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Let G be a compact Lie group, and let M be a compact manifold on which G
acts smoothly. Let R∞(G) be the ring C∞(G)G of smooth conjugation invariant
functions on the group G; it is an algebra over the representation ring R(G) of G,
since R(G) maps into R∞(G) by the character map. Then there is an equivariant
Chern character

chG
k : Kk

G(M) = KG
k (C∞(M)) −→ HPG

k (C∞(M))

from the equivariant K-theory of M to the periodic cyclic homology HPG
• (C∞(M))

of the algebra C∞(M) of smooth functions onM . This map induces an isomorphism

HPG
k (C∞(M)) ∼= Kk

G(M)⊗R(G) R
∞(G);

furthermore, there are graded-commutative products on both HPG
• (C∞(M)) and

K•
G(M) such that the Chern character map is a ring homomorphism. These results

are due to Block [3] (although he works with a crossed product involving algebraic
functions instead of smooth ones), and Brylinski [5].

In this paper, we will study the equivariant cyclic homology of the algebra
C∞(M) in terms of equivariant differential forms on M ; this extends the description
which Hochschild-Kostant-Rosenberg gave of the Hochschild homology of C∞(M)
in terms of differential forms on M , which was extended by Connes to cyclic homo-
logy. Let us give a rough idea of how this works. If

c = f0 ⊗ . . .⊗ fk ⊗ ψ fi ∈ C∞(M) and ψ ∈ C∞(G),

we define a map from the Lie algebra g of G to the space of k-forms Ωk(M) on M ,
by the formula

X 7→ ψ(expX)
∫

∆k

f0 d(e−t1X · f1) ∧ . . . ∧ d(e−tkX · fk) dt1 . . . dtk.
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Here, ∆k is the k-simplex

{(t1, . . . , tk) | 0 ≤ t1 ≤ t2 . . . ≤ tk ≤ 1} ⊂ Rk.

This definition extends to define a map from C∞(Mk+1 × G) to C∞(g,Ωk(M)),
which moreover commutes with the actions of G on these two spaces: these actions
are defined as follows: on C∞(Mk+1 ×G) by

(h · c)(x0, . . . , xk|g) = c(h−1x0, . . . , h
−1xk|h−1gh),

and on C∞(g,Ωk(M)) by

(h · ω)(X) = L∗h−1ω(ad(h)X).

Thus, we obtain a map from CG
k (C∞(M)) = C∞(Mk+1 ×G)G to

C∞(g,Ωk(M))G =
(
C[g]⊗ Ωk(M)

)G ⊗C[g]G C
∞(g)G.

This map is just one component of our equivariant Hochschild-Kostant-Rosenberg
map; the other components correspond to other points of G, and define maps from
CG

k (C∞(M)) to C∞(gg,Ωk(Mg))Gg

, where Mg is the fixed-point set of g acting on
M , Gg is the fixed-point set of g acting by conjugation on G (in other words the
centralizer of g), and gg is the Lie algebra of Gg. In the above notation, this map
is induced by sending f0 ⊗ . . . fk ⊗ ψ to

X ∈ gg 7→ ψ(g expX)
∫

∆k

f0 d(e−t1X · f1) ∧ . . . ∧ d(e−tkX · fk)
∣∣
Mg dt1 . . . dtk.

We call this map αg.
It turns out that the correct way to describe the situation is by means of sheaves

on G, with the topology given by open sets invariant under conjugation; all of our
sheaves will be equivariant. In Section 1, we define a sheaf whose stalk at g ∈ G is
the space of germs at 0 of maps from gg to Ω•(Mg) invariant under the centralizer
Gg. In Section 2, we introduce the equivariant cyclic chains; these are just smooth
functions on Mk+1 ×G which are invariant under the action of G:

c(x0, . . . , xk, g) = c(h−1x0, . . . , h
−1xk, h

−1gh) for all h ∈ G.

It is easy to see how to define the sheaf C•(C∞(M), G) of equivariant k-chains over
G: the space of sections of CG

k (C∞(M)) over the invariant open set U is the space
of invariant smooth functions on Mk+1 × U .

The maps {αg | g ∈ G} assemble to define a map of sheaves

α : C•(C∞(M), G) −→ Ω•(M,G).

The main result of this paper is the following equivariant generalization of the the-
orems of Hochschild-Kostant-Rosenberg and Connes; in a sense, we are completing
the program of Baum-Brylinski-MacPherson.
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Theorem. The map α defines a quasi-isomorphism of complexes of sheaves

α :
(
C•(C∞(M), G), b+ uB

)
−→

(
Ω•(M,G), ι+ ud

)
.

Taking the homology of both sides, we see that

HPG
• (C∞(M)) ∼= H•(A•

G(M), d+ ι),

where A•
G(M) = Γ(G,Ω•(M,G)) is the space of global equivariant differential

forms. In combination with the result relating equivariant K-theory with equivari-
ant periodic cyclic homology, we obtain the following theorem:

K•
G(M)⊗R(G) R

∞(G) ∼= H•(A•
G(M), d+ ι).

This work is heavily influenced by the papers of Baum-Brylinski-MacPherson [1],
Berline-Vergne [2], and Brylinski [4]. We would like to thank M. Vergne and the
referee for a number of helpful suggestions. The paper was written while the first
author was at MIT and at the Courant Institute. The second author would like to
thank the MSRI and the ENS for their hospitality during the writing of parts of
this paper. Both authors are partially funded by the NSF.

Conventions

In this paper, a differential graded algebra is a Z/2-graded algebra (or superal-
gebra) with odd derivation d such that d2 = 0; commutative in this setting means
Z/2-graded commutative. We use the notation |A| ∈ Z/2 for the degree of a homo-
geneous operator A acting on the graded vector space H; that is, |A| = 0 if A is
even, and |A| = 1 if A is odd. In a superalgebra, [A,B] is the supercommutator of
the operators A and B, which when A and B are homogeneous equals

[A,B] = AB − (−1)|A|·|B|BA.

A supertrace on a superalgebra is a linear form which vanishes on supercommuta-
tors.

§1. The sheaf of equivariant differential forms

If G is a Lie group, G acts on the manifold underlying G by conjugation, g · h =
ghg−1. Consider G with the topology of invariant open sets:

O = {U ⊂ G open | U = g · U for all g ∈ G}.
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In this paper, we will work with sheaves over G with this topology; for example, we
have the sheaf of invariant functions C∞G , defined by

Γ(U,C∞G ) = C∞(U)G.

This sheaf is fine, since there exists partitions of unity on G invariant under con-
jugation, G being a compact Lie group. All of our sheaves on G will be sheaves of
modules for C∞G , and hence will be fine.

Let M be a compact manifold with a smooth action of a compact Lie group G,
which we denote by (g, x) ∈ G ×M 7→ g · x. The group G acts on the algebra of
differential forms on M by the formula

g · ω = L∗g−1ω,

where Lg−1 : M →M is the operation of left translation by g−1 ∈ G.
If ω : g → Ω•(M) is a map from g to Ω•(M), the group G acts on ω by the

formula
(g · ω)(X) = g · (ω(Ad(g−1)X)).

If V is a finite-dimensional vector space, we will denote by C∞0 (V ) the algebra of
germs at 0 ∈ V of smooth functions on V .

Definition 1.1. A (local) equivariant differential form on M is a smooth germ
at 0 ∈ g of a smooth map from g to Ω•(M) invariant under the action of G:

Ω•
G(M) = C∞0 (g,Ω•(M))G.

This space is Z/2-graded, and is a module over the algebra C∞0 (g)G of germs of
invariant smooth functions over g. Since the algebra of invariant polynomials C[g]G

on g is a subalgebra of C∞(g)G
0 , the space (C[g]⊗ Ω•(M))G is a subspace of Ω•

G(M)
— this is Cartan’s definition of the space of equivariant differential forms, of which
our space is a certain completion.

Let us define operators d and ι on C∞(g,Ω•(M)) by the formulas

(dω)(X) = d(ω(X)),

(ιω)(X) = ι(X)(ω(X)).

It is easy to check that d and ι commute with the action of G. By the formula
([d, ι]ω)(X) = L(X)ω, we see that d and ι graded commute on elements of Ω•

G(M).
In this section, we will define a sheaf Ω•(M,G) overG which is an algebra over the

sheaf of rings C∞G . If g ∈ G, let Mg denote the fixed point set of the diffeomorphism
induced by g on M . Let Gg denote the centralizer of g

Gg = {h ∈ G | gh = hg},
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and gg its Lie algebra. The passage from the compact Lie group G acting on
a manifold M to the compact Lie group Gg acting on Mg is an example of the
procedure of descent.

The stalk of the sheaf Ω•(M,G) at g ∈ G is the space of equivariant differential
forms

Ω•(M,G)g = Ω•
Gg (Mg),

that is, germs at zero of smooth maps from gg to Ω•(Mg) which are invariant
under Gg. If ω ∈ Ω•(M,G)g = Ω•

Gg (Mg), it is easily seen that k · ω is an element
of Ω•(M,G)k·g = Ω•

k·Gg (Mk·g); thus, the group G acts on the sheaf Ω•(M,G) =⋃
g∈G Ω•(M,G)g in a way compatible with its conjugation action on G. We will

write the differential on Ω•(M,G)g as dg; it is easy to see that k · dgω = dk·gk · ω.

Definition 1.2. We say that a point h = g expX ∈ Gg, where X ∈ gg, is near a
point g ∈ G if Mg exp X ⊂Mg and Gg exp X ⊂ Gg.

If G is a compact Lie group and M is a compact manifold with smooth G-action,
then by a theorem of Mostow and Palais [12], [13], there is a finite-dimensional
linear representation V of G and a smooth equivariant embedding M ↪→ V .

Lemma 1.3. Let M(X) be the fixed point set of the element g expX, where X ∈ gg.
Then for X sufficiently small, M(X) ⊂M(0) = Mg. In other words, the set of all
points in Gg near g is a neighbourhood of g.

Proof. By the above considerations, we may assume that M is a complex vector
space on which G acts linearly. We may certainly assume that this action is unitary.
In this way, we need only consider the case in which g is a diagonal matrix acting
on CN . Decomposing CN according to the eigenvalues of g, we may even assume
that g is a multiple of the identity, in which case the result is obvious. �

A section ω ∈ Γ(U,Ω•(M,G)) of the sheaf Ω•(M,G) over an invariant open set
U ⊂ G is defined by giving, for each point g ∈ U , an element ωg of Ω•(M,G)g, such
that if h is near g, we have the equality of germs

ωg

∣∣
gh×Mh = ωh ∈ Ω•(M,G)h.

We see that Ω•(M,G) is an equivariant sheaf of differential graded algebras over G.

Definition 1.4. A global equivariant differential form ω ∈ A•
G(M) is a global

section ω ∈ Γ(G,Ω•(M,G)).

