AN EXTENSION OF GROSS'S LOG-SOBOLEV INEQUALITY FOR THE LOOP SPACE OF A COMPACT LIE GROUP

Ezra Getzler
Department of Mathematics, MIT, Cambridge, Mass. 02139 USA

Let G be a compact Lie group, and for $T>0$, let $L_{*} G$ be the space of based loops of length T

$$
L_{*} G=\{\gamma:[0, T] \rightarrow G \mid \gamma(0)=\gamma(T)=e\} .
$$

We denote the expectation with respect to the Wiener measure on $L_{*} G$ (also known as the Brownian bridge) by $\langle F\rangle_{*}$. There is a regular Dirichlet form on $L_{*} G$, which was constructed using the Malliavin calculus in [1] and [2], and may be represented by the formula

$$
\left.\mathcal{E}(F, F)=\left.\langle | d_{*} F\right|^{2}\right\rangle_{*} .
$$

Consider the function on $L_{*} G$ given by the Stratonovitch stochastic integral

$$
V(\gamma)=T^{-1}\left|\int_{0}^{T} \dot{\gamma}(t) \gamma(t)^{-1} d t\right|^{2}+1
$$

Gross has proved the following theorem for $T=1$ in [4], and our goal in this paper is to extend his proof to show that the constant C may be chosen independent of T for T sufficiently small.

Theorem. There is a constant $C=1+O(T)$ such that for all $F \in W^{\infty}\left(L_{*} G\right)$,

$$
\left.\left\langle F^{2} \log \right| F\left\rangle_{*} \leq C\langle | d_{*} F\right|^{2}+V|F|^{2}\right\rangle_{*}+\frac{1}{2}\left\langle F^{2}\right\rangle_{*} \log \left\langle F^{2}\right\rangle_{*},
$$

[^0]uniformly in T for small T.
The above result is to be compared with Gross's logarithmic Sobolev inequality for a Wiener space B, proved in [3], that for $F \in W^{\infty}(B)$,
$$
\left.\left\langle F^{2} \log \right| F\rangle \leq\langle | d F|^{2}\right\rangle+\frac{1}{2}\left\langle F^{2}\right\rangle \log \left\langle F^{2}\right\rangle
$$

The proof of the above theorem uses this inequality at a key point, just as in Gross's proof for $T=1$.

It is tempting to attempt to get rid of the potential V in the inequality above by means of the Hausdorff-Young inequality: for all $x \in \mathbb{R}$ and $y>0$,

$$
x y \leq e^{x}+y \log y-y
$$

This shows that for $\left.\left.\langle | F\right|^{2}\right\rangle_{*}=1$,

$$
\left.(1-C \varepsilon / 2)\left\langle F^{2} \log \right| F\left\rangle_{*} \leq C\langle | d_{*} F\right|^{2}\right\rangle_{*}+C\left\langle e^{V / \varepsilon}\right\rangle_{*}+C(\log \varepsilon-1)
$$

In order to obtain a logarithmic Sobolev inequality from this, we need to be able to take $\varepsilon<2 / C$. In Proposition 2.10, we will see that this value of ε is marginally too small for $\left\langle e^{V / \varepsilon}\right\rangle_{*}$ to be finite. It is not clear whether some other method will allow the omission of V from the inequality.

In Section 1, we recall some of the results of [2], and prove some abstract lemmas that will be called upon later. In Section 2, we specialize to $L_{*} G$, where G is a compact Lie group. In Section 3, we discuss the technique of Gross in which he effectively constructs a smooth tubular neighbourhood of $L_{*} G$ in Wiener space. In Section 4, we give our proof of the main theorem.

Throughout this paper, we will make frequent use of the Hausdorff-Young inequality:

The writing of this paper would not have been possible without the interest of L. Gross, and I would like to thank him here for his generosity.

1. The geometry of Malliavin maps

Let \mathfrak{g} be a real vector space with inner-product, and let B be the classical Wiener space $B=C_{*}([0, T], \mathfrak{g})=\{\gamma \in C([0, T], \mathfrak{g}) \mid \gamma(0)=0\}$. The Wiener measure on B is the unique probability measure such that

$$
\int_{B} \exp \left(i \int_{0}^{T}(\alpha(t), \gamma(t)) d t\right) d \mu(\gamma)=e^{-C(\alpha, \alpha) / 2} \quad \text { for all } \alpha \in L^{\infty}([0, T], \mathfrak{g})
$$

where

$$
C(\alpha, \alpha)=\int_{0}^{T} \int_{0}^{T} \min (s, t)(\alpha(s), \alpha(t)) d s d t
$$

Let $H \subset B$ be the Hilbert space of finite-energy paths $L_{*}^{2,1}([0, T], \mathfrak{g})$, with inner product

$$
|\gamma|^{2}=\int_{0}^{T}|\dot{\gamma}(t)|^{2} d t
$$

A cylinder function on B is a function of the form

$$
F\left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{k}\right)\right),
$$

where $0<t_{1}<\ldots<t_{k}<T$, and $F \in C_{c}^{\infty}\left(\mathfrak{g}^{k}\right)$. The space of all cylinder functions, written $C_{c}^{\infty}(B)$, is dense in $L^{p}(B)=L^{p}(B, d \mu)$ for each $p<\infty$. If $\tau: B \rightarrow \mathfrak{g}^{k}$ denotes the map

$$
\tau(\gamma)=\left(\gamma\left(t_{1}\right), \ldots, \gamma\left(t_{k}\right)\right)
$$

then the above cylinder function may be written $\tau^{*} F$.
We will often make use of the Hilbert tensor product $H_{1} \otimes_{2} H_{2}$ of two Hilbert spaces H_{1} and H_{2}; this is completion of the algebraic tensor product with respect to the quadratic form

$$
\left|v \otimes_{2} w\right|^{2}=|v|^{2} \cdot|w|^{2} .
$$

We also let $\operatorname{HS}(H)$ denote the space of Hilbert-Schmidt operators on H.
If $f=\tau^{*} F$ is a cylinder function, its gradient, denoted by $d f$, is the element of $C_{c}^{\infty}(B) \otimes H$ defined by applying the map

$$
\tau^{*}: C_{c}^{\infty}\left(\mathfrak{g}^{k}\right) \otimes \mathfrak{g}^{k} \rightarrow C_{c}^{\infty}(B) \otimes H
$$

to $d F \in C_{c}^{\infty}\left(\mathfrak{g}^{k}\right) \otimes \mathfrak{g}^{k}$. Forming the closure of this operator, we obtain an unbounded operator from $L^{p}(B)$ to $L^{p}(B, H)$, which we will also denote by d; its adjoint d^{*} is then a closed unbounded operator from $L^{p}(B, H)$ to $L^{p}(B)$.

The composition of the operators d and d^{*} acting on the cylinder functions is the Ornstein-Uhlenbeck operator $L=d^{*} d$, which is essentially self-adjoint with core $C_{c}^{\infty}(B)$. If \mathcal{H} is a Hilbert space, the Sobolev space $L_{s}^{p}(B, \mathcal{H})$, where $1<p<\infty$ and $s \in \mathbb{R}$, is the domain of $L^{s / 2}$ on $L^{p}(B, \mathcal{H})$. The space of Malliavin test functions is

$$
W^{\infty}(B, \mathcal{H})=\bigcap_{p, s<\infty} L_{s}^{p}(B, \mathcal{H}) .
$$

Meyer has proved that d is bounded from $L_{s}^{p}(B)$ to $L_{s-1}^{p}(B, H)$ and that d^{*} is bounded from $L_{s}^{p}(B, H)$ to $L_{s-1}^{p}(B)$, for all $s \in \mathbb{R}$ and $p<\infty$. It is important to note that W^{∞}-functions need not be continuous.

We can also define W^{∞}-maps from a Wiener space B to a compact Riemannian manifold M.

Definition 1.1. A map $\pi: B \rightarrow M$ is in $W^{\infty}(B, M)$ if it is measurable and if the pull-back map $\pi^{*}: C^{\infty}(M) \rightarrow W^{\infty}(B)$ is bounded.

An equivalent definition can be made by choosing an embedding $\rho: M \rightarrow \mathbb{R}^{n}$ of M in a Euclidean space \mathbb{R}^{n} : then $\pi \in W^{\infty}(B, M)$ if and only if $\rho \circ \pi \in W^{\infty}\left(B, \mathbb{R}^{n}\right)$. If $\pi \in W^{\infty}(B, M)$, the composition

$$
C^{\infty}(M) \xrightarrow{\pi^{*}} W^{\infty}(B) \xrightarrow{\mu} \mathbb{R}
$$

is a positive linear form on $C^{\infty}(M)$ which equals 1 on the constant function 1 , and hence defines a probability measure on M. We will write this measure $\pi_{*} \mu$.

