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Let G be a compact Lie group, and for T > 0, let L∗G be the space of based
loops of length T

L∗G =
{
γ : [0, T ] → G

∣∣∣ γ(0) = γ(T ) = e
}
.

We denote the expectation with respect to the Wiener measure on L∗G (also known
as the Brownian bridge) by 〈F 〉∗. There is a regular Dirichlet form on L∗G, which
was constructed using the Malliavin calculus in [1] and [2], and may be represented
by the formula

E(F, F ) = 〈|d∗F |2〉∗.

Consider the function on L∗G given by the Stratonovitch stochastic integral

V (γ) = T−1
∣∣∣∫ T

0

γ̇(t)γ(t)−1 dt
∣∣∣2 + 1.

Gross has proved the following theorem for T = 1 in [4], and our goal in this paper
is to extend his proof to show that the constant C may be chosen independent of
T for T sufficiently small.

Theorem. There is a constant C = 1 +O(T ) such that for all F ∈W∞(L∗G),

〈F 2 log |F |〉∗ ≤ C〈|d∗F |2 + V |F |2〉∗ + 1
2 〈F

2〉∗ log〈F 2〉∗,
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uniformly in T for small T .

The above result is to be compared with Gross’s logarithmic Sobolev inequality
for a Wiener space B, proved in [3], that for F ∈W∞(B),

〈F 2 log |F |〉 ≤ 〈|dF |2〉+ 1
2 〈F

2〉 log〈F 2〉.

The proof of the above theorem uses this inequality at a key point, just as in Gross’s
proof for T = 1.

It is tempting to attempt to get rid of the potential V in the inequality above by
means of the Hausdorff-Young inequality: for all x ∈ R and y > 0,

xy ≤ ex + y log y − y.

This shows that for 〈|F |2〉∗ = 1,

(1− Cε/2)〈F 2 log |F |〉∗ ≤ C〈|d∗F |2〉∗ + C〈eV/ε〉∗ + C(log ε− 1).

In order to obtain a logarithmic Sobolev inequality from this, we need to be able to
take ε < 2/C. In Proposition 2.10, we will see that this value of ε is marginally too
small for 〈eV/ε〉∗ to be finite. It is not clear whether some other method will allow
the omission of V from the inequality.

In Section 1, we recall some of the results of [2], and prove some abstract lemmas
that will be called upon later. In Section 2, we specialize to L∗G, where G is a
compact Lie group. In Section 3, we discuss the technique of Gross in which he
effectively constructs a smooth tubular neighbourhood of L∗G in Wiener space. In
Section 4, we give our proof of the main theorem.

Throughout this paper, we will make frequent use of the Hausdorff-Young in-
equality:

The writing of this paper would not have been possible without the interest of
L.Gross, and I would like to thank him here for his generosity.

1. The geometry of Malliavin maps

Let g be a real vector space with inner-product, and let B be the classical Wiener
space B = C∗([0, T ], g) = {γ ∈ C([0, T ], g) | γ(0) = 0}. The Wiener measure on B
is the unique probability measure such that∫

B

exp
(
i

∫ T

0

(α(t), γ(t)) dt
)
dµ(γ) = e−C(α,α)/2 for all α ∈ L∞([0, T ], g),

where

C(α, α) =
∫ T

0

∫ T

0

min(s, t) (α(s), α(t)) ds dt.
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Let H ⊂ B be the Hilbert space of finite-energy paths L2,1
∗ ([0, T ], g), with inner

product

|γ|2 =
∫ T

0

|γ̇(t)|2 dt.

A cylinder function on B is a function of the form

F (γ(t1), . . . , γ(tk)),

where 0 < t1 < . . . < tk < T , and F ∈ C∞c (gk). The space of all cylinder functions,
written C∞c (B), is dense in Lp(B) = Lp(B, dµ) for each p < ∞. If τ : B → gk

denotes the map
τ(γ) = (γ(t1), . . . , γ(tk)),

then the above cylinder function may be written τ∗F .
We will often make use of the Hilbert tensor product H1 ⊗2 H2 of two Hilbert

spaces H1 and H2; this is completion of the algebraic tensor product with respect
to the quadratic form

|v ⊗2 w|2 = |v|2 · |w|2.

We also let HS(H) denote the space of Hilbert-Schmidt operators on H.
If f = τ∗F is a cylinder function, its gradient, denoted by df , is the element of

C∞c (B)⊗H defined by applying the map

τ∗ : C∞c (gk)⊗ gk −→ C∞c (B)⊗H

to dF ∈ C∞c (gk)⊗gk. Forming the closure of this operator, we obtain an unbounded
operator from Lp(B) to Lp(B,H), which we will also denote by d; its adjoint d∗ is
then a closed unbounded operator from Lp(B,H) to Lp(B).

The composition of the operators d and d∗ acting on the cylinder functions is the
Ornstein-Uhlenbeck operator L = d∗d, which is essentially self-adjoint with core
C∞c (B). If H is a Hilbert space, the Sobolev space Lp

s(B,H), where 1 < p <∞ and
s ∈ R, is the domain of Ls/2 on Lp(B,H). The space of Malliavin test functions is

W∞(B,H) =
⋂

p,s<∞
Lp

s(B,H).

Meyer has proved that d is bounded from Lp
s(B) to Lp

s−1(B,H) and that d∗ is
bounded from Lp

s(B,H) to Lp
s−1(B), for all s ∈ R and p < ∞. It is important to

note that W∞-functions need not be continuous.
We can also define W∞-maps from a Wiener space B to a compact Riemannian

manifold M .
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Definition 1.1. A map π : B →M is in W∞(B,M) if it is measurable and if the
pull-back map π∗ : C∞(M) →W∞(B) is bounded.

