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This paper arose from our use of Chen’s theory of iterated integrals as a tool in the study of the
complex of S1-equivariant differential forms on the free loop space LX of a manifold X (see [2]). In
trying to understand the behaviour of the iterated integral map with respect to products, we were
led to a natural product on the space of S1-equivariant differential forms Ω(Y )[u] of a manifold Y
with circle action, where u is a variable of degree 2. This product is not associative but is homotopy
associative in a precise way; indeed there is whole infinite family of “higher homotopies”. It turns
out that this product structure is an example of Stasheff’s A∞-algebras, which are a generalization
of differential graded algebras (dgas).

Using the iterated integral map, it is a straightforward matter to translate this product structure
on the space of S1-equivariant differential forms on LX into formulas on the cyclic bar complex
of Ω(X). Our main goal in this paper is to show that in general, the cyclic bar complex of a
commutative dga A has a natural A∞-structure and we give explicit formulas for this structure. In
particular, this shows that the cyclic homology of A has a natural associative product, but it is a
much stronger result, since it holds at the chain level. Thus, it considerably strengthens the results
of Hood and Jones [3].

We also show how to construct the cyclic bar complex of an A∞-algebra, and in particular define
its cyclic homology. As hinted at in [2], this construction may have applications to the problem of
giving models for the S1 × S1-equivariant cohomology of double loop spaces LL(X) of a manifold
and, since the space of equivariant differential forms on a smooth S1-manifold Y is an A∞-algebra,
to the problem of finding models for the space of S1 × S1-equivariant differential forms on LY .
Although the methods that we use were developed independently, they bear a strong resemblance
with those of Quillen [6].

Finally, we discuss in our general context the Chen normalization of the cyclic bar complex of an
A∞-algebra. This is a quotient of the cyclic bar complex by a complex of degenerate chains which is
acyclic if A is connected, and which was shown by Chen to coincide with the kernel of the iterated
integral map in the case A = Ω(X). This normalization is an important tool, since it allows us to
remove a large contractible sub-complex of the cyclic bar complex.

The first two sections of this paper are devoted to generalities concerning coalgebras and A∞-
algebras; a good reference for further background on coalgebras is the book of McCleary [5]. The
cyclic bar complex of an A∞-algebra is constructed in Section 3, the A∞-structure on the cyclic bar
complex of a commutative dga in Section 4, and we discuss Chen normalization in Section 5.

All our algebra will be carried out over a fixed coefficient ring K; in fact nothing will be lost by
thinking of the case where K is the integers Z. In particular, all tensor products are taken over
K unless explicitly stated otherwise. We will make use of the sign-convention in the category of
Z2-graded K-modules, which may be phrased as follows: the canonical map S21 from V1 ⊗ V2 to
V2 ⊗ V1 is defined by

S21(v1 ⊗ v2) = (−1)|v1||v2|v2 ⊗ v1.
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Using the map S21, we can associate to any permutation σ ∈ Sn an isomorphism of K-modules

Sσ1...σn
: V1 ⊗ . . .⊗ Vn −→ Vσ1 ⊗ . . .⊗ Vσn

.

We use the convention that K[x] is a symmetric algebra over K if x has even degree, and an
antisymmetric algebra if x has odd degree.

Many of the ideas of this paper arose during our collaboration with Scott Petrack; our joint
paper [2] is in many ways an introduction, and for the moment the sole application, of this work.
The completion of this paper has been assisted by grants to the first author by the NSF and to the
second author by the SERC.

1. Differential coalgebras and A∞-algebras

Recall the definition of a differential graded coalgebra (dgc):

Definition 1.1.
(1) A (graded) coalgebra over K is a (graded) K-module C with a comultiplication ∆ : C −→ C⊗C

of degree 0, such that the following diagram commutes (this is called co-associativity):

C
∆−−−−→ C ⊗ C

∆

y ∆⊗1

y
C ⊗ C

1⊗∆−−−−→ C ⊗ C ⊗ C

(2) A coderivation on a coalgebra is a map L : C −→ C satisfying co-Leibniz’s rule, that is, the
diagram

C
L−−−−→ C

∆

y ∆

y
C ⊗ C

L⊗1+1⊗L−−−−−−→ C ⊗ C
commutes.

(3) A differential graded coalgebra is a graded coalgebra with coderivation b : C −→ C of degree
−1 such that b2 = 0.

The basic example of a graded coalgebra is the cotensor coalgebra of a graded K-module:

T(V ) =
∞∑

n=0

V ⊗n.

The comultiplication is defined by

∆(v1 ⊗ . . .⊗ vn) =
n∑

i=0

(v1 ⊗ . . .⊗ vi)⊗ (vi+1 ⊗ . . .⊗ vn).

In fact, this is the universal example of a graded coalgebra; for every graded coalgebra C and linear
map C −→ V , there is a unique extension to a coalgebra map C −→ T(V ) such that the diagram

C −−−−→ T(V )y y
V V

commutes. We would like to classify all of the differentials that may be imposed on this coalgebra.
There is a simple characterization of coderivations on a cotensor coalgebra, which is the dualization

of a corresponding result for derivations on tensor algebras.
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Proposition 1.2. Composition of a coderivation L : T(V ) −→ T(V ) with the projection map
T(V ) −→ V induces an isomorphism

Coder(T(V )) −→ Hom(T(V ), V ).

The inverse of this map is given by the formula

L 7→
n∑

i=0

n−i∑
j=0

1⊗j ⊗ Li ⊗ 1⊗n−i−j ,

where Li denotes the image of L in Hom(V ⊗i, V ).

If b is a coderivation of degree −1 on T(V ) with components bn : V ⊗n −→ V , then its square is a
coderivation of degree 2 with components

(b2)n =
∑

i+j=n+1

n−j∑
k=0

bi · (1⊗k ⊗ bj ⊗ 1⊗n−k−j).

Obviously, the coderivation b will be a differential if and only if all of the maps (b2)n vanish. In
this way, we obtain a characterization of all differentials compatible with the coalgebra structure on
T(V ).

Let us write out the first few of these relations:

b1 · b0 = 0,

b1 · b1 + b2 · (b0 ⊗ 1 + 1⊗ b0) = 0,

b1 · b2 + b2 · (b1 ⊗ 1 + 1⊗ b1) + b3 · (b0 ⊗ 1⊗ 1 + 1⊗ b0 ⊗ 1 + 1⊗ 1⊗ b0) = 0.

Before attempting to unravel these formulas, we need one more definition. If A is a graded K-module,
let sA be its suspension, that is, the graded K-module

(sA)i = Ai−1.

We would like to rewrite the formulas b2 = 0 on the cotensor algebra of a suspended graded K-module
T(sA); this will introduce extra signs into the formulas. We will denote the element sa1 ⊗ . . .⊗ san

of T(sA) by Eilenberg and MacLane’s notation, [a1| . . . |an].
As a warm-up exercise, we have the following lemma, whose proof we leave to the reader.

Lemma 1.3. If bk : (sA)⊗k −→ sA is a multilinear map of degree −1, let us define mk : A⊗k −→ A
by

mk = s−1 · bk · s⊗k.

