AN EXTENSION OF GROSS'S LOG-SOBOLEV INEQUALITY FOR THE LOOP SPACE OF A COMPACT LIE GROUP

Ezra Getzler

Department of Mathematics, MIT, Cambridge, Mass. 02139 USA

Let G be a compact Lie group, and for T > 0, let L_*G be the space of based loops of length T

$$L_*G = \left\{ \gamma : [0, T] \to G \,\middle|\, \gamma(0) = \gamma(T) = e \right\}.$$

We denote the expectation with respect to the Wiener measure on L_*G (also known as the Brownian bridge) by $\langle F \rangle_*$. There is a regular Dirichlet form on L_*G , which was constructed using the Malliavin calculus in [1] and [2], and may be represented by the formula

$$\mathcal{E}(F,F) = \langle |d_*F|^2 \rangle_*.$$

Consider the function on L_*G given by the Stratonovitch stochastic integral

$$V(\gamma) = T^{-1} \Big| \int_0^T \dot{\gamma}(t) \gamma(t)^{-1} dt \Big|^2 + 1.$$

Gross has proved the following theorem for T = 1 in [4], and our goal in this paper is to extend his proof to show that the constant C may be chosen independent of T for T sufficiently small.

Theorem. There is a constant C = 1 + O(T) such that for all $F \in W^{\infty}(L_*G)$,

$$\langle F^2 \log |F| \rangle_* \le C \langle |d_*F|^2 + V|F|^2 \rangle_* + \frac{1}{2} \langle F^2 \rangle_* \log \langle F^2 \rangle_*,$$

This work was partially supported by the NSF and the Centre for Mathematical Analysis at the Australian National University.

uniformly in T for small T.

The above result is to be compared with Gross's logarithmic Sobolev inequality for a Wiener space B, proved in [3], that for $F \in W^{\infty}(B)$,

$$\langle F^2 \log |F| \rangle \le \langle |dF|^2 \rangle + \frac{1}{2} \langle F^2 \rangle \log \langle F^2 \rangle.$$

The proof of the above theorem uses this inequality at a key point, just as in Gross's proof for T = 1.

It is tempting to attempt to get rid of the potential V in the inequality above by means of the Hausdorff-Young inequality: for all $x \in \mathbb{R}$ and y > 0,

$$xy \le e^x + y \log y - y$$
.

This shows that for $\langle |F|^2 \rangle_* = 1$,

$$(1 - C\varepsilon/2)\langle F^2 \log |F| \rangle_* \le C\langle |d_*F|^2 \rangle_* + C\langle e^{V/\varepsilon} \rangle_* + C(\log \varepsilon - 1).$$

In order to obtain a logarithmic Sobolev inequality from this, we need to be able to take $\varepsilon < 2/C$. In Proposition 2.10, we will see that this value of ε is marginally too small for $\langle e^{V/\varepsilon} \rangle_*$ to be finite. It is not clear whether some other method will allow the omission of V from the inequality.

In Section 1, we recall some of the results of [2], and prove some abstract lemmas that will be called upon later. In Section 2, we specialize to L_*G , where G is a compact Lie group. In Section 3, we discuss the technique of Gross in which he effectively constructs a smooth tubular neighbourhood of L_*G in Wiener space. In Section 4, we give our proof of the main theorem.

Throughout this paper, we will make frequent use of the Hausdorff-Young inequality:

The writing of this paper would not have been possible without the interest of L. Gross, and I would like to thank him here for his generosity.

1. The geometry of Malliavin maps

Let \mathfrak{g} be a real vector space with inner-product, and let B be the classical Wiener space $B = C_*([0,T],\mathfrak{g}) = \{\gamma \in C([0,T],\mathfrak{g}) \mid \gamma(0) = 0\}$. The Wiener measure on B is the unique probability measure such that

$$\int_{B} \exp\Bigl(i \int_{0}^{T} (\alpha(t), \gamma(t)) \, dt\Bigr) \, d\mu(\gamma) = e^{-C(\alpha, \alpha)/2} \quad \text{for all } \alpha \in L^{\infty}([0, T], \mathfrak{g}),$$

where

$$C(\alpha, \alpha) = \int_0^T \int_0^T \min(s, t) (\alpha(s), \alpha(t)) ds dt.$$

Let $H \subset B$ be the Hilbert space of finite-energy paths $L^{2,1}_*([0,T],\mathfrak{g})$, with inner product

$$|\gamma|^2 = \int_0^T |\dot{\gamma}(t)|^2 dt.$$

A cylinder function on B is a function of the form

$$F(\gamma(t_1),\ldots,\gamma(t_k)),$$

where $0 < t_1 < \ldots < t_k < T$, and $F \in C_c^{\infty}(\mathfrak{g}^k)$. The space of all cylinder functions, written $C_c^{\infty}(B)$, is dense in $L^p(B) = L^p(B, d\mu)$ for each $p < \infty$. If $\tau : B \to \mathfrak{g}^k$ denotes the map

$$\tau(\gamma) = (\gamma(t_1), \dots, \gamma(t_k)),$$

then the above cylinder function may be written τ^*F .

We will often make use of the Hilbert tensor product $H_1 \otimes_2 H_2$ of two Hilbert spaces H_1 and H_2 ; this is completion of the algebraic tensor product with respect to the quadratic form

$$|v \otimes_2 w|^2 = |v|^2 \cdot |w|^2.$$

We also let HS(H) denote the space of Hilbert-Schmidt operators on H.

If $f = \tau^* F$ is a cylinder function, its gradient, denoted by df, is the element of $C_c^{\infty}(B) \otimes H$ defined by applying the map

$$\tau^*: C_c^{\infty}(\mathfrak{g}^k) \otimes \mathfrak{g}^k \to C_c^{\infty}(B) \otimes H$$

to $dF \in C_c^{\infty}(\mathfrak{g}^k) \otimes \mathfrak{g}^k$. Forming the closure of this operator, we obtain an unbounded operator from $L^p(B)$ to $L^p(B,H)$, which we will also denote by d; its adjoint d^* is then a closed unbounded operator from $L^p(B,H)$ to $L^p(B)$.

The composition of the operators d and d^* acting on the cylinder functions is the Ornstein-Uhlenbeck operator $L = d^*d$, which is essentially self-adjoint with core $C_c^{\infty}(B)$. If \mathcal{H} is a Hilbert space, the Sobolev space $L_s^p(B,\mathcal{H})$, where $1 and <math>s \in \mathbb{R}$, is the domain of $L^{s/2}$ on $L^p(B,\mathcal{H})$. The space of Malliavin test functions is

$$W^{\infty}(B,\mathcal{H}) = \bigcap_{p,s < \infty} L_s^p(B,\mathcal{H}).$$

Meyer has proved that d is bounded from $L^p_s(B)$ to $L^p_{s-1}(B,H)$ and that d^* is bounded from $L^p_s(B,H)$ to $L^p_{s-1}(B)$, for all $s \in \mathbb{R}$ and $p < \infty$. It is important to note that W^{∞} -functions need not be continuous.

We can also define W^{∞} -maps from a Wiener space B to a compact Riemannian manifold M.

Definition 1.1. A map $\pi: B \to M$ is in $W^{\infty}(B, M)$ if it is measurable and if the pull-back map $\pi^*: C^{\infty}(M) \to W^{\infty}(B)$ is bounded.