The tangent map

$$
d: W^{\infty}(M, B) \rightarrow W^{\infty}\left(B, \operatorname{Hom}\left(H, \pi^{*} T M\right)\right)
$$

may be defined by means of an embedding $\rho: M \rightarrow \mathbb{R}^{n}$, by the formula

$$
d(\rho \circ \pi)=d \rho \circ d \pi \in W^{\infty}\left(B, \operatorname{Hom}\left(H, \mathbb{R}^{n}\right)\right) .
$$

Definition 1.2. Let $\pi: B \rightarrow M$ be in $W^{\infty}(B, M)$, with differential Π, and form $\Gamma=\Pi \Pi^{*} \in W^{\infty}\left(B, \operatorname{End}\left(\pi^{*} T M\right)\right)$. Then π is a Malliavin map if the determinant $\operatorname{det}(\Gamma)$ satisfies

$$
\operatorname{det}(\Gamma)^{-1} \in L^{p}(B) \quad \text { for } p<\infty
$$

If π is a Malliavin map, then the operator Γ^{-1} is in $W^{\infty}\left(B, \operatorname{End}\left(\pi^{*} T M\right)\right)$, and $\operatorname{det}(\Gamma)^{k}$ is in $W^{\infty}(B)$ for all $k \in \mathbb{Z}$. The operator $N=\Pi^{*} \Gamma^{-1} \Pi \in W^{\infty}(B, \operatorname{HS}(H))$ is a projector in H of rank n for a.e. $x \in B$. We may think of N as the projector on the normal bundle to the fibres of the map π. Thus the projector $P=1-N$ orthogonal to N is the projector onto the tangent bundle to the fibres of π.

We say that an operator A on $W^{\infty}(B)$ acts along the fibres of π if it satisfies the formula

$$
A\left(\left(\pi^{*} f\right) F\right)=\left(\pi^{*} f\right)(A F)
$$

for all $f \in C^{\infty}(M)$ and $F \in W^{\infty}(B)$. Using the projector P, we may construct the exterior differential along the fibres

$$
d_{*}: W^{\infty}(B) \rightarrow W^{\infty}(B, H)
$$

defined by the formula $d_{*} F=P(d F)$, and the Ornstein-Uhlenbeck operator along the fibres $L_{*}: W^{\infty}(B) \rightarrow W^{\infty}(B)$, associated to the Dirichlet form $\left.\left.\langle | d_{*} F\right|^{2}\right\rangle$, given by the formula $L_{*} F=d^{*} P d F$.

The adjoint of the pull-back $\pi^{*}: C^{\infty}(M) \rightarrow W^{\infty}(B)$ is a bounded map $\left(\pi_{*}\right)^{\prime}$: $W^{\infty}(B)^{\prime} \rightarrow C^{\infty}(M)^{\prime}$. We define a push-forward map $\pi_{*}: W^{\infty}(B) \rightarrow C^{\infty}(M)$ in such a way that the following diagram commutes:

$$
\begin{aligned}
& W^{\infty}(B) \xrightarrow{\pi_{*}} C^{\infty}(M) \\
& F \mapsto F d \mu \downarrow \downarrow f \mapsto f d\left(\pi_{*} \mu\right) \\
& W^{\infty}(B)^{\prime} \xrightarrow{\left(\pi^{*}\right)^{\prime}} C^{\infty}(M)^{\prime}
\end{aligned}
$$

The following basic result, due to Malliavin, shows that the map $\pi_{*}: W^{\infty}(B) \rightarrow$ $C^{\infty}(M)$ is well-defined.
Proposition 1.3. If π is a Malliavin map, integration along the fibres of π defines a bounded map $\pi_{*}: W^{\infty}(B) \rightarrow C^{\infty}(M)$.

Note that $\pi_{*} \circ \pi^{*}$ is the identity, and in particular, that $\pi_{*} 1=1$. If $F \in W^{\infty}(B)$, we define

$$
\langle F\rangle=\int_{B} F d \mu ;
$$

similarly, if $f \in C^{\infty}(M)$, we define

$$
\langle f\rangle=\int_{M} f d\left(\pi_{*} \mu\right)
$$

These integrals are related by the formula $\langle F\rangle=\left\langle\pi_{*} F\right\rangle$.
Definition 1.4. If X is a vector field on M, its horizontal lift $\tilde{X} \in W^{\infty}(B, H)$ is the unique vector field on B such that
(1) if $f \in C^{\infty}(M), \tilde{X}\left(\pi^{*} f\right)=\pi^{*}(X(f))$;
(2) \tilde{X} is horizontal, that is, $P \tilde{X}=0$.

It may be checked that the vector field $\Pi^{*} \Gamma^{-1} \pi^{*} X$ satisfies the above requirements, so that we obtain an explicit formula for the horizontal lift:

$$
\tilde{X}=\Pi^{*} \Gamma^{-1} \pi^{*} X
$$

We will denote by $\operatorname{div}_{\pi_{*} \mu}: \Gamma(M, T M) \rightarrow C^{\infty}(M)$ the adjoint of the exterior differential $d: C^{\infty}(M) \rightarrow \Gamma\left(M, T^{*} M\right)$ with respect to the pairings

$$
(f, g)=\int_{M} f g d\left(\pi_{*} \mu\right) \quad \text { and } \quad(X, \omega)=\int_{M}\langle X, \omega\rangle d\left(\pi_{*} \mu\right)
$$

In terms of the divergence operator div defined with respect to the Riemannian volume form $d x, \operatorname{div}_{\pi_{*} \mu}$ is given by the formula

$$
\operatorname{div}_{\pi_{*} \mu} X=\operatorname{div} X+X\left(\log \left(\frac{d\left(\pi_{*} \mu\right)}{d x}\right)\right)
$$

Definition 1.5. If X is a vector field on M, we define the W^{∞}-function $\alpha(X)$ by the formula

$$
\alpha(X)=d^{*} \tilde{X}-\pi^{*}\left(\operatorname{div}_{\pi_{*} \mu} X\right)
$$

It is easy to see that α satisfies the formula

$$
\begin{equation*}
\alpha(f X)=\left(\pi^{*} f\right) \alpha(X) \quad \text { for all } f \in C^{\infty}(M) \tag{1.6}
\end{equation*}
$$

The following proposition explains our reason for introducing $\alpha(X)$.
Proposition 1.7. If X is a vector field on M and $F \in W^{\infty}(B)$, then

$$
X\left(\pi_{*} F\right)=\tilde{X}(F)-\alpha(X) F
$$

Proof. If $F \in W^{\infty}(B)$ and $f \in C^{\infty}(M)$, then

$$
\left\langle f X\left(\pi_{*} F\right)\right\rangle=\left\langle\left(-X(f)+\left(\operatorname{div}_{\pi_{*} \mu} X\right) f\right) \pi_{*} F\right\rangle=\left\langle\pi^{*}\left(-X(f)+\left(\operatorname{div}_{\pi_{*} \mu} X\right) f\right) F\right\rangle .
$$

We now use the fact that $\pi^{*}(X(f))=\tilde{X}\left(\pi^{*} f\right)$, which gives

$$
\begin{aligned}
\left\langle f X\left(\pi_{*} F\right)\right\rangle & =\left\langle\left(-\tilde{X}\left(\pi^{*} f\right)+\pi^{*}\left(\operatorname{div}_{\pi_{*} \mu} X\right) \pi^{*} f\right) F\right\rangle \\
& =\left\langle\pi^{*} f\left(\tilde{X}(F)-d^{*} \tilde{X} F+\pi^{*}\left(\operatorname{div}_{\pi_{*} \mu} X\right) F\right)\right\rangle,
\end{aligned}
$$

which proves the lemma, since f was arbitrary.
Corollary 1.8. If $F \in W^{\infty}(B)$ satisfies the formula $\tilde{X}(F)=\frac{1}{2} \alpha(X) F$, then
(1) $X \pi_{*}\left(|F|^{2}\right)=0$;
(2) $X \pi_{*}\left(|F|^{2} \log |F|^{2}\right)=\pi_{*}\left(\alpha(X)|F|^{2}\right)$.

Proof. To prove (1), we observe that $\tilde{X}\left(|F|^{2}\right)=2 F \tilde{X}(F)=\alpha(X)|F|^{2}$. Since

$$
X\left(\pi_{*}|F|^{2}\right)=\pi_{*}\left(\tilde{X}\left(|F|^{2}\right)\right)-\pi_{*}\left(\alpha(X)|F|^{2}\right)
$$

(1) follows.

