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In [3], Connes defines the notion of a theta-summable Fredholm module over a Banach algebra
A with identity. This consists of a Z2-graded Hilbert space H = H+ ⊕H− carrying a continuous
representation of A, and an odd self-adjoint operator D : H± −→ H∓ with the following properties:

(1) if a ∈ A, the operator [D, a] is densely defined and extends to a bounded operator on H,
and there is a constant N(D) such that ‖a‖+ ‖[D, a]‖ ≤ N(D)‖a‖A;

(2) for some ε > 0, Tr e−(1−ε)D2
is finite.

Here and in the rest of this paper, ‖A‖ denotes the norm of A as a bounded operator on H. One
of the most important examples of a theta-summable Fredholm module is defined over the algebra
A = C1(M) of differentiable functions on a compact spin-manifold M : H is the space of L2-sections
of the spinor bundle S±, with A acting by multiplication, and D is the Dirac operator.

Two different formulas have been proposed for the Chern character of a theta-summable Fredholm
module, by Connes in [3], and by Jaffe, Lesniewski and Osterwalder in [6]. In this paper, we show
that if we adopt the second of these formulas as the definition of the Chern character, it is possible
to simplify Connes’s theory of the Chern character from K-cohomology of a Banach algebra to entire
cyclic cohomology in a number of ways.

If A is an ungraded Banach algebra with identity, and Ā is the Banach space A/C, we let C∗(A)
be the entire normalized bar complex of A defined by Connes in [3]; this is the Z-graded LF space
obtained by taking the union of the completions of the space∑

n

A⊗ Ā⊗n

with respect to the collection of seminorms

‖
∑

nAn‖z =
∞∑

n=0

zn‖An‖π√
n!

z ∈ N.

Here, ‖ ·‖π is the projective tensor product norm on A⊗ Ā⊗n. The projective norm is characterized
as follows: the continuous dual (A⊗π Ā⊗πn)′ is isomorphic to the space of continuous bilinear maps
f : A × Ā×n −→ C. The completion of A ⊗ Ā⊗n in this topology will be denoted Cn(A), and we
will denote the element a0 ⊗ . . .⊗ an of Cn(A) by (a0, . . . , an)n, where ai ∈ A.
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Note that our normalization conventions differ from those of Connes: our chain
∑

n An corre-
sponds in his normalization to the chain

∑
n An/n!.

Consider the two bounded operators on C∗(A)

b(a0, . . . , an)n =
n∑

i=0

(−1)i(a0, . . . , aiai+1, . . . , an)n−1 + (−1)n(ana0, . . . , an−1)n−1

and

B(a0, . . . , an)n =
n∑

i=0

(−1)in(1, ai, . . . , an, a0, . . . , ai−1)n+1.

Note that b2 = B2 = [b, B] = bB + Bb = 0. Connes defines the entire cyclic homology HE∗(A) of A
to be the homology of the complex (C∗(A), b + B). The operator b + B is inhomogeneous, so that
HE∗(A) is only Z2-graded; we denote the even subspace by HE+ and the odd subspace by HE−.

The cobar complex C∗(A) is the topological dual (C∗(A))′ of the bar complex; this is the same
thing as the space of continuous multi-linear forms on A× Ā×n. This space carries two boundaries
obtained by forming the adjoints of b and B acting on C∗(A); we will denote these operators by
the letters b and B too. The cohomology of the complex (C∗(A), b + B) is called the entire cyclic
cohomology of A, and is denoted HE∗(A). The pairing between C∗(A) and C∗(A) induces a pairing
between HE∗(A) and HE∗(A), which we write (·, ·) : HE∗(A)⊗HE∗(A) −→ C.

Let (H,D) be a theta-summable Fredholm module over A. In (2.3), we give the definition, due
to Jaffe, Lesniewski and Osterwalder, of the Chern character Ch∗(D) ∈ C+(A) of this Fredholm
module; part (1) of the following theorem is due to them.

