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Introduction

In this paper, we will calculate the Hochschild and cyclic homology groups of the
algebra of pseudo-differential symbols Ψ∞(M)/Ψ−∞(M) on a smooth manifold M ;
our main result is that

HH∗(Ψ∞(M)/Ψ−∞(M)) = H2n−∗(S∗M × S1; C).

We will perform the calculation by two completely different methods, each of which
has some advantages. In the first, we filter the algebra in question as in [2], and use
a homogeneity argument to show that the resulting spectral sequence degenerates.
From this point of view, the homology is seen to be a “semi-classical” invariant, since
it is calculated at first order in Planck’s constant, as the homology of the differential
forms on T ∗M with respect to the operator δ : Ω∗(T ∗M) → Ω∗−1(T ∗M) (defined
by Koszul [14] and Brylinski [2]; see §1).

The other method is a sheaf-theoretic calculation, modeled on Weil’s proof of
de Rham’s Theorem, which uses a form of Poincaré lemma for Hochschild homo-
logy of symbols. In the case of differential operators, this Poincaré lemma states
that the Hochschild homology of D(Rn), the algebra of differential operators on
Rn, satisfies HH∗(D(Rn)) = H2n−∗(Rn, C). For pseudo-differential operators, the
Poincaré lemma is formulated for the sheaf ER of micro-differential operators on
S∗M ×S1, introduced in [16]; the copy of S1 comes from the fact that the sheaf ER
lives on the cotangent bundle of a complexification of M .

In the course of the paper, we also perform a number of other such calculations of
Hochschild homology, for algebras of differential operators, operators with compact
support, and formal deformations of C∞(X) for X a conic symplectic manifold.
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It follows directly from our calculation of HH∗(Ψ∞(M)/Ψ−∞(M)) that when M
is connected and of dimension greater than one, the zeroth Hochschild homology
group is one-dimensional. This gives an explanation of the well-known fact that
there is, up to a constant, a unique continuous trace R : Ψ∞/Ψ−∞ → C, known as
the residue. This trace has been studied by Guillemin and Wodzicki ([9],[19,20]),
in relation to the residues of zeta-functions of elliptic pseudo-differential operators.
The advantage of our approach is that we obtain the existence and uniqueness of
the residue by a direct differential-geometric argument. It is then easy to find the
formula for R, as we do in §4.

We now give a summary of the different sections. In §1, we recall the spectral
sequence of [2] for so-called quantum algebras (that is, the algebra of functions
on a symplectic manifold with a star product). In §2, we restrict our attention
to the conic symplectic case, calculating the commutator of δ with the operation
of exterior product with ι(X)ω, where X is a conformal Hamiltonian vector field.
This identity is then used, with X equal to the radial vector field, to calculate,
in a geometric way, the Hochschild homology of quantum algebras based on conic
symplectic manifolds. In §3, we use the same ideas to calculate the cyclic homology
of these algebras. In §4, we apply these methods to calculate the Hochschild and
cyclic homology of the algebra of pseudo-differential symbols, and we derive the
main properties of the residue; we also give the link between our calculation and
the higher residues of Wodzicki [20]. In §5, we present the sheaf-theoretic approach
to the same calculations, which makes use of Poincaré-type lemmas.

We would like to thank Alain Connes, Victor Guillemin and Mariusz Wodzicki
for several helpful discussions.

§1. The homology of quantum algebras

In this section, we will give the definition of a quantum algebra, which is an
algebraic model for quantum mechanics. (This theory has been explored in great
detail by a number of authors, who call it the theory of star products; for a nice
review of this theory, see [5].)

definition. A Poisson bracket on a commutative algebra A over C is a bilinear
map

(a, b) 7→ {a, b},

which satisfies the following conditions:

(1) A is a Lie algebra with respect to the Poisson bracket,
(2) {f, gh} = g{f, h}+ h{f, g} for all f , g and h ∈ A.