An equivalent definition can be made by choosing an embedding $\rho: M \to \mathbb{R}^n$ of M in a Euclidean space \mathbb{R}^n : then $\pi \in W^{\infty}(B, M)$ if and only if $\rho \circ \pi \in W^{\infty}(B, \mathbb{R}^n)$. If $\pi \in W^{\infty}(B, M)$, the composition

$$C^{\infty}(M) \xrightarrow{\pi^*} W^{\infty}(B) \xrightarrow{\mu} \mathbb{R}$$

is a positive linear form on $C^{\infty}(M)$ which equals 1 on the constant function 1, and hence defines a probability measure on M. We will write this measure $\pi_*\mu$.

The tangent map

$$d: W^{\infty}(M, B) \to W^{\infty}(B, \operatorname{Hom}(H, \pi^*TM))$$

may be defined by means of an embedding $\rho: M \to \mathbb{R}^n$, by the formula

$$d(\rho \circ \pi) = d\rho \circ d\pi \in W^{\infty}(B, \text{Hom}(H, \mathbb{R}^n)).$$

Definition 1.2. Let $\pi: B \to M$ be in $W^{\infty}(B, M)$, with differential Π , and form $\Gamma = \Pi\Pi^* \in W^{\infty}(B, \operatorname{End}(\pi^*TM))$. Then π is a **Malliavin map** if the determinant $\det(\Gamma)$ satisfies

$$\det(\Gamma)^{-1} \in L^p(B) \quad for \ p < \infty.$$

If π is a Malliavin map, then the operator Γ^{-1} is in $W^{\infty}(B, \operatorname{End}(\pi^*TM))$, and $\det(\Gamma)^k$ is in $W^{\infty}(B)$ for all $k \in \mathbb{Z}$. The operator $N = \Pi^*\Gamma^{-1}\Pi \in W^{\infty}(B, \operatorname{HS}(H))$ is a projector in H of rank n for a.e. $x \in B$. We may think of N as the projector on the normal bundle to the fibres of the map π . Thus the projector P = 1 - N orthogonal to N is the projector onto the tangent bundle to the fibres of π .

We say that an operator A on $W^{\infty}(B)$ acts along the fibres of π if it satisfies the formula

$$A((\pi^*f)F) = (\pi^*f)(AF),$$

for all $f \in C^{\infty}(M)$ and $F \in W^{\infty}(B)$. Using the projector P, we may construct the exterior differential along the fibres

$$d_*: W^{\infty}(B) \to W^{\infty}(B, H),$$

defined by the formula $d_*F = P(dF)$, and the Ornstein-Uhlenbeck operator along the fibres $L_*: W^{\infty}(B) \to W^{\infty}(B)$, associated to the Dirichlet form $\langle |d_*F|^2 \rangle$, given by the formula $L_*F = d^*PdF$.

The adjoint of the pull-back $\pi^*: C^{\infty}(M) \to W^{\infty}(B)$ is a bounded map $(\pi_*)': W^{\infty}(B)' \to C^{\infty}(M)'$. We define a push-forward map $\pi_*: W^{\infty}(B) \to C^{\infty}(M)$ in such a way that the following diagram commutes:

$$W^{\infty}(B) \xrightarrow{\pi_*} C^{\infty}(M)$$

$$F \mapsto F d\mu \downarrow \qquad \qquad \downarrow f \mapsto f d(\pi_* \mu)$$

$$W^{\infty}(B)' \xrightarrow{(\pi^*)'} C^{\infty}(M)'$$

The following basic result, due to Malliavin, shows that the map $\pi_*: W^{\infty}(B) \to C^{\infty}(M)$ is well-defined.

Proposition 1.3. If π is a Malliavin map, integration along the fibres of π defines a bounded map $\pi_*: W^{\infty}(B) \to C^{\infty}(M)$.

Note that $\pi_* \circ \pi^*$ is the identity, and in particular, that $\pi_* 1 = 1$. If $F \in W^{\infty}(B)$, we define

$$\langle F \rangle = \int_{B} F \, d\mu;$$

similarly, if $f \in C^{\infty}(M)$, we define

$$\langle f \rangle = \int_M f \, d(\pi_* \mu).$$

These integrals are related by the formula $\langle F \rangle = \langle \pi_* F \rangle$.

Definition 1.4. If X is a vector field on M, its horizontal lift $\tilde{X} \in W^{\infty}(B, H)$ is the unique vector field on B such that

- (1) if $f \in C^{\infty}(M)$, $\tilde{X}(\pi^*f) = \pi^*(X(f))$;
- (2) \tilde{X} is horizontal, that is, $P\tilde{X} = 0$.

It may be checked that the vector field $\Pi^*\Gamma^{-1}\pi^*X$ satisfies the above requirements, so that we obtain an explicit formula for the horizontal lift:

$$\tilde{X} = \Pi^* \Gamma^{-1} \pi^* X.$$

We will denote by $\operatorname{div}_{\pi_*\mu}: \Gamma(M,TM) \to C^\infty(M)$ the adjoint of the exterior differential $d: C^\infty(M) \to \Gamma(M,T^*M)$ with respect to the pairings

$$(f,g) = \int_M fg \, d(\pi_* \mu)$$
 and $(X,\omega) = \int_M \langle X,\omega \rangle \, d(\pi_* \mu).$

In terms of the divergence operator div defined with respect to the Riemannian volume form dx, $\operatorname{div}_{\pi_*\mu}$ is given by the formula

$$\operatorname{div}_{\pi_*\mu} X = \operatorname{div} X + X \left(\log \left(\frac{d(\pi_*\mu)}{dx} \right) \right).$$

Definition 1.5. If X is a vector field on M, we define the W^{∞} -function $\alpha(X)$ by the formula

$$\alpha(X) = d^* \tilde{X} - \pi^* (\operatorname{div}_{\pi_* \mu} X).$$

It is easy to see that α satisfies the formula

(1.6)
$$\alpha(fX) = (\pi^* f) \alpha(X) \text{ for all } f \in C^{\infty}(M).$$

The following proposition explains our reason for introducing $\alpha(X)$.

Proposition 1.7. If X is a vector field on M and $F \in W^{\infty}(B)$, then

$$X(\pi_*F) = \tilde{X}(F) - \alpha(X)F.$$

Proof. If $F \in W^{\infty}(B)$ and $f \in C^{\infty}(M)$, then

$$\langle fX(\pi_*F)\rangle = \langle (-X(f) + (\operatorname{div}_{\pi_*\mu}X)f)\pi_*F\rangle = \langle \pi^*(-X(f) + (\operatorname{div}_{\pi_*\mu}X)f)F\rangle.$$

We now use the fact that $\pi^*(X(f)) = \tilde{X}(\pi^*f)$, which gives

$$\langle fX(\pi_*F)\rangle = \langle \left(-\tilde{X}(\pi^*f) + \pi^*(\operatorname{div}_{\pi_*\mu}X) \pi^*f\right)F\rangle$$
$$= \langle \pi^*f\left(\tilde{X}(F) - d^*\tilde{X}F + \pi^*(\operatorname{div}_{\pi_*\mu}X)F\right)\rangle,$$

which proves the lemma, since f was arbitrary. \square

Corollary 1.8. If $F \in W^{\infty}(B)$ satisfies the formula $\tilde{X}(F) = \frac{1}{2}\alpha(X)F$, then

- (1) $X\pi_*(|F|^2) = 0;$
- (2) $X\pi_*(|F|^2\log|F|^2) = \pi_*(\alpha(X)|F|^2).$

Proof. To prove (1), we observe that $\tilde{X}(|F|^2) = 2F\tilde{X}(F) = \alpha(X)|F|^2$. Since

$$X(\pi_*|F|^2) = \pi_*(\tilde{X}(|F|^2)) - \pi_*(\alpha(X)|F|^2),$$

(1) follows.