Theorem A.

(1) The Chern character of a theta-summable Fredholm module is closed:

(b + B) Ch∗(D) = 0.

(2) If (H,Dτ ) is a differentiable one-parameter family of Fredholm modules over A such that Ḋτ

is bounded, there is a cochain C̃h∗(Dτ , Ḋτ ) ∈ C−(A) such that

(b + B)C̃h∗(Dτ , Ḋτ ) =
d Ch∗(Dτ )

dτ
.

(3) If Tr e−tD2 ≤ ∞ for all t > 0, and if Dτ = τD for τ > 0,

(b + B)C̃h∗(Dτ ,D) =
d Ch∗(Dτ )

dτ
.

Thus, in these two cases, the class of Ch∗(Dτ ) in HE+(A) is independent of the parameter τ . �

An element of the space K0(A) may be represented by an idempotent p ∈ Mr(A), that is, an
operator satisfying p2 = p. In Section 1, we will define a Chern character map from idempotents
p to cyclic chains Ch∗(p) ∈ C+(A), which has the advantage over Connes’s choice that it is closed
under the boundary b + B; this Chern character is given by the same formula as that of Hood and
Jones [5, p. 362]. The analogue for Ch∗(p) of Theorem A is the following theorem, which we prove
in Section 1.
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Theorem B.
(1) Given an idempotent p, its Chern character Ch∗(p) ∈ C+(A) satisfies

(b + B) Ch∗(p) = 0.

(2) If pτ : [0, 1] −→ Mr(A) is a one-parameter family of idempotents, there is a chain C̃h∗(pτ , ṗτ ) ∈
C−(A) such that

(b + B)C̃h∗(pτ , ṗτ ) =
d Ch∗(pτ )

dτ
.

Thus, the homology class of the Chern character in HE+(A) is independent of τ . �

In the course of this paper, the following theorem, proved in Section 2 turns out to be very useful;
it shows that Fredholm modules are stable under bounded perturbations.

Theorem C. If (H,D) is a Fredholm module over A and V is an odd self-adjoint bounded operator
on H, then (H,D + V ) is a theta-summable Fredholm module, and

Tr e−(1−ε/2)(D+V )2 ≤ e(1+2/ε)‖V ‖2 · Tr e−(1−ε)D2
. �

Finally, in Section 3, we prove the following index formula.

Theorem D. If (H,D) is a Fredholm module over A and p ∈ Mr(A) is an idempotent, let Dp

be the Fredholm operator p · D · p on the Hilbert space p[H ⊗ Cr]. If we denote the index of D+
p :

p[H+ ⊗ Cr] −→ p[H− ⊗ Cr] by ind(Dp), then the following formula holds:

(Ch∗(D),Ch∗(p)) = ind(Dp). �

It is possible to generalize the notion of a theta-summable Fredholm module, by replacing the
condition that D is self-adjoint by the condition that D − D∗ is bounded. All of the results of this
paper may be generalized to this setting; however, the proofs become more cumbersome, since we
can no longer use the spectral theorem to perform the necessary estimates, and must instead make
use of the perturbation theory of analytic semigroups and Trotter’s product formula.

We would like to thank A. Lesniewski and A. Jaffe for helpful discussions.

§1. The Chern character of an idempotent

Consider an idempotent p = (pij) ∈ Mr(A), which represents the class [p] ∈ K0(A). The following
two chains are the only elements of Cn(A) that can be defined using the matrices p and 1 and the
standard trace on Mr(A):

pn = Tr(p, . . . , p)n =
∑

i0...in

(pi0i1 , pi1i2 , . . . , piki0)n

qn = Tr(1, p, . . . , p)n =
∑

i1...in

(1, pi1i2 , . . . , piki1)n

Since p2 = p, the boundaries of these chains are as follows if n is even,

bpn = pn−1

bqn = 2pn−1 − qn−1

Bpn = (n + 1)qn+1

Bqn = 0

while if n is odd, bpn = bqn = Bpn = Bqn = 0.
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Proposition 1.1. Define the Chern character in C∗(A) of p by the formula

Ch∗(p) = p0 +
∞∑

k=1

(−1)k (2k)!
k!