Then the following formula is satisfied:

bk[a1| . . . |ak] = (−1)(k−1)|a1|+(k−2)|a2|+···+2|ak−2|+|ak−1|+k(k−1)/2mk(a1, . . . , ak).

We will denote by m̃k the multilinear map obtained from mk by multiplying by the above sign*,
so that

sm̃k(a1, . . . , ak) = bk[a1| . . . |ak].

*In the preprint of [2], the maps m and m̃ are exchanged, for which we beg the reader’s forgiveness.
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Proposition 1.4. If ai ∈ A, 1 ≤ i ≤ n, let εi = |a1|+ · · ·+ |ai| − i. Then the boundary b on T(sA)
is given in terms of the maps mk (or equivalently, m̃k) by the formula

b[a1| . . . |an] =
n∑

k=0

n−k+1∑
i=1

(−1)εi−1 [a1| . . . |ai−1|m̃k(ai, . . . , ai+k−1)|ai+k| . . . |an].

Proof. By definition, b[a1| . . . |an] is

n∑
k=0

n−k+1∑
i=1

(1⊗(i−1) ⊗ bk ⊗ 1⊗(n−k−i+1))[a1| . . . |an]

=
n∑

k=0

n−k+1∑
i=1

(−1)εi−1 [a1| . . . |ai−1|s−1bk[ai| . . . |ai+k−1]|ai+k| . . . |an],

where we use the fact that bk has degree −1 and hence is odd, and that sa1⊗ . . .⊗ sai−1 has degree
εi−1. Inserting the definition of m̃k, we see that

b[a1| . . . |an] =
n∑

k=0

n−k+1∑
i=1

(−1)εi−1 [a1| . . . |ai−1|m̃k(ai, . . . , ai+k−1)|ai+k| . . . |an],

which is precisely what we wished to prove. �

The above formulas, which determine when b2 = 0, may be thought of as generalizations of a dga
structure on A. We will use the notation u for the element of A defined by m0. Let us write out the
first few of these formulas in full:

(1) the first formula says that m1(u) = 0;
(2) the second formula,

m1(m1(a1)) = −m2(u, a1) + m2(a1, u),

says that m1 is a differential up to a correction involving the operator adu;
(3) the third says that m1 is a derivation with respect to the product, again up to certain

correction terms involving u:

m1(m2(a1, a2)) = m2(m1(a1), a2) + (−1)|a1|m2(a1,m1(a2))

−m3(u, a1, a2) + m3(a1, u, a2)−m3(a1, a2, u);

(4) the fourth says that the product on A, while not necessarily associative, is homotopy asso-
ciative in a precise way, again up to terms involving u:

m2(m2(a1, a2), a3)−m2(a1,m2(a2, a3)) = m1(m3(a1, a2, a3))

+ m3(m1(a1), a2, a3) + (−1)|a1|m3(a1,m1(a2), a3) + (−1)|a1|+|a2|m3(a1, a2,m1(a3))

−m4(u, a1, a2, a3) + m4(a1, u, a2, a3)−m4(a1, a2, u, a3) + m4(a1, a2, a3, u).
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The outcome of this discussion is that we are led to think of conditions like d2 = 0 or Leibniz’s
rule as akin to associativity. Stasheff has defined a natural generalization of a dga, which he calls
an A∞-algebra: this is a graded K-module A along with a differential b on the coalgebra T(sA).
(In fact Stasheff assumes that b0 = 0 but it is just as convenient to allow non-zero b0, which gives
a preferred element u ∈ A−2.) We will call the differential graded coalgebra B(A) = T(sA) of an
A∞-algebra the bar complex of A.

Before continuing, let us give some examples of A∞-algebras.
(1) If A is a graded algebra with element D ∈ A−1, then we may set m0 = D2, m1 = ad D and

m2 equal to the product on A, with all higher mn equal to zero. In this case, the formulas
express the fact that adD is almost, but not quite, a differential.

(2) If A is a graded complex, we may simply take mn = 0 except if n = 1, where we take the
differential.

(3) If A is a dga, then it satisfies the above formulas simply by letting mn equal zero unless
n = 1, where we take the differential d : A −→ A, or n = 2, where we take the product
A⊗A −→ A.

(4) The example of Stasheff which motivated the whole theory is the graded abelian group of
singular chains on the based loop space of a topological space.

(5) Consider the complex Ω(M)[u] of differential forms on a manifold with smooth circle-
action, with a variable u of degree 2 adjoined. Define the multilinear maps Pk(ω1, . . . , ωk) :
Ω(M)⊗k −→ Ω(M) by the formula

Pk(ω1, . . . , ωk) =
∫

∆k

ιω1(t1) ∧ . . . ∧ ιωk(tk) dt1 . . . dtk,

where ∆k is the k-simplex
{
(t1, . . . tk) ∈ Rk | 0 ≤ t1 ≤ · · · ≤ tk ≤ 1

}
, and ι is the vector

field which generates the circle action. Then the following maps define an A∞-structure on
Ω(M)[u]:

mk(ω1, . . . , ωk) =


da1 + uP1(a1), k = 1,

a1 ∧ a2 + uP2(a1, a2), k = 2,

uPk(a1, . . . , ak), otherwise.

Here, we have reversed the grading of Ω(M)[u], because the differential of Ω(M) raises degree.
This is the example which motivated us to consider the theory of A∞-algebras (see [2]).

We say that e ∈ A0 is an identity in the A∞-algebra A if for a, ai ∈ A,

(1.5)
{

m2(a, e) = m2(e, a) = a.

mk(a1, . . . , ai, e, ai+2, ak) = 0 if k 6= 2

Just as for algebras, an identity, if it exists, must be unique; if e and f are both identities, then
m2(e, f) = e = f . If A is an A∞-algebra, then its augmention A+ is the A∞-algebra with identity
whose underlying space is A⊕K, and where, denoting the basis element of K by e, we extend the
maps mk using (1.5).

The collection of all A∞-algebras forms a category in a natural way: we define a homomorphism
A1 −→ A2 between two A∞-algebras as a map of dgcs from B(A1) to B(A2). The only disadvantage
of considering such a large class of homomorphisms is that it is difficult to write out explicitly what
it means in terms of the generalised products m̃n on A1 and A2, since there are so many different
associativity laws that have to be verified. However, it is at least possible to get some idea of what
a homomorphism looks like by means of the following lemma, which characterizes the coalgebra
homomorphisms from a graded coalgebra C to T(V ), and which reflects the universal property of
the cotensor algebra T(V ) among coalgebras with projection T(V ) −→ V .
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Lemma 1.6. Composition of a homomorphism f : C −→ T(V ) with the projection map T(V ) −→ V
induces an isomorphism

HomCoalg(C,T(V )) −→ Hom(C, V ).

The inverse of this map is given by associating to a map f ∈ Hom(C, V ) the map with components

C
∆n−−→ C⊗n f⊗n

−−→ V ⊗n;

here, ∆n : C −→ C⊗n is the (n− 1)th iterate of the comultiplication map ∆.