The most typical example of a Poisson algebra is the algebra of smooth functions
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on a symplectic manifold (M,ω), with Poisson bracket defined by

{f, g} = ω−1(df, dg),

where ω−1 is the nondegenerate form on TM corresponding to the symplectic form ω
on T ∗M . We interpret the elements of A as quantum observables, which correspond
to certain derivations of A, called Hamiltonian vector fields, by the rule Hgf =
{f, g}, in such a way that

[Hf ,Hg] = −H{f,g}.

definition. Let A be Poisson algebra. Then a quantum algebra is an associative
product on the algebra A{~} of the form

a ? b = ab + ~{a, b}/2i +
∞∑

i=2

~iϕi(a, b),

where ϕi are bilinear maps from A×A to A satisfying

ϕi(a, b) = (−1)iϕi(b, a) and ϕi(1, a) = 0.

One should think of a quantum algebra as a non-commutative deformation of
the original product on A such that

a ? b− b ? a =
~
i
{a, b}.

We our now interested in calculating the Hochschild homology HH∗(A{~}) of
the algebra A{~} over C{~} with its new product ?. This is the functor (usually
denoted by HC{~}

∗ (A{~},A{~})) equal to the homology of the bar complex

C
C{~}
i (A{~}) = A{~} ⊗C{~} A{~} ⊗C{~} · · · ⊗C{~} A{~}︸ ︷︷ ︸

i+1 times

,

with respect to the differential b:

b(a0, a1, . . . , am) =
m−1∑
i=0

(−1)i(a0, . . . , ai ? ai−1, . . . , am)

+ (−1)m(am ? a0, a1, . . . , am−1).

If A is a commutative algebra, then the Hochschild complex of A is a differential
graded commutative algebra, with respect to the shuffle product. Let E be the pro-
jection onto the space Ai of Hochschild cycles (a0, . . . , am) which are antisymmetric
in all but the first entry, which is defined as follows:

(a0, a1, . . . , am) E7→ (m!)−1
∑

σ∈Σm

(a0, aσ(1), . . . , aσ(m)).
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We also have a map from the algebra of antisymmetric Hochschild chains A∗ to
the algebra Ω∗(A) of Kähler differentials of A (the exterior algebra generated by
Ω1(A) = dA under the relations d(fg) = fdg + gdf), given by the formula

(a0, a1, . . . , am) 7→ a0 da1 ∧ . . . ∧ dam.

We can assemble these maps into the following diagram of complexes:

b

y b

y 0

y
Ci

E−−−−→ Ai −−−−→ Ωi(A)

b

y b

y 0

y
Ci−1

E−−−−→ Ai−1 −−−−→ Ωi−1(A)

b

y b

y 0

y
Proposition (Hochschild, Kostant and Rosenberg [10]; Connes [4]).

(1) If A is a smooth, commutative algebra, then the above three complexes have
the same homology, hence HHi(A) ∼= Ωi(A).

(2) If A is the algebra of smooth functions on a manifold M (respectively, the
algebra of smooth functions of compact support), we obtain HH∗(C∞(M)) ∼=
Ωi(M), and HH∗(C∞

c (M)) ∼= Ωi
c(M). (Of course, since A is a topological

algebra, we must be careful which definition of the tensor product we use in
defining Hochschild chains in order for this to be true; this is discussed in
[4, Chapter II].) �

We will consider A{~} as a filtered algebra, with respect to the obvious filtration,
defined as follows:

Fi(A{~}) = ~iA[[~]].

Using this filtration, we endow the algebra A{~} with the structure of a complete,
locally convex algebra as follows. Write A{~} in the form

A{~} = proj lim
m

(
inj lim
n≥m

Fn(A{~})/Fm(A{~})
)

.

Each space Fn(A{~})/Fm(A{~}) has a topology, as the tensor product of a topolog-
ical algebra with the finite dimensional vector space spanned by ~i, with m ≤ i ≤ n.
We endow the spaces inj limn Fn(A{~})/Fm(A{~}) with the direct limit topology,
and then A{~} is endowed with the projective limit topology.