Example 1.5. The simplest example of the above construction is where M is a
point pt. Observe that C∞0 (g,Ω•(pt))G is equal to C∞0 (g)G, and hence that the
stalk of Ω•(pt, G) at the identity may be identified with the stalk of C∞G at the
identity. A similar argument at other points of G shows that Ω•(M,G) = C∞G is
the sheaf of invariant functions on G, concentrated in degree 0, and hence that
A•

G(M) = R∞(G).
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Example 1.6. As another example, we may consider the case of a manifold P with
a free action of the group G (that is, a principal bundle). In this case, the stalks of
Ω•(M,G) vanish except at the identity e ∈ G, where we have Ω•(M,G)e = Ω•

G(P );
hence, we see that

A•
G(P ) = Ω•

G(P ).

Example 1.7. Let G be a compact connected Lie group with maximal torus T .
Consider the action of G on the flag variety M = G/T . It suffices to calculate the
stalk of the sheaf Ω•(M,G)g for g ∈ T , since the conjugates of T cover G. Let H be
a connected reductive subgroup of G containing the maximal torus T , and having
positive roots ∆+(H) ⊂ ∆+(G). If g ∈ T lies in the centralizer of H, that is, the
intersection of the sets

{α(g) = 1 | α ∈ ∆+(H)},

we see that Mg may be identified with N(H)/T , where N(H) is the normalizer
of the group H, and that Gg may be identified with H. In this way, we see that
Ω•(M,G)g = Ω•

H(N(H)/T ). In particular, the case H = T corresponds to the set
of regular points g ∈ T , and we see that for such points,

Ω•(M,G)g = Ω•
T (W (G,T )),

where W (G,T ) is the Weyl group of G with respect to T , and that the boundaries
d and ι vanish.

§2. The equivariant Hochschild complex

Before continuing, we must recall a little of the theory of Hochschild homology
for topological algebras; as references, we suggest Taylor [15] or Block [3]. If V1

and V2 are two locally convex topological vector spaces, we will denote by V1 ⊗ V2

their completed projective tensor product, usually denoted V1⊗̂V2 (we will have no
cause for considering the algebraic tensor product, so this should not cause any
confusion). A topological algebra is a locally convex topological vector space A
with associative multiplication given by a continuous linear map from A⊗A to A;
in other words, the product is jointly continuous. Given a right module K and a
left module L (again, with jointly continuous actions), the tensor product K ⊗A L
is defined to be the quotient

K ⊗A L =
K ⊗ L

span(ma⊗ n−m⊗ an | m ∈ K, a ∈ A,n ∈ L)
.

Unless otherwise stated, all algebras will have identities.
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In the category of modules of a topological algebra A, an exact sequence is a
complex of modules

. . . −→ Li+1 −→ Li −→ Li−1 −→ . . .

which is split exact as a complex of topological vector spaces. We may develop
a relative homological algebra using exact resolutions of a module by projective
modules, where we define projective to mean with respect to this definition of exact
sequence.

The Hochschild homology of the topological algebra A with coefficients in a
topological A ⊗ A◦-module L is defined to be the sequence of derived functors of
the functor

H0(A,L) = A/ span([a,m] | a ∈ A,m ∈ L).

If E is a vector bundle over a manifold, denote by Γ(M,E) the space of smooth
sections of E; it is a nuclear Fréchet space. If M and N are manifolds with vector
bundles E and F respectively, the projective tensor product Γ(M,E)⊗ Γ(N,F ) is
isomorphic to Γ(M ×N,E � F ).

By the results of Section 4 of Taylor [15], the Hochschild homology H•(A,L) of
a nuclear Fréchet module L over a nuclear Fréchet algebra A may be calculated by
taking a resolution

. . .
∂3−→ F2

∂2−→ F1
∂1−→ F0

ε−→ A

of A by projective A ⊗ A◦-modules and forming the homology of the complex
(Fi ⊗A⊗A◦ L, ∂i). Thus, at least in this case, relative homological algebra is not
too different from ordinary homological algebra.

If A is a topological algebra, the vector spaces [k] 7→ A⊗(k+1) form a cyclic vector
space in the sense of Connes [6]; the generators are represented by the formulas

di(a0 ⊗ . . .⊗ ak) = a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ ak for 0 ≤ i < k,
dk(a0 ⊗ . . .⊗ ak) = aka0 ⊗ . . .⊗ ak−1

si(a0 ⊗ . . .⊗ ak) = a0 ⊗ . . .⊗ ai ⊗ 1⊗ ai+1 ⊗ . . .⊗ ak for 0 ≤ i ≤ k,
t(a0 ⊗ . . .⊗ ak) = ak ⊗ a0 ⊗ . . .⊗ ak−1.

Now let G be a compact Lie group which acts smoothly on A (preserving the
identity). The group G acts on C∞(G,A⊗(k+1)) ∼= C∞(G)⊗A⊗(k+1) by the formula

h · (ϕ⊗ a0 ⊗ . . .⊗ ak) = h · ϕ⊗ h · a0 ⊗ . . .⊗ h · ak,

where we recall that (h ·ϕ)(g) = ϕ(hgh−1). Let C∞(G,A⊗(k+1))G be the subspace
of invariant chains. The vector spaces [k] 7→ C∞(G,A⊗(k+1))G form a cyclic vector
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space, with generators represented by the formulas
di(ϕ⊗ a0 ⊗ . . .⊗ ak) = ϕ⊗ a0 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ ak for 0 ≤ i < k,
dk(ϕ⊗ a0 ⊗ . . .⊗ ak)(h) = ϕ(h)(h · ak)a0 ⊗ . . .⊗ ak−1

si(ϕ⊗ a0 ⊗ . . .⊗ ak) = ϕ⊗ a0 ⊗ . . .⊗ ai ⊗ 1⊗ ai+1 ⊗ . . .⊗ ak for 0 ≤ i ≤ k,
t(ϕ⊗ a0 ⊗ . . .⊗ ak)(h) = ϕ(h)h · ak ⊗ a0 ⊗ . . .⊗ ak−1.

Given a cyclic vector space [k] 7→ Vk, its normalization is defined as the complex

N(V )k =
Vk∑k−1

i=0 si [Vk−1]
,

with boundary

b =
k∑

i=0

(−1)idi : N(V )k −→ N(V )k−1.

Applying this construction to the cyclic space [k] 7→ A⊗(k+1), we obtain the Hoch-
schild complex of A, denoted C•(A). The homology of this complex is called the
Hochschild homology of A, and denoted HH•(A).

If A is an algebra without identity, we must define the Hochschild homology a
little more carefully. Let A+ = A ⊕ C be the unital algebra obtained by adjoining
an identity to A. The homomorphism A −→ C which sends A to zero induces a map

HHk(A+) −→ HHk(C) =
{ C, k = 0,

0, k > 0,

of Hochschild homology groups, and HHk(A) is defined to be the kernel of this map.
If A already has an identity, this definition agrees with the earlier one.

If M is a manifold on which acts the compact Lie group G, and A = C∞(M),
we may realize this cyclic vector space as the series of vector spaces

[k] 7→ C∞(Mk+1 ×G)G,

where G acts on C∞(Mk+1 ×G) by the formula

(h · c)(x0, . . . , xk|g) = c(h−1x0, . . . , h
−1xk|h−1 · g).

The generators of the cyclic category are represented by the formulas
(dic)(x0, . . . , xk|g) = c(x0, . . . , xi, xi, . . . , xk|g) for 0 ≤ i < k,
(dkc)(x0, . . . , xk|g) = c(x0, . . . , xk, g · x0|g) for i = k,
(sic)(x0, . . . , xk|g) = c(x0, . . . , xi−1, xi+1, . . . , xk|g) for 0 ≤ i ≤ k,
(tc)(x0, . . . , xk|g) = c(x1, . . . , xk, g · x0|g).
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We may check that t commutes with the action of G:

h−1 · (tc)(x0, . . . , xk|g) = (tc)(hx0, . . . , hxk|h · g)
= c(hx1, . . . , hxk, (hgh−1)hx0|h · g)
= t(h−1 · c)(x0, . . . , xk|g).

The only relation in the cyclic category which is not obvious is tk+1 = 1 on C∞(Mk×
G)G, but we see that

(tk+1c)(x0, . . . , xk|g) = c(gx0, . . . , gxk|g),

which equals c(x0, . . . , xk|g) by invariance.
Parenthetically, we note that the vector spaces [k] 7→ C∞(Mk+1 ×G)G actually

form a dihedral vector space, in the sense of Loday, with the action of θ being given
by the formula

(θc)(x0, . . . , xk|g) = c(x0, gxk, . . . , gx1|g−1).

This dihedral structure may be related to equivariant KR-theory.
Normalizing the cyclic space [k] 7→ C∞(G,A⊗(k+1))G, we obtain the equivariant

Hochschild complex of A, which we will denote CG
• (A). The homology of this

complex is called the equivariant Hochschild homology of A, and denoted HHG
• (A).

If A is a topological algebra with smooth action of a compact Lie group G, we
denote by AoG the crossed product algebra C∞(G,A), with multiplication

(u ∗ v)(g) =
∫

G

u(h)h · v(h−1g) dh.

Note that if G is not discrete, this algebra does not have an identity.
The following theorem is due to Brylinski [4], [5].

Theorem 2.1. Let A be a topological algebra with identity, and let G be a compact
Lie group acting on A. There is a natural isomomorphism HHG

• (A) ∼= HH•(AoG).

On the normalization of a cyclic vector space, we also have a differential B of
degree minus one, which graded commutes with b; it is given by the formula

B =
k∑

i=0

(−1)kis · ti : N(V )k −→ N(V )k+1,

where s = ts0t
−1.
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If W is a module over the algebra of polynomials C[u], graded by deg(u) = −2,
we may form a complex (

CG
• (A)[[u]]⊗C[u] W, b+ uB

)
;

the degree of u is fixed so that the operator b + uB will have degree −1. We
denote the homology of this complex by HCG

• (A;W ), and call it equivariant cyclic
homology with coefficients in W . For example,

(1) W = C[u] gives the equivariant negative cyclic homology, which is the fun-
damental theory; this theory is usually denoted by HC−,G

• (A));
(2) W = C((u)) (Laurent series) gives periodic cyclic homology, denoted by

HPG
• (A), which is a Z-graded version of the Z/2-graded theory obtained by

taking the homology of CG
• (A) with respect to the boundary b+B.

(3) W = C with u acting by zero gives Hochschild homology HHG
• (A).

In the case of A = C∞(M), the operators b and B are given on a chain c ∈
C∞(Mk+1 ×G) by the formula

(bc)(x0, . . . , xk−1|g) =
k−1∑
i=0

(−1)ic(x0, . . . , xi, xi, . . . , xk−1|g)

+ (−1)kc(x0, . . . , xk−1, gx0|g) , and

(Bc)(x0, . . . , xk+1|g) =
k+1∑
i=1

(−1)(k−i)kc(xi, . . . , xk+1, gx1, . . . , gxi−1|g).