Thus, we see that a homomorphism f : A1 −→ A2 between two A∞-algebras is determined
by a series of maps fn : A⊗n

1 −→ A2 of degree 1 − n, and that f0 = 0, since otherwise f [ ] =∑∞
n=0[f0| . . . |f0], which being an infinite sum does not lie in the tensor coalgebra B(A2). In order

that f ∈ Hom(B(A1),B(A2)) respects the differentials b on B(A1) and B(A2), the maps fn must
satisfy a series of identities, the first few of which have the form

f1(u) = u,(1.7a)

f1(m1(a1)) = m1(f1(a1)),(1.7b)

f1(m2(a1, a2))−m2(f1(a1), f1(a2))(1.7c)

= m1(f2(a1, a2))− f2(m1(a1), a2)− (−1)|a1|f2(a1,m1(a2)).

There is a more restrictive type of homomorphism between two A∞-algebras: a strict homo-
morphism A1 −→ A2 is a linear map from A1 to A2 such that the induced map B(A1) −→ B(A2)
is a map of dgcs. Thus, a homomorphism f of A∞-algebras is a strict homomorphism if all of the
maps fn vanish for n not equal to 1.

2. Homology of A∞-algebras

If A is an A∞-algebra, we can associate to it its homology algebra H(A), which is an ordinary
graded algebra, if we impose the following hypotheses on A:

mk(a1, . . . , u, . . . , ak) = 0 for k > 2

m2(u, a) = m2(a, u) for all a ∈ A;

such an A∞-algebra will be called standard. This assumption simplifies the formulas which define
an A∞-algebra; in particular, m1 becomes a derivation with respect to the non-associative product
m2, and m2 is homotopy associative:

m2(m2(a1, a2), a3)−m2(a1,m2(a2, a3)) = m1(m3(a1, a2, a3))

−m3(m1(a1), a2, a3)− (−1)|a1|m3(a1,m1(a2), a3)− (−1)|a1|+|a2|m3(a1, a2,m1(a3)).

The homology of a standard A∞-algebra is defined as the homology of the differential m1 on A:

H(A) = H(A,m1).

The non-associative product on A descends to an associative product on H(A) and H(A) becomes
a graded algebra.
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Proposition 2.1. The operation of taking homology A 7→ H(A) is a functor from the category of
standard A∞-algebras to the category of graded algebras.

Proof. Let f : A1 −→ A2 be a homomorphism of standard A∞-algebras, with components fn :
(sA1)⊗n −→ A2 of degree 1 − n. The fact that f is a homomorphism implies, in particular, that if
a1, a2 ∈ A1, m1(f1(a1)) = f1(m1(a1)) and

m2(f1(a1), f1(a2))− f1(m2(a1, a2))

= m1(f2(a1, a2))− f2(m1(a1), a2)− (−1)|a1|f2(a1,m1(a2)),

from which the result follows. �

There is an important generalization of H(A), whose definition depends upon the following result.

Proposition 2.2. Let A be a standard A∞-algebra and let u be the element m0 ∈ A−2. Then A is
a module over the polynomial ring K[u], where the action of u is given by a 7→ m2(u, a).

Proof. To check that the algebra K[u] acts on A, we must verify that if a ∈ A, then m2(m2(u, u), a) =
m2(u, m2(u, a)). But the hypothesis that A is a standard A∞-algebra gives the following formula:

m2(m2(u, u), a)−m2(u, m2(u, a)) = −m1(m3(u, u, a)) + m3(u, u, m1(a)) = 0. �

Let W be a graded module over K[u]. Forming the graded K[u]-module A⊗K[u]W with boundary
map b, we define

H(A;W ) = H(A⊗K[u] W ).

The following result follows from standard homological algebra.

Proposition 2.3. Supose that K is a field and let

0 −→ W1
i−→ W2

j−→ W3 −→ 0

be a short exact sequence of K[u]-modules. Then there is a long exact sequence of homology groups

. . . −→ Hn(A;W1)
i−→ Hn(A;W2)

j−→ Hn(A;W3)
∂−→ Hn+1(A;W1) −→ . . . �

Let Λ be the graded algebra K[ε] generated by a single supercommuting variable ε of degree 1. A
differential graded Λ-module (also called a mixed complex by C. Kassel) is just a graded K-module
V with two supercommuting differentials b : V∗ −→ V∗−1 and B : V∗ −→ V∗+1. The homology of a
dg-Λ-module V with coefficients in the K[u]-module W is defined to be

H(V ;W ) = H(V [u]⊗K[u] W, b + uB).

This may be reduced to the homology of an A∞-algebra whose underlying space is the graded K-
module V [u]⊕K[u]; we set m0 = u, m1 = b+uB on V [u] and zero on K[u], m2 is given by the action
of K[u] on V [u], and all other mn are zero. It follows easily that the homology of this A∞-algebra
with coefficients in W is just

H(V ⊗W, b + uB)⊕K[u] = H(V ;W )⊕K[u].

The next result expresses a basic invariance property of the homology of a dg-Λ-module.
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Proposition 2.4. Let f : (V1, b1, B1) −→ (V2, b2, B2) be a map of dg-Λ-modules such that f induces
an isomorphism H(V1, b1) −→ H(V2, b2). Then for any coefficients W of finite projective dimension
over K[u], f : H(V1;W ) −→ H(V2;W ) is an isomorphism.

Proof. The main step in the proof is contained in the following lemma.

Lemma 2.5. If (V, b, B) is a dg-Λ-module such that H(V, b) = 0, then H(V [[u]], b + uB) = 0.

Proof. If a(u) =
∑∞

k=0 akuk is a cycle in V [[u]] for the differential b + uB, so that

(b + uB)
∞∑

k=0

akuk = 0,

then it must follow that ba0 = 0. Since H(V, b) = 0, there is an element c0 ∈ V such that bc0 = a0.
It follows that

(b + uB)
( ∞∑

k=1

ak+1u
k + (a1 −Bc0)

)
= 0.

By induction, we obtain a sequence of elements ck ∈ V such that

(b + uB)
n∑

k=0

ckuk =
n∑

k=0

akuk + un+1Bcn.

Taking the limit as n →∞, we see that a(u) is exact. �

We can now complete the proof of 2.4. By a standard use of the mapping cone it is sufficient
to show that if (V, b, B) satisfies H(V, b) = 0, then H(V ;W ) = 0 for all K[u]-modules W of finite
homological dimension. This follows if W is a free K[u]-module directly from 2.5. The general case
follows using induction on the homological dimension of W over K[u]. �

3. The Hochschild chain complex of an A∞-algebra

If A is a dga, the cyclic bar complex of A is the graded K-module C(A,A+) = A+ ⊗B(A); it is a
dg-Λ-module with respect to the Hochschild differential b and Connes’s coboundary operator B. If
we denote the element a0 ⊗ [a1| . . . |ak] of C(A,A+) by (a0, a1, . . . , ak), then the operator b is given
by the formula

b(a0, . . . , ak) = −
k∑

i=0

(−1)εi(a0, . . . , ai−1, aiai+1, ai+2, . . . , ak)

+ (−1)(|ak|−1)εk−1(aka0, a1, . . . , ak−1)

−
k∑

i=0

(−1)εi−1(a0, . . . , ai−1, dai, ai+1, . . . , ak),

where εi = |a0|+ · · ·+ |ai| − i. The formula for B is

B(a0, . . . , ak) =
k∑

i=0

(−1)(εi−1+1)(εk−εi−1)(e, ai, . . . , ak, a0, . . . , ai−1),

where e is the identity adjoined to A+, and it is understood that B(e, a1, . . . , ak) = 0. These sign
conventions take into account that the elements ai for i > 0 occur with an implicit suspension which
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reduces their degree to |ai| − 1. It is a standard calculation that the operators b and B are well
defined, and that (C(A,A+), b, B) is a dg-Λ-module. The homology of (C(A,A+), b) is the Hochschild
homology of A with coefficients in the bimodule A+.