To prove (2), let us calculate $\tilde{X}(|F|^2 \log |F|^2)$:

$$\tilde{X}(|F|^2 \log |F|^2) = 2F \, \tilde{X}(F) \, \log |F|^2 + 2F \, \tilde{X}(F)$$
$$= \alpha(X)|F|^2 \, \log |F|^2 + \alpha(X)|F|^2.$$

Since $X\pi_*\left(|F|^2\log|F|^2\right)=\pi_*\left(\tilde{X}(|F|^2\log|F|^2)\right)-\pi_*\left(\alpha(X)|F|^2\log|F|^2\right)$, the proof of (2) follows. \square

2. Based loops in a compact Lie group

In this section, we will discuss a particular case of a Malliavin map, in which M is a compact Lie group G, with Lie algebra \mathfrak{g} , and the map π is the so-called path-ordered exponential. This case is very special, since the Malliavin covariance $\Gamma = \Pi^*\Pi$ is equal to a constant multiple T id of the identity operator, which makes many of the calculations easier.

To simplify the formulation of the results, we will assume that the group G is a linear group; of course, this is no restriction, since every compact Lie group has a faithful linear representation. We also suppose chosen an invariant Riemannian metric on G, which induces an inner product on \mathfrak{g} invariant under the adjoint action $\mathrm{Ad}(g)$ for $g \in G$. Denote the dimension of G by n, and the identity of G by g. We will always identify a Lie algebra element g0 with the corresponding left-invariant vector field on g1.

Let (B, H) be the classical Wiener space $(C_*([0, T], \mathfrak{g}), L_*^{2,1}([0, T], \mathfrak{g}))$. If $x \in H$, we solve the ordinary differential equation for $\gamma(t) : [0, T] \to G$ with initial condition $\gamma(0) = e$,

$$\gamma(t)^{-1}\dot{\gamma}(t) = \dot{x}(t).$$

The solution of this equation is known as the **path-ordered exponential**, and we will write it as $\gamma[x]$, or simply as γ if x is implicit.

The path-ordered exponential identifies H with the space of finite-energy based paths in $L^{2,1}_*([0,T],G)$. Let π be the map $x \mapsto \gamma[x](T)$; the fibre of π over e can be identified with the space L_*G of finite-energy paths in G which return to the identity at time T, that is, the based loop space of G.

If $F \in W^{\infty}(B)$, we will denote by $\langle F \rangle_*$ the integral of F over the fibre $\pi^{-1}(e)$, that is,

$$\langle F \rangle_* = \pi_*(F)(e).$$

When we say that two functions F_1 and F_2 are equal on $\pi^{-1}(e)$, we mean that $\langle (F_1 - F_2)^2 \rangle_* = 0$.

The map $\gamma(t): B \to G$ is extended to a family of W^{∞} -maps from the Wiener space B to G, by introducing a mollifier on B:

$$x_{\varepsilon}(t) = \varepsilon^{-1} \int_{0}^{1} \lambda(\varepsilon^{-1}(s-t)) x(s) ds,$$

where λ is any positive symmetric function in $C_c^{\infty}(-1,1)$ such that $\int_{(-1,1)} \lambda \, dt = 1$. The following proposition is a consequence of the theory of Stratanovitch stochastic differential equations.

Proposition 2.1.

- (1) For each $\varepsilon > 0$, the map $\pi_{\varepsilon}(x) = \pi(x_{\varepsilon})$ is a W^{∞} -map from B to G.
- (2) As $\varepsilon \to 0$, the maps π_{ε} converge in $W^{\infty}(B,G)$ to a map π .

We now calculate the differential $d\pi$, and the Malliavin covariance matrix $\Gamma = (d\pi)(d\pi)^*$, of the map π explicitly.

Proposition 2.2.

(1) $\Pi = (d\pi)\pi^{-1} \in W^{\infty}(B, \text{Hom}(H, \mathfrak{g}))$ is given by the formula

$$\Pi(h_t) = \int_0^T \operatorname{Ad}(\gamma(t)) \dot{h}_t \, dt.$$

(2) The adjoint $\Pi^*(X) \in W^{\infty}(B, \operatorname{Hom}(\mathfrak{g}, H))$ of Π is given by the formula

$$(\Pi^* X)_t = \int_0^t \operatorname{Ad}(\gamma(s))^{-1} X \, ds.$$

(3) The Malliavin covariance matrix $\Gamma = \Pi\Pi^*$ equals T times the identity of \mathfrak{g} ; in particular, the map π satisfies the Malliavin condition, since $\det(\Gamma) = T^n$ is a constant, and N is given by the formula $N = T^{-1}\Pi^*\Pi$.

Proof. We will calculate $\Pi_{\varepsilon} = (d\pi_{\varepsilon})(\pi_{\varepsilon})^{-1}$, and then take the limit $\varepsilon \to 0$. For $\varepsilon > 0$, the map π_{ε} is smooth, so we can calculate Π_{ε} path by path.

By du Hamel's formula, $(d\pi_{\varepsilon})(\pi_{\varepsilon})^{-1}$ equals

$$(d\pi_{\varepsilon})(\pi_{\varepsilon})^{-1} = (d\gamma_{\varepsilon}(T))\gamma_{\varepsilon}(T)^{-1} = \int_{0}^{T} \operatorname{Ad}(\gamma_{\varepsilon}(t))\dot{h}_{\varepsilon}(t) dt,$$

from which (1) follows, by sending $\varepsilon \to 0$.

Since the metric on \mathfrak{g} is invariant, it follows that if $X \in \mathfrak{g}$, then

$$(X, \Pi(h(t))) = \int_0^T \left(X, \operatorname{Ad}(\gamma(t))\dot{h}(t) \right) dt = \int_0^T \left(\operatorname{Ad}(\gamma(t))^{-1} X, \dot{h}(t) \right) dt,$$

from which we obtain the formula for $\Pi^*(X)$. It is clear from this that $\Pi\Pi^* = T$.

Corollary 2.3. If $X \in \mathfrak{g}$, then its horizontal lift $X \in W^{\infty}(B, H)$ is given by the formula

$$\tilde{X}(t) = T^{-1} \int_0^t \operatorname{Ad}(\gamma(s))^{-1} X \, ds,$$

and $d^*\tilde{X}$ is given by the formula

$$d^*\tilde{X} = T^{-1}(d^*\Pi, X),$$

where $d^*\Pi \in W^{\infty}(B, \mathfrak{g})$ is the divergence of Π .

It follows from Proposition 2.2 that if $f \in C^{\infty}(G)$, then $d(\pi^*f)$ satisfies

$$(2.4) |d(\pi^*f)| = T^{1/2}|df|.$$

The next proposition collects a number of useful formulas.

Proposition 2.5.

(1) The gradient $d\Pi \in W^{\infty}(B, \text{Hom}(H \otimes_2 H, \mathfrak{g}))$ is given by the formula

$$d\Pi(a,b) = \int_{0 < s < t < T} [\operatorname{Ad}(\gamma(s))\dot{a}(s), \operatorname{Ad}(\gamma(t))\dot{b}(t)] \, ds \, dt.$$

(2) The divergence $d^*\Pi \in W^{\infty}(B,\mathfrak{g})$ is given by the Stratanovitch integral

$$d^*\Pi = \int_0^T \operatorname{Ad}(\gamma(t))\dot{x}(t) dt.$$

(3) If $a \in H$, then

$$dd^*\Pi(a) = \int_{0 \le t \le T} \operatorname{Ad}(\gamma(t)) \dot{a}(t) \, dt + \int_{0 \le s \le t \le T} \left[\operatorname{Ad}(\gamma(s)) \dot{a}(s), \operatorname{Ad}(\gamma(t)) \dot{y}(t) \right] ds \, dt.$$

Proof. The gradient of Π_{ε} is given by the formula

$$d\Pi_{\varepsilon}(a,b) = \int_{0 < s < t < T} \left[\operatorname{Ad}(\gamma_{\varepsilon}(s)) \dot{a}(s), \operatorname{Ad}(\gamma_{\varepsilon}(t)) \dot{b}(t) \right] ds dt.$$

The formula for $d\Pi$ follows by taking $\varepsilon \to 0$.