An equivalent definition can be made by choosing an embedding ρ : M −→ Rn of
M in a Euclidean space Rn: then π ∈W∞(B,M) if and only if ρ◦π ∈W∞(B,Rn).

If π ∈W∞(B,M), the composition

C∞(M) π∗−→W∞(B)
µ−→ R

is a positive linear form on C∞(M) which equals 1 on the constant function 1, and
hence defines a probability measure on M . We will write this measure π∗µ.

The tangent map

d : W∞(M,B) −→W∞(B,Hom(H,π∗TM))

may be defined by means of an embedding ρ : M −→ Rn, by the formula

d(ρ ◦ π) = dρ ◦ dπ ∈W∞(B,Hom(H,Rn)).

Definition 1.2. Let π : B −→ M be in W∞(B,M), with differential Π, and form
Γ = ΠΠ∗ ∈W∞(B,End(π∗TM)). Then π is a Malliavin map if the determinant
det(Γ) satisfies

det(Γ)−1 ∈ Lp(B) for p <∞.

If π is a Malliavin map, then the operator Γ−1 is in W∞(B,End(π∗TM)), and
det(Γ)k is in W∞(B) for all k ∈ Z. The operator N = Π∗Γ−1Π ∈ W∞(B,HS(H))
is a projector in H of rank n for a.e. x ∈ B. We may think of N as the projector
on the normal bundle to the fibres of the map π. Thus the projector P = 1 − N
orthogonal to N is the projector onto the tangent bundle to the fibres of π.

We say that an operator A on W∞(B) acts along the fibres of π if it satisfies the
formula

A((π∗f)F ) = (π∗f)(AF ),

for all f ∈ C∞(M) and F ∈W∞(B). Using the projector P , we may construct the
exterior differential along the fibres

d∗ : W∞(B) −→W∞(B,H),

defined by the formula d∗F = P (dF ), and the Ornstein-Uhlenbeck operator along
the fibres L∗ : W∞(B) −→W∞(B), associated to the Dirichlet form 〈|d∗F |2〉, given
by the formula L∗F = d∗PdF .
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The adjoint of the pull-back π∗ : C∞(M) → W∞(B) is a bounded map (π∗)′ :
W∞(B)′ −→ C∞(M)′. We define a push-forward map π∗ : W∞(B) −→ C∞(M) in
such a way that the following diagram commutes:

W∞(B) π∗−−−−→ C∞(M)

F 7→F dµ

y yf 7→f d(π∗µ)

W∞(B)′
(π∗)′−−−−→ C∞(M)′

The following basic result, due to Malliavin, shows that the map π∗ : W∞(B) −→
C∞(M) is well-defined.

Proposition 1.3. If π is a Malliavin map, integration along the fibres of π defines
a bounded map π∗ : W∞(B) −→ C∞(M).

Note that π∗ ◦π∗ is the identity, and in particular, that π∗1 = 1. If F ∈W∞(B),
we define

〈F 〉 =
∫

B

F dµ;

similarly, if f ∈ C∞(M), we define

〈f〉 =
∫

M

f d(π∗µ).

These integrals are related by the formula 〈F 〉 = 〈π∗F 〉.

Definition 1.4. If X is a vector field on M , its horizontal lift X̃ ∈ W∞(B,H)
is the unique vector field on B such that

(1) if f ∈ C∞(M), X̃(π∗f) = π∗(X(f));
(2) X̃ is horizontal, that is, PX̃ = 0.

It may be checked that the vector field Π∗Γ−1π∗X satisfies the above require-
ments, so that we obtain an explicit formula for the horizontal lift:

X̃ = Π∗Γ−1π∗X.

We will denote by divπ∗µ : Γ(M,TM) −→ C∞(M) the adjoint of the exterior
differential d : C∞(M) −→ Γ(M,T ∗M) with respect to the pairings

(f, g) =
∫

M

fg d(π∗µ) and (X,ω) =
∫

M

〈X,ω〉 d(π∗µ).

In terms of the divergence operator div defined with respect to the Riemannian
volume form dx, divπ∗µ is given by the formula

divπ∗µX = divX +X

(
log
(
d(π∗µ)
dx

))
.
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Definition 1.5. If X is a vector field on M , we define the W∞-function α(X) by
the formula

α(X) = d∗X̃ − π∗(divπ∗µX).

It is easy to see that α satisfies the formula

(1.6) α(fX) = (π∗f)α(X) for all f ∈ C∞(M).

The following proposition explains our reason for introducing α(X).

Proposition 1.7. If X is a vector field on M and F ∈W∞(B), then

X (π∗F ) = X̃(F )− α(X)F.

Proof. If F ∈W∞(B) and f ∈ C∞(M), then

〈fX(π∗F )〉 =
〈(
−X(f) + (divπ∗µX)f

)
π∗F

〉
=
〈
π∗
(
−X(f) + (divπ∗µX)f

)
F
〉
.

We now use the fact that π∗(X(f)) = X̃(π∗f), which gives

〈fX(π∗F )〉 =
〈(
−X̃(π∗f) + π∗(divπ∗µX)π∗f

)
F
〉

=
〈
π∗f

(
X̃(F )− d∗X̃ F + π∗(divπ∗µX)F

)〉
,

which proves the lemma, since f was arbitrary. �

Corollary 1.8. If F ∈W∞(B) satisfies the formula X̃(F ) = 1
2α(X)F , then

(1) Xπ∗
(
|F |2

)
= 0;

(2) Xπ∗
(
|F |2 log |F |2

)
= π∗

(
α(X)|F |2

)
.