There is a map from the dg-Λ-module (C(A,A+), b, B) to the dg-Λ-module (K, 0, 0), given by
sending (ze) to z for z ∈ K, and all other chains to zero. If W is a K[u]-module, this induces a map
of cohomology groups

H(C(A,A+);W ) −→ W,

the kernel of which is called the cyclic homology of A with coefficients in W , and denoted HC(A;W ).
Let us list some examples with respect to different coefficients W .

(1) W = K[u] gives the negative cyclic homology HC−(A) of Goodwillie and Jones, which is the
most fundamental theory;

(2) W = K[u, u−1] gives periodic cyclic homology HP(A), so called because HP∗(A) ∼= HP∗+2(A),
the isomorphism being implemented by multiplication by u;

(3) W = K[u, u−1]/uK[u] gives the cyclic homology theory HC(A) studied by Feigin and Tsygan,
and Loday and Quillen;

(4) W = K gives the Hochschild homology HH(A), if A has an identity this is just the usual
Hochschild homology of A with coefficients A considered as a bimodule over itself. H(A,A)
if A has an identity.

If K is a field and we apply 2.3 to the short exact sequence

0 −→ K[u, u−1]/K[u] −→ K[u, u−1]/uK[u] −→ K −→ 0,

we obtain the fundamental exact sequence relating cyclic homology and Hochschild homology,

. . . −→ HCn+2(A) −→ HCn(A) −→ HHn(A) −→ HCn+1(A) −→ . . . ,

while applying it to the short exact sequence

0 −→ uK[u] −→ K[u, u−1] −→ K[u, u−1]/uK[u] −→ 0,

gives the sequence

. . . −→ HC−
n+2(A) −→ HPn(A) −→ HCn(A) −→ HC−

n+1(A) −→ . . . .

In this section, we will develop the analogue of the above homology theories when A is an A∞-
algebra.

If A is an A∞-algebra, there is a natural notion of left and right modules, and of bimodules, over
A. In order to define these, we will need the definition of left, right and bi-comodules over a dgc.

Definition 3.1. A left comodule for a dgc C is a complex P and a linear map ∆L : P −→ C ⊗ P
such that the following diagram commutes:

P
∆L

−−−−→ C ⊗ P

∆L

y ∆⊗1

y
C ⊗ P

1⊗∆L

−−−−→ C ⊗ C ⊗ P

and such that the coaction respects the differentials:

P
∆L

−−−−→ C ⊗ P

b

y yb⊗1+1⊗b

P
∆L

−−−−→ C ⊗ P
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A right comodule with coaction ∆R : P −→ P ⊗C is defined in a similar way. Finally, a bi-comodule
is a graded K-module P with both left and right coactions ∆L and ∆R such that the following diagram
commutes:

P
∆L⊗1−−−−→ C ⊗ P

∆R

y 1⊗∆R

y
P ⊗ C

∆L⊗1−−−−→ C ⊗ P ⊗ C

If M is a graded K-module and C is a graded coalgebra, there is a canonical left-coaction of C on
the graded K-module C⊗M , a canonical right-coaction of C on M ⊗C, and a canonical bi-coaction
of C on C ⊗M ⊗ C. For example, the left-coaction of C on C ⊗M is defined by the equation

∆L(c⊗m) = (∆c)⊗m ∈ C ⊗ C ⊗M.

If C is in addition a dgc, it is natural to ask what differentials may be imposed on the comodules
C ⊗M , M ⊗C and C ⊗M ⊗C which are compatible with the differential on C. Motivated by the
classical case in which C is the bar coalgebra of a dga A, we make the following definition for an
arbitrary A∞-algebra A.

Definition 3.2.
(1) If M is a graded K-module, a left-module structure for M over an A∞-algebra A is a differen-

tial b on the left-comodule B(A)⊗M over the coalgebra B(A) compatible with the differential
on B(A). The definition of a right-module is similar, except that B(A) ⊗ M is replaced by
the right-comodule M ⊗ B(A).

(2) If M is a graded K-module, a bimodule structure for M over an A∞-algebra A is a differential
b on the bi-comodule B(A)⊗M⊗B(A) over the coalgebra B(A) compatible with the differential
on B(A).

Observe that if M is a left-module and N is a right-module for an A∞-algebra, then N ⊗M is a
bi-module; this follows from the fact that the tensor product (B(A)⊗N)⊗ (M ⊗ B(A)), which is a
bi-comodule of B(A), is isomorphic to B(A)⊗ (N ⊗M)⊗ B(A) as a bi-comodule.

Suppose M is a left-module for an A∞algebra A. It is easy to see that the differential on B(A)⊗M
is defined uniquely by a linear map bM from B(A) ⊗ M to M , which decomposes into a series of
maps

mk(a1, . . . , ak−1;x) : A⊗(k−1) ⊗M −→ M, k ≥ 0,

satisfying a series of equations analogous to those defining an A∞-structure. For example, we see
that m1 : M −→ M is a differential which satisfies Leibniz’s rule in the form

m1(m1(x)) = m2(u;x),

where u is the element of degree −2 in A defined by m0. As another example, the left action of A
on M in the usual sense is the map m2 : A⊗M −→ M , of total degree 0, which satisfies the Leibniz
relation

m1(m2(a;x)) = m2(m1(a);x) + (−1)|a|m2(a;m1(x)) + m3(u, a;x) + m3(a, u;x),

and the associativity relation

m2(a1;m2(a2;x))−m2(m2(a1, a2);x) = m1(m3(a1, a2;x))

+ m3(m1(a1), a2;x) + (−1)|a1|m3(a1,m1(a2);x) + (−1)|a1|+|a2|m3(a1, a2;m1(x))

−m4(u, a1, a2;x) + m4(a1, u, a2;x)−m4(a1, a2, u;x).
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Similarly, a bimodule structure on a graded K-module M is determined by a series of maps

mij(a1, . . . , ai−1;x; ā1, . . . , āj−1) : A⊗(i−1) ⊗M ⊗A⊗(j−1) −→ M,

satisfying certain equations.
One of the most important examples of a left-module for A is the graded K-module A itself, with

bA defined by the formula

(3.3) mij(a1, . . . , ai−1; a; ā1, . . . , āj−1) = mi+j−1(a1, . . . , ai−1, a, ā1, . . . , āj−1).

It is an easy task to check that this is compatible with the differential b on B(A). As a generalization
of this construction, we have the following result.

Proposition 3.4. If f : A1 −→ A2 is an A∞-homomorphism, then A2 becomes a bimodule over A1.

Proof. This is true simply because B(A2) is made into a bi-comodule of B(A1) by the homomorphism
of coalgebras f : B(A1) −→ B(A2). �

An example, which we will need later in the construction of the cyclic bar complex, is the bimodule
associated to the augmentation A+ of the A∞-algebra A; here, we use the fact that the inclusion
A ↪→ A+ is an A∞-homomorphism, and is even strict.