There are a number of multilinear operators that may be introduced on the equi-
variant Hochschild complex of a commutative algebra. We will start with the shuffle
product, which defines a graded commutative product on the space of equivariant
chains CG

• (C∞(M)), since C∞(M) is commutative.
A (k, `)-shuffle is a permutation χ ∈ Sk+` with the property that χ(i) < χ(j) if

1 ≤ i < j ≤ k, or if k + 1 ≤ i < j ≤ k + `. The shuffle product on CG
• (C∞(M)) is

defined as the sum over all (k, `)-shuffles

(c ∗ c̃)(x0, . . . , xk+`|g)

=
∑

χ

(−1)ε(χ)c
(
x0, xχ(1), . . . , xχ(k)|g

)
c̃
(
x0, xχ(k+1), . . . , xχ(k+`)|g

)
.

The following proposition summarizes the properties of this product.

Proposition 2.2.
(1) The shuffle product on CG

• (C∞(M)) is associative and graded commutative
with identity 1 ∈ CG

0 (C∞(M)).
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(2) The differential b on CG
• (C∞(M)) satisfies Leibniz’s rule with respect to the

shuffle product, so that CG
• (C∞(M)) is made into a commutative differential

graded algebra.

It is possible to generalize the results of [10] to the equivariant setting, and
define an A∞-structure on CG

• (C∞(M))[[u]] with differential b + uB and product a
deformation of the shuffle product.

In order to define the higher maps Bn, we need a little combinatorial machinery.
Given numbers i1, . . . , in, order the set

C(i1, . . . , in) = {(1, 0), . . . , (1, i1), . . . , (n, 0), . . . , (n, in)}

lexicographically, that is (k1, l1) < (k2, l2) if and only if k1 < k2 or k1 = k2 and
l1 < l2. A cyclic shuffle χ is a permutation of the set C(i1, . . . , in) which satisfies
the following two conditions:

(1) χ(i, 0) < χ(j, 0) if i < j, and
(2) for each 1 ≤ m ≤ n, there is a number 0 ≤ jm ≤ im such that

χ(m, jm) < · · · < χ(m, im) < χ(m, 0) < . . . χ(m, jm − 1).

We will denote the set of cyclic shuffles by S(i1, . . . , in).
Given chains ck, 1 ≤ k ≤ n, in CG

• (C∞(M)), we define the result of the operation
Bn(c1, . . . , cn) ∈ CG

• (C∞(M)) by the formula

Bn(c1, . . . , cn)
(
x0, x(1,0), . . . , x(1,i1), . . . , x(n,0), . . . , x(n,in)|g

)
=

∑
χ∈S(i0,...,in)

(−1)ε(χ)
n∏

k=1

ck

(
gη(k,0) · xχ(k,0), . . . , g

η(k,ik) · xχ(k,ik)|g
)
.

Here, ηχ(i, j) equals 0 if χ(i, 0) ≤ χ(i, j), and 1 if χ(i, j) < χ(i, 0).
Using the operators Bn, we may define a series of multilinear products mn on

CG
• (C∞(M))[[u]] by the formula

mn(c1, . . . , cn) =


(b+ uB)c1, n = 1,

c1 ∗ c2 + (−1)|c1|uB2(c1, c2), n = 2,

(−1)(n−1)(|c1|−1)+···+(|cn−1|−1)uBn(c1, . . . , cn), otherwise.

It may be proved, in much the same way as in Getzler-Jones [10], that the operators
mn define an A∞-structure on CG

• (C∞(M))[[u]]. Thus, CG
• (C∞(M)) is a sort of

homotopy-associative algebra: the operator m1 = b+ uB is a differential and m2 is
a (non-associative) product on CG

• (C∞(M)) for which Leibniz’s rule holds:

m1(m2(c1, c2))−m2(m1(c1), c2)− (−1)|c1|m2(c1,m1(c2)) = 0.
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Finally, m3 defines a homotopy which corrects the non-associativity of m2:

−m1(m3(a, b, c)) +m2(m2(a, b), c)− (−1)|a|m2(a,m2(b, c))

−m3(m1(a), b, c)− (−1)|a|m3(a,m1(b), c)− (−1)|a|+|b|m3(a, b,m1(c)) = 0

In particular, m2 defines an associative (graded) commutative product on the ho-
mology theories HC−,G

• (C∞(M)) and HPG
• (C∞(M)).

We will now give a construction which is basic to the study of cyclic homo-
logy of algebras of smooth functions. If U is an invariant open subset of M , let
C•(C∞(M), C∞(U ×G)) be the complex such that

Ck(C∞(M), C∞(U ×G)) = C∞(U ×Mk ×G),

with boundary

(bc)(y, x1, . . . , xk−1|g) =c(y, y, x1, . . . , xk−1|g)

+
k−1∑
i=1

(−1)ic(y, x1, . . . , xi, xi, . . . , xk−1|g)

+ (−1)kc(y, x1, . . . , xk−1, gy|g).

This may be identified with the (unnormalized) chain complex for the algebra
C∞(M), with coefficients in the bimodule C∞(U × G), with respect to the two
actions

(f ·m)(x, g) = f(gx)m(x, g),

(m · f)(x, g) = m(x, g)f(x),

for m ∈ C∞(U ×G) and f ∈ C∞(M).
Let C•(C∞(M), C∞(U × G))G denote the subspace of G-invariant elements of

C•(C∞(M), C∞(U ×G)). By restriction from U ×Mk ×G to Uk+1×G, we obtain
a map

C•(C∞(M), C∞(U ×G))G β−→ CG
• (C∞(U)).

Proposition 2.3. For any invariant open subset U ⊂ M , the map β is a quasi-
isomorphism of complexes.

Proof. We use the following abstract result.

Lemma 2.4. Suppose ϕ : A −→ B is a continuous homomorphism of nuclear
Fréchet algebras such that

(1) B ⊗A B ∼= B, and
(2) Hi(A,B ⊗B) = 0 for i > 0.
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Then for any B-bimodule L, the natural map

H•(A,L) −→ H•(B,L)

is an isomorphism, where L is considered as an A-bimodule in the obvious way.

Proof. Consider the following resolution of B by free B ⊗B◦ modules:

. . . −→ B ⊗A⊗i ⊗B −→ . . . −→ B ⊗A⊗B −→ B ⊗B −→ B

with the boundaries

∂(b0 ⊗ a1 ⊗ . . .⊗ an ⊗ bn+1) =b0ϕ(a1)⊗ a2 ⊗ . . .⊗ an ⊗ bn+1

+
n−1∑
i=1

(−1)ib0 ⊗ . . .⊗ aiai+1 ⊗ . . . An ⊗ bn+1

= (−1)nb0 ⊗ . . . an−1 ⊗ ϕ(an)bn+1

This complex is the standard complex computing Hi(A,B ⊗ B) which is exact by
hypothesis so provides a resolution of B by free B ⊗ B◦ modules. So by tensoring
the above resolution by L over B⊗B◦ we find that H•(B,L) can be computed from

. . . −→ L⊗A⊗2 −→ L⊗A −→ L

which also computes H•(A,L). �

In order to apply this result, we use the following lemma; this is Lemme 6.1 of
Tougeron [16].

Lemma 2.5. Let U be an open subset of a manifold M . If {fα} is a countable
collection of functions in C∞(U), then there exists a function ϕ ∈ C∞(M) with the
following properties:

(1) ϕ is nowhere vanishing on U ;
(2) ϕ and all of its derivatives vanish on M\U ;
(3) For each α, ϕfα extends to M , and ϕfα and all of its derivatives vanishes

on M\U .

We use this to verify that the hypotheses of Lemma2.4 are satisfied, with A =
C∞(M) and B = C∞(U):

(1) C∞(U)⊗C∞(M) C
∞(U) ∼= C∞(U), and

(2) for each i > 0, Hi(C∞(M), C∞(U)⊗ C∞(U)) = 0.
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This shows that the map

C•(C∞(M), C∞(U ×G)) −→ C•(C∞(U), C∞(U ×G))

is a quasi-isomorphism, and Proposition 2.3 follows by taking invariants.
The statements (1) and (2) are both contained in the exactness of the following

complex:

. . . −→ C∞(U ×M × U) −→ C∞(U × U) −→ C∞(U) −→ 0.

An element h ∈ C∞(U ×Mk×U) such that ∂kh = 0 may be written as a countable
sum

h(y, x1, . . . , xk, z) =
∞∑

j=1

fj(y)gj(x1, . . . , xk, z),

where fj ∈ C∞(U) and gj ∈ C∞(Mk × U); this follows from the isomorphism
C∞(U ×Mk × U) ∼= C∞(U) ⊗ C∞(Mk × U). Let ϕ ∈ C∞(M) be the function
whose existence is guaranteed by Lemma2.5 applied to the countable set of functions
{fj} ⊂ C∞(U). Since ∂kh = 0, it follows that sϕ(h) ∈ C∞(U ×Mk+1×U), defined
by the formula

sϕ(h)(y, x0, . . . , xk, z) =
∞∑

j=1

ϕ(y)−1ϕ(x0)fj(x0)g(x1, . . . , xk, z)

satisfies ∂k+1sϕ(h) = h. Hence the above complex is exact. �

§3. The equivariant Hochschild-Kostant-Rosenberg map

There is a sheaf C•(C∞(M), G) of cyclic vector spaces associated to the space
of equivariant Hochschild chains over the topological space G (with the quotient
topology of the last section). Over an invariant open set O of G, we associate the
graded space of chains

Γ(O, C•(C∞(M), G)) = C∞(O, C∞(M•+1))G.

The sheaf C•(C∞(M), G) is easily seen to be a module for the sheaf of rings C∞G ,
and Γ(G, C•(C∞(M), G)) = CG

• (C∞(M)). We also see that the differentials b and
B act on the stalks of the sheaf C•(C∞(M), G).

We will now construct a map α between the sheaves C•(C∞(M), G) and Ω•(M,G).
In fact, since both sheaves are fine, it suffices to construct a map from the space of
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global sections CG
• (C∞(M)) to Γ(G,Ω•(M,G)), in other words, for each g ∈ G, a

map αg from CG
• (C∞(M)) to Ω•

Gg (Mg) such that for h near g,

αgc
∣∣
Mh = αhc,

and also which is equivariant in the sense that

k · (αgc) = αk·g(k · c).

We will actually construct the map αg from C∞(Mk+1 × G) to C∞0 (gg,Ωk(Mg)).
On chains of the form

c(x0, . . . , xk|g) = f0(x0) . . . fk(xk)ψ(g),

where fi ∈ C∞(M) and ψ ∈ C∞(G), and for X ∈ gg, (αgc)(X) ∈ Ω•(Mg) is defined
by the integral over the k-simplex

αg(c)(X) = ψ(g expX)
∫

∆k

f0 d(e−t1X · f1) ∧ . . . ∧ d(e−tkX · fk)
∣∣
Mg dt1 . . . dtk.