We now introduce a spectral sequence first studied by [2] which reduces the
calculation of HH∗(A{~}) to that of HH∗(A). This is the spectral sequence obtained
from the filtration on A{~}.
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Theorem.
(1) The E1 term of this spectral sequence is isomorphic to HH∗(A){~}.
(2) The differential d1 of the E1 term is equal to ~/i times the operator δ : HH∗(A) → HH∗−1(A)

introduced by Koszul [14], defined by the following formula:

δ(a0, . . . , am) =
m∑

1≤i≤m

(−1)i+1({a0, ai}, a1, . . . , âi, . . . , am)

+
∑

1≤i<j≤m

(−1)i+j+1(a0, {ai, aj}, . . . , âi, . . . , âj , . . . , am).

proof. This theorem is easy to understand if in the formula for the b operator, we
expand in powers of ~ using the definition of a ? b:

b(a0, . . . , am) = b0(a0, . . . , am) + O(~).
From this, we see that the differential in the E0 term of the spectral sequence may
be identified with the differential b0 which defines the Hochschild homology of A,
proving (1).

Let E denote the antisymmetrization operator on Hochschild chains. If α =
(a0, . . . , am) is a chain which satisfies b0α = 0, then we can find another chain α′

which differs from α by a boundary, but which satisfies Eα′ = α′ in addition. On
this chain, the full boundary operator b is equal to ~/i times∑

1≤i≤m

(−1)i+1E({a0, ai}, a1, . . . , âi, . . . , am)+

∑
1≤i<j≤m

(−1)i+j+1E(a0, {ai, aj}, . . . , âi, . . . , âj , . . . , am) + O(~).

The formula for d1 may be identified easily from this equation. �

§2. The δ operator on conic symplectic manifolds

We will now turn our attention to the Poisson algebra which arises in the study
of formal pseudo-differential operators on manifolds.

Definition. A conic symplectic manifold (X, ω) is a symplectic manifold with a
free action Tt of the multiplicative group R+ on it, such that

T ∗t ω = tω.

Equivalently, we may define the conic structure by giving a vector field R such
that LRω = ω, in which case

Tt = exp tR.

An example of a conic symplectic manifold is the cotangent bundle of a manifold
M with the zero-section removed, which is usually written as Ṫ ∗M .
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Proposition (Darboux’s lemma). Let X be a 2n-dimensional conic symplectic
manifold. Given any point x ∈ X, there is a conic neighbourhood U (that is,
preserved by Tt) and a symplectomorphism ϕ : U → Ṫ ∗Rn. �

If X is a conic symplectic manifold, then the Poisson bracket reduces the degree
of homogeneity by 1, in the sense that

t−1{T ∗t a, T ∗t b} = T ∗t {a, b}.

Thus, in a defining a quantum algebra structure on the space of smooth functions
on X, we are lead to assign degree of homogeneity 1 to ~, and require that in the
definition of the star-product

a ? b = ab + ~{a, b}/2i +
∞∑

i=2

~iϕi(a, b),

the maps ϕi reduce the degree of homogeneity by i. We also require that the maps
ϕi are local, that is, are bilinear differential operators.

Proposition (de Wilde and Lecomte [18]). There is a unique local star-product
on any conic symplectic manifold, up to conjugation by a C{~}-linear endomorphism
of C∞(X){~} of the following form:

a 7→ a +
∞∑

i=2

~iρi(a),

where ρi is a differential operator on X which reduces the degree of homogeneity by
i. �

We will now study in greater detail the δ operator that arises in the spectral
sequence for the Hochschild homology of (C∞(X){~}, ?):

δ(a0 da1 ∧ . . . ∧ dam) =
∑

1≤i≤n

(−1)i+1{a0, ai} da1 ∧ . . . ∧ d̂ai ∧ . . . ∧ dam

+
∑

1≤i<j≤n

(−1)i+j+1a0 d{ai, aj} ∧ . . . ∧ d̂ai ∧ . . . ∧ d̂aj ∧ . . . ∧ dam.

As we have seen, the E1 term in the spectral sequence for this homology is just the
space of differential forms on X, and the δ operator is an operator which reduces
the degree of a differential form by 1.