(p2k − 1
2q2k)

= (p)0 +
∞∑

k=1

(−1)k (2k)!
k!

(p− 1
2 , p, . . . , p)2k.

Then (b + B) Ch∗(p) = 0, and linear combinations of the form sCh∗(p) + t Ch∗(1) are the only
combinations of p2k and q2k which have this property. (Note that Ch∗(1) equals q0.)

Proof. It is easy to see that Ch∗(p) satisfies the estimates for it to be a member of C∗(A). To show
that this chain and q0 are the unique closed combinations in the elements p2k and q2k, let us write
out the arbitrary linear combination of p2k and q2k:

∞∑
k=0

(skp2k + tkq2k).

Applying the boundary b + B, we obtain
∞∑

k=1

(
(sk + 2tk)p2k−1 + ((2k − 1)sk−1 − tk)q2k−1

)
= 0.

It follows that sk = −2tk for all k > 0, and that sk = −2(2k − 1)sk−1, which has two independent
solutions, in the first of which t0 = 0 and sk = (−1)k(2k)!/k! s0, and in the second of which t0 is
arbitrary and sk = for all k. �

Note that the coefficients of the chains p2k and q2k in Ch∗(p) are all integers.
In [2], Connes has introduced the following chain, which he calls the Chern character of the

idempotent p:

Ch∗(p) =
∞∑

k=0

(−1)k (2k)!
k!

p2k.

This character has the disadvantage that it is not closed with respect to the boundary operator
b + B, which leads Connes to a certain amount of difficulty in developing his theory.

We shall now investigate the behaviour of the Chern character Ch∗(p) under a differentiable
homotopy of the idempotent p. If pτ : [0, 1] −→ Mr(A) is a differentiable one-parameter family of
idempotents, then

dpτ

dτ
= [aτ , pτ ] where aτ = ṗτ (2pτ − 1).

Indeed, this follows from the formula pτ ṗτ + ṗτpτ = ṗτ .
We now make use of the following lemma. If a ∈ A, let ι(a) : Cn(A) −→ Cn+1(A) be the map of

the bar complex defined by

ι(a) · (a0, . . . , an)n =
n∑

i=0

(−1)i(a0, . . . , ai, a, ai+1, . . . , an)n+1.

Also, let L(a) : Cn(A) −→ Cn(A) denote the operator

L(a) · (a0, . . . , an)n =
n∑

i=0

(a0, . . . , [a, ai], . . . , an)n.

Note that ι(a) is an odd operator; thus, by [b, ι(a)] and [B, ι(a)], we mean the anticommutator. The
following lemma shows that the the operator L(a) acts by zero on Hochschild and cyclic homology;
its proof is a straightforward combinatoric exercise.
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Lemma 1.2. The operators ι(a) and L(a) are bounded on C∗(A), and satisfy the following formulas:
(1) [b, ι(a)] = L(a)
(2) [B, ι(a)] = 0

Since [b + B, ι(a)] = L(a), we obtain the following result, completing the proof of Theorem B.

Proposition 1.3. Let C̃h∗(p, q) denote the odd cyclic chain ι(q(2p− 1)) · Ch∗(p). Then

d Ch∗(pτ )
dτ

= (b + B)C̃h∗(pτ , ṗτ ).

Proof. Since L(aτ ) · pn = ṗn and L(aτ ) · qn = q̇n, it follows that

d Ch∗(pτ )
dτ

= L(aτ ) · Ch∗(pτ ).

Lemma 1.2 and the fact that (b + B) Ch∗(pτ ) = 0 combine to complete the proof. �

§2. The Chern character of a Fredholm module.