It is easy to see that this map extends to all of C∞(Mk+1 ×G).
The maps αg generalize the map from the Hochschild chain complex C•(C∞(M))

to Ω•(M) defined by the formula

α(f0 ⊗ . . .⊗ fk) 7→ 1
k!
f0df1 . . . dfk.

This map sends the Hochschild differential b to zero, and Connes’s differential B to
the exterior differential d. Our goal is to generalize this result.

The next result shows that the maps αg combine to give a map of sheaves α :
C•(M,G) −→ Ω•(M,G).

Proposition 3.1.

(1) If h = g expX is near g, the map αg satisfies the formula

(αhc)(Y ) = (αgc)(X + Y )
∣∣
Mh for Y ∈ gh.

(2) The map αg is equivariant with respect to the action of Gg, and hence sends
invariant chains c ∈ C∞(Mk+1 ×G)G to elements of Ωk

Gg (Mg).
(3) The map αg descends to the normalized spaces CG

• (C∞(M)).
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Proof. First, observe that [X,Y ] = 0, and hence that

ψ(geX+Y ) = ψ((geX)eY ).

Taking c of the form f0 ⊗ . . .⊗ fk ⊗ ψ, we see that to prove Part (1), it suffices to
show that∫

∆k

f0 d
(
e−t1(X+Y ) · f1

)
. . . d

(
e−tk(X+Y ) · fk

)∣∣
Mh dt1 . . . dtk

=
∫

∆k

f0 d(e−t1Y · f1) . . . d(e−tkY · fk)
∣∣
Mh dt1 . . . dtk,

which is clear since [X,Y ] = 0 and X|Mh = 0.
Part (2) is clear, since the operators d and e−tX , X ∈ gg, used to define αg

commute with g. Part (3) reflects the fact that the differential form 1 is closed. �

We will now study the compatibility of the maps αg with the differentials b and
B and the products on CG

• (C∞(M)) and Ω•(M,G)g.

Theorem3.2. Consider the map αg : CG
• (C∞(M)) −→ Ω•

Gg (Mg).
(1) The Hochschild boundary on CG

• (C∞(M)) is carried into the differential ι
on Ω•(M,G)g:

αg(bc) = ιαg(c).

(2) The shuffle product on CG
• (C∞(M)) is carried into the wedge product on

Ω•(M,G)g:
αg(c1 ∗ c2) = αg(c1) ∧ αg(c2).

(3) The Bn-operators are transformed as follows:

αg(Bn(c1, . . . , cn)) =
1
n!
dαg(c1) ∧ . . . ∧ dαg(cn).

In particular, αg(Bc) = dαg(c).

Proof. (1) On a chain of the form c(x0, . . . , xk|g) = f0(x0) . . . fk(xk)ψ(g) where
fi ∈ C∞(M) and ψ ∈ C∞(G), we have

ι(X)αg(c)(X)

= ψ(geX)
k∑

i=1

(−1)i−1

∫
∆k

f0 d(e−t1X · f1) . . .L(X)(e−tiX · fi) . . . d(e−tkX · fk)
∣∣
Mg

= ψ(geX)
k∑

i=1

(−1)i

∫
∆k

f0 d(e−t1X · f1) . . .
∂(e−tiX · fi)

∂ti
. . . d(e−tkX · fk)

∣∣
Mg .
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Using integration by parts, we see that∫
∆k

f0 d(e−t1X · f1) . . .
∂(e−tiX · fi)

∂ti
. . . d(e−tkX · fk)

∣∣
Mg

=
∫
{t1≤...ti=ti+1≤···≤tk}

f0 d(e−t1X · f1) . . . e−ti+1X · (fi dfi+1) . . . d(e−tkX · fk)
∣∣
Mg

−
∫
{t1≤...ti−1=ti≤···≤tk}

f0 d(e−t1X · f1) . . . e−ti−1X · (dfi−1 fi) . . . d(e−tkX · fk)
∣∣
Mg

Adding up all of these terms, we see that

ι(X)αg(c)(X)

= ψ(geX)
∫
{t2≤···≤tk}

f0f1 d(e−t2X · f2) . . . d(e−tkX · fk)
∣∣
Mg

+ ψ(geX)
k−1∑
i=1

(−1)i

∫
{t1≤...ti−1≤ti+1≤···≤tk}

f0 d(e−t1X · f1) . . . d(e−tkX · fk)
∣∣
Mg

+ (−1)kψ(geX)
∫
{t1≤···≤tk−1}

f0 d(e−t1X · f1) . . . d(e−tk−1X · fk−1) (e−X · fk)
∣∣
Mg

= αg(bc)(X).

(2) Suppose c1 = f0 ⊗ . . . fk ⊗ ψ and c2 = h0 ⊗ . . . ⊗ h` ⊗ ϕ. The formula for
αg(c1) ∧ αg(c2) is

(ψϕ)(geX)
∫

∆k×∆`

f0d(e−t1X ·f1) . . . d(e−tkX ·fk)h0d(e−s1X ·h1) . . . d(e−s`X ·h`)
∣∣
Mg

Now let χ be a shuffle of the ordered sets (t1, . . . , tk) ∈ ∆k, (s1, . . . , s`) ∈ ∆`, and
let ∆(χ) be the subset of ∆k ×∆` consisting of those points (t1, . . . , tk, s1, . . . , s`)
such that the (k+ `)-tuple χ(t1, . . . , tk, s1, . . . , s`) is monotonically increasing. It is
clear that each set ∆(χ) is a (k + `)-simplex and that ∆k ×∆` is the union of the
∆(χ); this is the shuffle product triangulation of ∆k ×∆`. It is straightforward to
check that∫

∆(χ)

f0d(e−t1X · f1) . . . d(e−tkX · fk)h0d(e−s1X · h1) . . . d(e−s1X · h`)
∣∣
Mg

= αg(f0h0 ⊗ Sχ(f1 ⊗ . . .⊗ fk ⊗ h1 ⊗ . . .⊗ h`)⊗ ψϕ),

and the formula αg(c1 ∗ c2) = αg(c1) ∧ αg(c2) follows easily.
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(3) We will prove the formula for αgBn first for g equal to the identity, since the
general case is obtained by replacing M and G by Mg and Gg. Take n chains

ck = f(k,0) ⊗ . . .⊗ f(k,ik) ⊗ ψk, 1 ≤ k ≤ n,

and form the product

α =
∫

∆n

d(e−s1X · α1) ∧ . . . ∧ d(e−snX · αn) ds1 . . . dsn,

where αk is the element of C∞0 (g,Ωik(M)) given by the formula

αk(X) = ψk(expX)
∫

∆ik

f(k,0) d(e−t1X · f(k,1)) ∧ . . . ∧ d(e−tkX · f(k,ik)) dt1 . . . dtik
.

Thus, α is given by an integral over product of simplices

∆n ×∆i1 × · · · ×∆in
.

If
(
t1, . . . , tn; s(1,0), . . . , s(1,i1); . . . ; s(n,0), . . . , s(n,in)

)
lies in this product, form the

(n+ i1 + · · ·+ in)-tuple of numbers(
t1, t1 + s(1,i1), . . . , t1 + s(1,i1), . . . , tn, tn + s(n,0), . . . , tn + s(n,in)

)
,

where each of the real numbers in this expression is taken modulo 1. The permu-
tation needed to reorder these numbers in [0, 1] into increasing order is a cyclic
shuffle. Furthermore if we define ∆(χ) to be the subset of the product of simplices
such that the cyclic shuffle χ puts the above set of points in increasing order then
the set ∆(χ) is a simplex and the collection of simplices ∆(χ) gives a triangulation
of the product of simplices.

Thus, ∆n×∆i1 × · · · ×∆in
may be partitioned into a disjoint union of simplices

of dimension n+ i1 + . . . in, each one labeled by a cyclic shuffle. A short calculation
shows that the integral over the simplex labeled by the cyclic shuffle χ is equal to
the image under αg of the corresponding term in the sum defining Bn(c1, . . . , cn).
Thus, we see that

α = αgBn(c1, . . . , cn).

If we now replace the chains ck by chains invariant under G, then the differential
forms αk are invariant, and hence

α =
1
n!
dα1 ∧ . . . ∧ dαn.
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This completes the proof of the formula for αgBn. �

The above proposition allows us to introduce an A∞-structure on Ω•(M,G)[[u]]
by the following formulas:

mn(ω1, . . . , ωn) =


dgω1 = ιω1 + udω1, n = 1,

ω1 ◦ ω2 = ω1 ∧ ω2 + (−1)|ω1|u

2
dω1 ∧ dω2, n = 2,

(−1)(n−1)(|ω1|−1)+···+(|ωn−1|−1) u

n!
dω1 ∧ . . . ∧ dωn, n > 2.

Strangely enough, the product ω1 ◦ ω2 introduced above is associative, and so by
throwing away the higher mn-operators, we obtain a differential graded algebra
deforming the usual one. This product was used by Fedosov in his proof of the
Atiyah-Singer index theorem for Euclidean space [9], although he obtained it with-
out having any knowledge of cyclic homology theory. Note that the correction term
to Fedosov’s product is exact, and hence the product induced on the cohomology
of the complex

(Ω•
G(M)[[u]], ι+ ud)

by the product ω1 ◦ ω2 is the same as the product induced by the exterior product
ω1 ∧ ω2.

We can now state the main result of this paper.

Theorem 3.3. Let M be a compact G-manifold, where G is a compact Lie group.
Let W be a module over C[u] of finite projective dimension. Then the equivariant
Hochschild-Kostant-Rosenberg map

α :
(
C•(C∞(M), G)[[u]]⊗C[u] W, b+ uB

)
−→

(
Ω•(M,G)[[u]]⊗C[u] W, ι+ ud

)
is a quasi-isomorphism of complexes of sheaves.

For us, the most important application of the above theorem is where W is the
module C with u acting by the identity; the theorem implies that the Hochschild-
Kostant-Rosenberg map induces an isomorphism between HPG

• (C∞(M)) and the
cohomology of the complex of global equivariant differential forms A•

G(M) with
boundary d+ ι. By the identification of K•

G(M)⊗R(G)R
∞(G) with HPG

• (C∞(M)),
this gives us a de Rham model for equivariant K-theory of M .

The proof of Theorem 3.3 will be obtained by a sequence of reductions, each of
which is straightforward. The first step is an application of the following lemma
(see [10]). Recall that a mixed complex is a graded vector space C• and two
operators b : C• −→ C•−1 and B : C• −→ C•+1, such that b2 = 0, B2 = 0, and
bB +Bb = 0.



20 JONATHAN BLOCK AND EZRA GETZLER

Lemma 3.4. Let f : (C1, b1, B1) −→ (C2, b2, B2) be a map of mixed complexes such
that f induces an isomorphism H(C1, b1) −→ H(C2, b2). Then for any coefficients
W of finite projective dimension over C[u],

f : H•(C1[[u]]⊗C[u] W, b1 + uB1) −→ H•(C2[[u]]⊗C[u] W, b2 + uB2)

is an isomorphism.