Proof. To prove (1), we observe that X̃(|F |2) = 2FX̃(F ) = α(X)|F |2. Since

X
(
π∗|F |2

)
= π∗

(
X̃(|F |2)

)
− π∗

(
α(X)|F |2

)
,

(1) follows.
To prove (2), let us calculate X̃(|F |2 log |F |2):

X̃(|F |2 log |F |2) = 2F X̃(F ) log |F |2 + 2F X̃(F )

= α(X)|F |2 log |F |2 + α(X)|F |2.

SinceXπ∗
(
|F |2 log |F |2

)
= π∗

(
X̃(|F |2 log |F |2)

)
−π∗

(
α(X)|F |2 log |F |2

)
, the proof

of (2) follows. �
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2. Based loops in a compact Lie group

In this section, we will discuss a particular case of a Malliavin map, in which
M is a compact Lie group G, with Lie algebra g, and the map π is the so-called
path-ordered exponential. This case is very special, since the Malliavin covariance
Γ = Π∗Π is equal to a constant multiple T id of the identity operator, which makes
many of the calculations easier.

To simplify the formulation of the results, we will assume that the group G is
a linear group; of course, this is no restriction, since every compact Lie group has
a faithful linear representation. We also suppose chosen an invariant Riemannian
metric on G, which induces an inner product on g invariant under the adjoint
action Ad(g) for g ∈ G. Denote the dimension of G by n, and the identity of G
by e. We will always identify a Lie algebra element X ∈ g with the corresponding
left-invariant vector field on G.

Let (B,H) be the classical Wiener space
(
C∗([0, T ], g), L2,1

∗ ([0, T ], g)
)
. If x ∈ H,

we solve the ordinary differential equation for γ(t) : [0, T ] → G with initial condition
γ(0) = e,

γ(t)−1γ̇(t) = ẋ(t).

The solution of this equation is known as the path-ordered exponential, and we
will write it as γ[x], or simply as γ if x is implicit.

The path-ordered exponential identifies H with the space of finite-energy based
paths in L2,1

∗ ([0, T ], G). Let π be the map x 7→ γ[x](T ); the fibre of π over e can
be identified with the space L∗G of finite-energy paths in G which return to the
identity at time T , that is, the based loop space of G.

If F ∈ W∞(B), we will denote by 〈F 〉∗ the integral of F over the fibre π−1(e),
that is,

〈F 〉∗ = π∗(F )(e).

When we say that two functions F1 and F2 are equal on π−1(e), we mean that
〈(F1 − F2)2〉∗ = 0.

The map γ(t) : B −→ G is extended to a family of W∞-maps from the Wiener
space B to G, by introducing a mollifier on B:

xε(t) = ε−1

∫ 1

0

λ(ε−1(s− t))x(s) ds,

where λ is any positive symmetric function in C∞c (−1, 1) such that
∫
(−1,1)

λ dt = 1.
The following proposition is a consequence of the theory of Stratanovitch stochastic
differential equations.

Proposition 2.1.
(1) For each ε > 0, the map πε(x) = π(xε) is a W∞-map from B to G.
(2) As ε→ 0, the maps πε converge in W∞(B,G) to a map π.
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We now calculate the differential dπ, and the Malliavin covariance matrix Γ =
(dπ)(dπ)∗, of the map π explicitly.

Proposition 2.2.
(1) Π = (dπ)π−1 ∈W∞(B,Hom(H, g)) is given by the formula

Π(ht) =
∫ T

0

Ad(γ(t))ḣt dt.

(2) The adjoint Π∗(X) ∈W∞(B,Hom(g,H)) of Π is given by the formula

(Π∗X)t =
∫ t

0

Ad(γ(s))−1X ds.

(3) The Malliavin covariance matrix Γ = ΠΠ∗ equals T times the identity of g;
in particular, the map π satisfies the Malliavin condition, since det(Γ) = Tn

is a constant, and N is given by the formula N = T−1Π∗Π.

Proof. We will calculate Πε = (dπε)(πε)−1, and then take the limit ε −→ 0. For
ε > 0, the map πε is smooth, so we can calculate Πε path by path.

By duHamel’s formula, (dπε)(πε)−1 equals

(dπε)(πε)−1 = (dγε(T ))γε(T )−1 =
∫ T

0

Ad(γε(t))ḣε(t) dt,

from which (1) follows, by sending ε→ 0.
Since the metric on g is invariant, it follows that if X ∈ g, then

(X,Π(h(t))) =
∫ T

0

(
X,Ad(γ(t))ḣ(t)

)
dt =

∫ T

0

(
Ad(γ(t))−1X, ḣ(t)

)
dt,

from which we obtain the formula for Π∗(X). It is clear from this that ΠΠ∗ = T . �

Corollary 2.3. If X ∈ g, then its horizontal lift X̃ ∈ W∞(B,H) is given by the
formula

X̃(t) = T−1

∫ t

0

Ad(γ(s))−1X ds,

and d∗X̃ is given by the formula

d∗X̃ = T−1(d∗Π, X),

where d∗Π ∈W∞(B, g) is the divergence of Π.

It follows from Proposition 2.2 that if f ∈ C∞(G), then d(π∗f) satisfies

(2.4) |d(π∗f)| = T 1/2|df |.

The next proposition collects a number of useful formulas.
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Proposition 2.5.
(1) The gradient dΠ ∈W∞(B,Hom(H ⊗2 H, g)) is given by the formula

dΠ(a, b) =
∫

0≤s≤t≤T

[Ad(γ(s))ȧ(s),Ad(γ(t))ḃ(t)] ds dt.

(2) The divergence d∗Π ∈W∞(B, g) is given by the Stratanovitch integral

d∗Π =
∫ T

0

Ad(γ(t))ẋ(t) dt.

