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Abstract. We construct central extensions of the Lie algebra of differential operators on a one-dimensional affine

variety over a field of characteristic zero, generalizing the Virasoro extension. The construction is an application
of recent calculations of the Hochschild and cyclic homology of algebras of differential operators.

If M is a smooth affine variety with function ring OM over a field of characteristic zero, let DM denote
the algebra of differential operators over OM , let VM ⊂ DM denote the Lie subalgebra of vector fields on M ,
and let Ωk

M denote the space of k-forms on M . Recall that if M is one-dimensional and the ground field is R,
then the universal central extension of the Lie algebra of VM has centre isomorphic to H1(M) = Ω1

M/dΩ0
M

(this extension is called the Virasoro extension):

0 −→ Ω1
M/dΩ0

M −→ V̂M −→ VM −→ 0

In the article [1], Beilinson, Manin and Schechtman found an analogue of this extension for the Lie algebra
VM when M is one-dimensional over the complex numbers. It was suggested by Witten [10] that this
extension of the Lie algebra of vector fields is the restriction of a central extension of the Lie algebra of all
differential operators DM on M with the same centre:

0 −−−−→ Ω1
M/dΩ0

M −−−−→ V̂M −−−−→ VM −−−−→ 0∥∥∥ y y
0 −−−−→ Ω1

M/dΩ0
M −−−−→ D̂M −−−−→ DM −−−−→ 0

The purpose of this note is to show that this extension of DM exists in the above generality, using some
results from the theory of cyclic homology, in particular, recent calculations of the Hochschild and cyclic
homology of algebras of differential operators.

Cyclic Homology.
We start by recalling the definitions of the Hochschild and cyclic homology of an algebra A. The best

references for all of this are the paper of Loday and Quillen [9], and of course the original paper of Connes [4].

Definition 1. The Hochschild complex of an algebra A over a field F of characteristic zero is the complex

Ck(A) = A⊗F · · · ⊗F A︸ ︷︷ ︸
k+1 times

,
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with the differential

b(a0, a1, . . . , ak) =
k−1∑
i=0

(−1)i(a0, . . . , aiai+1, . . . , ak) + (−1)k(aka0, a1, . . . , ak−1).

Here, by (a0, . . . , ak), we mean the element a0 ⊗ . . .⊗ ak of Ck(A). The Hochschild homology of the algebra
A is the homology of the complex (C∗(A), b); we will denote it by HH∗(A).

In [6], Hochschild et al. have calculated the Hochschild cohomology of the algebra of regular functions
on a smooth affine variety. This is probably the most interesting example of Hochschild homology, since it
shows that there is a link between Hochschild homology and de Rham theory.

Theorem 2. If M is a smooth affine variety, there is a natural isomorphism

HHk(OM ) ∼= Ωk
M ,

induced by following the map from Ck(OM ) to Ωk
M :

a0 ⊗ . . .⊗ ak 7→ a0 da1 . . . dak. �

Let t : Ck(A) → Ck(A) be the operator

t(a0, . . . , ak) = (−1)k(ak, a0, . . . , ak−1).

The cyclic homology of A, denoted HC∗(A), is obtained by taking the homology of the complex Cλ
∗ (A),

defined as follows:
Cλ

k (A) = Ck(A)/ im(1− t).

It is easily verified that the boundary operator b sends the image of 1− t into itself, and thus descends to a
boundary bλ : Cλ

k (A) → Cλ
k−1(A).

Fundamental to understanding cyclic homology is Connes’s long exact sequence

. . .
S−→ HCk−1(A) B−→ HHk(A) −→ HCk(A) S−→ HCk−2(A) B−→ . . .

which is constructed in the above references.
Our interest in cyclic homology stems from the following result, which has its origins in the theory of the

Schur multiplicator, or H2(g) of a Lie algebra g.

Theorem 3 (Kassel and Loday [7]). There is a functor from algebras A to Lie algebras L(A), such that
the Lie algebra L(A) fits into an exact sequence of functors

0 −→ HC1(A) −→ L(A) −→ A −→ HC0(A) −→ 0.

In this sequence, we denote the Lie algebra of the algebra A by the same symbol A, and the vector spaces
HCi(A) are made into Lie algebras by giving them the zero bracket.

Proof. Let A be the subspace of (A⊗A)⊕A spanned by elements of the form

(a⊗ b, [a, b]).