In a finite-dimensional Wiener space $V, d^*\Pi$ would be given by the formula

$$d^*\Pi = -\operatorname{Tr}(d\Pi) + \Pi x,$$

where x is the identity map from V to itself. In our infinite-dimensional situation, this formula makes sense if we replace Π by its approximation Π_{ε} :

$$d^*\Pi_{\varepsilon} = -\operatorname{Tr}_H(d\Pi_{\varepsilon}) + \Pi_{\varepsilon}x.$$

Using the above formula for $d\Pi_{\varepsilon}$, it is easy to see that $\text{Tr}_H(d\Pi_{\varepsilon})$ vanishes. On the other hand, $\Pi_{\varepsilon}x$ equals

$$\Pi_{\varepsilon} x = \int_{0}^{T} \operatorname{Ad}(\gamma_{\varepsilon}(t)) \dot{x}(t) dt,$$

which converges to

$$\int_0^T \operatorname{Ad}(\gamma_{\varepsilon}(t))\dot{x}(t) dt$$

as $\varepsilon \to 0$. This proves (2). The proof of (3) is similar to the proof of (1). \square

Let y(t) be the Stratanovitch stochastic integral

$$y(t) = \int_0^t \operatorname{Ad}(\gamma(s)) dx(s) = \lim_{\varepsilon \to 0} \int_0^t \operatorname{Ad}(\gamma(s)) \dot{x}_{\varepsilon}(s) ds,$$

so that $d^*\Pi = y(T)$. In the rest of this section, we will study the properties of the stochastic process y(t). The following lemma will be basic to this study.

Lemma 2.6. The stochastic process $t \mapsto y(t)$ is a Wiener process; that is, the map from B to itself given by sending x to y is measure-preserving.

Proof. Let us denote the Stratonovitch stochastic differential by dx(t), and the Ito stochastic differential by $\delta x(t)$. The relationship between the two differentials shows that $\gamma^{-t}\delta\gamma(t) = \delta x(t)$. It follows that

$$y(t) = \int_0^t \operatorname{Ad}(\gamma(s))\delta x(s) + \frac{1}{2} \sum_{ijk} c_{jk}^i \int_0^t \operatorname{Ad}(\gamma(t)) X_i \, d\langle x^j, x^k \rangle$$
$$= \int_0^t \operatorname{Ad}(\gamma(s)) \delta x(s),$$

since the quadratic variation $\langle x^j, x^k \rangle = t \delta^{jk}$ is symmetric in j and k, while the structure coefficients c^i_{jk} are antisymmetric. Thus, we see that the quadratic variation process $\langle y, y \rangle$ equals t times the inner product on \mathfrak{g} , and hence that y(t) is a Wiener process on \mathfrak{g} . \square

There is a more geometric way to see that $t \mapsto y(t)$ is a Wiener process, for which we will give only the outline. Consider the diagram

$$B \xrightarrow{x \mapsto -x} B \xrightarrow{x \mapsto \gamma[x]} P_*G \xrightarrow{\gamma \mapsto \gamma^{-1}} P_*G \xrightarrow{\gamma \mapsto x} B.$$

It turns out that the composition of these maps is precisely the map $x \mapsto y[x]$. Since each map is measure-preserving, their composition is, proving that y is a Wiener process.

Corollary 2.7.

$$(1) \left\langle \exp\left(\frac{\lambda}{2}|y(T)|^2\right) \right\rangle = (1 - T\lambda)^{-n/2}$$

(2)
$$\left\langle \exp\left(\frac{\lambda}{2} \int_0^T |y(t)|^2 dt\right) \right\rangle = (\cos T\lambda^{1/2})^{-n/2}$$

Proof. Since y(t) is a Brownian process, (1) follows from the calculation of the following integral:

$$(2\pi T)^{-n/2} \int_{\mathfrak{a}} e^{-|\xi|^2/2T + \lambda|\xi|^2/2} d\xi = (1 - T\lambda)^{-n/2}.$$

By the Feynman-Kac formula, the left-hand side of (2) is given by the integral of the heat-kernel

$$\langle \xi | e^{-T(\Delta - \lambda |\xi|^2)/2} | 0 \rangle = (2\pi T)^{-n/2} \left(\frac{T\lambda^{1/2}}{\sin T\lambda^{1/2}} \right)^{n/2} e^{-(\lambda^{1/2} \cot T\lambda^{1/2})|\xi|^2/2},$$

with respect to ξ , which is

$$\left(\frac{T\lambda^{1/2}}{T\lambda^{1/2}\cot T\lambda^{1/2}\sin T\lambda^{1/2}}\right)^{n/2} = (\cos T\lambda^{1/2})^{-n/2}. \quad \Box$$

Let $\{X,Y\}$ denote the Killing form on \mathfrak{g} , given by the formula

$${X,Y} = -\operatorname{Tr}_{\mathfrak{q}}(\operatorname{ad}(X)\operatorname{ad}(Y)),$$

and let $||X||^2 = \{X, X\}.$

Lemma 2.8. The differential dy(T) of y(T) satisfies the estimate

$$|dy(T)|^2 = T + \frac{1}{2} \int_{0 \le s, t \le T} \min(s, t) \{\dot{y}(s), \dot{y}(t)\} \, ds \, dt$$

$$\le T + T|y(T)|^2 + \int_0^T ||y(t)||^2 \, dt.$$

Proof. The proof makes use of the same mollification method as in the proof of Proposition 2.5; hence, we will tacitly suppose that x(t) is smooth.

The formula for $|dy(T)|^2$ easily follows from the formula for dy(T) in Proposition 2.5 (3). Pretending that x(t) is smooth, we integrate twice by parts:

$$\int_{0 \le s, t \le T} \min(s, t) \{\dot{y}(s), \dot{y}(t)\} ds dt$$

$$= T \|y(T)\|^2 - 2 \int_0^T \{y(t), y(T)\} dt + \int_0^T \|y(t)\|^2 dt$$

$$\le 2T |y(T)|^2 + 2 \int_{0 \le t \le T} \|y(t)\|^2 ds.$$

Ito's formula shows that the measure $\pi_*\mu$ is determined by the formula

$$\frac{d(\pi_*\mu)}{dg} = k(T,g),$$

where $k(T,g) = \langle g|e^{-T\Delta}|e\rangle$ is the heat-kernel for the invariant Laplacian Δ on G. The asymptotic expansion for the heat kernel shows that k(T,g) may be written for small T as

$$k(T,g) = (4\pi T)^{-\dim(G)/2} e^{-\delta(g)^2/4T} \left(\sum_{i < N} T^i a_i(g) + r_N(T,g) \right),$$

where $\delta(g)$ is the Riemannian distance between g and the identity, $a_i \in C^{\infty}(G)$, and $r_N \in C^{\infty}((0, \varepsilon] \times G)$ satisfies the estimates

$$\left| \partial_T^k \partial_q^\alpha r_N(T,g) \right| \le C(k,\alpha) T^{N-2k-|\alpha|}$$

for $N \geq 2k - |\alpha|$. It follows that for small T,

$$(2.9) C_1 T^{-n/2} e^{-\delta(g)^2/4T} < k(T, q) < C_2 T^{-n/2} e^{-\delta(g)^2/4T},$$

We close this section with an estimate which differs from Corollary 2.7 in that it estimates an integral over one fibre of π , and not over all of B.