To prove (2), let us calculate $\tilde{X}\left(|F|^{2} \log |F|^{2}\right)$:

$$
\begin{aligned}
\tilde{X}\left(|F|^{2} \log |F|^{2}\right) & =2 F \tilde{X}(F) \log |F|^{2}+2 F \tilde{X}(F) \\
& =\alpha(X)|F|^{2} \log |F|^{2}+\alpha(X)|F|^{2} .
\end{aligned}
$$

Since $X \pi_{*}\left(|F|^{2} \log |F|^{2}\right)=\pi_{*}\left(\tilde{X}\left(|F|^{2} \log |F|^{2}\right)\right)-\pi_{*}\left(\alpha(X)|F|^{2} \log |F|^{2}\right)$, the proof of (2) follows.

2. Based loops in a compact Lie group

In this section, we will discuss a particular case of a Malliavin map, in which M is a compact Lie group G, with Lie algebra \mathfrak{g}, and the map π is the so-called path-ordered exponential. This case is very special, since the Malliavin covariance $\Gamma=\Pi * \Pi$ is equal to a constant multiple T id of the identity operator, which makes many of the calculations easier.

To simplify the formulation of the results, we will assume that the group G is a linear group; of course, this is no restriction, since every compact Lie group has a faithful linear representation. We also suppose chosen an invariant Riemannian metric on G, which induces an inner product on \mathfrak{g} invariant under the adjoint action $\operatorname{Ad}(g)$ for $g \in G$. Denote the dimension of G by n, and the identity of G by e. We will always identify a Lie algebra element $X \in \mathfrak{g}$ with the corresponding left-invariant vector field on G.

Let (B, H) be the classical Wiener space $\left(C_{*}([0, T], \mathfrak{g}), L_{*}^{2,1}([0, T], \mathfrak{g})\right)$. If $x \in H$, we solve the ordinary differential equation for $\gamma(t):[0, T] \rightarrow G$ with initial condition $\gamma(0)=e$,

$$
\gamma(t)^{-1} \dot{\gamma}(t)=\dot{x}(t)
$$

The solution of this equation is known as the path-ordered exponential, and we will write it as $\gamma[x]$, or simply as γ if x is implicit.

The path-ordered exponential identifies H with the space of finite-energy based paths in $L_{*}^{2,1}([0, T], G)$. Let π be the map $x \mapsto \gamma[x](T)$; the fibre of π over e can be identified with the space $L_{*} G$ of finite-energy paths in G which return to the identity at time T, that is, the based loop space of G.

If $F \in W^{\infty}(B)$, we will denote by $\langle F\rangle_{*}$ the integral of F over the fibre $\pi^{-1}(e)$, that is,

$$
\langle F\rangle_{*}=\pi_{*}(F)(e) .
$$

When we say that two functions F_{1} and F_{2} are equal on $\pi^{-1}(e)$, we mean that $\left\langle\left(F_{1}-F_{2}\right)^{2}\right\rangle_{*}=0$.

The map $\gamma(t): B \rightarrow G$ is extended to a family of W^{∞}-maps from the Wiener space B to G, by introducing a mollifier on B :

$$
x_{\varepsilon}(t)=\varepsilon^{-1} \int_{0}^{1} \lambda\left(\varepsilon^{-1}(s-t)\right) x(s) d s
$$

where λ is any positive symmetric function in $C_{c}^{\infty}(-1,1)$ such that $\int_{(-1,1)} \lambda d t=1$. The following proposition is a consequence of the theory of Stratanovitch stochastic differential equations.

Proposition 2.1.

(1) For each $\varepsilon>0$, the map $\pi_{\varepsilon}(x)=\pi\left(x_{\varepsilon}\right)$ is a W^{∞}-map from B to G.
(2) As $\varepsilon \rightarrow 0$, the maps π_{ε} converge in $W^{\infty}(B, G)$ to a map π.

We now calculate the differential $d \pi$, and the Malliavin covariance matrix $\Gamma=$ $(d \pi)(d \pi)^{*}$, of the map π explicitly.

Proposition 2.2.

(1) $\Pi=(d \pi) \pi^{-1} \in W^{\infty}(B, \operatorname{Hom}(H, \mathfrak{g}))$ is given by the formula

$$
\Pi\left(h_{t}\right)=\int_{0}^{T} \operatorname{Ad}(\gamma(t)) \dot{h}_{t} d t
$$

(2) The adjoint $\Pi^{*}(X) \in W^{\infty}(B, \operatorname{Hom}(\mathfrak{g}, H))$ of Π is given by the formula

$$
\left(\Pi^{*} X\right)_{t}=\int_{0}^{t} \operatorname{Ad}(\gamma(s))^{-1} X d s
$$

(3) The Malliavin covariance matrix $\Gamma=\Pi \Pi^{*}$ equals T times the identity of \mathfrak{g}; in particular, the map π satisfies the Malliavin condition, since $\operatorname{det}(\Gamma)=T^{n}$ is a constant, and N is given by the formula $N=T^{-1} \Pi^{*} \Pi$.

Proof. We will calculate $\Pi_{\varepsilon}=\left(d \pi_{\varepsilon}\right)\left(\pi_{\varepsilon}\right)^{-1}$, and then take the limit $\varepsilon \rightarrow 0$. For $\varepsilon>0$, the map π_{ε} is smooth, so we can calculate Π_{ε} path by path.

By du Hamel's formula, $\left(d \pi_{\varepsilon}\right)\left(\pi_{\varepsilon}\right)^{-1}$ equals

$$
\left(d \pi_{\varepsilon}\right)\left(\pi_{\varepsilon}\right)^{-1}=\left(d \gamma_{\varepsilon}(T)\right) \gamma_{\varepsilon}(T)^{-1}=\int_{0}^{T} \operatorname{Ad}\left(\gamma_{\varepsilon}(t)\right) \dot{h}_{\varepsilon}(t) d t
$$

from which (1) follows, by sending $\varepsilon \rightarrow 0$.
Since the metric on \mathfrak{g} is invariant, it follows that if $X \in \mathfrak{g}$, then

$$
(X, \Pi(h(t)))=\int_{0}^{T}(X, \operatorname{Ad}(\gamma(t)) \dot{h}(t)) d t=\int_{0}^{T}\left(\operatorname{Ad}(\gamma(t))^{-1} X, \dot{h}(t)\right) d t
$$

from which we obtain the formula for $\Pi^{*}(X)$. It is clear from this that $\Pi \Pi^{*}=T$.
Corollary 2.3. If $X \in \mathfrak{g}$, then its horizontal lift $\tilde{X} \in W^{\infty}(B, H)$ is given by the formula

$$
\tilde{X}(t)=T^{-1} \int_{0}^{t} \operatorname{Ad}(\gamma(s))^{-1} X d s
$$

and $d^{*} \tilde{X}$ is given by the formula

$$
d^{*} \tilde{X}=T^{-1}\left(d^{*} \Pi, X\right),
$$

where $d^{*} \Pi \in W^{\infty}(B, \mathfrak{g})$ is the divergence of Π.
It follows from Proposition 2.2 that if $f \in C^{\infty}(G)$, then $d\left(\pi^{*} f\right)$ satisfies

$$
\begin{equation*}
\left|d\left(\pi^{*} f\right)\right|=T^{1 / 2}|d f| \tag{2.4}
\end{equation*}
$$

The next proposition collects a number of useful formulas.

Proposition 2.5.

(1) The gradient $d \Pi \in W^{\infty}\left(B, \operatorname{Hom}\left(H \otimes_{2} H, \mathfrak{g}\right)\right)$ is given by the formula

$$
d \Pi(a, b)=\int_{0 \leq s \leq t \leq T}[\operatorname{Ad}(\gamma(s)) \dot{a}(s), \operatorname{Ad}(\gamma(t)) \dot{b}(t)] d s d t
$$

(2) The divergence $d^{*} \Pi \in W^{\infty}(B, \mathfrak{g})$ is given by the Stratanovitch integral

$$
d^{*} \Pi=\int_{0}^{T} \operatorname{Ad}(\gamma(t)) \dot{x}(t) d t
$$

(3) If $a \in H$, then

$$
d d^{*} \Pi(a)=\int_{0 \leq t \leq T} \operatorname{Ad}(\gamma(t)) \dot{a}(t) d t+\int_{0 \leq s \leq t \leq T}[\operatorname{Ad}(\gamma(s)) \dot{a}(s), \operatorname{Ad}(\gamma(t)) \dot{y}(t)] d s d t
$$

Proof. The gradient of Π_{ε} is given by the formula

$$
d \Pi_{\varepsilon}(a, b)=\int_{0 \leq s \leq t \leq T}\left[\operatorname{Ad}\left(\gamma_{\varepsilon}(s)\right) \dot{a}(s), \operatorname{Ad}\left(\gamma_{\varepsilon}(t)\right) \dot{b}(t)\right] d s d t
$$