In this section, we will study the definition of the Chern character of a theta-summable Fredholm
module given in [6]. In order to define the Chern character, it is helpful to introduce the following
notation. Let ∆n be the n-simplex{

(t1, . . . tn) ∈ Rn
∣∣ 0 ≤ t1 ≤ · · · ≤ tn ≤ 1

}
If Ai, 0 ≤ i ≤ n are operators on H, we define〈

A0, . . . , An

〉
n

=
∫

∆n

Str(A0e
−t1D2

A1e
−(t2−t1)D2

. . . Ane−(1−tn)D2
).

Here the super-trace Str of an operator A on H is defined to be StrA = Tr A|H+ − TrA|H− . The
following lemma gives an estimate for

〈
A0, . . . , An

〉
n
.

Lemma 2.1. If the operators Ai and Bi are bounded, and at most k of the operators Ai are non-zero,
then

|
〈
A0D + B0, . . . , AnD + Bn

〉
n
| ≤ ε−k/2 Tr e−(1−ε)D2

(n− k)!

n∏
i=0

(‖Ai‖+ ‖Bi‖),

where ε > 0 is a constant such Tr e−(1−ε)D2
< ∞.

Proof. These bounds are a simple consequence of the Hölder inequality for the trace on a Hilbert
space: if ‖A‖p denotes the p-Schauder norm of the operator A, and σ0 + · · ·+ σn = 1, we have

|Tr(A0 . . . An)| ≤ ‖A0‖σ−1
0

. . . ‖An‖σ−1
n

.

If we change variables on the simplex from 0 ≤ t1 ≤ · · · ≤ tn ≤ 1 to σ0 + · · · + σn = 1, where
σi = ti+1 − ti ≥ 0, we see that∣∣〈A0D + B0, . . . , AnD + B0

〉
n

∣∣ ≤ ∫
∆n

|Tr((A0D + B0)e−σ0D2
. . . (AnD + Bn)e−σnD2

)|

≤
∫

∆n

‖(A0D + B0)e−σ0D2
‖σ−1

0
. . . ‖(AnD + Bn)e−σnD2

‖σ−1
n

.
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In estimating ‖(AD + B)e−σD2‖σ−1 , we use the facts that

‖ADe−σD2
‖σ−1 ≤ ‖A‖ · ‖De−εσD2

‖ · ‖e−(1−ε)σD2
‖σ−1

≤ (2eεσ)−1/2
(
Tr e−(1−ε)D2

)σ

· ‖A‖,

and that
‖Be−σD2

‖σ−1 ≤ ‖B‖ · ‖e−σD2
‖σ−1 ≤

(
Tr e−D

2
)σ

· ‖B‖.

The proof is finished by using the bound
∫
∆n

(σ0 . . . σk−1)−1/2 ≤ 2k/(n− k)!. �

Using the fact that〈
A0, . . . , AiD, Ai+1, . . . , An

〉
=
〈
A0, . . . , Ai,DAi+1, . . . , An

〉
,

we obtain a number of bounds that are not explicitly contained in the above lemma. For example,
if the operators Ai are all bounded, then we obtain the following bounds:〈

A0, . . . , [D, Ai], . . . , An

〉
n
≤ 2ε−1/2 Tr e−(1−ε)D2

(n− 1)!
‖A0‖ . . . ‖An‖(2.1a)

〈
A0, . . . ,D2, . . . , An

〉
n+1

≤ ε−1 Tr e−(1−ε)D2

(n− 1)!
‖A0‖ . . . ‖An‖(2.1b)

The following lemma collects some useful formulas involving the forms
〈
A0, . . . , An

〉
n
; parts of it

are borrowed from [4] and [6]. In the statement of the lemma, we write |A| ∈ Z2 for the degree of
an operator A acting on the graded Hilbert space H; that is, |A| = 0 if A is even, and |A| = 1 if A
is odd.

Lemma 2.2. In each of the following cases, we assume that the operators Ai are such that each
term is well-defined.