If V is a symplectic vector space, then its exterior algebra has a symplectic dual
operator (Brylinski [2]) mapping ΛkV to Λ2n−kV . Before defining it, we need some
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more notation. If v is an element of V , let ε(v) : ΛkV → Λk+1V denote exterior
multiplication by v, and let ε∗(v) be its left adjoint with respect to the symplectic
product. These operators satisfy

[ε(v), ε∗(w)] = ω(v, w).

By extension, for any element θ ∈ ΛlV of the exterior algebra of V , we obtain
operators ε(θ) : ΛkV → Λk+lV and ε∗(θ) : ΛkV → Λk−l. (Similarly, if v ∈ V ∗, we
define the inner product ι(v) : Λ∗V → Λ∗−1V and its left adjoint ι∗(v) : Λ∗V →
Λ∗+1V .)

We can now define the dual operator:

∗ = expπi(ε(ω) + ε∗(ω))/2.

Since [ε(ω), ε∗(ω)] = n − k on ΛkV , the operators ε(ω) and ε∗(ω) generate a Lie
algebra isomorphic to the Lie algebra sl(2): the operator ε(ω) corresponds to the

matrix T+ =
(

0 1
0 0

)
, the operator ε∗(ω) to the matrix T− =

(
0 0
1 0

)
, and the

operator (n−k) to the matrix T0 =
(

1 0
0 −1

)
. (This point of view is familiar from

the theory of harmonic forms on Kähler manifolds.) It follows from the matrix
identity

exp
[
πi

(
0 1
1 0

)]
=
(

1 0
0 1

)
that ∗2 = 1.

Although we will nowhere make use of the fact, it is interesting to observe the
close analogy between this symplectic dual operator and the Fourier transform on
an inner product space. Indeed, the operator ∗ : Λ∗V → Λ∗V may be defined by
the formula

(∗α)(x) =
∫

V

exp(ω(x, y))α(y) dy,

where
∫

denotes the Berezin integral on the fermionic vector space V ; the analogy
with the Fourier transform is clear. In addition, the ordinary Fourier transform is
equal to exp(πiH/2) where H is the harmonic oscillator on V ; the similarity of the
operators H and ε(ω) + ε∗(ω) should is evident.

Proposition.

(1) If θ is a one-form on X, then ε∗(θ) = ∗ε(θ)∗.
(2) The operator δ is equal to ∗d∗.
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Proof.
(1) Let us expand the operator Ad {exp ti(ε(ω) + ε∗(ω))} .ε(θ) as a power series

in t. Since [ε(ω) + ε∗(ω), ε(θ)] = ε∗(θ) and [ε(ω) + ε∗(ω), ε∗(θ)] = −ε(θ), we
obtain

Ad {exp ti(ε(ω) + ε∗(ω))} .ε(θ) =
∞∑

j=0

(ti)j

j!
(ad(ε(ω) + ε∗(ω)))j

.ε(θ)

= cos t.ε(θ) + sin t.ε∗(θ).

We see from this that when t = π/2, the right hand side becomes equal to
ε∗(θ).

(2) Since this is a local result, we are free to assume that our symplectic manifold
is a symplectic vector space V , with basis Zi (0 ≤ i ≤ 2n), so that V ∗ has
the dual basis θi. The vector fields Zi commute with ∗, since ω is invariant
under translation of V , so that we obtain

∗d∗ = ∗

(
2n∑
i=1

ε(θi)Zi

)
∗

=
2n∑
i=1

ε∗(θi)Zi.

It is straightforward to check that this expression is equal to δ. �

Definition. A conformal Hamiltonian vector field Z on a symplectic manifold is a
vector field satisfying

LZω = cω where c ∈ R.

On a conic symplectic manifold, any conformal Hamiltonian vector field is locally
of the form Hf + cR for some c ∈ R, since the radial vector field R is conformal
Hamiltonian with c = 1.

Theorem. If Z is a conformal Hamiltonian vector field, then on Ωk(X),

[δ, ι∗(Z)] = LZ + c(n− k).