The formula for $d \Pi$ follows by taking $\varepsilon \rightarrow 0$.
In a finite-dimensional Wiener space $V, d^{*} \Pi$ would be given by the formula

$$
d^{*} \Pi=-\operatorname{Tr}(d \Pi)+\Pi x
$$

where x is the identity map from V to itself. In our infinite-dimensional situation, this formula makes sense if we replace Π by its approximation Π_{ε} :

$$
d^{*} \Pi_{\varepsilon}=-\operatorname{Tr}_{H}\left(d \Pi_{\varepsilon}\right)+\Pi_{\varepsilon} x .
$$

Using the above formula for $d \Pi_{\varepsilon}$, it is easy to see that $\operatorname{Tr}_{H}\left(d \Pi_{\varepsilon}\right)$ vanishes. On the other hand, $\Pi_{\varepsilon} x$ equals

$$
\Pi_{\varepsilon} x=\int_{0}^{T} \operatorname{Ad}\left(\gamma_{\varepsilon}(t)\right) \dot{x}(t) d t
$$

which converges to

$$
\int_{0}^{T} \operatorname{Ad}\left(\gamma_{\varepsilon}(t)\right) \dot{x}(t) d t
$$

as $\varepsilon \rightarrow 0$. This proves (2). The proof of (3) is similar to the proof of (1).
Let $y(t)$ be the Stratanovitch stochastic integral

$$
y(t)=\int_{0}^{t} \operatorname{Ad}(\gamma(s)) d x(s)=\lim _{\varepsilon \rightarrow 0} \int_{0}^{t} \operatorname{Ad}(\gamma(s)) \dot{x}_{\varepsilon}(s) d s
$$

so that $d^{*} \Pi=y(T)$. In the rest of this section, we will study the properties of the stochastic process $y(t)$. The following lemma will be basic to this study.

Lemma 2.6. The stochastic process $t \mapsto y(t)$ is a Wiener process; that is, the map from B to itself given by sending x to y is measure-preserving.

Proof. Let us denote the Stratonovitch stochastic differential by $d x(t)$, and the Ito stochastic differential by $\delta x(t)$. The relationship between the two differentials shows that $\gamma^{-t} \delta \gamma(t)=\delta x(t)$. It follows that

$$
\begin{aligned}
y(t) & =\int_{0}^{t} \operatorname{Ad}(\gamma(s)) \delta x(s)+\frac{1}{2} \sum_{i j k} c_{j k}^{i} \int_{0}^{t} \operatorname{Ad}(\gamma(t)) X_{i} d\left\langle x^{j}, x^{k}\right\rangle \\
& =\int_{0}^{t} \operatorname{Ad}(\gamma(s)) \delta x(s)
\end{aligned}
$$

since the quadratic variation $\left\langle x^{j}, x^{k}\right\rangle=t \delta^{j k}$ is symmetric in j and k, while the structure coefficients $c_{j k}^{i}$ are antisymmetric. Thus, we see that the quadratic variation process $\langle y, y\rangle$ equals t times the inner product on \mathfrak{g}, and hence that $y(t)$ is a Wiener process on \mathfrak{g}.

There is a more geometric way to see that $t \mapsto y(t)$ is a Wiener process, for which we will give only the outline. Consider the diagram

$$
B \xrightarrow{x \mapsto-x} B \xrightarrow{x \mapsto \gamma[x]} P_{*} G \xrightarrow{\gamma \mapsto \gamma^{-1}} P_{*} G \xrightarrow{\gamma \mapsto x} B .
$$

It turns out that the composition of these maps is precisely the map $x \mapsto y[x]$. Since each map is measure-preserving, their composition is, proving that y is a Wiener process.

Corollary 2.7.

(1) $\left\langle\exp \left(\frac{\lambda}{2}|y(T)|^{2}\right)\right\rangle=(1-T \lambda)^{-n / 2}$
(2) $\left\langle\exp \left(\frac{\lambda}{2} \int_{0}^{T}|y(t)|^{2} d t\right)\right\rangle=\left(\cos T \lambda^{1 / 2}\right)^{-n / 2}$

Proof. Since $y(t)$ is a Brownian process, (1) follows from the calculation of the following integral:

$$
(2 \pi T)^{-n / 2} \int_{\mathfrak{g}} e^{-|\xi|^{2} / 2 T+\lambda|\xi|^{2} / 2} d \xi=(1-T \lambda)^{-n / 2}
$$

By the Feynman-Kac formula, the left-hand side of (2) is given by the integral of the heat-kernel

$$
\langle\xi| e^{-T\left(\Delta-\lambda|\xi|^{2}\right) / 2}|0\rangle=(2 \pi T)^{-n / 2}\left(\frac{T \lambda^{1 / 2}}{\sin T \lambda^{1 / 2}}\right)^{n / 2} e^{-\left(\lambda^{1 / 2} \cot T \lambda^{1 / 2}\right)|\xi|^{2} / 2}
$$

with respect to ξ, which is

$$
\left(\frac{T \lambda^{1 / 2}}{T \lambda^{1 / 2} \cot T \lambda^{1 / 2} \sin T \lambda^{1 / 2}}\right)^{n / 2}=\left(\cos T \lambda^{1 / 2}\right)^{-n / 2}
$$

Let $\{X, Y\}$ denote the Killing form on \mathfrak{g}, given by the formula

$$
\{X, Y\}=-\operatorname{Tr}_{\mathfrak{g}}(\operatorname{ad}(X) \operatorname{ad}(Y))
$$

and let $\|X\|^{2}=\{X, X\}$.
Lemma 2.8. The differential $d y(T)$ of $y(T)$ satisfies the estimate

$$
\begin{aligned}
|d y(T)|^{2} & =T+\frac{1}{2} \int_{0 \leq s, t \leq T} \min (s, t)\{\dot{y}(s), \dot{y}(t)\} d s d t \\
& \leq T+T|y(T)|^{2}+\int_{0}^{T}\|y(t)\|^{2} d t
\end{aligned}
$$

Proof. The proof makes use of the same mollification method as in the proof of Proposition 2.5; hence, we will tacitly suppose that $x(t)$ is smooth.

The formula for $|d y(T)|^{2}$ easily follows from the formula for $d y(T)$ in Proposition $2.5(3)$. Pretending that $x(t)$ is smooth, we integrate twice by parts:

$$
\begin{aligned}
\int_{0 \leq s, t \leq T} \min (s, t)\{\dot{y}(s) & , \dot{y}(t)\} d s d t \\
& =T\|y(T)\|^{2}-2 \int_{0}^{T}\{y(t), y(T)\} d t+\int_{0}^{T}\|y(t)\|^{2} d t \\
& \leq 2 T|y(T)|^{2}+2 \int_{0 \leq t \leq T}\|y(t)\|^{2} d s
\end{aligned}
$$

Ito's formula shows that the measure $\pi_{*} \mu$ is determined by the formula

$$
\frac{d\left(\pi_{*} \mu\right)}{d g}=k(T, g)
$$

where $k(T, g)=\langle g| e^{-T \Delta}|e\rangle$ is the heat-kernel for the invariant Laplacian Δ on G. The asymptotic expansion for the heat kernel shows that $k(T, g)$ may be written for small T as

$$
k(T, g)=(4 \pi T)^{-\operatorname{dim}(G) / 2} e^{-\delta(g)^{2} / 4 T}\left(\sum_{i<N} T^{i} a_{i}(g)+r_{N}(T, g)\right),
$$

where $\delta(g)$ is the Riemannian distance between g and the identity, $a_{i} \in C^{\infty}(G)$, and $r_{N} \in C^{\infty}((0, \varepsilon] \times G)$ satisfies the estimates

$$
\left|\partial_{T}^{k} \partial_{g}^{\alpha} r_{N}(T, g)\right| \leq C(k, \alpha) T^{N-2 k-|\alpha|}
$$

for $N \geq 2 k-|\alpha|$. It follows that for small T,

$$
\begin{equation*}
C_{1} T^{-n / 2} e^{-\delta(g)^{2} / 4 T} \leq k(T, g) \leq C_{2} T^{-n / 2} e^{-\delta(g)^{2} / 4 T} \tag{2.9}
\end{equation*}
$$

We close this section with an estimate which differs from Corollary 2.7 in that it estimates an integral over one fibre of π, and not over all of B.