Proposition 2.10.

$$\left\langle \exp\left(\frac{\lambda}{2}|y(T)|^2\right)\right\rangle_* = \frac{\operatorname{vol}(G/T)}{k(T,e)} \left(\frac{2\pi}{\lambda}\right)^{n/2} \int_{\mathfrak{t}} k(T,e^X) e^{(T-\lambda^{-1})|X|^2/2} \det_{\mathfrak{g}/\mathfrak{t}} (1+\operatorname{ad}(X)) dX$$

Proof. We will use the formula

$$\left\langle \exp\left(\frac{\lambda}{2}|y(T)|^2\right)\right\rangle_* = \left(\frac{2\pi}{\lambda}\right)^{n/2} \int_{\mathfrak{g}} \left\langle \exp(X,y(T))\right\rangle_* e^{-|X|^2/2\lambda} dX$$

This may be rewritten as an integral over the Cartan subalgebra $\mathfrak t$ by the change of variables formula

$$\int_{\mathfrak{g}} f(X) dX = \int_{G/T} \left(\int_{\mathfrak{t}} f(\operatorname{Ad}(g)X) \, \det_{\mathfrak{g}/\mathfrak{t}} (1 + \operatorname{ad}(X)) \, dX \right) \, dg,$$

where

$$1 \le \det_{\mathfrak{g}/\mathfrak{t}} (1 + \operatorname{ad}(X)) \le O(|X|^{\dim(\mathfrak{g}/\mathfrak{t})}).$$

Using the fact that $\langle \exp(X, y(T)) \rangle_*$ is invariant under conjugation $X \mapsto \operatorname{Ad}(g)X$, we see that

$$\left\langle \exp\left(\frac{\lambda}{2}|y(T)|^2\right)\right\rangle_* = \operatorname{vol}(G/T) \left(\frac{2\pi}{\lambda}\right)^{n/2} \int_{\mathfrak{t}} \left\langle \exp(X, y(T))\right\rangle_* e^{-|X|^2/2\lambda} \det_{\mathfrak{g}/\mathfrak{t}}(1 + \operatorname{ad}(X)) dX.$$

We now apply the result of Lemma 2.6. By the Ito formula, we see that the Ito stochastic differential

$$\delta \left\{ f(\gamma(t))e^{(X,y(t))} \right\} = (df(\gamma(t)) + X, \delta x(t))e^{(X,y(t))} + \left(-\frac{1}{2}\Delta f(\gamma(t)) + X(f)(\gamma(t)) + \frac{1}{2}|X|^2 \right)e^{(X,y(t))}$$

From this, it follows that $\left\langle e^{(X,y(T))}\right\rangle_*$ is given by the ratio of heat kernels

$$\frac{\left\langle e \middle| \exp T\left(-\frac{1}{2}\Delta + X + \frac{1}{2}|X|^2\right) \middle| e\right\rangle}{\left\langle e \middle| \exp T\left(-\frac{1}{2}\Delta\right) \middle| e\right\rangle} = \frac{e^{T|X|^2/2}k(T,e^{TX})}{k(T,e)},$$

since the vector field X commutes with the Laplacian Δ . \square

Note that it is an easy consequence of this proposition that

$$\left\langle \exp\left(\frac{\lambda}{2}|y(T)|^2\right)\right\rangle_* < \infty$$

if and only if $\lambda < T^{-1}$.

3. The Tubular neighbourhood of a fibre

In this section, we will explain Gross's idea of constructing a tubular neighbourhood in B of the fibre $\pi^{-1}(e)$ of the map π above the identity element of G. Introduce the family of balls

$$B_r = \{ \exp(Y) \mid |Y| < T^{1/2}r \} \subset G,$$

where r and T are small. On such a ball, we will use radial coordinates; thus, we will write h(x) instead of $h(\exp x)$ when h is a function on B_r .

Let R be a smooth vector field on G which on B_r equals the radial vector field of \mathfrak{g} . We introduce the vector field R because on B_r , its integral curves are the one-parameter semigroups of G.

Define a map $\varphi : \mathfrak{g} \times B \to B$ by

$$\varphi(X,x) = x + T^{-1} \int_0^t \operatorname{Ad}(\gamma(s))^{-1} X \, ds.$$

Since $\gamma[\varphi(X,x)] = \exp(tX/T)\gamma(t)$, we see that

$$\pi(\varphi(X,x)) = \pi(x) \exp(X),$$

and hence that the map φ defines a tubular neighbourhood of the fibre $\pi^{-1}(e)$.

Given an element $x \in B$ such that $\pi(x) = \exp(X) \in B_{2r}$, we may form the path in B

$$\sigma \in [0,1] \mapsto x_{\sigma} = \varphi((\sigma - 1)X, x),$$

which covers the path $\exp(\sigma X)$ in G; in particular, x_0 lies in the fibre $\pi^{-1}(e)$. It is easy to check that x_{σ} is the integral curve for the vector field \tilde{R} .

If $F \in W^{\infty}(B)$, define the function \tilde{F} to take the value

(3.1)
$$\tilde{F}(x) = \pi^* \psi F(x_0) \exp\left(\frac{1}{2} \int_0^1 \alpha(R)(x_\sigma) d\sigma\right)$$

at the path x, where $\psi \in C_c^{\infty}(B_{2r})$ is a smooth cut-off function which equals 1 on the ball B_r . It is clear that \tilde{F} and F are equal on $\pi^{-1}(e)$, and that \tilde{F} satisfies the differential equation

(3.2)
$$\tilde{R}(\tilde{F}) = \frac{\alpha(R)}{2}F$$

on $\pi^{-1}(B_r)$. In the remainder of this section, we will prove the following result, which expresses the fact that the tubular neighbourhood constructed above has a certain amount of regularity.

Theorem 3.3. The function \tilde{F} defined above lies in $W^{\infty}(B)$.

The first step in the proof that $\tilde{F} \in W^{\infty}(B)$ is the special case where F = 1. If G_{σ} is a family of measurable functions on B, then by Leibniz's rule,

$$\exp\Bigl(\int_0^1 G_\sigma \, d\sigma\Bigr) \in W^\infty(B)$$

if $\exp(G_{\sigma})$ is uniformly in $L^{p}(B)$, and G_{σ} is uniformly in $W^{\infty}(B)$, for all $\sigma \in [0,1]$. In our case, $G_{\sigma} = \frac{1}{2}\alpha(R)(x_{\sigma})$. Thus, it suffices to prove the following lemma.

Lemma 3.4. Let $\psi \in C_c^{\infty}(B_{2r})$ be such that $|\psi| \leq 1$.

(1) The functional

$$\pi^* \psi \alpha(R)(x_\sigma)$$

is in $W^{\infty}(B)$, uniformly in $\sigma \in [0,1]$.

(2) The functional

$$\pi^* \psi \exp(\alpha(R)(x_\sigma))$$

is in $L^p(B)$ for all $p < \infty$, uniformly in $\sigma \in [0,1]$.