If M is a left-module over the A∞-algebra A and N is a right-module, then we can form the
two-sided bar-complex B(M,A,N), which is a graded complex, by taking the cotensor product of
B(A)-comodules:

B(M,A,N) = (M ⊗ B(A))⊗B(A) (B(A)⊗N).

The differential on B(M,A,N) is determined by the differentials on M ⊗B(A) and B(A)⊗N which
define the left-module and right-module structures. As a K-module, the bar-complex B(M,A,N)
is isomorphic to M ⊗ B(A) ⊗ N . Denoting a typical element as a sum of terms of the form x ⊗
[a1| . . . |ak]⊗ y, the differential may be written as follows:

b(x⊗ [a1| . . . |ak]⊗ y) =
k∑

i=0

±mi+1(x; a1, . . . , ai)⊗ [ai+1| . . . |ak]⊗ y

+
k∑

i=0

k−i∑
j=0

±x⊗ [a1| . . . |aj |mi(aj+1, . . . , aj+i)|aj+i+1| . . . |ak]⊗ y

+
k∑

i=0

±x⊗ [a1| . . . |ak−i]⊗mi+1(ak−i+1, . . . , ak; y).

Here, the signs may be determined precisely if so desired, by means of the standard sign conditions.
We will now generalize this construction by defining the bar-complex for a bimodule over an A∞-
algebra, in such a way that it will reduce to B(M,A,N) when applied to the bimodule N ⊗M .

If P is a differential graded bi-comodule over the dgc C, then the two coactions ∆L and ∆R of C
on P give two maps ∆R and S21 ◦∆L from P to P ⊗C, which respect the differentials on these two
spaces; here, S21 is the natural map S21 : C⊗P −→ P ⊗C which implements the sign convention for
Z2-graded objects. Thus, if we denote by Φ(P ) the graded K-module obtained from P by taking
the kernel of ∆R − S21 ◦∆L : P −→ P ⊗ C, we see that Φ(P ) inherits a differential from those of C
and P . It is not hard to check that Φ is a functor from the category of C-bimodules to the category
of complexes.
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Definition 3.5. The Hochschild complex of an A∞-algebra A with coefficients in the bimodule M ,
denoted by C(A,M), is the complex Φ(B(A)⊗M ⊗B(A)). The homology of this complex, called the
Hochschild homology of A with coefficients in M , is denoted by H(A,M).

We would now like to identify the complex Φ(B(A) ⊗ M ⊗ B(A)) more explicitly. In fact, as a
K-module, it may be identified with M ⊗B(A), by means of the projection from B(A)⊗M ⊗B(A)
to M ⊗ B(A) given by the counit η : B(A) −→ K:

Φ(B(A)⊗M ⊗ B(A)) ↪→ B(A)⊗M ⊗ B(A)
η⊗1⊗1−−−−→ M ⊗ B(A).

To show that this is an isomorphism of K-modules, we have only to construct an inverse; we will
use the map

S312 : M ⊗ B(A)⊗ B(A) −→ B(A)⊗M ⊗ B(A)

which swaps the right-hand graded K-module B(A) past the left-hand one M ⊗ B(A).

Proposition 3.6. The map S312 ◦ (1⊗∆) obtained by composing the arrows

M ⊗ B(A) 1⊗∆−−−→ M ⊗ B(A)⊗ B(A) S312−−−→ B(A)⊗M ⊗ B(A)

identifies M ⊗ B(A) with Φ(B(A)⊗M ⊗ B(A)).

Proof. We will use the notation (x, a1, . . . , ak) for the element obtained by applying the above map
S312 ◦ (1⊗∆) to x⊗ [a1| . . . |ak] ∈ M ⊗ B(A); in other words,

(x, a1, . . . , ak) =
k∑

i=0

(−1)(εi+|x|)(εk−εi)[ai+1| . . . |ak]⊗ x⊗ [a1| . . . |ai].

From this formula, it is clear that the composition

M ⊗ B(A)
S312◦(1⊗∆)−−−−−−−→ B(A)⊗M ⊗ B(A)

η⊗1⊗1−−−−→ M ⊗ B(A)

is the identity. Furthermore, from the formula for (x, a1, . . . , ak), it is clear that it lies in Φ(B(A)⊗
M⊗B(A)); more abstractly, this follows from the co-associativity of the comultiplication ∆. Finally,
we must show that the composition

Φ(B(A)⊗M ⊗ B(A))
η⊗1⊗1−−−−→ M ⊗ B(A)

S312◦(1⊗∆)−−−−−−−→ Φ(B(A)⊗M ⊗ B(A))

is the identity; this is true because η is a counit. �

It follows easily from the formula for (x, a1, . . . , ak) that the differential on C(A,M) is given by
the formula

b(x, a1, . . . , an) =
∑

i+j≤n

±(mij(an−j+2, . . . , an;x; a1, . . . , ai−1), ai, . . . , an−j+1)

+
n∑

i=0

n−k∑
k=0

±(x, a1, . . . , ak,mi(ak+1, . . . , ak+i), ak+i+1, . . . , an).

Connes, in his theory of cyclic homology, has underlined the importance of the Hochschild complex
with coefficients in the augmented comodule A+, which we defined at the end of Section 1. The
reason for the importance of this case is that there is a natural boundary B on C(A,A+), which
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raises degree by one and supercommutes with b, so that C(A,A+) is actually a dg-Λ-module. The
operator B is defined by the following formula:

B(a0, a1, . . . , an) =
n∑

i=0

(−1)(εi−1+1)(εk−εi−1)(e, ai, . . . , an, a0, a1, . . . , ai−1) ∈ C0(A,A+),

where the signs are determined, as usual, by the sign convention. Here, C0(A,A+) is the subspace
of C(A,A+) consisting of chains of the form (e, a1, . . . , an); in other words,

C0(A,A+) = B(A)⊗K ⊗ B(A) ∩ Φ(B(A)⊗A+ ⊗ B(A)) ⊂ B(A)⊗A+ ⊗ B(A).

In particular, if the elements ai are all even (this was the case originally considered by Connes), we
have

B(a0, a1, . . . , an) =
n∑

i=0

(−1)in(e, ai, . . . , an, a0, a1, . . . , ai−1).

It is obvious that B2 = 0, since B maps into C0(A,A+), but vanishes when applied to an element
of this space. To show that [b, B] = bB +Bb = 0, we will use a different formula for the B-operator,
which uses the fact that we have identified C(A,A+) with Φ(B(A)⊗A+⊗B(A)). We will introduce
the maps ϕ : B(A)⊗A+ ⊗ B(A) −→ B(A), defined by the formulas

ϕ[a1| . . . |ai]⊗ a⊗ [b1| . . . |bj ] = [a1| . . . |ai|a|b1| . . . |bj ],

ϕ[a1| . . . |ai]⊗ e⊗ [b1| . . . |bj ] = 0,

and σ : B(A) −→ B(A)⊗A+ ⊗ B(A), which is defined by

σ[a1| . . . |ak] =
k∑

i=0

[a1| . . . |ai]⊗ e⊗ [ai+1| . . . |ak].