Proposition 2.10.

$$
\begin{aligned}
& \left\langle\exp \left(\frac{\lambda}{2}|y(T)|^{2}\right)\right\rangle_{*} \\
& \quad=\frac{\operatorname{vol}(G / T)}{k(T, e)}\left(\frac{2 \pi}{\lambda}\right)^{n / 2} \int_{\mathfrak{t}} k\left(T, e^{X}\right) e^{\left(T-\lambda^{-1}\right)|X|^{2} / 2} \operatorname{det}_{\mathfrak{g} / \mathfrak{t}}(1+\operatorname{ad}(X)) d X
\end{aligned}
$$

Proof. We will use the formula

$$
\left\langle\exp \left(\frac{\lambda}{2}|y(T)|^{2}\right)\right\rangle_{*}=\left(\frac{2 \pi}{\lambda}\right)^{n / 2} \int_{\mathfrak{g}}\langle\exp (X, y(T))\rangle_{*} e^{-|X|^{2} / 2 \lambda} d X
$$

This may be rewritten as an integral over the Cartan subalgebra \mathfrak{t} by the change of variables formula

$$
\int_{\mathfrak{g}} f(X) d X=\int_{G / T}\left(\int_{\mathfrak{t}} f(\operatorname{Ad}(g) X) \operatorname{det}_{\mathfrak{g} / \mathfrak{t}}(1+\operatorname{ad}(X)) d X\right) d g
$$

where

$$
1 \leq \operatorname{det}_{\mathfrak{g} / \mathfrak{t}}(1+\operatorname{ad}(X)) \leq O\left(|X|^{\operatorname{dim}(\mathfrak{g} / \mathfrak{t})}\right)
$$

Using the fact that $\langle\exp (X, y(T))\rangle_{*}$ is invariant under conjugation $X \mapsto \operatorname{Ad}(g) X$, we see that

$$
\begin{aligned}
& \left\langle\exp \left(\frac{\lambda}{2}|y(T)|^{2}\right)\right\rangle_{*} \\
& \quad=\operatorname{vol}(G / T)\left(\frac{2 \pi}{\lambda}\right)^{n / 2} \int_{\mathfrak{t}}\langle\exp (X, y(T))\rangle_{*} e^{-|X|^{2} / 2 \lambda} \operatorname{det}_{\mathfrak{g} / \mathfrak{t}}(1+\operatorname{ad}(X)) d X
\end{aligned}
$$

We now apply the result of Lemma 2.6. By the Ito formula, we see that the Ito stochastic differential

$$
\begin{aligned}
\delta\left\{f(\gamma(t)) e^{(X, y(t))}\right\}=(d f(\gamma(t)) & +X, \delta x(t)) e^{(X, y(t))} \\
& +\left(-\frac{1}{2} \Delta f(\gamma(t))+X(f)(\gamma(t))+\frac{1}{2}|X|^{2}\right) e^{(X, y(t))}
\end{aligned}
$$

From this, it follows that $\left\langle e^{(X, y(T))}\right\rangle_{*}$ is given by the ratio of heat kernels

$$
\frac{\langle e| \exp T\left(-\frac{1}{2} \Delta+X+\frac{1}{2}|X|^{2}\right)|e\rangle}{\langle e| \exp T\left(-\frac{1}{2} \Delta\right)|e\rangle}=\frac{e^{T|X|^{2} / 2} k\left(T, e^{T X}\right)}{k(T, e)}
$$

since the vector field X commutes with the Laplacian Δ.
Note that it is an easy consequence of this proposition that

$$
\left\langle\exp \left(\frac{\lambda}{2}|y(T)|^{2}\right)\right\rangle_{*}<\infty
$$

if and only if $\lambda<T^{-1}$.

3. The tubular neighbourhood of a fibre

In this section, we will explain Gross's idea of constructing a tubular neighbourhood in B of the fibre $\pi^{-1}(e)$ of the map π above the identity element of G. Introduce the family of balls

$$
B_{r}=\left\{\exp (Y)| | Y \mid<T^{1 / 2} r\right\} \subset G,
$$

where r and T are small. On such a ball, we will use radial coordinates; thus, we will write $h(x)$ instead of $h(\exp x)$ when h is a function on B_{r}.

Let R be a smooth vector field on G which on B_{r} equals the radial vector field of \mathfrak{g}. We introduce the vector field R because on B_{r}, its integral curves are the one-parameter semigroups of G.

Define a map $\varphi: \mathfrak{g} \times B \rightarrow B$ by

$$
\varphi(X, x)=x+T^{-1} \int_{0}^{t} \operatorname{Ad}(\gamma(s))^{-1} X d s
$$

Since $\gamma[\varphi(X, x)]=\exp (t X / T) \gamma(t)$, we see that

$$
\pi(\varphi(X, x))=\pi(x) \exp (X)
$$

and hence that the map φ defines a tubular neighbourhood of the fibre $\pi^{-1}(e)$.
Given an element $x \in B$ such that $\pi(x)=\exp (X) \in B_{2 r}$, we may form the path in B

$$
\sigma \in[0,1] \mapsto x_{\sigma}=\varphi((\sigma-1) X, x)
$$

which covers the path $\exp (\sigma X)$ in G; in particular, x_{0} lies in the fibre $\pi^{-1}(e)$. It is easy to check that x_{σ} is the integral curve for the vector field \tilde{R}.

If $F \in W^{\infty}(B)$, define the function \tilde{F} to take the value

$$
\begin{equation*}
\tilde{F}(x)=\pi^{*} \psi F\left(x_{0}\right) \exp \left(\frac{1}{2} \int_{0}^{1} \alpha(R)\left(x_{\sigma}\right) d \sigma\right) \tag{3.1}
\end{equation*}
$$

at the path x, where $\psi \in C_{c}^{\infty}\left(B_{2 r}\right)$ is a smooth cut-off function which equals 1 on the ball B_{r}. It is clear that \tilde{F} and F are equal on $\pi^{-1}(e)$, and that \tilde{F} satisfies the differential equation

$$
\begin{equation*}
\tilde{R}(\tilde{F})=\frac{\alpha(R)}{2} F \tag{3.2}
\end{equation*}
$$

on $\pi^{-1}\left(B_{r}\right)$. In the remainder of this section, we will prove the following result, which expresses the fact that the tubular neighbourhood constructed above has a certain amount of regularity.
Theorem 3.3. The function \tilde{F} defined above lies in $W^{\infty}(B)$.
The first step in the proof that $\tilde{F} \in W^{\infty}(B)$ is the special case where $F=1$. If G_{σ} is a family of measurable functions on B, then by Leibniz's rule,

$$
\exp \left(\int_{0}^{1} G_{\sigma} d \sigma\right) \in W^{\infty}(B)
$$

if $\exp \left(G_{\sigma}\right)$ is uniformly in $L^{p}(B)$, and G_{σ} is uniformly in $W^{\infty}(B)$, for all $\sigma \in[0,1]$. In our case, $G_{\sigma}=\frac{1}{2} \alpha(R)\left(x_{\sigma}\right)$. Thus, it suffices to prove the following lemma.
Lemma 3.4. Let $\psi \in C_{c}^{\infty}\left(B_{2 r}\right)$ be such that $|\psi| \leq 1$.
(1) The functional

$$
\pi^{*} \psi \alpha(R)\left(x_{\sigma}\right)
$$

is in $W^{\infty}(B)$, uniformly in $\sigma \in[0,1]$.
(2) The functional

$$
\pi^{*} \psi \exp \left(\alpha(R)\left(x_{\sigma}\right)\right)
$$

is in $L^{p}(B)$ for all $p<\infty$, uniformly in $\sigma \in[0,1]$.

Proof. If $X \in \mathfrak{g}$, then

$$
\begin{aligned}
\alpha(X) & =d^{*} \tilde{X}+\pi^{*}(X(\log k(T))) \\
& =T^{-1}\left(y(T), \pi^{*} X\right)+\pi^{*}(X(\log k(T)))
\end{aligned}
$$

and hence

$$
\alpha(R)\left[x_{\sigma}\right]=T^{-1}\left(y_{\sigma}(T), \pi_{\sigma}^{*} R\right)+\pi_{\sigma}^{*}(R(\log k(T))),
$$

where $y_{\sigma}=y\left[x_{\sigma}\right]$ and $\pi_{\sigma}(x)=\pi\left(x_{\sigma}\right)$. On $\pi^{-1}\left(B_{2 r}\right)$ the maps π_{σ} are uniformly W^{∞}, showing that $\pi^{*} \psi \pi_{\sigma}^{*}(R(\log k(T)))$ is uniformly in $W^{\infty}(B)$. To prove (1), we must prove that $y_{\sigma}(T)$ is uniformly in $W^{\infty}(B)$.

By the same argument as was used to prove Lemma2.6(1), we see that y_{σ} is given by the Ito integral

$$
\begin{equation*}
y_{\sigma}(t)=\int_{0}^{t} \operatorname{Ad}((\sigma-1) s X / T) \operatorname{Ad}(\gamma(s)) \delta x_{s}+\frac{t(\sigma-1)}{T} X \tag{*}
\end{equation*}
$$

It follows from Theorem 2.19 of Kusuoka and Stroock [5] that $y_{\sigma}(T)$ is in $W^{\infty}(B)$, since this theorem shows that stochastic differential equations with smooth data have W^{∞} solutions.