(3) If a ∈ H, then

dd∗Π(a) =
∫

0≤t≤T

Ad(γ(t))ȧ(t) dt+
∫

0≤s≤t≤T

[Ad(γ(s))ȧ(s),Ad(γ(t))ẏ(t)] ds dt.

Proof. The gradient of Πε is given by the formula

dΠε(a, b) =
∫

0≤s≤t≤T

[
Ad(γε(s))ȧ(s),Ad(γε(t))ḃ(t)

]
ds dt.

The formula for dΠ follows by taking ε→ 0.
In a finite-dimensional Wiener space V , d∗Π would be given by the formula

d∗Π = −Tr(dΠ) + Πx,

where x is the identity map from V to itself. In our infinite-dimensional situation,
this formula makes sense if we replace Π by its approximation Πε:

d∗Πε = −TrH(dΠε) + Πεx.

Using the above formula for dΠε, it is easy to see that TrH(dΠε) vanishes. On the
other hand, Πεx equals

Πεx =
∫ T

0

Ad(γε(t))ẋ(t) dt,

which converges to ∫ T

0

Ad(γε(t))ẋ(t) dt

as ε→ 0. This proves (2). The proof of (3) is similar to the proof of (1). �

Let y(t) be the Stratanovitch stochastic integral

y(t) =
∫ t

0

Ad(γ(s))dx(s) = lim
ε→0

∫ t

0

Ad(γ(s))ẋε(s) ds,

so that d∗Π = y(T ). In the rest of this section, we will study the properties of the
stochastic process y(t). The following lemma will be basic to this study.
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Lemma 2.6. The stochastic process t 7→ y(t) is a Wiener process; that is, the map
from B to itself given by sending x to y is measure-preserving.

Proof. Let us denote the Stratonovitch stochastic differential by dx(t), and the Ito
stochastic differential by δx(t). The relationship between the two differentials shows
that γ−tδγ(t) = δx(t). It follows that

y(t) =
∫ t

0

Ad(γ(s))δx(s) + 1
2

∑
ijk

cijk

∫ t

0

Ad(γ(t))Xi d〈xj , xk〉

=
∫ t

0

Ad(γ(s))δx(s),

since the quadratic variation 〈xj , xk〉 = tδjk is symmetric in j and k, while the
structure coefficients cijk are antisymmetric. Thus, we see that the quadratic vari-
ation process 〈y, y〉 equals t times the inner product on g, and hence that y(t) is a
Wiener process on g. �

There is a more geometric way to see that t 7→ y(t) is a Wiener process, for which
we will give only the outline. Consider the diagram

B
x7→−x−−−−→ B

x7→γ[x]−−−−→ P∗G
γ 7→γ−1

−−−−−→ P∗G
γ 7→x−−−→ B.

It turns out that the composition of these maps is precisely the map x 7→ y[x]. Since
each map is measure-preserving, their composition is, proving that y is a Wiener
process.

Corollary 2.7.

(1)
〈
exp
(λ

2
|y(T )|2

)〉
= (1− Tλ)−n/2

(2)
〈
exp
(λ

2

∫ T

0

|y(t)|2 dt
)〉

= (cosTλ1/2)−n/2

Proof. Since y(t) is a Brownian process, (1) follows from the calculation of the
following integral:

(2πT )−n/2

∫
g

e−|ξ|
2/2T+λ|ξ|2/2 dξ = (1− Tλ)−n/2.

By the Feynman-Kac formula, the left-hand side of (2) is given by the integral
of the heat-kernel

〈
ξ
∣∣e−T (∆−λ|ξ|2)/2

∣∣0〉 = (2πT )−n/2

(
Tλ1/2

sinTλ1/2

)n/2

e−(λ1/2 cot Tλ1/2)|ξ|2/2,
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with respect to ξ, which is(
Tλ1/2

Tλ1/2 cotTλ1/2 sinTλ1/2

)n/2

= (cosTλ1/2)−n/2. �

Let {X,Y } denote the Killing form on g, given by the formula

{X,Y } = −Trg(ad(X) ad(Y )),

and let ‖X‖2 = {X,X}.

Lemma 2.8. The differential dy(T ) of y(T ) satisfies the estimate

|dy(T )|2 = T +
1
2

∫
0≤s,t≤T

min(s, t){ẏ(s), ẏ(t)} ds dt

≤ T + T |y(T )|2 +
∫ T

0

‖y(t)‖2 dt.

Proof. The proof makes use of the same mollification method as in the proof of
Proposition 2.5; hence, we will tacitly suppose that x(t) is smooth.

The formula for |dy(T )|2 easily follows from the formula for dy(T ) in Proposi-
tion 2.5 (3). Pretending that x(t) is smooth, we integrate twice by parts:∫

0≤s,t≤T

min(s, t) {ẏ(s), ẏ(t)} ds dt

= T‖y(T )‖2 − 2
∫ T

0

{y(t), y(T )} dt+
∫ T

0

‖y(t)‖2 dt

≤ 2T |y(T )|2 + 2
∫

0≤t≤T

‖y(t)‖2 ds.

�

Ito’s formula shows that the measure π∗µ is determined by the formula

d(π∗µ)
dg

= k(T, g),

where k(T, g) = 〈g|e−T∆|e〉 is the heat-kernel for the invariant Laplacian ∆ on G.
The asymptotic expansion for the heat kernel shows that k(T, g) may be written
for small T as

k(T, g) = (4πT )− dim(G)/2e−δ(g)2/4T

(∑
i<N

T iai(g) + rN (T, g)

)
,
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where δ(g) is the Riemannian distance between g and the identity, ai ∈ C∞(G),
and rN ∈ C∞((0, ε]×G) satisfies the estimates∣∣∂k

T∂
α
g rN (T, g)

∣∣ ≤ C(k, α)TN−2k−|α|

for N ≥ 2k − |α|. It follows that for small T ,

(2.9) C1T
−n/2e−δ(g)2/4T ≤ k(T, g) ≤ C2T

−n/2e−δ(g)2/4T ,

We close this section with an estimate which differs from Corollary 2.7 in that it
estimates an integral over one fibre of π, and not over all of B.