It is evident from these formulas that both ϕ and σ are maps of B(A)-bi-comodules, so that on
applying the functor Φ to them, we obtain maps

Φ(ϕ) : C(A,A+) = Φ(B(A)⊗A+ ⊗ B(A)) −→ Φ(B(A)),

Φ(σ) : Φ(B(A)) −→ C0(A,A+) = Φ(B(A)⊗A+ ⊗ B(A)).

The operator B : C(A,A+) −→ C0(A,A+) is equal to the composition

C(A,A+)
Φ(ϕ)−−−→ Φ(B(A))

Φ(σ)−−−→ C0(A,A+);

indeed, this might have served as our definition of B.
To show that [B, b] = 0, we must check that both ϕ and σ are maps of complexes. In the case of

ϕ, this follows immediately from the definition (3.3) of the A∞-module A+.
We now rewrite σ as the composition

B(A) ∆−→ B(A)⊗ B(A) ∼= B(A)⊗K ⊗ B(A) ↪→ B(A)⊗A+ ⊗ B(A).

Of course, since B(A) is a dgc, ∆ is a map of complexes. It remains to show that the inclusion

B(A)⊗K ⊗ B(A) ↪→ B(A)⊗A+ ⊗ B(A)
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is a map of complexes. This is the same thing as showing that the inclusion K ↪→ A+ is a homo-
morphism of A-bimodules, where K is given the trivial A-bimodule structure for which all maps mij

vanish. Let us denote the differential on B(A) ⊗K ⊗ B(A) by bK , and that on B(A) ⊗ A+ ⊗ B(A)
by b+. Applying the difference b+ − bK to a chain [a1| . . . |ai]⊗ e[ai+1| . . . |ak], we obtain

k∑
j=0

min(i+1,k−j)∑
`=1

(−1)ε`−1 [a1| . . . |a`−1]⊗ m̃j(a`, . . . , ai, e, ai+1, . . . , a`j−1)⊗ [a`+j | . . . |ak].

However, all of the terms in this sum vanish except those with j = 2,

(−1)εi−1 [a1| . . . |ai−1]⊗ m̃2(ai, e)⊗ [ai+1| . . . |ak]

− (−1)εi−1 [a1| . . . |ai]⊗ m̃2(e, ai+1)⊗ [ai+2| . . . |ak],

and these two terms cancel.
To summarize, we have proved the following theorem.

Theorem 3.7. If A is an A∞-algebra, the Hochschild complex (C(A,A+), b) may be made into a
dg-Λ-module, by means of the operator B.

4. The cyclic bar complex of a commutative dga

In this section, we will discuss the cyclic bar complex in the special case where A is graded
commutative; the example that motivates us is the dga of differential forms on a smooth manifold,
but we will not use any special features of this dga. Our goal is to prove that underlying the dg-
Λ-structure on C(A,A+) described above, there is a rich A∞-algebra structure on the K[u]-module
C(A,A+)[u], which comes from a sequence of multilinear operators that generalize Connes’s B-
operator. The formulas that we give should be thought of as a more precise version of the results
of Hood and Jones [3], who only construct the product structure on the cyclic homology spaces
HC(A;W ).

What makes the case of a commutative dga special is that its bar complex B(A) has a commutative
product (the shuffle product) compatible with the coproduct and the differential; in other words,
B(A) is a differential graded Hopf algebra. Let us recall the definition of the shuffle product.

If (a1, . . . , ap) and (b1, . . . , bq) are two ordered sets, then a shuffle χ of (a1, . . . , ap) and (b1, . . . , bq)
is a permutation of the ordered set (a1, . . . , ap, b1, . . . , bq) with the property that χ(ai) occurs before
χ(aj), and χ(bi) occurs before χ(bj), if i < j. The shuffle product on B(A) is defined as the sum
over all shuffles on the ordered sets

((
1
1

)
, . . . ,

(
i
1

))
and

((
1
2

)
, . . . ,

(
j
2

))
,

(a1
1, . . . , a

i
1) ∗ (a1

2, . . . , a
j
2) =

∑
χ

Sχ(sa1
1 ⊗ . . .⊗ sai

1 ⊗ sa1
2 ⊗ . . .⊗ saj

2),

where Sχ : sA⊗i+j −→ sA⊗i+j is the transposition operator which inserts the correct signs. The
following proposition summarizes the properties of this product.

Proposition 4.1. The shuffle product on B(A) is associative and commutative with identity [ ] and
it defines a Hopf algebra structure on B(A). If A is a commutative dga, the boundary b on B(A)
satisfies Leibniz’s rule with respect to the shuffle product, so that B(A) is made into a commutative
dga.

If M is a differential graded module over the commutative dga A, then the space B(A)⊗M⊗B(A)
may be made into a differential graded Hopf module over B(A); since we already know the comodule
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structure and the differential, we have only to define the module structure, which is done by using
the diagram

B(A)⊗ (B(A)⊗M ⊗ B(A)) ∆⊗1−−−→ B(A)⊗ B(A)⊗ (B(A)⊗M ⊗ B(A))
S13425−−−−→ (B(A)⊗ B(A))⊗M(B(A)⊗ B(A)) ∗⊗1⊗∗−−−−→ B(A)⊗M ⊗ B(A)

Similarly, if M and N are differential graded modules over the commutative dga A, there is a
pairing

(B(A)⊗M ⊗ B(A))⊗ (B(A)⊗N ⊗ B(A)) −→ B(A)⊗ (M ⊗N)⊗ B(A)

defined by

(α1 ⊗ x⊗ β1) ∗ (α2 ⊗ y ⊗ β2) = (−1)|x||α2|+|β1||α2|+|β2||y|(α1 ∗ α2)⊗ (x⊗ y)⊗ (β1 ∗ β2).

If we restrict this pairing to Φ(B(A)⊗M ⊗ B(A))⊗Φ(B(A)⊗N ⊗ B(A)), we see that it maps into
Φ(B(A)⊗ (M ⊗N)⊗ B(A)), and so defines a pairing

C(A,M)⊗ C(A,N) −→ C(A,M ⊗N),

which is given by the sum over all shuffles on the sets
((

1
1

)
, . . . ,

(
i
1

))
and

((
1
2

)
, . . . ,

(
j
2

))
,

(x, a1
1, . . . , a

i
1) ∗ (y, a1

2, . . . , a
j
2) =

∑
χ

(x⊗ y)⊗ Sχ(sa1
1 ⊗ . . .⊗ sai

1 ⊗ sa1
2 ⊗ . . .⊗ saj

2).

As before, the Hochschild boundary b satisfies Leibniz’s rule with respect to this pairing.
Finally, the space B(A)⊗A+ ⊗ B(A) is made into a commutative dga by the shuffle product, by

composing the pairing

(B(A)⊗A+ ⊗ B(A))⊗ (B(A)⊗A+ ⊗ B(A)) −→ B(A)⊗ (A+ ⊗A+)⊗ B(A)

with the commutative product A+⊗A+ −→ A+. This product restricts to a product on C(A,A+) =
Φ(B(A)⊗A+ ⊗ B(A)), with the following properties.

Proposition 4.2.