If ρ : A → A is the evident map given by projecting onto the component in A, we obtain the exact sequence

0 −→ {ω ∈ C1(A) | bω = 0} −→ A
ρ−→ A −→ HC0(A) −→ 0
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Define a bracket on A by
[(∗, a), (∗, b)] = (a⊗ b, [a, b]).

Clearly, this bracket is a bilinear map from A into itself; we will make it into a Lie bracket by taking a
quotient of A in such a way that the necessary relations are fulfilled:

(1) (Antisymmetry of [·, ·])
(a⊗ b, [a, b]) ∼ −(b⊗ a, [a, b]),

which is equivalent to
(a⊗ b + b⊗ a, 0) ∼ 0;

(2) (Jacobi rule)
([a, b]⊗ c + [b, c]⊗ a + [c, a]⊗ b, 0) ∼ 0.

On quotienting out A by the first of these relations, we obtain a new space, which we may call Aλ, which
fits into an exact sequence

0 −→ {ω ∈ Cλ
1 (A) | bω = 0} −→ Aλ −→ A −→ HC0(A) −→ 0.

This is because the span of the vectors a⊗b+b⊗a in C1(A) is just the image of 1− t on C1(A), and b◦(1− t)
vanishes on C1(A). Now observe that Jacobi’s rule is implied by the relation

ab⊗ c− a⊗ bc + ca⊗ b ∼ 0,

in conjunction with the relation that we imposed to ensure the antisymmetry of the Lie bracket. Of course,
this relation is the same as quotienting by the image of Cλ

2 (A) under the boundary operator b. Thus, we see
that the desired Lie algebra is L(A) = A/((1− t)C1(A) + bC2(A)). �

From Theorem 3, it follows that if HC0(A) = HH0(A) = A/[A,A] vanishes, then the Lie algebra L(A)
is a central extension of A by HC1(A). Furthermore, Connes’s exact sequence tells us that if HC0(A) = 0,
then HC1(A) = HH1(A). Thus, we obtain as an easy corollary:

Corollary 4. The Lie algebra L(A) is a central extension of the Lie algebra [A,A] by the space HC1(A). If
in addition A = [A,A], then L(A) is a central extension of the Lie algebra A by the space HH1(A).

The interesting thing about this central extension is that it fits into a coherent family of central extensions
of the Lie algebras sln(A) = [gln(A), gln(A)]. In other words, if we embed sln(A) in sln+m(A) by sending M
to (

M 0
0 0

)
we obtain the map of extensions

0 −−−−→ HC1(A) −−−−→ ŝln(A) −−−−→ sln(A) −−−−→ 0∥∥∥ y y
0 −−−−→ HC1(A) −−−−→ ŝln+m(A) −−−−→ sln+m(A) −−−−→ 0

This comes about because of the Morita equivalence isomorphisms

HHk(A) ∼= HHk(gln(A)) and HCk(A) ∼= HCk(gln(A)).

Kassel and Loday [7] have proved that HC1(A) is the centre of the universal central extension of sln(A) for
n ≥ 2.
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Hochschild homology of the algebra of differential operators.
The other main result that we need to construct the Beilinson-Manin-Schechtman central extension is a

formula for the Hochschild homology of the algebra of differential operators.

Theorem 5. Let M be a smooth affine variety of dimension d, and let DM be the algebra of differential
operators on M . The Hochschild homology groups of DM are as follows:

HHk(DM ) ∼= H2d−k(M) = H2d−k(Ω∗M , d). �

It follows from this theorem that if M is one-dimensional, for example, the circle in the real case, or a
punctured Riemann surface in the complex case, there is a central extension

0 −→ H1(M) −→ L(DM ) −→ DM −→ 0.

Observe that if M has dimension higher than one, HH1(DM ) = 0; that is, it is only in the one-dimensional
case that the Lie algebra of DM has a non-trivial central extension.