Proposition 2.10.〈
exp
(λ

2
|y(T )|2

)〉
∗

=
vol(G/T )
k(T, e)

(
2π
λ

)n/2 ∫
t

k(T, eX)e(T−λ−1)|X|2/2 detg/t(1 + ad(X)) dX

Proof. We will use the formula

〈
exp
(λ

2
|y(T )|2

)〉
∗

=
(

2π
λ

)n/2 ∫
g

〈
exp(X, y(T ))

〉
∗e
−|X|2/2λ dX

This may be rewritten as an integral over the Cartan subalgebra t by the change of
variables formula∫

g

f(X) dX =
∫

G/T

(∫
t

f(Ad(g)X) detg/t(1 + ad(X)) dX
)
dg,

where
1 ≤ detg/t(1 + ad(X)) ≤ O(|X|dim(g/t)).

Using the fact that 〈exp(X, y(T ))〉∗ is invariant under conjugation X 7→ Ad(g)X,
we see that〈

exp
(λ

2
|y(T )|2

)〉
∗

= vol(G/T )
(

2π
λ

)n/2 ∫
t

〈
exp(X, y(T ))

〉
∗e
−|X|2/2λ detg/t(1 + ad(X)) dX.
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We now apply the result of Lemma2.6. By the Ito formula, we see that the Ito
stochastic differential

δ
{
f(γ(t))e(X,y(t))

}
= (df(γ(t)) +X, δx(t))e(X,y(t))

+
(
− 1

2∆f(γ(t)) +X(f)(γ(t)) + 1
2 |X|

2
)
e(X,y(t))

From this, it follows that
〈
e(X,y(T ))

〉
∗ is given by the ratio of heat kernels〈

e
∣∣ expT

(
− 1

2∆ +X + 1
2 |X|

2
)∣∣e〉〈

e
∣∣ expT

(
− 1

2∆
)∣∣e〉 =

eT |X|2/2k(T, eTX)
k(T, e)

,

since the vector field X commutes with the Laplacian ∆. �

Note that it is an easy consequence of this proposition that〈
exp
(λ

2
|y(T )|2

)〉
∗
<∞

if and only if λ < T−1.

3. The tubular neighbourhood of a fibre

In this section, we will explain Gross’s idea of constructing a tubular neigh-
bourhood in B of the fibre π−1(e) of the map π above the identity element of G.
Introduce the family of balls

Br = {exp(Y ) | |Y | < T 1/2r} ⊂ G,

where r and T are small. On such a ball, we will use radial coordinates; thus, we
will write h(x) instead of h(expx) when h is a function on Br.

Let R be a smooth vector field on G which on Br equals the radial vector field
of g. We introduce the vector field R because on Br, its integral curves are the
one-parameter semigroups of G.

Define a map ϕ : g×B −→ B by

ϕ(X,x) = x+ T−1

∫ t

0

Ad(γ(s))−1X ds.

Since γ[ϕ(X,x)] = exp(tX/T )γ(t), we see that

π(ϕ(X,x)) = π(x) exp(X),
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and hence that the map ϕ defines a tubular neighbourhood of the fibre π−1(e).
Given an element x ∈ B such that π(x) = exp(X) ∈ B2r, we may form the path

in B
σ ∈ [0, 1] 7→ xσ = ϕ((σ − 1)X,x),

which covers the path exp(σX) in G; in particular, x0 lies in the fibre π−1(e). It is
easy to check that xσ is the integral curve for the vector field R̃.

If F ∈W∞(B), define the function F̃ to take the value

(3.1) F̃ (x) = π∗ψ F (x0) exp
(

1
2

∫ 1

0

α(R)(xσ) dσ
)

at the path x, where ψ ∈ C∞c (B2r) is a smooth cut-off function which equals 1 on
the ball Br. It is clear that F̃ and F are equal on π−1(e), and that F̃ satisfies the
differential equation

(3.2) R̃(F̃ ) =
α(R)

2
F

on π−1(Br). In the remainder of this section, we will prove the following result,
which expresses the fact that the tubular neighbourhood constructed above has a
certain amount of regularity.

Theorem 3.3. The function F̃ defined above lies in W∞(B).

The first step in the proof that F̃ ∈ W∞(B) is the special case where F = 1. If
Gσ is a family of measurable functions on B, then by Leibniz’s rule,

exp
(∫ 1

0

Gσ dσ
)
∈W∞(B)

if exp(Gσ) is uniformly in Lp(B), and Gσ is uniformly in W∞(B), for all σ ∈ [0, 1].
In our case, Gσ = 1

2α(R)(xσ). Thus, it suffices to prove the following lemma.

Lemma 3.4. Let ψ ∈ C∞c (B2r) be such that |ψ| ≤ 1.
(1) The functional

π∗ψ α(R)(xσ)

is in W∞(B), uniformly in σ ∈ [0, 1].
(2) The functional

π∗ψ exp(α(R)(xσ))

is in Lp(B) for all p <∞, uniformly in σ ∈ [0, 1].
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Proof. If X ∈ g, then

α(X) = d∗X̃ + π∗(X(log k(T )))

= T−1(y(T ), π∗X) + π∗(X(log k(T )))

and hence
α(R)[xσ] = T−1(yσ(T ), π∗σR) + π∗σ(R(log k(T ))),

where yσ = y[xσ] and πσ(x) = π(xσ). On π−1(B2r) the maps πσ are uniformly
W∞, showing that π∗ψ π∗σ(R(log k(T ))) is uniformly in W∞(B). To prove (1), we
must prove that yσ(T ) is uniformly in W∞(B).