(1) 〈
A0, . . . , An

〉
n

= (−1)(|A0|+···+|Ai−1|)(|Ai|+···+|An|)
〈
Ai, . . . , An, A0, . . . , Ai−1

〉
n

(2)

〈
A0, . . . , An

〉
n

=
n∑

i=0

(−1)(|A0|+···+|Ai−1|)(|Ai|+···+|An|)
〈
1, Ai, . . . , An, A0, . . . , Ai−1

〉
n+1

(3)
n∑

i=0

(−1)|A0|+···+|Ai−1|
〈
A0, . . . , [D, Ai], . . . , An

〉
n

= 0

(4)〈
A0, . . . , [D2, Ai], . . . , An

〉
n

=
〈
A0, . . . , Ai−1Ai, Ai+1, . . . , An

〉
n−1

−
〈
A0, . . . , Ai−1, AiAi+1, . . . , An

〉
n−1

(5) If Dτ is a differentiable one-parameter family of self-adjoint odd operators on H such that
Tr e−D

2
τ is uniformly bounded as t varies, we have

d

dτ

〈
A0, . . . , An

〉
n

+
n∑

i=0

〈
A0, . . . , Ai, [Dτ , Ḋτ ], Ai+1, . . . , An

〉
n+1

= 0.
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Proof. The cyclic symmetry in (1) follows from the fact that Str[A,B] = 0. To prove (2), we start
from the equation〈

A0, . . . , An

〉
n

=
∫

[0,1]×∆n

Str(A0e
−t1D2

. . . Ane−(1−tn)D2
) ds dt1 . . . dtn.

We divide the region of integration into n + 1 pieces

Ri = {ti ≤ s ≤ ti+1}.

Each of these regions Ri is a simplex, which contributes the term〈
A0, . . . , Ai, 1, Ai+1, . . . , An

〉
n+1

,

to the sum, from which (2) follows.
Part (3) follows directly from the fact that

Str[D, A0e
−t1D2

A1e
−(t2−t1)D2

. . . Ane−(1−tn)D2
] = 0.

To prove part (4) we observe that

[e−D
2
, A] +

∫ 1

0

e−sD2
[D2, A]e−(1−s)D2

ds = 0.

Replacing D2 by (ti+1 − ti)D2, and using the substitution u = (ti+1 − ti)s + ti, we obtain

[e−(ti+1−ti)D2
, Ai] +

∫ ti+1

ti

e−(ti+1−u)D2
[D2, Ai]e−(u−ti)D2

du = 0.

Inserting this into the definition of
〈
A0, . . . , [D2, Ai], . . . , An

〉
n

gives the desired formula.
To prove part (5), observe that by Leibniz’s rule,

(∗) d

dτ

〈
A0, . . . , An

〉
n

+
n∑

i=0

Str

(
A0e

−t1D2
. . . Ai

d(e−(ti+1−ti)D2
τ )

dτ
Ai+1 . . . Ane−(1−tn)D2

)
= 0.

We now recall du Hamel’s equation

d(e−D
2
τ )

dτ
+
∫ 1

0

e−sD2
τ [Dτ , Ḋτ ]e−(1−s)D2

τ ds = 0.

Replacing D2
τ by (ti+1 − ti)D2

τ , and using the substitution u = (ti+1 − ti)s + ti, we obtain

d(e−(ti+1−ti)D2
τ )

dτ
+
∫ ti+1

ti

e−(ti+1−u)D2
τ [Dτ , Ḋτ ]e−(u−ti)D2

τ du = 0.

The formula follows from substituting this into (∗). �

As a last preliminary result, we prove the stability of Fredholm modules under perturbation by a
bounded operator. First we recall the following fact: if A and B are positive self-adjoint operators,
then

(2.2) Tr e−A−B ≤ Tr e−A
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Proof of Theorem C. Let (H,D) be a Fredholm module over A, and let V be an odd self-adjoint
bounded operator on H. If a ∈ A, then

‖[D + V, a]‖ ≤ (N(D) + 2‖V ‖)‖a‖A,

which is the first part of the definition of a theta-summable Fredholm module.
To prove that D + V has trace class heat kernel, introduce the operators

A = (1− ε)D2

B = εD2/2 + (1− ε/2)(DV + VD + V 2) + (1 + 2/ε)‖V ‖2.