By this lemma, we see that it suffices to prove Theorem 3.3 in the case in which
W equals the module C with u acting by zero; we must show that the equivariant
Hochschild-Kostant-Rosenberg map

α : (C•(C∞(M), G), b) −→ (Ω•(M,G), ι)

is a quasi-isomorphism of complexes of sheaves under the hypotheses of Theorem 3.3.
We can now explain the Mayer-Vietoris short exact sequences for equivariant

cyclic homology and for equivariant differential forms. Let U1 and U2 be two invari-
ant open subsets of M , and choose an invariant partition of unity {ϕ1, ϕ2} for the
covering {U1, U2} of U1∪U2. That is, ϕi ∈ C∞(U1∪U2)G are such that ϕ1 +ϕ2 = 1
and supp(ϕi) ⊂ Ui. Using this partition of unity, we may show that the following
sequence of C∞(U1 ∪ U2)-bimodules is split exact,

0 −→ C∞((U1∪U2)×G) −→ C∞(U1×G)⊕C∞(U2×G) −→ C∞((U1∩U2)×G) −→ 0,

where the first map sends f to f |U1 ⊕ f |U2 , and the second map sends f1 ⊕ f2 to
f1|U1∩U2 − f2|U1∩U2 . Indeed, the splitting sends f ∈ C∞((U1 ∩ U2)×G) to

(ϕ1f,−ϕ2f) ∈ C∞(U1 ×G)⊕ C∞(U2 ×G).

It is important that this splitting is G-equivariant.
From this, we obtain a commutative diagram of short exact sequences of com-

plexes,
0 0y y

C•(C∞(M), C∞(U1 ∪ U2))G β◦α−−−−→ Ω•
G(U1 ∪ U2)y y

C•(C∞(M), C∞(U1 ×G)⊕ C∞(U2 ×G))G β◦α−−−−→ Ω•
G(U1)⊕ Ω•

G(U2)y y
C•(C∞(M), C∞(U1 ∩ U2 ×G))G β◦α−−−−→ Ω•

G(U1 ∩ U2)y y
0 0
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Applying Proposition 2.3 to each complex in the left-hand column, we see that
in the diagram of complexes of sheaves

0 0y y
C•(C∞(U1 ∪ U2), G) α−−−−→ Ω•(U1 ∪ U2, G)y y

C•(C∞(U1), G)⊕ C•(C∞(U2), G) α−−−−→ Ω•(U1, G)⊕ Ω•(U2, G)y y
C•(C∞(U1 ∩ U2), G) α−−−−→ Ω•(U1 ∩ U2, G)y y

0 0

the stalks of the left column are quasi-isomorphic to an exact sequence of complexes.
Replacing M by Mg, Ui by Ug

i , and G by Gg, we obtain the same result at all of
the stalks. In this way, we see that if Theorem 3.3 is shown to hold for M equal to
the two invariant open sets U1 and U2, and to their intersection U1 ∩ U2, then it
holds for their union U1 ∪ U2.

Suppose H acts freely on a G × H-manifold M . We may form a commutative
diagram

C•(C∞(M/H), G) α−−−−→ Ω•(M/H,G)y y
C•(C∞(M), G×H) α−−−−→ Ω•(M,G×H)

where the vertical arrows are induced by the quotient map M −→ M/H, while
the horizontal arrows are the Hochschild-Kostant-Rosenberg maps. The next two
lemmas show that the vertical arrows are quasi-isomorphisms.

Lemma 3.6. If H acts freely on a G×H-manifold M , the map

C•(C∞(M/H), G) −→ C•(C∞(M), G×H)

is a quasi-isomorphism.

Proof. Suppose that A and B are topological algebras and P and Q are flat modules
for, respectively, A⊗B◦ and B ⊗A◦, such that

P ⊗B Q ∼= A and Q⊗A P ∼= B.
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Under the extra assumption of H-unitality, which is explained in the Appendix, it
follows that if L is an A-bimodule,

H•(A,L) ∼= H•(B,Q⊗A L⊗B P );

this is called Morita invariance of Hochschild homology. The proposition is an
application of this result with A = C∞(M/H), B = C∞(M) o H, P = C∞(M),
Q = C∞(M), L = C∞((M/H) × G), and Q ⊗A L ⊗B P = C∞(M × G). Then
Theorem A.3 shows that

H•(C•(C∞(M/H), G)) ∼= H•(C•(C∞(M) oH,G)),

and this last homology is isomorphic toH•(C•(C∞(M), G×H)) by Theorem 2.1. �

We have a similar result on the right-hand side.

Lemma 3.7. Suppose H acts freely on a G×H-manifold M . Then the map from
Ω•(M/H,G) to Ω•(M,G×H) induced by the quotient map M −→M/H is a quasi-
isomorphism.

Proof. Since H acts freely on M , we see that the stalk Ω•(M,G × H)(g,h) equals
zero unless h ∈ H is the identity e ∈ H. The stalk at (g, e) ∈ G×H equals

Ω•(M,G×H)(g,e) = C∞0 (g,Ω•
H(M))Gg

,

with boundary ιG + ιH , in an evident notation. The complex (Ω•
H(M), ιH) is

quasi-isomorphic to Ω•(M/H), and the result follows by a spectral sequence ar-
gument. �

If H is a closed subgroup of G and M is a manifold on which H acts smoothly,
we may think of G×M as a G×H-manifold, with the action of (g, h) ∈ G×H on
(γ, x) ∈ G×M given by the formula

(g, h) · (γ, x) = (gγh−1, h · x).

The actions of G and H on G×M are free, and the quotient of the action by H is
G×H M . To prove the quasi-isomorphism of complexes

α : C•(C∞(G×H M), G) −→ Ω•(G×H M,G)

it suffices to prove the quasi-isomorphism

α : C•(C∞(M),H) −→ Ω•(M,H);
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this reduction follows from Lemmas 3.6 and 3.7 which show that the vertical arrows
in the following commutative diagram are quasi-isomorphisms:

C•(C∞(G×H M), G) α−−−−→ Ω•(G×H M,G)y y
C•(C∞(G×M), G×H) α−−−−→ Ω•(G×M,G×H)x x

C•(C∞(M),H) α−−−−→ Ω•(M,H)

We now apply the following result, which shows that any equivariant manifold is
built up by a sequence of equivariant surgeries.

Lemma 3.8. If M is a compact manifold with a smooth action of a Lie group G,
there is a covering {Zi | 0 ≤ i ≤ k} of M by invariant open sets such that

(1) Zi ⊂ Zi+1, Z0 = ∅, and Zk = M ;
(2) for each i, there is an open cover of Zi+1 by Zi and Yi+1, where Yi+1 is

equivariantly diffeomorphic to a set of the form G ×H (B(V ) × B(W )),
where H is a closed subgroup of G, and and B(V ) and B(W ) are the open
unit balls in unitary representations V and W of H;

(3) Zi ∩ Yi+1 ⊂ Yi+1 is equivariantly diffeomorphic to

G×H (B(V )× S(W )) ⊂ G×H (B(V )×B(W )),

where S(W ) = {x ∈ B(W ) | 1/2 < |x| < 1}.
(The set Yi is called an equivariant handle-body, and the set Zi+1 is the result of
performing an equivariant surgery on Zi.)

Proof. This is a simple consequence of equivariant Morse theory, as developed by
Wasserman [17]. Every manifold M with a smooth G-action, where G is a compact
Lie group, has an invariant Morse function f , that is, an element of C∞(M)G such
that each critical set of f is a single orbit Nc labelled by c ∈ R such that f(Nc) = c,
and the function f is non-degenerate in directions normal to Nc. Order the critical
values of f , c1 < · · · < ck, and write Ni instead of Nci

.
Wasserman proves that if Ni

∼= G/H is a critical orbit, then there are two
equivariant vector bundles V ∼= G×H V and W ∼= G×H W over Ni (the stable and
unstable parts of the normal bundle to Ni) and an equivariant neighbourhood Yi of
Ni equivariantly diffeomorphic to the equivariant handle-body

B(V)×Ni
B(W) ∼= G×H (B(V )×B(W )).
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Write Zi = Y1 ∪ · · · ∪ Yi. Then the sets Yi may be chosen in such a way that
Zk = M , and that Zi ∩ Yi is equivariantly diffeomorphic to B(V) ×Ni

S(W) ∼=
G×H (B(V )×Ni

S(W )). �

In this way, we have reduced the proof of Theorem 3.3 to the following lemma.

Lemma 3.9. Suppose that the equivariant Hochschild-Kostant-Rosenberg map(
C∞(U•+1 × g expO), b

) α−−−−→ (C∞(O,Ω•(Ug)), ι)

is a quasi-isomorphism of complexes for all convex invariant neighbourhoods U of
zero in a representation of G, for all g ∈ G, and for all small balls O around zero
in the Lie algebra gg. Then Theorem3.3 follows.

Proof. Lemma 3.8, combined with an iterative application of the Meyer-Vietoris
sequences for the two theories shows that it suffices to prove the quasi-isomorphism
of sheaves for equivariant handlebodies G×H (B(V )×B(W )) and for their subspaces
G ×H (B(V ) × S(W )). By Lemmas 3.6 and 3.7, we see that it suffices to prove
the quasi-isomorphism of sheaves for the H-manifolds B(V )× B(W ) and for their
subspaces B(V )× S(W ).

By hypothesis, the quasi-isomorphism holds for B(V )×B(W ). To prove it for the
H-manifold B(V )×S(W ), we apply Lemma 3.8 once more, obtaining an equivariant
handlebody decomposition of B(V ) × S(W ). It is easy to see that this inductive
procedure must terminate, since the closed subgroups of G form a partially ordered
set under inclusion satisfying the finite chain condition. �

Now, we prove that the hypotheses of Lemma 3.9 hold. Let U be a convex
invariant neighbourhood of zero in the linear representation (V, ρ) of G, and let O
be a neighbourhood of zero in gg. We may think of C∞(U ×O) as a module over
the algebra C∞(U2), with action

(f ·m)(x,X) = f(x, eXx)m(x,X),

for f ∈ C∞(U2) and m ∈ C∞(U ×O). Consider its bar resolution

∂−→ C∞(U4 ×O) ∂−→ C∞(U3 ×O) ∂−→ C∞(U2 ×O) ∆∗−−→ C∞(U ×O)

where f ∈ C∞(U2) acts on m ∈ C∞(Uk+2 ×O) by

(f ·m)(x0, . . . , xk+1|X) = f(x0, e
Xxk+1)m(x0, . . . , xk+1|X);

although this is not quite the standard action of C∞(U2) on C∞(Uk+2 × O), this
is nevertheless a free resolution, by an evident isomorphism of the C∞(U2)-module
C∞(Uk+2 ×O) with

C∞(U2)⊗C C
∞(Uk ×O).
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The boundary ∂ is given by the formula

(∂c)(x0, . . . , xk+1|X) =
k∑

i=0

(−1)ic(x0, . . . , xi, xi, . . . , xk+1|X),

and the augmentation C∞(U2) −→ C∞(U) is pull-back by the diagonal map

∆ : U ×O 3 (x,X) 7→ (x, x,X) ∈ U2 ×O.