Let us now prove (2). If $X \in \mathfrak{g}$, then on inverse image by π of the ball $B_{2 r}$,

$$
\begin{aligned}
|\alpha(X)| & \leq\left|d^{*} \tilde{X}\right|+\sup _{g \in B_{2 r}}|X(\log k(T))| \\
& \leq \frac{|X|}{T}|y(T)|+\frac{C r}{T^{1 / 2}}
\end{aligned}
$$

It follows by (1.6) that on $\pi^{-1}\left(B_{2 r}\right)$,

$$
\left|\alpha(R)\left[x_{\sigma}\right]\right| \leq \frac{C r}{T^{1 / 2}}\left|y_{\sigma}(T)\right|+C r^{2}
$$

By $(*)$, we see that $y_{\sigma}(t)-t(\sigma-1) X / T$ is a Wiener process, and hence that

$$
\left\langle e^{p\left|y_{\sigma}(T)\right|}\right\rangle \leq e^{p(1-\sigma)|X|}\left\langle e^{p|x(T)|}\right\rangle<\infty,
$$

proving (2).
It remains to be proved that $\pi^{*} \psi F\left(x_{0}\right)$ lies in $W^{\infty}(B)$ for any $\psi \in C_{c}^{\infty}\left(B_{2 r}\right)$. Observe that

$$
\pi_{*}\left(\left|F\left(x_{0}\right) \exp \left(\frac{1}{p} \int_{0}^{1} \alpha(R)\left(x_{\sigma}\right) d \sigma\right)\right|^{p}\right)
$$

is constant on the ball $B_{2 r}$, and is equal to its value at the identity, namely $\left.\left.\langle | F\right|^{p}\right\rangle_{*}$; this follows by the same method as was used to prove Corollary 1.8. This shows that the function

$$
\pi^{*} \psi F\left(x_{0}\right) \exp \left(\frac{1}{p} \int_{0}^{1} \alpha(R)\left(x_{\sigma}\right) d \sigma\right)
$$

is in $L^{p}(B)$. It follows from Lemma 3.4 (2) that $\pi^{*} \psi(x) F\left(x_{0}\right) \in L^{p}(B)$ for all $p<\infty$. A similar argument shows that $\pi^{*} \psi\left|d^{k} F\right|^{2}\left(x_{0}\right) \in L^{p}(B)$ for all $p<\infty$, where $k \in \mathbb{N}$ and $d^{k} F \in W^{\infty}\left(B, H^{\otimes_{2} k}\right)$ is the tensor of k-th derivatives of F.

Denote the map $x \mapsto x_{0}$ by H; restricted to $\pi^{-1}\left(B_{2 r}\right)$, it is a Wiener map, that is, it lies in $I+W^{\infty}\left(\pi^{-1}\left(B_{2 r}\right), H\right)$. The chain rule now shows that $\pi^{*} \psi\left|d^{k} F\left(x_{0}\right)\right|^{2} \in$ $L^{p}(B)$ for all $p<\infty$, and hence that $F \in W^{\infty}(B)$. To give an example, the second derivatives of $F\left(x_{\sigma}\right)$ are given by the formula

$$
d^{2} F\left(x_{0}\right)=H^{*}\left(d^{2} F\right) \circ\left(d H \otimes_{2} d H\right)+H^{*}(d F) \circ d^{2} H
$$

This completes the proof of Theorem 3.3.

4. The rough logarithmic Sobolev inequalities

Our goal in this section is to prove the following logarithmic Sobolev inequality.
Theorem 4.1. There is a constant C such that for $F \in W^{\infty}(B)$, uniformly for small T,

$$
\left.\left\langle F^{2} \log F\right\rangle_{*} \leq\left. C\langle | d_{*} F\right|^{2}+\left(T^{-1}|y(T)|^{2}+1\right) F^{2}\right\rangle_{*}+\frac{1}{2}\left\langle F^{2}\right\rangle_{*} \log \left\langle F^{2}\right\rangle_{*}
$$

The idea of the proof is as follows. If F is in $W^{\infty}(B)$, we use Theorem 3.3 to replace it by another W^{∞}-function \tilde{F} equal to F on $\pi^{-1}(e)$ but which satisfies the ordinary differential equation

$$
\begin{equation*}
\tilde{R}(F)=\frac{\alpha(R)}{2} \tilde{F} \tag{4.2}
\end{equation*}
$$

It follows that $d_{*} F=d_{*} \tilde{F}$ on $\pi^{-1}(e)$, so that we may replace F by \tilde{F} in proving the theorem.

Along the fibre $\pi^{-1}(e)$, the horizontal part $N d \tilde{F}$ of the differential $d \tilde{F}$ may be identified by (4.2):

$$
\begin{aligned}
\left.\tilde{X} \tilde{F}\right|_{\pi^{-1}(e)} & =\left.\frac{1}{2} \alpha(X) \tilde{F}\right|_{\pi^{-1}(e)} \\
& =\left.\frac{1}{2 T}(y(T), X) F\right|_{\pi^{-1}(e)}
\end{aligned}
$$

From this, we see that

$$
\left.\left.\left.\left.\langle | d \tilde{F}\right|^{2}\right\rangle_{*}=\left.\langle | d_{*} F\right|^{2}\right\rangle_{*}+\left.\frac{1}{4 T}\langle | y(T)\right|^{2} F^{2}\right\rangle_{*}
$$

Thus, the proof of Theorem 4.1 is reduced to that of the following result.

Theorem 4.3. There is a constant C such that for positive $F \in W^{\infty}(B)$ satisfying (4.2), uniformly for small T,

$$
\left.\left\langle F^{2} \log F\right\rangle_{*} \leq\left. C\langle | d F\right|^{2}+F^{2}\right\rangle_{*}+\frac{1}{2}\left\langle F^{2}\right\rangle_{*} \log \left\langle F^{2}\right\rangle_{*}
$$

If u is a smooth positive function on the unit ball $\{x \in \mathfrak{g}||x|<1\}$ such that

$$
\int_{\mathfrak{g}} u^{2} d x=(4 \pi)^{n / 2}
$$

we define u_{r} to be the rescaled function $u_{r}(\exp x)=r^{-n / 2} u\left(x / T^{1 / 2} r\right)$ on B_{r}. We show that the logarithmic Sobolev inequality for $\left(\pi^{*} u_{r}\right) F$ on B implies the logarithmic Sobolev inequality for F on the fibre $\pi^{-1}(e)$, once r is chosen sufficiently small. This is done by using Gronwall's inequality applied to the ordinary differential equation (4.2) to relate the integrals over the fibre $\pi^{-1}(x)$, for $x \in B_{r}$,

$$
\pi_{*}\left(F^{2} \log F\right)(x) \text { and } \pi_{*}\left(|d F|^{2}\right)(x)
$$

to the analogous integrals over the fibre $\pi^{-1}(e)$,

$$
\left.\left\langle F^{2} \log F\right\rangle_{*} \text { and }\left.\langle | d F\right|^{2}\right\rangle_{*}
$$

Lemma 4.4. Let $F \in W^{\infty}(B)$ be a positive function satisfying (4.2) and such that $\left\langle F^{2}\right\rangle=1$. Then there is a constant C such that the following inequality holds uniformly for small T and r :

$$
\left\langle F^{2} \log F\right\rangle_{*} \leq(1+O(T+r)) \int_{G} u_{r}^{2} \pi_{*}\left(F^{2} \log F\right) d\left(\pi_{*} \mu\right)+O(1)
$$

Proof. Denote by $\varphi(x)$ the function $x^{2} \log x+1$; we introduce the function φ because it is positive on the positive real interval.