Proof. If $X \in \mathfrak{g}$, then

$$\alpha(X) = d^* \tilde{X} + \pi^* (X(\log k(T)))$$

= $T^{-1}(y(T), \pi^* X) + \pi^* (X(\log k(T)))$

and hence

$$\alpha(R)[x_{\sigma}] = T^{-1}(y_{\sigma}(T), \pi_{\sigma}^* R) + \pi_{\sigma}^*(R(\log k(T))),$$

where $y_{\sigma} = y[x_{\sigma}]$ and $\pi_{\sigma}(x) = \pi(x_{\sigma})$. On $\pi^{-1}(B_{2r})$ the maps π_{σ} are uniformly W^{∞} , showing that $\pi^*\psi \pi_{\sigma}^*(R(\log k(T)))$ is uniformly in $W^{\infty}(B)$. To prove (1), we must prove that $y_{\sigma}(T)$ is uniformly in $W^{\infty}(B)$.

By the same argument as was used to prove Lemma 2.6 (1), we see that y_{σ} is given by the Ito integral

(*)
$$y_{\sigma}(t) = \int_{0}^{t} \operatorname{Ad}((\sigma - 1)sX/T) \operatorname{Ad}(\gamma(s)) \, \delta x_{s} + \frac{t(\sigma - 1)}{T} X.$$

It follows from Theorem 2.19 of Kusuoka and Stroock [5] that $y_{\sigma}(T)$ is in $W^{\infty}(B)$, since this theorem shows that stochastic differential equations with smooth data have W^{∞} solutions.

Let us now prove (2). If $X \in \mathfrak{g}$, then on inverse image by π of the ball B_{2r} ,

$$|\alpha(X)| \le |d^*\tilde{X}| + \sup_{g \in B_{2r}} |X(\log k(T))|$$

$$\le \frac{|X|}{T} |y(T)| + \frac{Cr}{T^{1/2}}$$

It follows by (1.6) that on $\pi^{-1}(B_{2r})$,

$$|\alpha(R)[x_{\sigma}]| \le \frac{Cr}{T^{1/2}}|y_{\sigma}(T)| + Cr^2.$$

By (*), we see that $y_{\sigma}(t) - t(\sigma - 1)X/T$ is a Wiener process, and hence that

$$\langle e^{p|y_{\sigma}(T)|} \rangle \le e^{p(1-\sigma)|X|} \langle e^{p|x(T)|} \rangle < \infty,$$

proving (2). \square

It remains to be proved that $\pi^*\psi F(x_0)$ lies in $W^{\infty}(B)$ for any $\psi \in C_c^{\infty}(B_{2r})$. Observe that

$$\pi_* \left(\left| F(x_0) \exp \left(\frac{1}{p} \int_0^1 \alpha(R)(x_\sigma) d\sigma \right) \right|^p \right)$$

is constant on the ball B_{2r} , and is equal to its value at the identity, namely $\langle |F|^p \rangle_*$; this follows by the same method as was used to prove Corollary 1.8. This shows that the function

$$\pi^* \psi F(x_0) \exp\left(\frac{1}{p} \int_0^1 \alpha(R)(x_\sigma) d\sigma\right)$$

is in $L^p(B)$. It follows from Lemma 3.4 (2) that $\pi^*\psi(x)$ $F(x_0) \in L^p(B)$ for all $p < \infty$. A similar argument shows that $\pi^*\psi|d^kF|^2(x_0) \in L^p(B)$ for all $p < \infty$, where $k \in \mathbb{N}$ and $d^kF \in W^{\infty}(B, H^{\otimes_2 k})$ is the tensor of k-th derivatives of F.

Denote the map $x \mapsto x_0$ by H; restricted to $\pi^{-1}(B_{2r})$, it is a Wiener map, that is, it lies in $I+W^{\infty}(\pi^{-1}(B_{2r}),H)$. The chain rule now shows that $\pi^*\psi |d^kF(x_0)|^2 \in L^p(B)$ for all $p < \infty$, and hence that $F \in W^{\infty}(B)$. To give an example, the second derivatives of $F(x_{\sigma})$ are given by the formula

$$d^2F(x_0) = H^*(d^2F) \circ (dH \otimes_2 dH) + H^*(dF) \circ d^2H.$$

This completes the proof of Theorem 3.3.

4. The rough logarithmic Sobolev inequalities

Our goal in this section is to prove the following logarithmic Sobolev inequality.

Theorem 4.1. There is a constant C such that for $F \in W^{\infty}(B)$, uniformly for small T,

$$\langle F^2 \log F \rangle_* \le C \langle |d_*F|^2 + (T^{-1}|y(T)|^2 + 1)F^2 \rangle_* + \frac{1}{2} \langle F^2 \rangle_* \log \langle F^2 \rangle_*.$$

The idea of the proof is as follows. If F is in $W^{\infty}(B)$, we use Theorem 3.3 to replace it by another W^{∞} -function \tilde{F} equal to F on $\pi^{-1}(e)$ but which satisfies the ordinary differential equation

(4.2)
$$\tilde{R}(F) = \frac{\alpha(R)}{2}\tilde{F}.$$

It follows that $d_*F = d_*\tilde{F}$ on $\pi^{-1}(e)$, so that we may replace F by \tilde{F} in proving the theorem.

Along the fibre $\pi^{-1}(e)$, the horizontal part $Nd\tilde{F}$ of the differential $d\tilde{F}$ may be identified by (4.2):

$$\begin{split} \tilde{X}\tilde{F}\big|_{\pi^{-1}(e)} &= \frac{1}{2}\alpha(X)\tilde{F}\big|_{\pi^{-1}(e)} \\ &= \frac{1}{2T}(y(T),X)F\big|_{\pi^{-1}(e)}. \end{split}$$

From this, we see that

$$\langle |d\tilde{F}|^2 \rangle_* = \langle |d_*F|^2 \rangle_* + \frac{1}{4T} \langle |y(T)|^2 F^2 \rangle_*.$$

Thus, the proof of Theorem 4.1 is reduced to that of the following result.

Theorem 4.3. There is a constant C such that for positive $F \in W^{\infty}(B)$ satisfying (4.2), uniformly for small T,

$$\langle F^2 \log F \rangle_* \le C \langle |dF|^2 + F^2 \rangle_* + \frac{1}{2} \langle F^2 \rangle_* \log \langle F^2 \rangle_*.$$

If u is a smooth positive function on the unit ball $\{x \in \mathfrak{g} \mid |x| < 1\}$ such that

$$\int_{\mathfrak{g}} u^2 \, dx = (4\pi)^{n/2},$$

we define u_r to be the rescaled function $u_r(\exp x) = r^{-n/2}u(x/T^{1/2}r)$ on B_r . We show that the logarithmic Sobolev inequality for $(\pi^*u_r)F$ on B implies the logarithmic Sobolev inequality for F on the fibre $\pi^{-1}(e)$, once r is chosen sufficiently small. This is done by using Gronwall's inequality applied to the ordinary differential equation (4.2) to relate the integrals over the fibre $\pi^{-1}(x)$, for $x \in B_r$,

$$\pi_*(F^2 \log F)(x)$$
 and $\pi_*(|dF|^2)(x)$,

to the analogous integrals over the fibre $\pi^{-1}(e)$,

$$\langle F^2 \log F \rangle_*$$
 and $\langle |dF|^2 \rangle_*$.

Lemma 4.4. Let $F \in W^{\infty}(B)$ be a positive function satisfying (4.2) and such that $\langle F^2 \rangle = 1$. Then there is a constant C such that the following inequality holds uniformly for small T and r:

$$\langle F^2 \log F \rangle_* \le (1 + O(T + r)) \int_G u_r^2 \, \pi_*(F^2 \log F) \, d(\pi_* \mu) + O(1).$$

Proof. Denote by $\varphi(x)$ the function $x^2 \log x + 1$; we introduce the function φ because it is positive on the positive real interval.