The bar resolution is exact, with contracting homotopy

s : C∞(Uk+2 ×O) −→ C∞(Uk+3 ×O)

given by pull-back by the map

(x−1, . . . , xk+1, X) 7→ (x0, . . . , xk+1, X).

It may be checked that the complex (C∞(U•+1 × g expO), b) of Lemma 3.9 is
isomorphic to (

C∞(U•+2 ×O)⊗C∞(U2) C
∞
(g)(U), ∂ ⊗ id

)
.

Thus, we see that the complex on the left-hand side in Lemma 3.9 has cohomology

TorC∞(U2)
•

(
C∞(U ×O), C∞(g)(U)

)
,

where C∞(g)(U) is the module, isomorphic to C∞(U) as a vector space, with action
of f ∈ C∞(U2) given by the formula

(f ·m)(x, g) = f(x, gx)m(x).

Since U is an open subset of the linear representation V of G, there is another
resolution of the module C∞(U ×O) over C∞(U2), called the Koszul resolution:

−→ C∞(U2×O,Λ2V ∗)
ι(R+X)−−−−−→ C∞(U2×O, V ∗)

ι(R+X)−−−−−→ C∞(U2×O) Γ∗−→ C∞(U×O).

Here, f ∈ C∞(U2) acts on ω ∈ C∞(U2 ×O,Λ•V ∗) by the formula

(f · ω)(x, y,X) = f(x, y)ω(x, y,X),

and Γ∗ is pull-back by the map

Γ : U ×O 3 (x,X) 7→ (x, eXx,X) ∈ U2 ×O
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It is clear that the spaces C∞(U2 ×O,ΛkV ∗) are free C∞(U2)-modules.
The boundary in the Koszul complex is ι(R+L), where R and L are the elements

of C∞(U2×O, V ) given at a point (x, y,X) ∈ U2×O by the formulas R(x, y, L) =
x − y and L(x, y,X) = dρ(X)x. To show that the Koszul complex is exact, we
introduce a contracting homotopy

s : C∞(U2 ×O,Λ•V ∗) −→ C∞(U2 ×O,Λ•+1V ∗)

which is related to the homotopy used to prove the Poincaré lemma. We will
abbreviate dρ(X)x to Xx in this dicussion, and similarly write gx for ρ(g)x.

Consider the flow Φ(t,x,X) on U given by the formula

Φ(t,x,X)(y) = etX · (tx+ (1− t)y);

this is the integral of the vector field R + L, since the vector fields R and L have
vanishing Lie bracket. In defining the contracting homotopy s, we identify the space
C∞(U2 ×O,Λ•V ∗) with C∞(U ×O,Ω•(U)) by composing the two identifications

C∞(U2 ×O,Λ•V ∗) ∼= C∞(U ×O, C∞(U,Λ•V ∗)) ∼= C∞(U ×O,Ω•(U)),

where the first identification sends a function f(x, y,X) to the map (x,X) 7→
f(x, ·, X). We now define s by the formula

(sω)(x,X) =
∫ 1

0

Φ∗
(t,x,X)(dω)(x,X)

dt

t
.

As in the proof of the Poincaré lemma, we see that

[ι(R+ L), s]ω(x,X) = Φ∗
(1,x,X)ω(x,X)− Φ∗

(0,x,X)ω(x,X).

Since Φ(0,x,X) is the identity, while Φ(1,x,X) is the map

y 7→ eXx,

we see that the Koszul complex is indeed a resolution of C∞(U ×O).
Our proof of the hypothesis of Lemma 3.9 will come from considering the map

between our two resolutions of the bimodule C∞(U ×O):

∂−−−−→ C∞(U3 ×O) ∂−−−−→ C∞(U2 ×O) ∆∗−−−−→ C∞(U ×O)

α

y α

y ∥∥∥
ι(R+L)−−−−−→ C∞(U2 ×O, V ∗)

ι(R+L)−−−−−→ C∞(U2 ×O) Γ∗−−−−→ C∞(U ×O)
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The map of complexes α is defined by a formula analogous to the Hochschild-
Kostant-Rosenberg map α for the equivariant cyclic bar complex: if

c = f0 ⊗ . . .⊗ fk+1 ⊗ ψ ∈ C∞(Uk+2 ⊗O),

then αc ∈ C∞(U2 ×O,ΛkV ∗) is given by the formula

(αc)(x, y,X) = ψ(X)
∫

∆k

f0(x) df1(xt1) ∧ . . . ∧ dfk(xtk
)f(y) dt1 . . . dtk

where xt = et(R+L)x = etX((1− t)x+ ty). It is easily checked, by a proof analogous
to that of Theorem 3.2, that this is a map of complexes. Also, α is a map of
C∞(U2)-modules.

Thus, we may calculate TorC∞(U2)
•

(
C∞(U ×O), C∞(g)(U)

)
equally well from the

complex (
C∞(U2 ×O)⊗ Λ•V ∗)⊗C∞(U2) C

∞
(g)(U) ∼= C∞(O,Ωk(U)).

It is easy to identify the boundary in this complex as ι(gx− x) + ι, where gx− x ∈
C∞(U, V ) is the vector field which at the point x ∈ U equals gx− x ∈ V . Thus, to
verify the hypothesis of Lemma3.9, we must show that the restriction map from U
to Ug induces a quasi-isomorphism

(C∞(O,Ω•(U)), ι(gx− x) + ι) −→ (C∞(O,Ω•(Ug)), ι) .

To do this, we choose an invariant metric on V , and decompose V into the
orthogonal direct sum

V = V0 ⊕ V1,

where V0 = ker(g − 1); clearly, Ug = U ∩ V0. Denote by P and Q the orthogonal
projection from V to V0 and V1 respectively, and let ϕ(v) = |Qv|2. Denote by
d⊥ = Qd the exterior differential operator acting along V1. If X ∈ gg is in the
centralizer of g, the corresponding vector field X on U satisfies QX = XQ; we will
denote QX = XQ by X⊥.

Consider the flow ΨX(t) on U obtained by integrating the vector field gx−x+X⊥.

Lemma 3.10. The flow ΨX(t) commutes with P and Q, preserves U , and satisfies
the inequality

∂

∂t
ΨX(t)∗ϕ = 2(Qv, (g − 1)Qv) ≤ −2λϕ,

where λ is the distance from the spectrum of g to the line Re z = 1.

Proof. The vector field gx − x +X⊥ may be written Q(gx − x +X)Q, and hence
the associated flow will commute with P and Q.
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From the convexity and invariance of U , we see that the flow ΨX(t) preserves U ,
since the vector field gx− x points inwards, and X⊥ ∈ g.

The calculation of ∂(ΨX(t)∗ϕ)/∂t is elementary:

∂

∂t
ΨX(t)∗ϕ = 2(Qv,Q(g − 1)v) + 2(Qv,QX⊥v)

= 2(Qv, (g − 1)Qv) + 2(Qv,XQv),

and (Qv,XQv) = 0 due to the invariance of the metric by the action of G. �

Define the map

pω =
∫ ∞

1

ΨX(t)∗d⊥ω dt;

the integral converges absolutely, since ΨX(t)∗d⊥ω decays exponentially. From the
lemma, we see that

[p, ι(gx− x) + ι]ω = ω − P ∗ω,

where P ∗ω is the pull-back of ω by the projection P : Ug −→ U . Thus, we see that
restriction from the Koszul complex on U to the fixed point set Ug of g induces a
quasi-isomorphism of complexes: this completes the proof of Theorem 3.3.

4. The equivariant Chern character

In this section, we will compare the equivariant Chern character of Berline and
Vergne with the one which emerges from our theory: these two equivariant diff-
erential forms agree with each other (and with the Chern character of Chern-Weil
theory) when there is no group action but are different in general. We will construct
an explicit homotopy between the two differential forms.

An equivariant vector bundle over a G-manifold M is a vector bundle over
M on which G acts by bundle maps such that the projection map π : E −→ M is
equivariant. Recall that the equivariant K-theory of M , denoted KG(M), is the
Grothendieck group of the exact category of equivariant vector bundles over M .
Any equivariant vector bundle may be realized as the image of an idempotent p
in an algebra C∞(M,End(V ))G, where (V, ρ) is a finite-dimensional representation
of the group G. By this, we mean that there is a equivariant bundle E⊥ and an
isomorphism of E ⊕ E⊥ with the trivial bundle M × V , with G acting diagonally
on M and V ; p is then the projection onto E with kernel E⊥.

If (V, ρ) is a finite-dimensional representation of the group G, there is a map of
cyclic chain complexes

Tr : CG
• (C∞(M)⊗ End(V )) −→ CG

• (C∞(M)),
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defined by the formula

Tr(c)(x0, . . . , xk|g) =
∑

i1...ik

c(x0, . . . , xk|g)i0i1,i1i2,...,iki0 .

Since this is a map of cyclic vector spaces, it intertwines the operators b and B. It
follows that we obtain maps of cyclic homology theories

Tr : HCG
• (C∞(M)⊗ End(V );W ) −→ HCG

• (C∞(M);W ),

for all coefficientsW . By equivariant Morita invariance, this map is an isomorphism;
however, we do not make use of this fact.

There is a map from KG(M) to HPG
0 (C∞(M)), known as the equivariant Chern

character. It is defined at the chain level by sending the equivariant vector bundle
im(p) to the closed chain defined as follows.

Definition 4.1. Let p be an idempotent in the algebra C∞(M,End(V ))G, where
(V, ρ) is a finite-dimensional representation of the group G. The equivariant
Chern character chG(p) ∈ CG

• (C∞(M))[[u]] is defined by the formula

chG(p)(g) = Tr(ρ(g)p) +
∞∑

`=1

(−u)` (2`)!
`!

Tr
(
ρ(g)(p− 1

2 )⊗ p⊗2`
)
.

We will use the following properties of the equivariant Chern character chG(p);
these were proved by Brylinski [5], and may be proved easily using the methods of
[11].

(1) It is closed, that is, (b+ uB) chG(p) = 0.
(2) (homotopy invariance) If pτ : [0, 1] −→ C∞(M,End(V ))G is a differentiable

one-parameter family of idempotents, c̃hG(p, q) denote the odd cyclic chain
ι(q(2p− 1)) · chG(p), where for a ∈ C∞(M,End(V )), we let

ι(a) : CG
• (C∞(M,End(V ))) −→ CG

•+1(C
∞(M,End(V )))

be the map defined by the formula

(ι(a) · f)(x0, . . . , xk|g) =
k∑

i=0

(−1)ia(xi+1)f(x0, . . . , xi, xi+2, . . . , xk|g).