(The bracket here denotes the supercommutator; thus, since both operators δ and
ι∗(Z) are odd, it is actually the anticommutator.)

Note that ι∗(Z) = ε(ι(Z)ω). It follows that when Z is a Hamiltonian vector field
(so that ι(X)ω = −df for some f ∈ C∞(X)), this formula becomes

[ε(df), δ] = LHf
,
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while if Z is the radial vector field R, then ι(R)ω is the canonical 1-form α on X
which satisfies dα = ω, and we obtain

[δ, ε(α)] = LR + (n− k).

Proof. Recall the identity [d, ι(Z)] = LZ . Conjugating this by the duality operator
∗ gives

∗[d, ι(Z)]∗ = [δ, ι∗(Z)] = ∗LZ ∗ .

We next calculate the conjugate of LZ by exp ti(ε(ω) + ε∗(ω)), when Z is a
conformally Hamiltonian vector field, making use of the representation theory of
sl(2). Observe that in its commutation relations with the Lie algebra generated by
ε(ω) and ε∗(ω), the operator LZ behaves like −cT0/2. Using the identity in sl(2),

Ad
[
exp ti

(
0 1
1 0

)]
.

(
1 0
0 −1

)
=
(

cos2 t− sin2 t sin t. cos t
sin t. cos t cos2 t− sin2 t

)
the following calculation is made extremely simple to perform:

Ad{exp ti(ε(ω) + ε∗(ω))}.LZ =
∞∑

j=0

(ti)j

j!
(ad(ε(ω) + ε∗(ω)))j .LZ

= LZ −
ci

2
sin t cos t.(ε(ω)− ε∗(ω))− c

2
(cos2 t− sin2 t− 1).(n− k)

Setting t equal to π/2 proves the result. �

This theorem enables us to calculate the Hochschild homology of the quantum
algebra C∞(X){~} on a conic symplectic manifold X.

Theorem. The higher differentials di, i > 1, in the spectral sequence abutting at
HH∗(C∞(X){~}) are equal to zero. Furthermore, the spectral sequence for HH∗(A{~})
degenerates at E2, and is convergent.

proof. Let us first consider the behaviour of the differentials di in the spectral
sequence with respect to the action of R+ given by Tt (this action extends to each
term Ei of the spectral sequence). It is easily seen that the operator δ : E1

k → Ei
k−1

satisfies Ad(Tt).δ = t−1δ, while the higher differentials di : Ei
k → Ei

k−1 satisfy
Ad(Tt).di = t−idi.

Using our results on conformal Hamiltonian vector fields, we will show that E2
k

is the homology of the operator δ restricted to the closed subspace of E1
k on which

Tt acts as multiplication by tk−n; it follows immediately that any element of Ei
k

will satisfy this identity for all i ≥ 2, showing that di must vanish for i ≥ 2.
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Indeed, it was proved above that [δ, ε(α)] = LR + (n− k). This homotopy shows
that the homology of δ on Ω∗(X) may be calculated by restricting it to the space
of forms satisfying

LRθ + (n− k)θ = 0,

or in other words, the space {θ ∈ E1
k | Ttθ = tk−nθ}.

This completes the proof of the degeneration of the spectral sequence. To show
the convergence, we argue as follows. From the filtration of the algebra C∞(X){~},
we obtain a filtration of the Hochschild complex C∗(C∞(X){~}), in such a way
that C∗(C∞(X){~}) is actually isomorphic to the projective limit of the quotient
complexes C∗(C∞(X){~})/FmC∗(C∞(X){~}). For each such quotient complex
C∗(C∞(X){~})/FmC∗(C∞(X){~}), one has a spectral sequence whose E1 term
is the part of degree ≥ m of the Hochschild homology of the graded algebra
gr(C∞(X){~}), which is isomorphic to the “Laurent algebra”, that is, the ten-
sor product of algebras C∞(X) ⊗ C{~}. By the result of Hochschild et al. quoted
in Section 1, we see that E1 is the part of degree ≥ m of the algebra of differential
forms with coefficients in gr(C∞(X){~}).