Corollary 1.8 combined with (4.2) shows that the radial derivative of $\pi_{*}(\varphi(F))$ in the direction $x \in \mathfrak{g}$ equals

$$
\frac{d}{d t} \pi_{*}(\varphi(F))(t x)=\frac{|x|}{2} \pi_{*}\left(\alpha(\hat{x}) F^{2}\right)(t x)
$$

where $\hat{x}=|x|^{-1} x$. Since $T^{-1 / 2}|x| \leq r$ on B_{r}, the Hausdorff-Young inequality shows that

$$
\frac{d}{d t} \pi_{*}(\varphi(F))(t x) \geq-r \pi_{*}(\varphi(F))(t x)-\frac{r}{2} \pi_{*}\left(e^{T^{1 / 2}|\alpha(\hat{x})|}\right)(t x)
$$

on the set B_{r}. By Gronwall's inequality,

$$
\begin{equation*}
\pi_{*}(\varphi(F))(x) \geq e^{-r}\langle\varphi(F)\rangle_{*}-\frac{r}{2} \int_{0}^{1} \pi_{*} H(t x) d t \tag{*}
\end{equation*}
$$

where $H=\sup _{\hat{x} \in S^{n-1}}\left(e^{T^{1 / 2}|\alpha(\hat{x})|}\right)$.
By the asymptotic expansion for the heat-kernel $k(T, g)$ on G for small T,

$$
\int_{G} u_{r}^{2} d\left(\pi_{*} \mu\right)=1+O\left(T+r^{2}\right)
$$

Multiplying (*) by u_{r}^{2} and integrating over G with respect to the measure $\pi_{*} \mu$, we see that

$$
\begin{aligned}
& \int_{G} u_{r}^{2} \pi_{*}(\varphi(F)) d\left(\pi_{*} \mu\right) \\
& \quad \geq(1+O(T+r))\langle\varphi(F)\rangle_{*}-O\left(r^{1-n}\right) \int_{B_{r}}\left(\int_{0}^{1} \pi_{*} H(t x) d t\right) d\left(\pi_{*} \mu\right)
\end{aligned}
$$

The second term on the right-hand side is estimated by replacing the measure $d\left(\pi_{*} \mu\right)$ by the equivalent measure $T^{n / 2} d x$ (see (2.8)), and then changing variables from x to $y=t x$:

$$
\begin{aligned}
\int_{B_{r}}\left(\int_{0}^{1}\left(\pi_{*} H\right)(t x) d t\right) d\left(\pi_{*} \mu\right) & \leq C_{2} T^{-n / 2} \int_{B_{r}}\left(\int_{0}^{1}\left(\pi_{*} H\right)(t x) d t\right) d x \\
& \leq C_{2} T^{-n / 2} \int_{B_{r}}\left(\int_{|y| / T^{1 / 2} r}^{1} t^{-n} d t\right)\left(\pi_{*} H\right)(y) d y \\
& \leq C_{2} T^{-1 / 2} r^{n-1} \int_{B_{r}}|y|^{1-n}\left(\pi_{*} H\right)(y) d y
\end{aligned}
$$

Hölder's inequality with respect to the measure $d y$ on B_{r} now shows that if $s>n$,

$$
\int_{B_{r}}|y|^{1-n} \pi_{*} H d y \leq C(n, s)\left(T^{1 / 2} r\right)^{1-n / s}\left(\int_{B_{r}}\left(\pi_{*} H\right)^{s} d y\right)^{1 / s}
$$

Applying Hölder's inequality along the fibres of π shows that

$$
\begin{aligned}
\int_{B_{r}}\left(\pi_{*} H\right)^{s} d y & \leq C_{1}^{-1} T^{n / 2} \int_{B_{r}}\left(\pi_{*} H\right)^{s} d\left(\pi_{*} \mu\right) \\
& \leq C_{1}^{-1} T^{n / 2} \int_{B_{r}} \pi_{*}\left(H^{s}\right) d\left(\pi_{*} \mu\right)=C_{1}^{-1} T^{n / 2}\|H\|_{s}^{s}
\end{aligned}
$$

Combining all of this, we see that

$$
\int_{B_{r}}\left(\int_{0}^{1} \pi_{*} H(t x) d t\right) d\left(\pi_{*} \mu\right) \leq C r^{1-n / s}\|H\|_{s}
$$

where C is a constant depending on C_{1}, C_{2}, s and $C(n, s)$, but not on T. We may as well choose $s=2 n$, but any real number greater than n will do equally well.

It remains to prove that $\|H\|_{s}<\infty$. First of all, note that H may be bounded using an orthonormal basis x_{i} of \mathfrak{g}, as follows:

$$
H=\sup _{\hat{x} \in S^{n-1}}\left(e^{T^{1 / 2}|\alpha(\hat{x})|}\right) \leq e^{T^{1 / 2}\left(\left|\alpha\left(x_{1}\right)\right|+\cdots+\left|\alpha\left(x_{n}\right)\right|\right)}
$$

It follows that

$$
\begin{aligned}
\|H\|_{s}^{s} & =\int_{B} \sup _{\hat{x} \in S^{n-1}} e^{s T^{1 / 2}|\alpha(\hat{x})|} d \mu \leq \int_{B} e^{s T^{1 / 2}\left(\left|\alpha\left(x_{1}\right)\right|+\cdots+\left|\alpha\left(x_{n}\right)\right|\right)} d \mu \\
& \leq\left(\prod_{i=1}^{n} \int_{B} e^{n s T^{1 / 2}\left|\alpha\left(x_{i}\right)\right|} d \mu\right)^{1 / n}
\end{aligned}
$$

If $X \in \mathfrak{g}$, then

$$
\begin{aligned}
\alpha(X) & =d^{*} \tilde{X}-\pi^{*}\left(\operatorname{div}_{\pi_{*} \mu} X\right) \\
& =T^{-1}(y(T), X)-\pi^{*}(X(\log k(T)))
\end{aligned}
$$

We see by (2.8) that for small $T>0$,

$$
\begin{aligned}
T^{1 / 2}|\alpha(X)| & \leq \frac{C\|X\|_{0}}{T^{1 / 2}}(|y(T)|+\delta(\gamma(T))) \\
& \leq \frac{\varepsilon}{4 T}\left(|y(T)|^{2}+\delta(\gamma(T))^{2}\right)+\varepsilon^{-1} C^{2}\|X\|_{0}^{2}
\end{aligned}
$$

for some constant C depending only on G; here, ε is an arbitrary positive constant. It now follows by the estimates of Corollary 2.7 that the integral $\left\langle e^{T^{1 / 2}|\alpha(X)|}\right\rangle$ is uniformly bounded for small T, proving that $\|H\|_{s}<\infty$.

In this way, we have proved that

$$
\begin{aligned}
\int_{G} u_{r}^{2} \pi_{*}\left(F^{2} \log F\right) d\left(\pi_{*} \mu\right) & =\int_{G} u_{r}^{2} \pi_{*}(\varphi(F)) d\left(\pi_{*} \mu\right)-\left(1+O\left(T+r^{2}\right)\right) \\
& \geq(1+O(T+r))\left\langle F^{2} \log F\right\rangle_{*}-O(1)
\end{aligned}
$$

which after a little rearrangement gives the lemma.
If we apply the logarithmic Sobolev inequality for the Wiener space B to the function $\left(\pi^{*} u_{r}\right) F \in W^{\infty}(B)$, which satisfies $\left.\left.\langle |\left(\pi^{*} u_{r}\right) F\right|^{2}\right\rangle=1+O\left(T+r^{2}\right)$, we obtain the inequality

$$
\left.\left.\left.\langle |\left(\pi^{*} u_{r}\right) F\right|^{2} \log \left(\left(\pi^{*} u_{r}\right) F\right)\right\rangle \leq\left.\langle | d\left(\left(\pi^{*} u_{r}\right) F\right)\right|^{2}\right\rangle+O\left(T+r^{2}\right) .
$$

Since

$$
\left|\left(\pi^{*} u_{r}\right) F\right|^{2} \log \left(\left(\pi^{*} u_{r}\right) F\right)=\left(\pi^{*} u_{r}\right)^{2} F^{2} \log F+\pi^{*}\left(u_{r}^{2} \log u_{r}\right) F^{2}
$$

and $\pi_{*}\left(F^{2}\right)=1$, we see that

$$
\begin{aligned}
& \int_{B_{r}} u_{r}^{2} \pi_{*}\left(F^{2} \log F\right) d\left(\pi_{*} \mu\right) \leq \int_{B_{r}} u_{r}^{2} \pi_{*}\left(|d F|^{2}\right) d\left(\pi_{*} \mu\right) \\
&+\int_{B_{r}} \pi_{*}\left(\left|d\left(\pi^{*} u_{r}\right)\right|^{2}\right) d\left(\pi_{*} \mu\right)-\int_{B_{r}} u_{r}^{2} \log u_{r} d\left(\pi_{*} \mu\right)+O\left(T+r^{2}\right)
\end{aligned}
$$

To handle the second term on the right-hand side, we use (2.5), which shows that

$$
\int_{B_{r}} \pi_{*}\left(\left|d\left(\pi^{*} u_{r}\right)\right|^{2}\right) d\left(\pi_{*} \mu\right)=O\left(r^{-2}\right)
$$

while to bound the third term, we use the fact that $x^{2} \log x \geq-(2 e)^{-1}$. Thus, we see that

$$
\begin{equation*}
\int_{B_{r}} u_{r}^{2} \pi_{*}\left(F^{2} \log F\right) d\left(\pi_{*} \mu\right) \leq \int_{B_{r}} u_{r}^{2} \pi_{*}\left(|d F|^{2}\right) d\left(\pi_{*} \mu\right)+O\left(r^{-2}\right) \tag{4.5}
\end{equation*}
$$