(1) The shuffle product on C(A,A+) is associative with identity (e). If A is a commutative dga,
the product is commutative and the Hochschild boundary b on C(A,A+) satisfies Leibniz’s
rule with respect to the shuffle product, so that C(A,A+) is a commutative dga.

(2) If M is a bimodule for the dga A, the shuffle product action of C(A,A+) on C(A,M) is
associative. If A is a commutative dga, the action satisfies Leibniz’s rule with respect to the
Hochschild boundaries b on C(A,A+) and C(A,M).

It follows from this proposition that the Hochschild homology HH(A,A+) of a commutative dga
is a graded commutative algebra, and that HH(A,M) is always a module for this algebra.

If A is the algebra of smooth functions on manifold M , it was proved by Hochschild, Kostant
and Rosenberg that its Hochschild homology HH(C∞(M)) is isomorphic to the space of differential
forms on M ; this isomorphism is realized by the map which sends the chain

(f0, f1, . . . , fn) ∈ C(C∞(M), C∞(M)+) to
1
n!

f0 df1 . . . dfn ∈ Ω(M),
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and the chain

(e, f1, . . . , fn) ∈ C(C∞(M), C∞(M)+) to
1
n!

df1 . . . dfn ∈ Ω(M).

It is fairly easy to see that the product induced on HH(C∞(M)) by the shuffle product is the
exterior product. It is important to observe that the B-operator on C(C∞(M), C∞(M)+) induces
a coboundary on HHn(C∞(M)) equal to the exterior differential, as can be seen from the diagram

(f0, f1, . . . , fn) B−−−−→
∑n

i=0(−1)in(e, fi, . . . , fn, f0, . . . , fi−1)y y
1
n!

f0 df1 . . . dfn
d−−−−→ 1

(n + 1)!
df0 df1 . . . dfn

This simple fact is one of the most important reasons for introducing the B-operator.
The differential b+uB is not a derivation with respect to the shuffle product; if we wish to induce

a product on the cyclic homology spaces HC(A;W ), we must find a product on C(A,A+)[u] for
which it is. Later in this section, we will define a sequence of maps Bk, k > 0, with the following
properties.

Lemma 4.3. The operator Bk is a multilinear map C(A,A+)⊗k −→ C0(A,A+) of degree k such
that B1 is the operator B of Connes, such that Bk(α1, . . . , αk) vanishes if αi ∈ C(A,A+) for any
1 ≤ i ≤ k, and satisfying the cocycle property

−bBk(α1, . . . , αk) =
k∑

i=1

(−1)εi−1Bk(α1, . . . , bαi, . . . , αk)

+ α1 ∗Bk−1(α2, . . . , αk)

+
k−1∑
i=1

(−1)εiBk−1(α1, . . . , αi ∗ αi+1, . . . , αk)

− (−1)εk−1Bk−1(α1, . . . , αk−1) ∗ αk.

Using the maps Bk, we define a sequence of multilinear products m̃k, k ≥ 0, on C(A,A+)[u] as
follows:

m̃k(α1, . . . , αk) =


bα1 + uBα1 k = 1,

−(−1)|α1|α1 ∗ α2 + uB2(α1, α2) k = 2,

uBk(α1, . . . , αk) otherwise.

From these, we define maps mk(α1, . . . , αk) as in Section 1 by a sign change

mk(α1, . . . , αk) = (−1)(k−1)|α1|+(k−2)|α2|+···+2|αk−2|+|αk−1|+k(k−1)/2m̃k(α1, . . . , αk),

Theorem 4.4. The graded K-module C(A,A+)[u] with the above multilinear maps mk is a standard
A∞-algebra.

Proof. The definition of an A∞-structure in Section 1 amounts to the following collection of formulas:

∑
k+l=n+1

k∑
i=1

(−1)εi−1m̃k(α1, . . . , αi−1, m̃l(αi, . . . , αi+l−1), . . . , αn) = 0.
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This formula may be decomposed into three pieces which must vanish separately, corresponding to
terms accompanied by no power of u, by the coefficient u, and by the coefficient u2. The first of
these vanishes simply because b satisfies Leibniz’s rule with respect to the shuffle product, while the
third vanishes because Bk equals zero if any of its arguments lies in C0(A,A+), or in particular is
B` of something. Bearing this in mind, we have only to show that the coefficient of u vanishes; this
turns out to be the cocycle formula of 4.3. �

In order to define the higher maps Bn, we need a little combinatorial machinery. Given numbers
µ(i), 1 ≤ i ≤ k, let C(µ(1), . . . , µ(k)) be the set {

(
0
1

)
, . . . ,

(
µ(1)

1

)
, . . . ,

(
0
k

)
, . . . ,

(
µ(k)

k

)
}, ordered lexi-

cographically, that is
(
j
i

)
<

(
`
k

)
if and only if i < k or i = k and j < `. A cyclic shuffle σ is a

permutation of the set C(µ(1), . . . , µ(k)) which satisfies the following two conditions:

(1) σ
(

0
i1

)
< σ

(
0
i2

)
if i1 < i2, and

(2) for each 1 ≤ i ≤ k, there is a number 0 ≤ ji ≤ µ(i) such that

σ
(
ji

i

)
< · · · < σ

(
µ(i)

i

)
< σ

(
0
i

)
< · · · < σ

(
ji−1

i

)
.

We will denote the set of cyclic shuffles by S(µ(1), . . . , µ(k)).
If we imagine the set C(µ(1), . . . , µ(k)) arranged as a grid in the plane, so the i-th column is

made up of the points
(
0
i

)
,
(
1
i

)
, . . . ,

(
µ(i)

i

)
, then a cyclic shuffle is given by first applying a cyclic

permutation to each column and then shuffling the columns together in such a way that
(

0
i1

)
occurs

before
(

0
i2

)
if i1 < i2.

To each cyclic shuffle σ, there is a corresponding isomorphism of graded K-modules

Sσ : (sA)⊗(i1+···+ik+k) −→ (sA)⊗(i1+···+ik+k).

If αi = (a0
i , . . . , a

µ(i)
i ), 1 ≤ i ≤ k is a set of elements of C(A,A+), we define Bk by the formula

Bk((a0
1, a

1
1, . . . , a

µ(1)
1 ), . . . , (a0

k, a1
k, . . . , a

µ(k)
k ))

=
∑

σ∈Σ(µ(1),...,µ(k))

e⊗ Sσ

(
sa0

1 ⊗ sa1
1 ⊗ . . .⊗ sa

µ(1)
1 ⊗ . . .⊗ sa0

k ⊗ sa1
k ⊗ . . .⊗ sa

µ(k)
k

)
.

From this formula, it is immediately clear that Bk(α1, . . . , αk) ∈ C0(A,A+), and that it vanishes if
any of the αi lie in C0(A,A+). Let us now prove the cocycle formula contained in 4.3, which will
complete the construction of the A∞-structure on C(A,A+).

Consider the result of applying −b to a typical term C of the chain Bk(α1, . . . , αk). First of all,
note that those terms in bC where the differential d on A hits an entry aj

i correspond precisely to
those terms in

∑
i(−1)εi−1Bk(α1, . . . , bαi, . . . , αk) in which the differential d occurs. The remaining

terms involve the product aj
ia

`
k of two consecutive entries; it is easiest to understand the result by

classifying these according to the indices
(
j
i

)
and

(
`
k

)
.