By the same argument as was used to prove Lemma 2.6 (1), we see that yσ is
given by the Ito integral

(∗) yσ(t) =
∫ t

0

Ad((σ − 1)sX/T ) Ad(γ(s)) δxs +
t(σ − 1)

T
X.

It follows from Theorem 2.19 of Kusuoka and Stroock [5] that yσ(T ) is in W∞(B),
since this theorem shows that stochastic differential equations with smooth data
have W∞ solutions.

Let us now prove (2). If X ∈ g, then on inverse image by π of the ball B2r,

|α(X)| ≤ |d∗X̃|+ sup
g∈B2r

|X(log k(T ))|

≤ |X|
T
|y(T )|+ Cr

T 1/2

It follows by (1.6) that on π−1(B2r),

|α(R)[xσ]| ≤ Cr

T 1/2
|yσ(T )|+ Cr2.

By (∗), we see that yσ(t)− t(σ − 1)X/T is a Wiener process, and hence that

〈ep|yσ(T )|〉 ≤ ep(1−σ)|X| 〈ep|x(T )|〉 <∞,

proving (2). �

It remains to be proved that π∗ψ F (x0) lies in W∞(B) for any ψ ∈ C∞c (B2r).
Observe that

π∗

(∣∣∣F (x0) exp
(1
p

∫ 1

0

α(R)(xσ) dσ
)∣∣∣p)
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is constant on the ball B2r, and is equal to its value at the identity, namely 〈|F |p〉∗;
this follows by the same method as was used to prove Corollary 1.8. This shows
that the function

π∗ψ F (x0) exp
(1
p

∫ 1

0

α(R)(xσ) dσ
)

is in Lp(B). It follows from Lemma 3.4 (2) that π∗ψ(x)F (x0) ∈ Lp(B) for all p <∞.
A similar argument shows that π∗ψ |dkF |2(x0) ∈ Lp(B) for all p <∞, where k ∈ N
and dkF ∈W∞(B,H⊗2k) is the tensor of k-th derivatives of F .

Denote the map x 7→ x0 by H; restricted to π−1(B2r), it is a Wiener map, that
is, it lies in I+W∞(π−1(B2r),H). The chain rule now shows that π∗ψ |dkF (x0)|2 ∈
Lp(B) for all p <∞, and hence that F ∈W∞(B). To give an example, the second
derivatives of F (xσ) are given by the formula

d2F (x0) = H∗(d2F ) ◦ (dH ⊗2 dH) +H∗(dF ) ◦ d2H.

This completes the proof of Theorem 3.3.

4. The rough logarithmic Sobolev inequalities

Our goal in this section is to prove the following logarithmic Sobolev inequality.

Theorem 4.1. There is a constant C such that for F ∈ W∞(B), uniformly for
small T ,

〈F 2 logF 〉∗ ≤ C〈|d∗F |2 + (T−1|y(T )|2 + 1)F 2〉∗ + 1
2 〈F

2〉∗ log〈F 2〉∗.
The idea of the proof is as follows. If F is in W∞(B), we use Theorem 3.3 to

replace it by another W∞-function F̃ equal to F on π−1(e) but which satisfies the
ordinary differential equation

(4.2) R̃(F ) =
α(R)

2
F̃ .

It follows that d∗F = d∗F̃ on π−1(e), so that we may replace F by F̃ in proving
the theorem.

Along the fibre π−1(e), the horizontal part NdF̃ of the differential dF̃ may be
identified by (4.2):

X̃F̃
∣∣
π−1(e)

=
1
2
α(X)F̃

∣∣
π−1(e)

=
1

2T
(y(T ), X)F

∣∣
π−1(e)

.

From this, we see that

〈|dF̃ |2〉∗ = 〈|d∗F |2〉∗ +
1

4T
〈|y(T )|2 F 2〉∗.

Thus, the proof of Theorem 4.1 is reduced to that of the following result.
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Theorem 4.3. There is a constant C such that for positive F ∈W∞(B) satisfying
(4.2), uniformly for small T ,

〈F 2 logF 〉∗ ≤ C〈|dF |2 + F 2〉∗ + 1
2 〈F

2〉∗ log〈F 2〉∗.

If u is a smooth positive function on the unit ball {x ∈ g | |x| < 1} such that∫
g

u2 dx = (4π)n/2,

we define ur to be the rescaled function ur(expx) = r−n/2u(x/T 1/2r) on Br. We
show that the logarithmic Sobolev inequality for (π∗ur)F on B implies the loga-
rithmic Sobolev inequality for F on the fibre π−1(e), once r is chosen sufficiently
small. This is done by using Gronwall’s inequality applied to the ordinary differen-
tial equation (4.2) to relate the integrals over the fibre π−1(x), for x ∈ Br,

π∗(F 2 logF )(x) and π∗(|dF |2)(x),

to the analogous integrals over the fibre π−1(e),

〈F 2 logF 〉∗ and 〈|dF |2〉∗.

Lemma 4.4. Let F ∈W∞(B) be a positive function satisfying (4.2) and such that
〈F 2〉 = 1. Then there is a constant C such that the following inequality holds
uniformly for small T and r:

〈F 2 logF 〉∗ ≤ (1 +O(T + r))
∫

G

u2
r π∗(F

2 logF ) d(π∗µ) +O(1).