The differential d1 in the term E1 of these spectral sequences is once more given
by the operator δ. We may argue as before, using the homotopy

[δ, ε(α)] = LR + (n− k),

that the E2
k-term of the spectral sequence of

C∗(C∞(X){~})/FmC∗(C∞(X){~})

is independent of m for m small enough, and that Ei
k = E∞

k if i ≥ 2. Then, by using
induction on i and the Mittag-Leffler theorem of Grothendieck ([8]; for a shorter
exposition, see [12]), we may deduce that the Ei

k term of the spectral sequences of

C∗(C∞(X){~}) and C∗(C∞(X){~})/FmC∗(C∞(X){~})

are equal for large negative m. This demonstrates the convergence of the spectral
sequence for HH∗(C∞(X){~}). �

Corollary. The Hochschild homology HH∗(C∞(X){~}) of the quantum algebra
C∞(X){~} is equal to H2n−∗(X){~}.

proof. Consider the diagram

Ωk(X) ∗−−−−→ Ω2n−k(X)

δ

y d

y
Ωk−1(X) ∗−−−−→ Ω2n−k+1(X)
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Since the horizontal arrows are isomorphisms, we obtain an isomorphism between
the homology H∗(Ω∗(X), δ) and the cohomology H2n−∗(Ω∗(X), d), which is iso-
morphic to H2n−∗(X) by de Rham’s theorem. But this is just the E2 term of
the spectral sequence for HH∗(C∞(X){~}), which by the convergence result of the
above theorem is equal to E∞. �

§3. The cyclic homology of quantum algebras.

In this section, we will follow the same steps for cyclic homology as we have
already traced in the case of the Hochschild homology: we recall the definition of
the cyclic homology of an algebra, obtain a spectral sequence abutting to it in the
case of a quantum algebra, and, using simple differential geometric identities, prove
convergence in the case of the quantum algebra of a conic symplectic manifold.

Definition. The cyclic homology HC∗(A) of an algebra (A, ?) is the homology of
the space of polynomials in the bar complex C∗(A)[u], with respect to the boundary
operator b + u−1B, where B is given by the formula

B(a0, . . . , am) =
m∑

i=0

(−1)im(1, ai, . . . , am, a0, . . . , ai−1)

+
m∑

i=0

(−1)(i+1)m(ai, . . . , am, a0, . . . , ai−1, 1)

Here, by u−1 we mean the operator mapping ui to ui−1 for i > 0, and mapping u0

to 0. The variable u is assigned degree 2 in the complex C∗(A)[u].

This definition of the cyclic homology of an algebra is explained carefully in Loday
and Quillen [15].

If A{~} is a quantum algebra, it will be more convenient to define its cyclic
homology as being the cohomology of the complex C∗(A{~})[u] with respect to the
operator b + i−1~2u−1B. This is equivalent, of course, since i−1~2 is invertible.

We now obtain a spectral sequence for HC∗(A{~}), by considering a filtration on
the complex C∗(A{~})[u] analogous to that used in the calculation of HH∗(A{~}),

Fi(C∗(A{~})[u]) = ~iC∗(A)[u].

Lemma.
(1) The E1 term of this spectral sequence is isomorphic to HH∗(A)[u], and its

differential d1 is equal to i−1~δ.
(2) When A is the algebra of smooth functions on a manifold, the operator B

may be identified with the exterior differential d:

d(a0 da1 ∧ . . . ∧ dam) = da0 ∧ . . . ∧ dam.
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Proof.
(1) This is clear once we expand the differential b + i−1~2u−1B in terms homo-

geneous in ~:
b = b0 + i−1~δ + O(~2).

(2) It is a simple matter to identify the operator B as the exterior differential
when A = C∞(X), given the explicit definition of B, since in the algebra
of differential forms, the Hochschild chain (a0, . . . , am, 1) represents zero,
while the other terms in the definition of B give precisely the exterior diff-
erential. �

If A{~} is the quantum algebra associated to a conic symplectic manifold X, we
would like to show that the spectral sequence for the cyclic homology degenerates
at the E2 term, as did the spectral sequence for Hochschild homology. In fact, more
or less the same proof does the trick.