Note that A + B = (1 − ε/2)(D + V )2 + (1 + 2/ε)‖V ‖2, and that A is a positive operator. To see
that B is positive, we use the fact that

−(DV + VD) ≤ εD2/2 + 2V 2/ε ≤ εD2/2 + 2‖V ‖2/ε.

Thus, applying (2.2), we obtain

Tr e−(1−ε/2)(D+V )2−(1+2/ε)‖V ‖2 ≤ Tr e−(1−ε)D2
. �

The Chern character of a theta-summable Fredholm module (H,D) of Jaffe, Lesniewski and
Osterwalder [6] is the even cochain Ch∗(D) on A defined by the formula

(2.3) (Ch2k(D), (a0, . . . , a2k)2k) =
〈
a0, [D, a1], . . . , [D, a2k]

〉
2k

.

Note that the right-hand side vanishes if ai = 1 for 1 ≤ i ≤ 2k, as it must in order to define a
normalized cochain. The following result of [6] shows that Ch∗(D) defines an element of HE+(A).

Proposition 2.3. The cochain Ch∗(D) is a closed element of C∗(A), that is, (b + B) Ch∗(D).

Proof. The proof that Ch∗(D) is an element of C∗(A), is an immediate consequence of Lemma 2.1,
which shows that

|(Ch2k, (a0, . . . , a2k)2k)| ≤ N(D)2k+1 Tr e−(1−ε)D2

(2k)!
‖V ‖ · ‖a0‖A . . . ‖a2k‖A.

To prove that (b + B) Ch∗(D) = 0, we apply Lemma 2.2(3) with A0 = a0 and Ai = [D, ai] for
1 ≤ i ≤ 2k − 1. This leads to the following formula:

〈
[D, a0], . . . , [D, a2k−1]

〉
2k−1

+
2k−1∑
i=1

(−1)i−1
〈
a0, [D, a1], . . . , [D2, ai], . . . , [D, a2k−1]

〉
2k−1

= 0.

By Lemma 2.2(2), the first of these terms is just (B Ch∗(D), (a0, . . . , a2k−1)2k−1). Using Lemma 2.2(4),
we will show that the rest of this sum is equal to (b Ch∗(D), (a0, . . . , a2k−1)2k−1). Indeed, the term

(−1)i−1
〈
a0, [D, a1], . . . , [D2, ai], . . . , [D, a2k−1]

〉
2k−1

is equal to

(−1)i−1
〈
a0, [D, a1], . . . , [D, ai−1]ai, [D, ai+1], . . . , [D, a2k]

〉
2k−1

+ (−1)i
〈
a0, [D, a1], . . . , [D, ai−1], ai[D, ai+1], . . . , [D, a2k]

〉
2k−1
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Adding all of this up and using the fact that [D, aiai+1] = [D, ai]ai+1 +ai[D, ai+1], we easily see that
these terms do indeed conspire to give b Ch∗(D) evaluated on the chain (a0, . . . , a2k−1)2k−1. �

We will now prove that the cohomology class defined by Ch∗(D) is invariant under a differentiable
homotopy of the operator D. The formulation of this is reminiscent of Proposition 1.3. To start
with, if V is an operator on H, let C̃h∗(D, V ) be the cochain on A defined by the formula

(2.4) (C̃h∗(D, A), (a0, . . . , an)n) =
n∑

i=0

(−1)i|V |〈a0, [D, a1], . . . , [D, ai], V, [D, ai+1], . . . , [D, an]
〉

n+1
.

Note that, by Lemma 2.2.(1), C̃h∗(D, 1) = Ch∗(D). Thus, the following result is actually a general-
ization of Proposition 2.3.