Corollary 1.8 combined with (4.2) shows that the radial derivative of $\pi_*(\varphi(F))$ in the direction $x \in \mathfrak{g}$ equals

$$\frac{d}{dt}\pi_*(\varphi(F))(tx) = \frac{|x|}{2}\pi_*(\alpha(\hat{x})F^2)(tx),$$

where $\hat{x} = |x|^{-1}x$. Since $T^{-1/2}|x| \leq r$ on B_r , the Hausdorff-Young inequality shows that

$$\frac{d}{dt}\pi_*(\varphi(F))(tx) \ge -r\pi_*(\varphi(F))(tx) - \frac{r}{2}\pi_*(e^{T^{1/2}|\alpha(\hat{x})|})(tx)$$

on the set B_r . By Gronwall's inequality,

(*)
$$\pi_*(\varphi(F))(x) \ge e^{-r} \langle \varphi(F) \rangle_* - \frac{r}{2} \int_0^1 \pi_* H(tx) \, dt,$$

where $H = \sup_{\hat{x} \in S^{n-1}} (e^{T^{1/2} |\alpha(\hat{x})|}).$

By the asymptotic expansion for the heat-kernel k(T,g) on G for small T,

$$\int_{G} u_r^2 d(\pi_* \mu) = 1 + O(T + r^2).$$

Multiplying (*) by u_r^2 and integrating over G with respect to the measure $\pi_*\mu$, we see that

$$\int_{G} u_r^2 \, \pi_*(\varphi(F)) \, d(\pi_* \mu)$$

$$\geq (1 + O(T+r)) \, \langle \varphi(F) \rangle_* - O(r^{1-n}) \, \int_{B_r} \left(\int_0^1 \pi_* H(tx) \, dt \right) \, d(\pi_* \mu).$$

The second term on the right-hand side is estimated by replacing the measure $d(\pi_*\mu)$ by the equivalent measure $T^{n/2} dx$ (see (2.8)), and then changing variables from x to y = tx:

$$\int_{B_r} \left(\int_0^1 (\pi_* H)(tx) \, dt \right) \, d(\pi_* \mu) \le C_2 T^{-n/2} \int_{B_r} \left(\int_0^1 (\pi_* H)(tx) \, dt \right) \, dx$$

$$\le C_2 T^{-n/2} \int_{B_r} \left(\int_{|y|/T^{1/2}r}^1 t^{-n} \, dt \right) (\pi_* H)(y) \, dy$$

$$\le C_2 T^{-1/2} r^{n-1} \int_{B_r} |y|^{1-n} (\pi_* H)(y) \, dy.$$

Hölder's inequality with respect to the measure dy on B_r now shows that if s > n,

$$\int_{B_r} |y|^{1-n} \pi_* H \, dy \le C(n,s) \, (T^{1/2} r)^{1-n/s} \, \left(\int_{B_r} (\pi_* H)^s \, dy \right)^{1/s}.$$

Applying Hölder's inequality along the fibres of π shows that

$$\int_{B_r} (\pi_* H)^s \, dy \le C_1^{-1} T^{n/2} \int_{B_r} (\pi_* H)^s \, d(\pi_* \mu)$$

$$\le C_1^{-1} T^{n/2} \int_{B_r} \pi_* (H^s) \, d(\pi_* \mu) = C_1^{-1} T^{n/2} \|H\|_s^s.$$

Combining all of this, we see that

$$\int_{B_r} \left(\int_0^1 \pi_* H(tx) \, dt \right) \, d(\pi_* \mu) \le C r^{1 - n/s} \|H\|_s,$$

where C is a constant depending on C_1 , C_2 , s and C(n, s), but not on T. We may as well choose s = 2n, but any real number greater than n will do equally well.

It remains to prove that $||H||_s < \infty$. First of all, note that H may be bounded using an orthonormal basis x_i of \mathfrak{g} , as follows:

$$H = \sup_{\hat{x} \in S^{n-1}} \left(e^{T^{1/2} |\alpha(\hat{x})|} \right) \le e^{T^{1/2} (|\alpha(x_1)| + \dots + |\alpha(x_n)|)}.$$

It follows that

$$||H||_{s}^{s} = \int_{B} \sup_{\hat{x} \in S^{n-1}} e^{sT^{1/2}|\alpha(\hat{x})|} d\mu \le \int_{B} e^{sT^{1/2}(|\alpha(x_{1})| + \dots + |\alpha(x_{n})|)} d\mu$$
$$\le \left(\prod_{i=1}^{n} \int_{B} e^{nsT^{1/2}|\alpha(x_{i})|} d\mu\right)^{1/n}.$$

If $X \in \mathfrak{g}$, then

$$\alpha(X) = d^* \tilde{X} - \pi^* (\operatorname{div}_{\pi_* \mu} X)$$

= $T^{-1}(y(T), X) - \pi^* (X(\log k(T))).$

We see by (2.8) that for small T > 0,

$$\begin{split} T^{1/2}|\alpha(X)| &\leq \frac{C\|X\|_0}{T^{1/2}}(|y(T)| + \delta(\gamma(T))) \\ &\leq \frac{\varepsilon}{4T}(|y(T)|^2 + \delta(\gamma(T))^2) + \varepsilon^{-1}C^2\|X\|_0^2, \end{split}$$

for some constant C depending only on G; here, ε is an arbitrary positive constant. It now follows by the estimates of Corollary 2.7 that the integral $\langle e^{T^{1/2}|\alpha(X)|} \rangle$ is uniformly bounded for small T, proving that $||H||_s < \infty$.

In this way, we have proved that

$$\int_{G} u_r^2 \, \pi_*(F^2 \log F) \, d(\pi_* \mu) = \int_{G} u_r^2 \, \pi_*(\varphi(F)) \, d(\pi_* \mu) - (1 + O(T + r^2))$$

$$\geq (1 + O(T + r)) \, \langle F^2 \log F \rangle_* - O(1),$$

which after a little rearrangement gives the lemma. \Box

If we apply the logarithmic Sobolev inequality for the Wiener space B to the function $(\pi^*u_r)F \in W^{\infty}(B)$, which satisfies $\langle |(\pi^*u_r)F|^2 \rangle = 1 + O(T + r^2)$, we obtain the inequality

$$\langle |(\pi^* u_r)F|^2 \log((\pi^* u_r)F)\rangle \le \langle |d((\pi^* u_r)F)|^2\rangle + O(T+r^2).$$

Since

$$|(\pi^* u_r)F|^2 \log((\pi^* u_r)F) = (\pi^* u_r)^2 F^2 \log F + \pi^* (u_r^2 \log u_r) F^2$$

and $\pi_*(F^2) = 1$, we see that

$$\begin{split} \int_{B_r} u_r^2 \, \pi_*(F^2 \, \log F) \, d(\pi_* \mu) &\leq \int_{B_r} u_r^2 \, \pi_*(|dF|^2) \, d(\pi_* \mu) \\ &+ \int_{B_r} \pi_*(|d(\pi^* u_r)|^2) \, d(\pi_* \mu) - \int_{B_r} u_r^2 \, \log u_r \, d(\pi_* \mu) + O(T + r^2). \end{split}$$

To handle the second term on the right-hand side, we use (2.5), which shows that

$$\int_{B_r} \pi_*(|d(\pi^*u_r)|^2) d(\pi_*\mu) = O(r^{-2}),$$

while to bound the third term, we use the fact that $x^2 \log x \ge -(2e)^{-1}$. Thus, we see that

(4.5)
$$\int_{B_r} u_r^2 \, \pi_*(F^2 \log F) \, d(\pi_* \mu) \le \int_{B_r} u_r^2 \, \pi_*(|dF|^2) \, d(\pi_* \mu) + O(r^{-2}).$$

To complete the proof of Theorem 4.3, we will imitate the proof of Lemma 4.4 to obtain an upper bound for

$$\int_{B_r} u_r^2 \, \pi_*(|dF|^2 + \varepsilon F^2 \, \log F) \, d(\pi_* \mu)$$

in terms of $\langle |dF|^2 + \varepsilon F^2 \log F \rangle_*$, where ε is a small positive constant.