In the case in which A = DM , the algebra of regular functions OM is a subalgebra of DM , we obtain a
map of central extensions of the following form:

0 −−−−→ HH1(OM ) −−−−→ ŝln(OM ) −−−−→ sln(OM ) −−−−→ 0y y y
0 −−−−→ HH1(DM ) −−−−→ ĝln(DM ) −−−−→ gln(DM ) −−−−→ 0

If d = 1, this diagram becomes

0 −−−−→ Ω1
M/dΩ0

M −−−−→ ŝln(OM ) −−−−→ sln(OM ) −−−−→ 0∥∥∥ y y
0 −−−−→ Ω1

M/dΩ0
M −−−−→ ĝln(DM ) −−−−→ gln(DM ) −−−−→ 0

whereas if d > 1, it becomes

0 −−−−→ Ω1
M/dΩ0

M −−−−→ ŝln(OM ) −−−−→ sln(OM ) −−−−→ 0y y y
0 −−−−→ ĝln(DM ) −−−−→ gln(DM ) −−−−→ 0

There are two proofs of Theorem 5, each obtained by a different spectral sequence. The first proof, which
makes use of sheaf cohomology on the manifold Man, is modeled on the proof of de Rham’s theorem for Man,
and only works if M is a variety over R or C. First one proves that the result is true on balls, which is an
analogue of Poincaré’s lemma, and then extends it to a global result by a simple double-complex argument.
This proof may be found in [2], Section 5 of [3], and [8].

The second proof is more algebraic, and works for a smooth affine variety over any field of characteristic
zero; this is because it does not use the topology of the field R or C. The proof is based on the spectral
sequence associated to the obvious filtration of the algebra DM , for which F pDM is the space of differential
operators of order at most p. This induces a filtration on the Hochschild complex of DM , such that

E1
k
∼= HHk(grDM ).

Here, grDM is the graded algebra associated to the filtration on DM , or in other words, the algebra OT∗M

of regular functions on T ∗M . This spectral sequence is used to calculate HC∗(DM ) in both [11] and the first
part of [3].
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Brylinski has calculated the differential d1 in this spectral sequence. It turns out to be an operator
that was constructed by Ehresmann and Libermann [5]. They start by defining the symplectic dual operator
? : Ωk

T∗M → Ω2d−k
T∗M , which is defined on any symplectic manifold, and is analogous to the Hodge star operator

on Riemannian manifolds; note that ?2 = 1. Then the differential d1 equals

(6) δ = ? d ?.

The nature of this formula is not really surprising, since the sub-leading order of the product of two differential
operators, given by the Poisson bracket of their symbols, only depends on the symplectic structure on T ∗M .
It follows from Equation (6) that the second term in the spectral sequence is equal to

E2
k
∼= H2d−k(M).

In order to complete the calculation of HHk(DM ), we must show that the spectral sequence degenerates at
the E2-term. To do this, we use the following lemma [3, p. 392].

Lemma 7. Let R be the radial vector field on T ∗M ,

R = p · ∂

∂p
,

and let α be the canonical 1-form p dq = ι(R)ω. If ε(α) : Ωk
T∗M → Ωk+1

T∗M is the exterior product with α,
then we have the identity

δε(α) + ε(α)δ = LR + (d− k).

Proof. Since ?ι(R)? = ε(α) and ?LR? = LR + (d− k), the lemma follows on conjugating Cartan’s formula
dι(R) + ι(R) = LR by the operator ?. �

By Lemma 7, it is easy to show that all of the higher differentials in the spectral sequence vanish, from
which Theorem 5 follows. Let E1

kl ⊂ Ωk
T∗M denote the space of k-forms on T ∗M such that

LRω = l.

By a standard homotopy argument, Lemma 7 shows that E2
kl = 0 for l 6= k − d. But it is quite easy to show

that di : Ei
kl → Ei

k+1,l−i, and thus that di vanishes for i > 1.
This second proof has the advantage that it calculates the cyclic homology of DM at the same time, as well

as extending straightforwardly to calculate the cyclic homology of the algebra of pseudodifferential symbols
on a smooth real manifold. Also, although we choose not to write out the details, it should be clear that
the same methods may also be used to establish the existence of the Beilinson-Manin-Schechtman central
extension for the Neveu-Schwartz algebra as well.
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(1982), 119–142.

8. C. Kassel and C. Mitschi, Private communication.
9. J. L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math.

Helv. 59 (1984), 565–591.
10. E. Witten, Quantum field theory, grassmannians, and algebraic curves, Comm. Math. Phys. 133 (1988),

529–600.
11. M. Wodzicki, Cyclic homology of differential operators, Duke Math. J. 54 (1987), 641–648.