Proposition 2.4.

(1) The cochain C̃h∗(D, V ) is an element of C∗(A) if either a) V is bounded on H or b) V = D.
(2) The cochain C̃h∗(D, V ) ∈ C+(A) if V is even, and C̃h∗(D, V ) ∈ C−(A) if V is odd.
(3) Let α∗(D, V ) be the element of C∗(A) defined by the formula

(α∗(D, V ), (a0, . . . , an)n) =
2k∑
i=0

(−1)(i−1)(|V |+1)
〈
a0, [D, a1], . . . , [V, ai], . . . , [D, an]

〉
n
.

Then

(b + B)C̃h∗(D, V ) + (−1)|V |C̃h∗(D, [D, V ]) + (−1)|V |α∗(D, V ) = 0.

Proof. If V is a bounded operator on H, we see from Lemma 2.1 that

|(C̃hn(D, V ), (a0, . . . , an)n)| ≤ (n + 1)N(D)n+1 Tr e−(1−ε)D2

(n + 1)!
‖a0‖A . . . ‖an‖A,

so that C̃h∗(D, V ) is indeed in C∗(A). On the other hand,

|(C̃hn(D,D), (a0, . . . , an)n)| ≤ (n + 1)N(D)n+1ε−1/2 Tr e−(1−ε)D2

n!
‖a0‖A . . . ‖an‖A,

and once more, we see that C̃h∗(D,D) ∈ C∗(A). To see that the parity of C̃h∗(D, V ) is the same as
that of V , we use the fact that

〈
A, . . . , An

〉
n

vanishes unless |A0| + · · · + |An| = 0. The definition
of C̃hn(D, V ) shows us that in our case, this parity equals |a0| + · · · + |an| + n + |V | = n + |V |,
proving (2).

The proof of (3) is similar to the proof that (b+B) Ch∗(D) = 0: we start by applying Lemma 2.2(3)
with

Aj =


a0 j = 0,

[D, aj ] j ≤ i,

V j = i,

[D, aj−1] j > i.

This gives

(∗) X1 + X2 + X3 = 0
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where

X1 = (−1)i|V |〈[D, a0], . . . , [D, ai], V, [D, ai+1], . . . , [D, an]
〉

n+1
,

X2 =
∑
j<i

(−1)i|V |+j−1
〈
a0, [D, a1], . . . , [D2, aj ], . . . , [D, ai], V, . . . , [D, an]

〉
n+1

+
∑
j>i

(−1)(i+1)|V |+j−1
〈
a0, [D, a1], . . . , [D, ai], V, . . . , [D2, aj ], . . . , [D, an]

〉
n+1

,

X3 = (−1)i(|V |+1)
〈
a0, [D, a1], . . . , [D, ai], [D, V ], [D, ai+1], . . . , [D, an]

〉
n+1

.

Note that all of the terms in this formula are well defined if either V is bounded or equals D; this
is seen by applying Lemma 2.1 or its corollaries (2.1a) and (2.1b).

We now sum (∗) over 0 ≤ i ≤ n. By Lemma 2.2(2), we see after reordering terms that∑
i

X1 = (−1)|V |(BC̃h∗(D, V ), (a0, . . . , an)n).

Similarly, using Lemma 2.2(4),∑
i

X2 = ((−1)|V |bC̃h∗(D, V ) + α∗(D, V ), (a0, . . . , an)n).

Finally, it is clear that ∑
i

X3 = (C̃h∗(D, [D, V ]), (a0, . . . , an)n). �

We can now prove the main results of this section, which form parts (2) and (3) of Theorem A of
the Introduction.

Corollary 2.5. Let Dτ be a one-parameter family of operators on H such that either

(1) the operators Ḋτ form a continuous family of bounded operators, or
(2) Tr e−tD2

is finite for all t > 0 and Dτ = τD.

Then we have the homotopy formula

d Ch∗(Dτ )
dτ

= (b + B)C̃h∗(Dτ , Ḋτ ).