Theorem. The higher differentials di, i > 1, in the spectral sequence abutting at
HC∗(C∞(X){~}) are equal to zero.

proof. As in Section 2, it follows from the homotopy identity [δ, ε(α)] = LR+(n−k)
that E2

k has a set of representatives that are homogeneous of degree k−n. Since di

changes the degree of homogeneity by −i, for all i ≥ 1, it follows immediately that
di = 0 for i > 1. This shows convergence of the spectral sequence; to show that it
degenerates, we argue as for the case of Hochschild homology. �

Corollary. The cyclic homology HC∗ of the quantum algebra C∞(X){~} is equal
to
H2n−∗(X){~}[u]. �

§4. Application to the algebra of pseudo-differential symbols

The methods that we have developed in the previous sections applies also to
calculate the Hochschild and cyclic homologies of the algebra of pseudo-differential
symbols Ψ∞(M)/Ψ−∞(M). This is because the structure of the product on this
algebra is very similar to that of the Poisson algebra of Ṫ ∗M . However, the final
answer will be somewhat different; one way to explain this is to observe that the
de Rham cohomology of the algebra of Laurent polynomial coefficient differential
forms on the positive real axis is two dimensional, with representatives 1 and dt/t,
whereas the de Rham cohomology of the algebra of smooth coefficient differential
forms is one dimensional, with representative 1.

Let us recall more precisely the structure of the algebra of pseudo-differential
operators on a manifold M . This is a filtered algebra Ψm(M) of operators on
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C∞(M), such that
Ψ−∞(M) =

⋂
m

Ψm(M)

is the algebra of smoothing operators. If we take the quotient of Ψ∞(M) =⋃
m Ψm(M) by Ψ−∞(M), we obtain an algebra which can be quite explicitly de-

scribed; it consists of formal sums of homogeneous functions on the space Ṫ ∗M , of
the form

a(x, ξ) ∼
m∑

i=−∞
ai(x, ξ),

where ai(x, tξ) = tia(x, ξ) for t > 0; the product is given by a formula of the type

a ? b ∼ ab + {a, b}/2i +
∞∑

i=2

ϕi(a, b),

where ϕi is a certain bilinear map from Ψk/Ψ−∞ ×Ψl/Ψ−∞ to Ψk+l−i/Ψ−∞.
We endow the algebra P = Ψ∞/Ψ−∞ with the structure of a complete, locally

convex algebra as follows. Write P in the form

P = proj lim
m

(
inj lim
n≥m

Ψn/Ψm

)
.

Each space Ψn/Ψm has a topology, as the space of smooth sections of a vector
bundle on the manifold S∗M . We endow the spaces inj limn Ψn/Ψm with the direct
limit topology, and then P is endowed with the projective limit topology.

We also may consider the algebra Pc ⊂ P, consisting of symbols which are
supported in a compact subset of S∗M . We have Pc = inj limPK , where K runs
over the set of compact subsets of S∗M . Each PK is topologized in the same way
as P, and Pc is given the direct limit topology.

By analogy with the methods of the earlier sections, we will calculate the Hoch-
schild and cyclic homologies of the algebras P and Pc (using completed tensor
products as in [4, Chapter II]), by means of the spectral sequence associated to the
natural filtrations:

Fm(P) = Ψm(M)/Ψ−∞(M)

Fm(P[u]) =
∞∑

j=0

ujFm+2j(P).
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Theorem.
(1) The Hochschild homology of the algebras P and Pc are equal to

HH∗(P) ∼= H2n−∗(S∗M × S1)

HH∗(Pc) ∼= H2n−∗
c (S∗M × S1).

In particular, if n > 1, this is isomorphic to Hn−∗−1(M) ⊕ Hn−∗(M),
respectively
Hn−∗−1

c (M)⊕Hn−∗
c (M).

(2) The cyclic homology of the algebras P and Pc are equal to

HC∗(P) ∼= H2n−∗(S∗M × S1)[u]

HC∗(Pc) ∼= H2n−∗
c (S∗M × S1)[u].

