proof is quite similar to the construction at the end of Section 1. Let
E ⊗ CN |N be the Hilbert space obtained by tensoring E with the graded vector
space CN |N . Introduce the odd element p ∈ A ⊗ End(CN |N ), represented by the
matrix

p =
(

0 −g−1

g 0

)
,

which satisfies p2 = −1.
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Lemma 4.4.(
Ch∗(D),

∞∑
k=0

k! Str(p, . . . , p)2k+1

)
= 2(Ch∗(D),Ch∗(g))

Proof. Since

[D, p] =
(

0 [D, g−1]
−[D, g]

)
and (paying careful attention to the sign rule)

[D, p]eσD2
[D, p]eτD2

=
(

[D, g−1]eσD2
[D, g]eτD2

0
0 [D, g]eσD2

[D, g−1]eτD2

)
,

we see that

Str〈p, [D, p], . . . , [D, p]〉
= Tr〈g−1, [D, g], . . . , [D, g−1], [D, g]〉 − Tr〈g, [D, g−1], . . . , [D, g], [D, g−1]〉.

This shows that
∞∑

k=0

k!
(
Ch∗(D),Str(p, . . . , p)2k+1

)
= (Ch∗(D),Ch∗(g)− Ch∗(g−1)).

By Proposition 2.1 (2), Ch∗(g−1) is cohomologous to Ch∗(g). Since Ch∗(D) is
closed, we see that (Ch∗(D),Ch∗(g−1)) = −(Ch∗(D),Ch∗(g), completing the proof
of the lemma. �

Let Du be the family of degree 1 theta-summable Fredholm operators acting on
the Z/2-graded Hilbert module E ⊗ CN |N , parametrized by u ∈ [0, 1], and given
by the formula

Du = (1− u)D + upDp.

Let Du,s be the family of degree 1 theta-summable Fredholm operators acting
on the Z/2-graded Hilbert module E ⊗ CN |N , parametrized by (u, s) in the strip
[0, 1]× [0,∞), and given by the formula

Du,s = Du + sp =
(

D + ug−1[D, g] −sg−1

sg D− ug[D, g−1]

)
.

We introduce the superconnection A = d + Du,s acting on the trivial degree 1
Clifford module over [0, 1] × [0,∞) with fibre E ⊗ CN |N . The curvature of A is
given by the formula

A2 = D2
u + du Ḋu + s(1− 2u)[D, p] + ds p− s2.
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The Chern character of A is the one-form on [0, 1]× [0,∞) given by the formula

Ch(A) = StrC(1)(eA2
)

= du StrC(1)(Ḋu eD2
u+s(1−2u)[D,p]−s2

) + ds StrC(1)(p eD2
u+s(1−2u)[D,p]−s2

).

The same method of proof as that of Proposition 2.5 shows that

|Ch(A)|+ |∂u Ch(A)|+ |∂s Ch(A)| = O(e−s2/2),

and that Ch(A) is closed.
Let Γu be the contour {u} × [0,∞), oriented in the direction of increasing s,

and let γs be the contour [0, 1] × {s}, oriented in the direction of increasing u.
Since Ch(A) is closed, it follows that∫

Γ0

Ch(A)−
∫

Γ1

Ch(A) =
∫

γ0

Ch(A)− lim
s−→∞

∫
γs

Ch(A) =
∫

γ0

Ch(A).

Lemma 4.5. ∫
γ0

Ch(A) = 2 sf(D, g−1Dg)

Proof. Observe that

Du =
(

D + ug−1[D, g] 0
0 D− ug[D, g−1]

)

=

 0 −D−ug−1[D,g] 0 0

D+ug−1[D,g] 0 0 0

0 0 0 −D+ug[D,g−1]

0 0 D−ug[D,g−1] 0


From this formula and the definition of StrC(1), it follows that∫

γ0

Ch(A) =
∫ 1

0

Tr(g−1[D, g]e−(D+ug−1[D,g])2) du

−
∫ 1

0

Tr(g[D, g−1]e−(D−ug[D,g−1])2) du.

Corollary 2.7 shows that the first term equals sf(D, g−1Dg) and the second equals
sf(gDg−1,D). But invariance of spectral flow under conjugation shows that

sf(D, g−1Dg) = sf(gDg−1,D),

proving the lemma. �
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In order to prove the theorem, it suffices to prove that∫
Γ0

Ch(A) =
∫

Γ1

Ch(A) =
1
2
(Ch∗(D),Ch∗(p)).

Restricted to the contour Γ0, the curvature A2 takes the form

A2 = D2 − s2 + s[D, p] + ds p.

The exponential of the curvature may be expanded in a series by means of Duha-
mel’s formula, giving

Ch(A) =
∞∑

k=0

s2k+1e−s2
ds

2k+1∑
i=0

〈1, [D, p], . . . , [D, p]︸ ︷︷ ︸
i times

, p, [D, p], . . . , [D, p]︸ ︷︷ ︸
2k+1−i times

〉

=
∞∑

k=0

s2k+1e−s2
ds 〈p, [D, p], . . . , [D, p]︸ ︷︷ ︸

2k+1 times

〉.

Thus, we see that

∫
Γ0

Ch(A) =
∞∑

k=0

∫ ∞

0

s2k+1e−s2
ds

2k+1∑
i=0

〈p, [D, p], . . . , [D, p]︸ ︷︷ ︸
2k+1 times

〉.

The change of variables t = s2 gives∫ ∞

0

s2k+1e−s2
ds =

1
2

∫ ∞

0

tke−t dt =
k!
2

,

and we see that∫
Γ0

Ch(A) =
1
2

(
Ch∗(D),

∞∑
k=0

k! Str(p, . . . , p)2k+1)
)
.

It is easy to see that the integral over Γ1 is the negative of that over Γ0, since the
curvature is identical except that the term [D, p] changes sign. �
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