Proof. Observe that under both the above sets of assumptions, the heat kernel e−D
2
τ is uniformly

trace-class for τ in a bounded interval: if Ḋτ is bounded, this follows from Theorem D, while if
Dτ = τD, this is part of the hypothesis. Thus, we may apply Lemma 2.2(5), which shows that

d Ch∗(Dτ )
dτ

= C̃h∗(Dτ , [Dτ , Ḋτ ]) + α∗(Dτ , Ḋτ ).

The formula is now an immediate consequence of Proposition 2.4. �
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§3. The index formula

In this section, we prove Theorem D, following Connes’s treatment [3] closely. That is, we will
show that

(3.1) (Ch∗(D),Ch∗(p)) = ind(Dp).

We start with the case in which p acts as a self-adjoint operator on H and commutes with D. Using
[D, p] = 0, it is easy to see that

(Ch∗(D),Ch∗(p)) =
〈
p
〉
0

+
∞∑

k=1

(−1)k (2k)!
k!

〈
p− 1

2 , [D, p], . . . , [D, p]
〉
2k

= Str(p · e−D
2
) = Str(p · e−D

2
p · p) = Str(e−D

2
p)|p[H⊗Cr].

We can now apply the following lemma (known as the McKean-Singer formula) with H = p[H⊗Cr]
and D = p · D · p.

Lemma 3.1. If D is a self-adjoint odd operator on a Hilbert space H with trace-class heat operator
e−D2

, then Str(e−D2
) = ind(D), where ind(D) is the index of the operator D+ : H+ −→ H−. �

This completes the proof of (3.1) in this special case.
We now observe that the two sides of (3.1) are homotopy invariant as functions of D and p.

For ind(Dp), this follows from Fredholm theory, while for (Ch∗(D),Ch∗(p)), it is a consequence of
Theorems A and B. Thus, in proving the theorem, we are free to choose D and p arbitrarily within
their homotopy classes. We will use this freedom to arrange for p to be self-adjoint and to commute
with D.

Introduce the algebra A(D), which consists of all bounded operators a on H such that [D, a] is
bounded. This is a Banach ∗-algebra with the norm ‖a‖+ ‖[D, a]‖, and (H,D) is a theta-summable
Fredholm module over A(D). Clearly, both of the maps p 7→ (Ch∗(D),Ch∗(p)) and p 7→ ind(Dp)
from K0(A) to Z factor through A(D) in the diagram

K0(A) −→ K0(A(D)) −→ Z.

The following lemma is due to Kaplansky (see [1, Proposition 4.6.2]).

Lemma 3.2. If A is a Banach ∗-algebra in which 1 + a∗a is invertible for any a ∈ A, any class in
K0(A) may be represented by a self-adjoint idempotent p ∈ Mr(A). �

This lemma applies in our situation: to show that 1 + a∗a is invertible in A(D), we use that
(1 + a∗a)−1 is a bounded operator on H, with ‖(1 + a∗a)−1‖ ≤ 1, and

‖[D, (1 + a∗a)−1]‖ ≤ ‖(1 + a∗a)−1[D, a∗a](1 + a∗a)−1‖ ≤ 2‖a‖ · ‖[D, a]‖ < ∞.

Thus, at the cost of replacing A by A(D), we may assume in proving Theorem D that the idempotent
p is self-adjoint, and thus that the operator Dp is self-adjoint.

To finish the proof, we observe that the homotopy

Dτ = D + τ(2p− 1)[D, p],

between the operators D0 = D and D1 = p · D · p + (1 − p) · D · (1 − p), leads to a homotopy of
Fredholm modules (H,Dτ ) over A(D) in the sense of Corollary 2.5(1). Since [D1, p] vanishes, this
shows that we may choose D in such a way that it commutes with the idempotent p. Thus, we have
succeeded in reducing the general case of Theorem D to the special one treated at the start of this
section.
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