Then

(4.2)
d chG(pτ )

dτ
= (b+ uB)ι(ṗτ (2pτ − 1)) chG(pτ ).
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Combining these results, we see that there is a map

chG : KG(M) −→ HPG
0 (C∞(M)).

Let G be a compact Lie group with Lie algebra g, and let M be a compact
manifold with a smooth action of G. If E is an equivariant vector bundle over M ,
let X 7→ LE(X) be the infinitesimal action of X ∈ g on sections of E; it is a Lie
algebra homomorphism from g to the first-order differential operators on the bundle
E.

The moment of an invariant connection ∇ on E is the differential operator,
linearly dependent on X ∈ g, defined by

µ(X) = ∇X − LE(X).

It is easily seen that [µ(X), f ] = 0 for all f ∈ C∞(M), and hence that

µ(X) ∈ Γ(M,Hom(g,End(E)))G.

The space C∞(g,Ω•(M,E))G[[u]] is a module over the algebra C∞(g,Ω•(M))G[[u]]
of equivariant differential forms. The equivariant connection ∇g associated to
∇ is the operator on C∞(g,Ω•(M,E))G[[u]] defined by the formula

(∇gω)(X) = ι(X)(ω(X)) + u∇(ω(X)).

Letting dg = ι+ ud, we see that

∇g(α ∧ ω) = (dgα) ∧ ω + (−1)|α|α ∧ (∇gω)

for α ∈ C∞(g,Ω•(M))G[[u]] and ω ∈ C∞(g,Ω•(M,E))G[[u]].
If F ∈ Ω2(M,End(E)) is the curvature of the connection ∇, the equivariant

curvature Fg ∈ C∞(g,Ω•(M,End(E)))G[u] is defined by the formula

Fg(X) = uF + µ(X).

This definition is motivated by the equation

∇2
gω = uε(Fg)ω,

which holds for all ω ∈ C∞(g,Ω•(M,E))G.
Berline and Vergne define the equivariant Chern character of E by the for-

mula
chg(E) = Tr

(
e−Fg

)
∈ C∞(g,Ω•(M))G[[u]].

The following theorem is proved by the same method as the corresponding formulas
in the Chern-Weil theory [2].
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Proposition 4.3.
(1) The differential form chg(E) is equivariantly closed: dg chg(E) = 0.
(2) Let ∇(t) be a one-parameter family of invariant connections on the bun-

dle E, with equivariant curvature Fg(t) and equivariant Chern character
chg(E, t). Then we have the transgression formula

d

dt
chg(E, t) = −dg Tr

(
d∇(t)
dt

e−Fg(t)

)
.

The above construction may be globalized, to define a section of the sheaf
Ω•(M,G). If g ∈ G, we define ChG(E)g ∈ C∞(gg,Ω•(Mg))Gg

[[u]] by the formula

ChG(E)g(X) = Tr
(
ρ(g)e−Fg(X)

)∣∣
Mg .

It is easily seen that these sections piece together to give a global section of Ω•(M,G)[[u]],
which we will denote by ChG(E).

If we divide the equivariant curvature into the two pieces µ(X) and uF , we may
reexpress the exponential in the definition of Ch(E)g by a perturbation expansion
as

ChG(E)g(X) =
∞∑

`=0

(−u)`

∫
∆`

Tr
(
ρ(g)p e−t1µ(X) F e(t2−t1)µ(X) F . . . F e(1−t`)µ(X)

)∣∣∣
Mg

.

We will show how our theory also leads to the definition of an equivariant Chern
character, which differs from that of Berline and Vergne. Our definition proceeds
via the equivariant cyclic chain complex. Suppose that E is given as the image of an
idempotent p in the algebra C∞(M,End(V ))G, where (V, ρ) is a finite-dimensional
representation of the group G.

We now apply the equivariant Hochschild-Kostant-Rosenberg map to the equi-
variant cyclic chain chG(p) of Section 2, obtaining a closed section of Ω•(M,G),
which we denote by chG(p).

Proposition 4.2. Let p be an idempotent in the algebra C∞(M,End(V ))G, where
(V, ρ) is a finite-dimensional representation of G. Define chG(p) ∈ Γ(G,Ω•(M,G))
by applying the Hochschild-Kostant-Rosenberg map α to the cyclic homology chain
chG(p). Then the germ of chG(p) at g ∈ G is given, as a function of X ∈ gg, by the
formula

Tr
(
ρ(g)p

)∣∣
Mg+

∞∑
`=1

(−u)` (2`)!
`!

∫
∆2`

Tr
(
ρ(g)(p− 1

2 ) et1ρ(X) dp e(t2−t1)ρ(X) dp . . . dp e(1−t2`)ρ(X)
)∣∣∣

Mg
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Proof. The Lie derivative of sections of the trivial bundle over M with fibre V ,
denoted LV (X), is equal to [d, ι(X)] + ρ(X). Since p is invariant under the action
of G, we see that

(4.3) LV (X)p = [dp, ι(X)] + [ρ(X), p] = 0.

Exponentiating this relation, we see that

(4.4) e−L
V (X) · dp = eρ(X) dp e−ρ(X).

The image under the Hochschild-Kostant-Rosenberg map of chG(p) is given by
the formula

Tr
(
ρ(g)p

)∣∣
Mg+

∞∑
`=0

(−u)` (2`)!
`!

∫
∆2`

Tr
(
eρ(X)ρ(g)(p− 1

2 )
(
e−t1L(X) · dp

)
. . .

(
e−t2`L(X) · dp

))∣∣∣
Mg

If we insert (4.4) into this formula and use the fact that Tr is a trace to bring the
operator eρ(X) to the right end, we obtain the proposition. �

From (4.2), we deduce that there is a theory of secondary characteristic classes
associated to the equivariant Chern class chG(p); the variation of the equivariant
Chern class as the idempotent p ∈ C∞(M,End(V ))G varies differentiably is an
explicit equivariantly exact differential form. However, we will leave working out
the details to the reader.

It is interesting to compare the two equivariant Chern characters thus defined:

(1) our equivariant Chern character chG(p) is only defined when the bundle E
is presented as the image of an idempotent p ∈ C∞(M,End(V ))G;

(2) the 2`-form component of the Berline-Vergne Chern character ChG(E) may
be expressed as an integral over an `-simplex, while for chG(p), it is an
integral over a 2`-simplex;

(3) the zero-form component of ChG(E) may be rewritten using the formula
µ(X) = p · ρ(X) · p as

Tr
(
ep·ρ(X)·p),

while for chG(p), the corresponding zero-form component is

Tr
(
p · eρ(X) · p

)
.
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We will now derive an explicit formula showing the relationship between these
two equivariant Chern classes.

If p ∈ C∞(M,End(V ))G is an idempotent over M as above, let p⊥ = 1 − p be
the complementary idempotent, and let ∇ be the Grassmannian connection on the
trivial bundle over M with fibre V associated to the idempotent p, given by the
formula

∇ = p · d · p+ p⊥ · d · p⊥ = d+ (2p− 1)dp.

Lemma 4.5. This connection has curvature F = (dp)2, and moment µ(X) =
−pρ(X)p− p⊥ρ(X)p⊥.

Proof. The calculation of the curvature is standard, using the formulas p(dp) =
(dp)p⊥, p⊥(dp) = (dp)p, and (2p− 1)2 = 1:

(d+ (2p− 1)dp)2 = d2 + d(2p− 1)dp+ (2p− 1)dp(2p− 1)dp

= 2(dp)2 − (2p− 1)2(dp)2 = (dp)2.

The calculation of the moment uses the fact that LV (X) = [d, ι(X)] + ρ(X). Since
p is invariant under the action of G, we see that

µ(X) = [∇, ι(X)]− LV (X)

= [d+ (2p− 1)dp, ι(X)]− [d, ι(X)]− ρ(X)

= (2p− 1)[dp, ι(X)]− ρ(X).

The formula for µ(X) now follows by inserting (4.3):

µ(X) = −(2p− 1)[ρ(X), p]− ρ(X)

= −2pρ(X)p+ ρ(X)p+ pρ(X)− ρ(X)

= −pρ(X)p− p⊥ρ(X)p⊥. �

Introduce a formal odd variable ε with ε2 = −u, and define a supertrace

Str : Ω•(M,End(V ))[ε] −→ Ω•(M)

by setting Str(a + bε) = Tr(b). The following lemma is basic to our treatment of
equivariant characteristic classes.

Lemma 4.6.
(1) If α ∈ C∞(g,Ω•(M,End(V )))G[ε], then

dg Str(α) = Str
(
[∇g + λεp, α]

)
.
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(2) Let α0 and α1 be the elements of C∞(g,Ω•(M,End(V )))G given by the
formulas

α0 = ρ(X) + λεdp,

α1 = pρ(X)p+ p⊥ρ(X)p⊥ − u(dp)2.

Then [∇g + λεp, αi] = 0 for i = 0, 1.
(3) If αt = (1− t)α0 + tα1, then

dαt

dt
= −[∇g + λεp, (2p− 1)dp].

Proof. To prove part (1), we observe that

Str
(
[∇g + λεp, α]

)
= Str

(
[dg, α]

)
+ Str

(
[u(2p− 1)dp+ λεp, α]

)
.

The second term on the right-hand side, being the supertrace of a supercommutator,
vanishes, while the first term is easily seen to equal dg Str(α).

The rest of the lemma is a straightforward calculation, obtained by combining
the following easily verified formulas:

[p, dp] = (2p− 1)dp, [p, (2p− 1)dp] = dp, [p, (dp)2] = 0;
[∇, p] = [∇, p⊥] = 0, [∇, dp] = −(2p− 1)(dp)2, [∇, (dp)2] = 0;

[ι(X), dp] = −[ρ(X), p], [ι(X), (dp)2] = −[ρ(X), (2p− 1)dp].

From these formulas, it is easy to check that [∇g + λεp, αi] = 0 for i = 0, 1.
Also from these formulas, we see that

[∇g + λεp, (2p− 1)dp] = −(2p− 1)[ρ(X), p]− u(dp)2 + λεdp

= ρ(X)− (pρ(X)p+ p⊥ρ(X)p⊥)− u(dp)2 + λεdp

= α0 − α1 =
∂αt

dt
,

which is Part (3) of the lemma. �

Using this lemma, we can now present the main result of this section. In the
following theorem, dµ is the Gaussian measure on the real line, given by the formula

dµ =
1√
4π
e−λ2/4 dλ.
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Theorem 4.7.
(1) The equivariant Chern character chG(p) has germ at g ∈ G given by the

formula

chG(p)g =
∫ ∞

−∞
Str

(
ερ(g)(p− 1

2 )eα0
)∣∣

Mg dµ+ 1
2 Tr(ρ(g)).