Lemma 4.6. Let $F \in W^{\infty}(B)$ be a positive function satisfying (4.2) and such that $\pi_*(F^2) = 1$ on the ball B_r . Then there is a constant C such that the following inequality holds uniformly for small T and r:

$$\int_{G} u_r^2 \, \pi_*(|dF|^2 + \varepsilon F^2 \log F) \, d(\pi_* \mu) \le (1 + O(T + r)) \, \langle |dF|^2 + \varepsilon F^2 \log F \rangle_* + O(1).$$

Proof. If $F \in W^{\infty}(B)$ satisfies the ordinary differential equation (4.2) along the one-parameter semigroup $\exp(tX) \subset G$, it follows that

$$X\pi_*(|dF|^2) = \pi_*(\tilde{X}|dF|^2) - \pi_*(\alpha(X)|dF|^2)$$

= $2\pi_*(dF, [\tilde{X}, d]F) - \pi_*(FdF, d\alpha(X)).$

The first term of the right-hand side is bounded by means of the formula

$$[d, \tilde{X}] = T^{-1}(\Pi^* \rho(\nabla X)\Pi + X \cdot d\Pi, d),$$

where $\rho(\nabla X)$ is the section of the bundle $\operatorname{End}(TM)$ over M corresponding to $\nabla X \in \Gamma(M, TM \otimes TM)$. It is clear that the Hilbert-Schmidt norm of $T^{-1}\Pi^*\rho(\nabla X)\Pi$ is uniformly bounded for small T, and the same is true for $T^{-1}X \cdot d\Pi$ by Proposition 2.6. In this way, we obtain the inequality

$$X\pi_*(|dF|^2) \le \pi_*(C|dF|^2 + |F||dF||d\alpha(X)|).$$

Applying the Cauchy inequality

$$|F||dF||d\alpha(X)| \le T^{-1/2}|dF|^2 + T^{1/2}F^2|d\alpha(X)|^2$$

we see that

$$X\pi_*(|dF|^2) \le \pi_*((T^{-1/2} + C)|dF|^2 + T^{1/2}F^2|d\alpha(X)|^2).$$

We can now bound the radial derivative of $\pi_*(|dF|^2 + r\varphi(F))$, in the direction $x \in \mathfrak{g}$, where $\varphi(x) = x^2 \log x + 1$. On the set B_r , it satisfies the bound, uniform in T for T small,

$$\frac{d}{dt}\pi_{*}(|dF|^{2} + \varepsilon\varphi(F))(tx)
\leq O(r)\pi_{*}(|dF|^{2} + \varepsilon\varphi(F))(tx) + O(r)\pi_{*}(F^{2}(T|d\alpha(\hat{x})|^{2} + rT^{1/2}|\alpha(\hat{x})|))(tx)
\leq O(r)\pi_{*}(|dF|^{2} + \varepsilon\varphi(F))(tx) + O(\varepsilon r)\pi_{*}(e^{\varepsilon^{-1}T|d\alpha(\hat{x})|^{2}} + e^{T^{1/2}|\alpha(\hat{x})|})(tx),$$

where we have applied the Hausdorff-Young inequalities

$$F^{2}\left(T|d\alpha(\hat{x})|^{2}\right) \leq \frac{\varepsilon}{2}\varphi(F) + \varepsilon e^{\varepsilon^{-1}T|d\alpha(\hat{x})|^{2}}, \quad \text{and} \quad F^{2}\left(T^{1/2}|\alpha(\hat{x})|\right) \leq \frac{1}{2}\varphi(F) + e^{T^{1/2}|\alpha(\hat{x})|}.$$

By Gronwall's inequality,

$$\pi_*(|dF|^2 + \varepsilon \varphi(F))(x) \ge (1 + O(r))\langle |dF|^2 + \varepsilon \varphi(F)\rangle_* + O(\varepsilon r) \int_0^1 \pi_* J(tx) \, dt,$$

where

$$J = \sup_{\hat{x} \in S^{n-1}} \left(e^{\varepsilon^{-1}T|d\alpha(\hat{x})|^2} + e^{T^{1/2}|\alpha(\hat{x})|} \right) (tx).$$

The rest of the proof is the same as that of Lemma 4.4, except that we must bound $||J||_s$ instead of $||H||_s$. Let $X \in \mathfrak{g}$. Since $d(\pi^*f) = T^{1/2}\pi^*(df)$, we see that

$$d\alpha(X) = T^{-1}(dy(T), \pi^*X) - d\pi^*(X(\log k(T)))$$

= $T^{-1}(dy(T), X) - T^{1/2}\pi^*(d(X(\log k(T))))$

It follows that

$$T|d\alpha(X)|^{2} \leq \frac{2\|X\|_{0}^{2}}{T}|dy(T)|^{2} + 2T^{2}|d(X(\log k(T)))|^{2}$$

$$\leq \frac{2\|X\|_{0}^{2}}{T}|dy(T)|^{2} + C_{0}(G)\|X\|_{0}^{2} + C_{1}(G)T\|X\|_{1}^{2},$$

where the constants $C_i(G)$ depend only on the group G. The uniform bound on $\langle e^{\varepsilon^{-1}T|d\alpha(X)|^2}\rangle$ for T small enough follows from Corollary 2.7, and we see that $||J||_s < \infty$ uniformly. \square

Let us assemble the results obtained so far in this section. Under the conditions on the function F of Lemma 4.4, we see by combining Lemma 4.4 and (4.5) that

$$\langle F^2 \log F \rangle_* \le (1 + O(T + r)) \int_{B_r} u_r^2 \pi_*(|dF|^2) d(\pi_* \mu) + O(r^{-2}).$$

Combining this with Lemma 4.6, we see that

$$\langle F^2 \log F \rangle_* \le (1 + O(T+r))\langle |dF|^2 + \varepsilon F^2 \log F \rangle_* + O(r^{-2}).$$

If we choose ε sufficiently small (so that $(1 + O(T + r))\varepsilon \leq \frac{1}{2}$), we obtain the logarithmic Sobolev inequality

$$\langle F^2 \log F \rangle_* \le (1 + O(T+r)) \langle |dF|^2 \rangle_* + O(r^{-2}) \langle F^2 \rangle_* + \frac{1}{2} \langle F^2 \rangle_* \log \langle F^2 \rangle_*,$$

where we have now removed the condition that $\langle F^2 \rangle_* = 1$. This immediately leads to Theorem 4.3.

REFERENCES

- 1. H. Airault and P. Malliavin, *Intégration géométrique sur l'espace de Wiener*, Bull. Sci. Math. **112** (1988), 3–55.
- 2. E. Getzler, Dirichlet forms on loop space, Bull. Sci. Math. 113 (1989), 151–174.
- 3. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1976), 1061–1083.
- 4. L. Gross, Logarithmic Sobolev inequalities on loop groups, J. Fun. Anal. (1991).
- 5. S. Kusuoka and D. Stroock, *Applications of the Malliavin calculus, I*, Stochastic analysis, ed. K. Itô, North Holland, Amsterdam-New York-Oxford, 1984.