Proof. Denote by ϕ(x) the function x2 log x+1; we introduce the function ϕ because
it is positive on the positive real interval.

Corollary 1.8 combined with (4.2) shows that the radial derivative of π∗(ϕ(F ))
in the direction x ∈ g equals

d

dt
π∗(ϕ(F ))(tx) =

|x|
2
π∗(α(x̂)F 2)(tx),

where x̂ = |x|−1x. Since T−1/2|x| ≤ r on Br, the Hausdorff-Young inequality shows
that

d

dt
π∗(ϕ(F ))(tx) ≥ −rπ∗(ϕ(F ))(tx)− r

2
π∗
(
eT 1/2|α(x̂)|)(tx)
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on the set Br. By Gronwall’s inequality,

(∗) π∗(ϕ(F ))(x) ≥ e−r〈ϕ(F )〉∗ −
r

2

∫ 1

0

π∗H(tx) dt,

where H = supx̂∈Sn−1

(
eT 1/2|α(x̂)|).

By the asymptotic expansion for the heat-kernel k(T, g) on G for small T ,∫
G

u2
r d(π∗µ) = 1 +O(T + r2).

Multiplying (∗) by u2
r and integrating over G with respect to the measure π∗µ, we

see that∫
G

u2
r π∗(ϕ(F )) d(π∗µ)

≥ (1 +O(T + r)) 〈ϕ(F )〉∗ −O(r1−n)
∫

Br

(∫ 1

0

π∗H(tx) dt
)
d(π∗µ).

The second term on the right-hand side is estimated by replacing the measure d(π∗µ)
by the equivalent measure Tn/2 dx (see (2.8)), and then changing variables from x
to y = tx:∫

Br

(∫ 1

0

(π∗H)(tx) dt
)
d(π∗µ) ≤ C2T

−n/2

∫
Br

(∫ 1

0

(π∗H)(tx) dt
)
dx

≤ C2T
−n/2

∫
Br

(∫ 1

|y|/T 1/2r

t−n dt

)
(π∗H)(y) dy

≤ C2 T
−1/2 rn−1

∫
Br

|y|1−n(π∗H)(y) dy.

Hölder’s inequality with respect to the measure dy on Br now shows that if s > n,∫
Br

|y|1−nπ∗H dy ≤ C(n, s) (T 1/2r)1−n/s

(∫
Br

(π∗H)s dy

)1/s

.

Applying Hölder’s inequality along the fibres of π shows that∫
Br

(π∗H)s dy ≤ C−1
1 Tn/2

∫
Br

(π∗H)s d(π∗µ)

≤ C−1
1 Tn/2

∫
Br

π∗(Hs) d(π∗µ) = C−1
1 Tn/2‖H‖s

s.
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Combining all of this, we see that∫
Br

(∫ 1

0

π∗H(tx) dt
)
d(π∗µ) ≤ Cr1−n/s‖H‖s,

where C is a constant depending on C1, C2, s and C(n, s), but not on T . We may
as well choose s = 2n, but any real number greater than n will do equally well.

It remains to prove that ‖H‖s < ∞. First of all, note that H may be bounded
using an orthonormal basis xi of g, as follows:

H = sup
x̂∈Sn−1

(
eT 1/2|α(x̂)|) ≤ eT 1/2(|α(x1)|+···+|α(xn)|).

It follows that

‖H‖s
s =

∫
B

sup
x̂∈Sn−1

esT 1/2|α(x̂)| dµ ≤
∫

B

esT 1/2(|α(x1)|+···+|α(xn)|) dµ

≤

(
n∏

i=1

∫
B

ensT 1/2|α(xi)| dµ

)1/n

.

If X ∈ g, then

α(X) = d∗X̃ − π∗(divπ∗µX)

= T−1(y(T ), X)− π∗(X(log k(T ))).

We see by (2.8) that for small T > 0,

T 1/2|α(X)| ≤ C‖X‖0

T 1/2
(|y(T )|+ δ(γ(T )))

≤ ε

4T
(|y(T )|2 + δ(γ(T ))2) + ε−1C2‖X‖2

0,

for some constant C depending only on G; here, ε is an arbitrary positive constant.
It now follows by the estimates of Corollary 2.7 that the integral

〈
eT 1/2|α(X)|〉 is

uniformly bounded for small T , proving that ‖H‖s <∞.
In this way, we have proved that∫

G

u2
r π∗(F

2 logF ) d(π∗µ) =
∫

G

u2
r π∗(ϕ(F )) d(π∗µ)− (1 +O(T + r2))

≥ (1 +O(T + r)) 〈F 2 logF 〉∗ −O(1),
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which after a little rearrangement gives the lemma. �

If we apply the logarithmic Sobolev inequality for the Wiener space B to the
function (π∗ur)F ∈ W∞(B), which satisfies 〈|(π∗ur)F |2〉 = 1 + O(T + r2), we
obtain the inequality

〈|(π∗ur)F |2 log((π∗ur)F )〉 ≤ 〈|d((π∗ur)F )|2〉+O(T + r2).

Since
|(π∗ur)F |2 log((π∗ur)F ) = (π∗ur)2 F 2 logF + π∗(u2

r log ur)F 2

and π∗(F 2) = 1, we see that∫
Br

u2
r π∗(F

2 logF ) d(π∗µ) ≤
∫

Br

u2
r π∗(|dF |2) d(π∗µ)

+
∫

Br

π∗(|d(π∗ur)|2) d(π∗µ)−
∫

Br

u2
r log ur d(π∗µ) +O(T + r2).