(2) Let ChG(p) denote the equivariant Chern character of Berline and Vergne
for the trivial bundle over M with fibre V , thought of as a Z/2-graded bundle
with grading operator 2p−1, and with connection equal to the Grassmannian
connection with respect to p. Then the germ of ChG(p) at g ∈ G is given by
the formula

ChG(p)g =
∫ ∞

−∞
Str

(
ερ(g)(p− 1

2 )eα1
)∣∣

Mg dµ.

(3) The following transgression formula links ChG(p) to chG(p):

chG(p) = ChG(p) + 1
2 Tr(ρ(g))

− dg

∫ 1

0

(∫ ∞

−∞
Str

(
ερ(g)(p− 1

2 )eαt+(2p−1)dp dt
)∣∣

Mg dµ

)
.

Here, dt is the volume one-form on the unit interval [0, 1].

Proof. Observe that

∫ ∞

−∞
λk dµ =


(2`)!
`!

, k = 2`,

0, k = 2`+ 1.

The exponential eα0 is polynomial in λ, as we see from the expansion

eα0 =
dim(M)∑

k=0

λkεk

∫
∆k

et1ρ(X)dp . . . dp e(1−tk)ρ(X) dt1 . . . dtk.

Part (1) now follows by integrating this sum term by term and comparing with the
formula for chG(p) in Proposition 4.2.

Part (2) is simpler, since the integrand does not depend on λ; using the fact that
dµ has mass 1, we are reduced to showing that

ChG(p)g = Tr
(
ρ(g)(p− 1

2 )epρ(X)p+p⊥ρ(X)p⊥−u(dp)2
)∣∣

Mg ,
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which follows from the definition of ChG(p) combined with the formulas of Lemma 4.5
for Fg.

Combining Parts (1) and (2), we see that

chG(p)− ChG(p)− 1
2 Tr(ρ(g)) =

∫ 1

0

d

dt

∫ ∞

−∞
Str

(
ερ(g)(p− 1

2 )eαt
)∣∣

Mg dµ dt.

Lemma 4.6, coupled with the fact that over Mg, the operator ∇g + λεp supercom-
mutes with ερ(g)(2p− 1), shows that

chG(p)− ChG(p)− 1
2 Tr(ρ(g)) =∫ 1

0

∫ ∞

−∞
Str

(
[∇g + λεp, ερ(g)(p− 1

2 )eαt+(2p−1)dp dt
)∣∣

Mg dµ.

The transgression formula now follows by application of Part (1) of Lemma4.6. �

Our use of the formal odd variable ε such that ε2 = −u, and our representation
of the Chern character chG(p) as a Gaussian integral with respect to a parameter
λ ∈ R, find parallels in the work of Connes and Quillen; see especially [7].

Appendix. Morita equivalence for Hochschild homology

In this appendix, we recall those parts of Wodzicki’s theory of H-unitality which
are needed to prove Morita invariance for equivariant Hochschild homology [18].

If A is an algebra with right module K and left module L, we may define a
complex Bn(K,A,L) = K ⊗A⊗n ⊗ L, with differential

b(k ⊗ a1 ⊗ . . . an ⊗ l) =ka1 ⊗ a2 ⊗ . . .⊗ an ⊗ l

+
n−1∑
i=1

(−1)ik ⊗ a1 ⊗ . . .⊗ aiai+1 ⊗ . . .⊗ an ⊗ l

+ (−1)nk ⊗ a1 ⊗ . . . an−1 ⊗ anl.

If A is unital, the complex B•(A,A,L) has homology

Hn(B•(A,A,L)) =
{
L, n = 0,
0, n > 0.

This is conveniently proved by extending the definition of Bi(K,A,L) to i = −1,
by setting B−1(K,A,L) = K ⊗A L and defining b : B0(K,A,L) −→ B−1(K,A,L)
given by the formula

k ⊗ l −→ k ⊗A l.



EQUIVARIANT CYCLIC HOMOLOGY 37

We must now show that the augmented complex B•(A,A,L), n ≥ −1, is ex-
act: this follows from the existence of a contracting homotopy s : Bn(A,A,L) −→
Bn+1(A,A,L), given by the formula

s(a0 ⊗ . . . an ⊗ l) = 1⊗ a0 ⊗ . . .⊗ an ⊗ l,

for n ≥ 0, while for n = −1, we map l to 1 ⊗ l. We then verify the formula
sb+ bs = id.

Motivated by this, and in imitation of Wodzicki, we say that an algebra A is
H-unital if

Hn(B•(A,A,A)) =
{
A, n = 0,
0, n > 0,

while flat right and left A-modules K and L are H-unitary if K ⊗A A = K and
A⊗A L = L.

Proposition A.1. If A is H-unital, and K and L are flat H-unitary right, respec-
tively left, A-modules, then

Hn(B•(K,A,L)) =
{
K ⊗A L, n = 0,
0, n > 0.

Proof. By H-unitarity of K and L, the bar complex B•(K,A,L) may be written

B•(K,A,L) ∼= K ⊗A B(A,A,A)⊗A L.

Since the modules K and L are flat, we see that

Hn(B•(K,A,L)) ∼= K ⊗A Hn(B•(A,A,A))⊗A L

=
{
K ⊗A L, n = 0,
0, n > 0. �

In our discussion of Morita equivalence, we follow Dennis and Igusa [8] (who
follow Waldhausen), except that we take advantage of Wodzicki’s notion of H-
unitality to simplify their account.

DefinitionA.2. Let A and B be H-unital algebras and let APB and BQA be flat
H-unitary modules for, respectively, A⊗B◦ and B⊗A◦. We say that A and B are
Morita equivalent if

P ⊗B Q ∼= A as an A-bimodule, and
Q⊗A P ∼= B as a B-bimodule.
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Theorem A.3. Let A and B be Morita equivalent algebras and let L be a bimodule
over A. Then

H•(A,L) ∼= H•(B,Q⊗A L⊗A P ).

Proof. If (M•, δ) is a differential graded A⊗A◦-module, the Hochschild complex of
M• is the double complex Cp(A,Mq) with differentials

b : Cp(A,Mq) −→ Cp−1(A,Mq), and

δ : Cp(A,Mq) −→ Cp(A,Mq−1).

The homology of the total differential of this complex is called the Hochschild hy-
perhomology of the differential graded module M•, and there are two first quadrant
homology spectral sequences converging to this hyperhomology, with E1-terms

IE1
pq = Cp(A,Hq(M•, δ)), and

IIE1
pq = Hp(A,Mq).

We will prove the theorem by considering these spectral sequences in the case
where

M• = B•(P,B,Q⊗A L),

considered as a differential graded A⊗A◦-module. The first spectral sequence has
E1-term

IE1
pq = Cp(A,Hq(B•(P,B,Q⊗A L)))

=
{
Cp(A,P ⊗B Q⊗A L) ∼= Cp(A,L), q = 0,
0, q > 0.

From this, we see that the spectral sequence degenerates, and that the Hochschild
hyperhomology of B•(P,B,Q⊗A L) is equal to H•(A,L).

On the other hand, we see that the second spectral sequence has E1-term

IIE1
pq = Hp(A,Bq(P,B,Q⊗A L))

=
{
Cq(B,Q⊗A L⊗A P ), p = 0,
0, p > 0.

since the double complexes Cp(A,Bq(P,B,Q⊗A L)) and Cq(B,Bp(Q⊗A L,A, P ))
are naturally isomorphic, in such a way as to identify the second spectral sequence of
the first double complex with the first spectral sequence of the second. The theorem
follows from the degeneration of both spectral sequences at the E2-term. �

Let G be a Lie group, and let A be a unital topological algebra with smooth
action of G.
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Proposition A.4. The crossed product algebra AoG is H-unital.

Proof. Fix an element ϕ ∈ C∞c (G) such that
∫

G
ϕdg = 1, where dg is the left Haar

measure on G. We may think of ϕ as defining an element of AoG whose value at
any element of G is a scalar multiple of the identity.

Define s : Bn(AoG,AoG,AoG) −→ Bn+1(AoG,AoG,AoG), n ≥ −1, by
the formula

(sf)(g0, . . . , gn+2) = ϕ(g0)⊗ (g0 ⊗ 1⊗ . . .⊗ 1)f(g0g1, . . . , gn+2).

Then s satisfies the formula sb+ bs = id. �

In Section 3, we need that if M is a compact manifold on which the compact
Lie group H acts freely, then the two algebras C∞(M) o H and C∞(M/H) are
Morita equivalent. Take the bimodule P = C∞(M), with the evident left action of
C∞(M)oH and right action of C∞(M/H). The algebra C∞(M)oH is isomorphic
to its opposite by the map

f(x, g) 7→ f(x, g−1).

Take Q to be the opposite module of P ; it is a (C∞(M/H), C∞(M)oH)-bimodule,
by means of the identifications of the algebras C∞(M) o H and C∞(M/H) with
their opposites.

Let us show that P andQ implement the Morita equivalence between C∞(M)oH
and C∞(M/H), that is,

C∞(M)⊗C∞(M)oH C∞(M) ∼= C∞(M/H), and

C∞(M)⊗C∞(M/H) C
∞(M) ∼= C∞(M) oH.

Let A be an algebra with an action of a Lie group H, and let K and L be
equivariant right and left A-modules. The spaces K ⊗AoH A and A ⊗AoH L may
be identified with K⊗CoH C and C⊗CoH L, by identifying k⊗AoH a and a⊗AoH l
with ka⊗CoH 1 and 1⊗C⊗H al. But it is clear that K ⊗CoH C and C⊗CoH L are
equal to the coinvariants H0(H,K) and H0(H,L) of the actions of H on K and L.

Now consider the special case in which A = C∞(M) and H is compact. Since
H0(H, ·) is an exact functor, we see that P and Q are flat as left, respectively right,
C∞(M) oH-modules. Similarly, we see that

C∞(M) oH ⊗C∞(M)oH C∞(M) ∼= C∞(M), and

C∞(M)⊗C∞(M)oH C∞(M) oH ∼= C∞(M),

and hence P and Q are H-unitary as C∞(M) oH-modules.
Also, since we may identify H0(H,C∞(M)) with C∞(M/H), we see that

C∞(M)⊗C∞(M)oH C∞(M) ∼= C∞(M/H),
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which is one of the isomorphisms needed for P and Q to define a Morita equivalence.
Since M ×M/H M ∼= M ×H, we see that

C∞(M)⊗C∞(M/H) C
∞(M) ∼= C∞(M)⊗ C∞(H),

where C∞(M)⊗C∞(H) ∼= C∞(M)oH as a C∞(M)oH-bimodule. Thus, this gives
the other isomorphism needed to prove P and Q implement a Morita equivalence.
Since M is locally a product, and flatness is a local condition, C∞(M) is flat
over C∞(M/H). Thus, we see that P and Q define a Morita equivalence between
C∞(M) oH and C∞(M/H).
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