(1) The first possibility is that we are forming the product of e and a0
1 and C = (e, a0

1, . . . ).
The collection of terms coming from this possibility conspire to produce the chain α1 ∗
Bk−1(α2, . . . , αk).

(2) Similarly, we may have the product of a0
k and e in C = (e, . . . , a0

k). The terms coming from
this situation give the chain −(−1)εk−1Bk−1(α2, . . . , αk−1) ∗ αk.

(3) The remaining terms involving e also involve an entry aj
i , 1 ≤ j ≤ µ(i), and these terms

cancel pairwise, since the entry aj
i can occur in either the left or the right, and one may

check that the signs in these two cases are opposing.
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(4) We now come to the products that are “internal” to the chain bC, that is, do not involve its
zeroth entry e. If such a product is of the form a0

i a
0
j , then the nature of a cyclic shuffle shows

that j = i + 1. This collection of terms produces the sum
∑k−1

i=1 (−1)εiBk−1(α1, . . . , αi ∗
αi+1, . . . , αk).

(5) Next, we may consider the terms in which we have a product aj
ia

`
i . Since the cyclic shuffle

has the effect of cycling the indices
((

1
i

)
, . . . ,

(
µ(i)

i

))
, it is clear that either ` = j + 1 or ` = 0

and j = µ(i), and we find precisely those terms in (−1)εi−1Bk(α1, . . . , bαi, . . . , αk) which
come from products of elements in αi, as against differentials.

(6) Finally, we have the products aj
ia

`
k in which i 6= k and j + ` > 0. These terms cancel from

the sum, since (−1)|a
j
i ||a

`
k|aj

ia
`
k occurs with the opposite sign, and the algebra A is (graded)

commutative. (This is the only point at which we use the hypothesis that A is graded
commutative.)

5. The Chen normalization of the cyclic bar complex

In this section, it will be convenient to change the grading of the complexes of the preceding
sections. Our A∞-algebras will now have a grading for which the multilinear products mn have
degree 2 − n, and the differential b will raise degree on B(A) by one, while B lowers it. We will
assume that our A∞-algebras A and bimodules M are concentrated in positive degrees, which under
the old grading would have corresponded to negative degrees. The original example which motivated
the following results is that in which A = Ω(X) is the dga of differential forms on a manifold.

Let us introduce a normalization of the cyclic bar complex due to Chen [1]; its purpose is to get
rid of chains of negative degree in the cyclic bar complex C(A,M). If f is an element of A0, we
define operators Si(f) on C(A,M) by the formula

Si(f)(x, a1, . . . , an) = (x, a1, . . . , ai−1, f, ai, . . . , an).

We now define D(A,M) to be the subspace of C(A,M) generated by the images of the operators
Si(f) and Ri(f) = [b, Si(f)], and the Chen normalised chain complex to be the quotient complex
N(A,M) = C(A,M)/ D(A,M). The following result shows that the Chen normalization leaves many
of the structures that we have considered on C(A,M) in place.

Proposition 5.1.

(1) The differential b maps D(A,M) to itself.
(2) If M = A+, the shuffle product and the multilinear maps Bk take values in D(A,A+) if any

of their arguments are in D(A,A+).

It follows that

(3) (D(A,M), b) is a sub-complex of (C(A,M), b);
(4) (D(A,A+), b, B) is a sub-dg-Λ-module of (C(A,A+), b, B);
(5) if A is graded commutative, D(A,A+)[u] is an A∞-ideal of C(A,A+)[u], so that N(A,A+)

inherits an A∞-structure from C(A,A+).

Proof. The first part is true by construction. To prove the second part, observe that if in taking
the shuffle product of two elements of C(A,A+), one of them lies in

⋃
i Si(f) C(A,A+), then the

shuffle product also lies in
⋃

i Si(f) C(A,A+). Using the fact that b is a derivation with respect to
the shuffle product, it follows that D(A,A+) is an ideal with respect to the shuffle product:

(Ri(f)α1)α2 = ([b, Si(f)]α1)α2 = b((Si(f)α1)α2) + (−1)|α1|(Si(f)α1)(bα2) + (Si(f)bα1)α2,
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and we have already shown that all three of these terms belong to D(A,A+).
The case of Bk(α1, . . . , αk) is similar: if αi ∈

⋃
j Sj(f) C(A,A+), then so is Bk(α1, . . . , αk), so

that
Bk(α1, . . . , Rj(f)αi, . . . , αk)−Bk(α1, . . . , bSj(f)αi, . . . , αk) ∈ D(A,A+).

Using the cocycle property of the maps Bk and induction in k, it is easily shown that Bk(α1, . . . , bSj(f)αi, . . . , αk)
lies in D(A,A+), and hence that Bk(α1, . . . , Ri(f)αi, . . . , αk) does too. �

The following theorem is our transcription to the above setting of a result of Chen [1].

Theorem 5.2. If A is connected, that is, H0(A) = 0, then the complex (D(A,M), b) is acyclic.

Proof. Let V be a complement of d[A0] ⊂ A1, and define a subalgebra Ā ⊂ A as follows:

Āk =


0 k = 0,

V k = 1,

Ak k > 1.

By construction, Ā is a subalgebra of A having the same cohomology. We will compare the cyclic
bar complexes of A and Ā with coefficients in the bimodule M , under the inclusion

C(Ā,M) ↪→ C(A,M).

Note that D(Ā,M) is the intersection of C(Ā,M) and D(A,M); however, since Ā0 vanishes, it
follows that D(Ā,M) = 0. Thus, it suffices to prove that the above inclusion of C(Ā,M) in C(A,M)
induces an isomorphism in cohomology. To do this, we apply the following lemma, which is the
generalization to our context of a fundamental lemma of Moore. �

Lemma 5.3. Let Mi be a bimodule over the standard A∞-algebra Ai for i ∈ {1, 2}, and let A1 −→ A2

be a homomorphism, such that M1⊗A1 A2 −→ M2 is a homomorphism of bimodules over A2. If these
homomorphisms induce isomorphisms in cohomology, then the induced homomorphism

C(A1,M1) −→ C(A2,M2)

induces an isomorphism in cohomology.

Proof. If A is a standard A∞-algebra with M is a bimodule over A, consider the bar filtration on
C(A,M)

F−k C(A,M) = span{(m,a1, . . . , ai) | i ≤ k}.

The E1-term of the spectral sequence associated to this filtration is easily seen to be isomorphic to
C(H(A),H(M)); more precisely, E−p,q

1 is equal to span of the collection of chains in C(H(A),H(M))
of the form

([x], [a1], . . . , [ap]) where [x] ∈ H(M), [ai] ∈ H(A) and |x|+
∑

|ai| = q.

From this, it is easy to see that the spectral sequence converges, from which the lemma follows easily
by a comparison theorem. �

Note that the definition of a connected A∞-algebra which we use in this theorem, that is H0(A) =
0, is the correct one in the category of A∞-algebras without identity. If we were to state the
corresponding result for A∞-algebras with identity (which we leave it for the reader to do), we
would demand that H0(A) = K.
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