To handle the second term on the right-hand side, we use (2.5), which shows that∫
Br

π∗(|d(π∗ur)|2) d(π∗µ) = O(r−2),

while to bound the third term, we use the fact that x2 log x ≥ −(2e)−1. Thus, we
see that

(4.5)
∫

Br

u2
r π∗(F

2 logF ) d(π∗µ) ≤
∫

Br

u2
r π∗(|dF |2) d(π∗µ) +O(r−2).

To complete the proof of Theorem 4.3, we will imitate the proof of Lemma4.4 to
obtain an upper bound for∫

Br

u2
r π∗(|dF |2 + εF 2 logF ) d(π∗µ)

in terms of 〈|dF |2 + εF 2 logF 〉∗, where ε is a small positive constant.

Lemma 4.6. Let F ∈W∞(B) be a positive function satisfying (4.2) and such that
π∗(F 2) = 1 on the ball Br. Then there is a constant C such that the following
inequality holds uniformly for small T and r:∫

G

u2
r π∗(|dF |2 + εF 2 logF ) d(π∗µ) ≤ (1 +O(T + r)) 〈|dF |2 + εF 2 logF 〉∗ +O(1).
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Proof. If F ∈ W∞(B) satisfies the ordinary differential equation (4.2) along the
one-parameter semigroup exp(tX) ⊂ G, it follows that

Xπ∗(|dF |2) = π∗(X̃|dF |2)− π∗(α(X) |dF |2)

= 2π∗(dF, [X̃, d]F )− π∗(F dF, dα(X)).

The first term of the right-hand side is bounded by means of the formula

[d, X̃] = T−1(Π∗ρ(∇X)Π +X · dΠ, d),

where ρ(∇X) is the section of the bundle End(TM) over M corresponding to ∇X ∈
Γ(M,TM ⊗ TM). It is clear that the Hilbert-Schmidt norm of T−1Π∗ρ(∇X)Π is
uniformly bounded for small T , and the same is true for T−1X · dΠ by Proposi-
tion 2.6. In this way, we obtain the inequality

Xπ∗(|dF |2) ≤ π∗
(
C|dF |2 + |F | |dF | |dα(X)|

)
.

Applying the Cauchy inequality

|F | |dF | |dα(X)| ≤ T−1/2|dF |2 + T 1/2F 2 |dα(X)|2,

we see that

Xπ∗(|dF |2) ≤ π∗
(
(T−1/2 + C)|dF |2 + T 1/2F 2 |dα(X)|2

)
.

We can now bound the radial derivative of π∗(|dF |2 + rϕ(F )), in the direction
x ∈ g, where ϕ(x) = x2 log x+ 1. On the set Br, it satisfies the bound, uniform in
T for T small,

d

dt
π∗(|dF |2 + εϕ(F ))(tx)

≤ O(r)π∗(|dF |2 + εϕ(F ))(tx) +O(r)π∗
(
F 2 (T |dα(x̂)|2 + rT 1/2|α(x̂)|)

)
(tx)

≤ O(r)π∗(|dF |2 + εϕ(F ))(tx) +O(εr)π∗
(
eε−1T |dα(x̂)|2 + eT 1/2|α(x̂)|)(tx),

where we have applied the Hausdorff-Young inequalities

F 2 (T |dα(x̂)|2) ≤ ε

2
ϕ(F ) + εeε−1T |dα(x̂)|2 , and

F 2 (T 1/2|α(x̂)|) ≤ 1
2ϕ(F ) + eT 1/2|α(x̂)|.
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By Gronwall’s inequality,

π∗(|dF |2 + εϕ(F ))(x) ≥ (1 +O(r))〈|dF |2 + εϕ(F )〉∗ +O(εr)
∫ 1

0

π∗J(tx) dt,

where
J = sup

x̂∈Sn−1

(
eε−1T |dα(x̂)|2 + eT 1/2|α(x̂)|)(tx).

The rest of the proof is the same as that of Lemma 4.4, except that we must
bound ‖J‖s instead of ‖H‖s. Let X ∈ g. Since d(π∗f) = T 1/2π∗(df), we see that

dα(X) = T−1(dy(T ), π∗X)− dπ∗(X(log k(T )))

= T−1(dy(T ), X)− T 1/2π∗(d(X(log k(T ))))

It follows that

T |dα(X)|2 ≤ 2‖X‖2
0

T
|dy(T )|2 + 2T 2|d(X(log k(T )))|2

≤ 2‖X‖2
0

T
|dy(T )|2 + C0(G)‖X‖2

0 + C1(G)T‖X‖2
1,

where the constants Ci(G) depend only on the group G. The uniform bound on
〈eε−1T |dα(X)|2〉 for T small enough follows from Corollary 2.7, and we see that ‖J‖s <
∞ uniformly. �

Let us assemble the results obtained so far in this section. Under the conditions
on the function F of Lemma 4.4, we see by combining Lemma 4.4 and (4.5) that

〈F 2 logF 〉∗ ≤ (1 +O(T + r))
∫

Br

u2
r π∗(|dF |2) d(π∗µ) +O(r−2).

Combining this with Lemma4.6, we see that

〈F 2 logF 〉∗ ≤ (1 +O(T + r))〈|dF |2 + εF 2 logF 〉∗ +O(r−2).

If we choose ε sufficiently small (so that (1 + O(T + r))ε ≤ 1
2 ), we obtain the

logarithmic Sobolev inequality

〈F 2 logF 〉∗ ≤ (1 +O(T + r))〈|dF |2〉∗ +O(r−2)〈F 2〉∗ + 1
2 〈F

2〉∗ log 〈F 2〉∗,

where we have now removed the condition that 〈F 2〉∗ = 1. This immediately leads
to Theorem 4.3.
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