To complete the proof of Theorem 4.3, we will imitate the proof of Lemma 4.4 to obtain an upper bound for

$$
\int_{B_{r}} u_{r}^{2} \pi_{*}\left(|d F|^{2}+\varepsilon F^{2} \log F\right) d\left(\pi_{*} \mu\right)
$$

in terms of $\left.\left.\langle | d F\right|^{2}+\varepsilon F^{2} \log F\right\rangle_{*}$, where ε is a small positive constant.
Lemma 4.6. Let $F \in W^{\infty}(B)$ be a positive function satisfying (4.2) and such that $\pi_{*}\left(F^{2}\right)=1$ on the ball B_{r}. Then there is a constant C such that the following inequality holds uniformly for small T and r :

$$
\left.\int_{G} u_{r}^{2} \pi_{*}\left(|d F|^{2}+\varepsilon F^{2} \log F\right) d\left(\pi_{*} \mu\right) \leq\left.(1+O(T+r))\langle | d F\right|^{2}+\varepsilon F^{2} \log F\right\rangle_{*}+O(1)
$$

Proof. If $F \in W^{\infty}(B)$ satisfies the ordinary differential equation (4.2) along the one-parameter semigroup $\exp (t X) \subset G$, it follows that

$$
\begin{aligned}
X \pi_{*}\left(|d F|^{2}\right) & =\pi_{*}\left(\tilde{X}|d F|^{2}\right)-\pi_{*}\left(\alpha(X)|d F|^{2}\right) \\
& =2 \pi_{*}(d F,[\tilde{X}, d] F)-\pi_{*}(F d F, d \alpha(X))
\end{aligned}
$$

The first term of the right-hand side is bounded by means of the formula

$$
[d, \tilde{X}]=T^{-1}\left(\Pi^{*} \rho(\nabla X) \Pi+X \cdot d \Pi, d\right)
$$

where $\rho(\nabla X)$ is the section of the bundle $\operatorname{End}(T M)$ over M corresponding to $\nabla X \in$ $\Gamma(M, T M \otimes T M)$. It is clear that the Hilbert-Schmidt norm of $T^{-1} \Pi^{*} \rho(\nabla X) \Pi$ is uniformly bounded for small T, and the same is true for $T^{-1} X \cdot d \Pi$ by Proposition 2.6. In this way, we obtain the inequality

$$
X \pi_{*}\left(|d F|^{2}\right) \leq \pi_{*}\left(C|d F|^{2}+|F||d F||d \alpha(X)|\right) .
$$

Applying the Cauchy inequality

$$
|F||d F||d \alpha(X)| \leq T^{-1 / 2}|d F|^{2}+T^{1 / 2} F^{2}|d \alpha(X)|^{2},
$$

we see that

$$
X \pi_{*}\left(|d F|^{2}\right) \leq \pi_{*}\left(\left(T^{-1 / 2}+C\right)|d F|^{2}+T^{1 / 2} F^{2}|d \alpha(X)|^{2}\right)
$$

We can now bound the radial derivative of $\pi_{*}\left(|d F|^{2}+r \varphi(F)\right)$, in the direction $x \in \mathfrak{g}$, where $\varphi(x)=x^{2} \log x+1$. On the set B_{r}, it satisfies the bound, uniform in T for T small,

$$
\begin{aligned}
& \frac{d}{d t} \pi_{*}\left(|d F|^{2}+\varepsilon \varphi(F)\right)(t x) \\
& \quad \leq O(r) \pi_{*}\left(|d F|^{2}+\varepsilon \varphi(F)\right)(t x)+O(r) \pi_{*}\left(F^{2}\left(T|d \alpha(\hat{x})|^{2}+r T^{1 / 2}|\alpha(\hat{x})|\right)\right)(t x) \\
& \quad \leq O(r) \pi_{*}\left(|d F|^{2}+\varepsilon \varphi(F)\right)(t x)+O(\varepsilon r) \pi_{*}\left(e^{\varepsilon^{-1}} T|d \alpha(\hat{x})|^{2}+e^{T^{1 / 2}|\alpha(\hat{x})|}\right)(t x),
\end{aligned}
$$

where we have applied the Hausdorff-Young inequalities

$$
\begin{aligned}
F^{2}\left(T|d \alpha(\hat{x})|^{2}\right) & \leq \frac{\varepsilon}{2} \varphi(F)+\varepsilon e^{\varepsilon^{-1} T|d \alpha(\hat{x})|^{2}}, \quad \text { and } \\
F^{2}\left(T^{1 / 2}|\alpha(\hat{x})|\right) & \leq \frac{1}{2} \varphi(F)+e^{T^{1 / 2}|\alpha(\hat{x})|} .
\end{aligned}
$$

By Gronwall's inequality,

$$
\left.\pi_{*}\left(|d F|^{2}+\varepsilon \varphi(F)\right)(x) \geq\left.(1+O(r))\langle | d F\right|^{2}+\varepsilon \varphi(F)\right\rangle_{*}+O(\varepsilon r) \int_{0}^{1} \pi_{*} J(t x) d t
$$

where

$$
J=\sup _{\hat{x} \in S^{n-1}}\left(e^{\varepsilon^{-1} T|d \alpha(\hat{x})|^{2}}+e^{T^{1 / 2}|\alpha(\hat{x})|}\right)(t x)
$$

The rest of the proof is the same as that of Lemma4.4, except that we must bound $\|J\|_{s}$ instead of $\|H\|_{s}$. Let $X \in \mathfrak{g}$. Since $d\left(\pi^{*} f\right)=T^{1 / 2} \pi^{*}(d f)$, we see that

$$
\begin{aligned}
d \alpha(X) & =T^{-1}\left(d y(T), \pi^{*} X\right)-d \pi^{*}(X(\log k(T))) \\
& =T^{-1}(d y(T), X)-T^{1 / 2} \pi^{*}(d(X(\log k(T))))
\end{aligned}
$$

It follows that

$$
\begin{aligned}
T|d \alpha(X)|^{2} & \leq \frac{2\|X\|_{0}^{2}}{T}|d y(T)|^{2}+2 T^{2}|d(X(\log k(T)))|^{2} \\
& \leq \frac{2\|X\|_{0}^{2}}{T}|d y(T)|^{2}+C_{0}(G)\|X\|_{0}^{2}+C_{1}(G) T\|X\|_{1}^{2}
\end{aligned}
$$

where the constants $C_{i}(G)$ depend only on the group G. The uniform bound on $\left\langle e^{\varepsilon^{-1} T|d \alpha(X)|^{2}}\right\rangle$ for T small enough follows from Corollary 2.7, and we see that $\|J\|_{s}<$ ∞ uniformly.

Let us assemble the results obtained so far in this section. Under the conditions on the function F of Lemma 4.4, we see by combining Lemma 4.4 and (4.5) that

$$
\left\langle F^{2} \log F\right\rangle_{*} \leq(1+O(T+r)) \int_{B_{r}} u_{r}^{2} \pi_{*}\left(|d F|^{2}\right) d\left(\pi_{*} \mu\right)+O\left(r^{-2}\right)
$$

Combining this with Lemma 4.6, we see that

$$
\left.\left\langle F^{2} \log F\right\rangle_{*} \leq\left.(1+O(T+r))\langle | d F\right|^{2}+\varepsilon F^{2} \log F\right\rangle_{*}+O\left(r^{-2}\right) .
$$

If we choose ε sufficiently small (so that $(1+O(T+r)) \varepsilon \leq \frac{1}{2}$), we obtain the logarithmic Sobolev inequality

$$
\left.\left\langle F^{2} \log F\right\rangle_{*} \leq\left.(1+O(T+r))\langle | d F\right|^{2}\right\rangle_{*}+O\left(r^{-2}\right)\left\langle F^{2}\right\rangle_{*}+\frac{1}{2}\left\langle F^{2}\right\rangle_{*} \log \left\langle F^{2}\right\rangle_{*},
$$

where we have now removed the condition that $\left\langle F^{2}\right\rangle_{*}=1$. This immediately leads to Theorem 4.3.

References

1. H.Airault and P.Malliavin, Intégration géométrique sur l'espace de Wiener, Bull. Sci. Math. 112 (1988), 3-55.
2. E. Getzler, Dirichlet forms on loop space, Bull. Sci. Math. 113 (1989), 151-174.
3. L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1976), 10611083.
4. L. Gross, Logarithmic Sobolev inequalities on loop groups, J. Fun. Anal. (1991).
5. S. Kusuoka and D. Stroock, Applications of the Malliavin calculus, I, Stochastic analysis, ed. K. Itô, North Holland, Amsterdam-New York-Oxford, 1984.

[^0]: This work was partially supported by the NSF and the Centre for Mathematical Analysis at the Australian National University.