Proof. Since the proofs of these two assertions are rather similar, we will only
present the details for the calculation of HH∗(P), following closely the calculation
of HH∗(C∞(X){~}) in Section 2. We grade the terms of the spectral sequence in
such a way that E1

kl consists of k-forms on Ṫ ∗M which are homogeneous of degree l;
since the differential di of the the Ei term of the spectral sequence is homogeneous,
mapping Ei

kl to Ei
k−1,l−i, it follows that each term Ei inherits this grading.

The differential d1 in the term E1 of the spectral sequence is once more given by
the operator δ. If α is the differential form on Ṫ ∗M equal to ι(ω), it follows that
operator ε(α) maps E1

kl to E1
k+1,l+1; thus, for given kl, we may argue as before,

using the homotopy
[δ, ε(α)] = LR + (n− k),

that the term E2
kl of the spectral sequence is only non-zero for l = k − n, and that

Ei
kl = E∞

kl if i ≥ 2.
In fact, we have really shown more; considering the spectral sequence of the

quotient complex C∗(P)/FmC∗(P), we see that E2
kl is actually independent of m

for m sufficiently large. But the complex C∗(P) is actually the projective limit of
the quotient complexes C∗(P)/FmC∗(P). Using induction on i and the Mittag-
Leffler theorem of Grothendieck, as in Section 2 , we may deduce that the Ei

kl term
of the spectral sequences of C∗(P) and C∗(P)/FmC∗(P) are equal for large negative
m.

Thus, we obtain the degeneracy of the spectral sequence for C∗(P). The proof is
finished once we observe that the homology of the algebra of differential forms on
Ṫ ∗M with coefficients in gr(P) with respect to the boundary operator δ is given by

H∗(Ω∗(gr(P))) ∼= H2n−∗(S∗M × S1). �
14



In particular, we see that if M is connected and n > 1, the Hochschild homology
group HH0(Pc) is equal to H2n−1

c (S∗M), so is one dimensional, and that every
diffeomorphism of M , extended to a diffeomorphism of S∗M × S1, acts trivially on
this group. Since a continuous trace on Ψ∞

c (M)/Ψ−∞
c (M) is the same thing as a

linear form on HH0(Pc), this shows that there is, up to a constant, a unique trace
on this algebra (unless n = 1, in which case there are two, corresponding to the fact
that in this case, S∗M has two components).

This trace on the algebra of compactly supported symbols, known as the residue
and denoted R(P ), was first observed in the study of the KdV equation, with
M = R (see, for example, [1], where the higher-dimensional case is also briefly
touched upon). It has been applied by Guillemin and Wodzicki ([9],[19]) to the
study of the residues of the zeta function of an elliptic pseudo-differential operator.
They obtain, among other things, the following results:

Proposition.
(1) The unique trace on Ψ∞

c (M)/Ψ−∞
c (M) is given by the formula

R(a(x, ξ)) =
∫

S∗M

a−n(x, ξ) ι(R)ωn,

where ai(x, ξ) is the part of the complete symbol of a(x, ξ) that is homoge-
neous of order i.

(2) Let A ∈ Ψm(M) (m ≥ 1) be an elliptic operator with positive symbol, and
let P ∈ Ψ∞(M) be an arbitrary pseudo-differential operator. If ζ(s) denotes
the zeta function Tr(P.A−s), analytically continued to the whole complex
plane, then there is a constant c, depending only on dim M , such that

Ress=0 ζ(s) = cR(P ).

Proof. (1) Let RM be the generator of HH0(Pc) which takes the value 1 on the ori-
entation class of H2n−1(S∗M). For every open set U of M , we have the commutative
diagram

Pc(U) −−−−→ Pc(M)

RU

y RM

y
C −−−−→ C

Therefore, using partitions of unity, we may reduce the computation of R to the case
in which M is equal to Rn. In this case, R is given by a sequence of distributions
bk on the cosphere bundle S∗Rn, such that

R(a) =
∑

i

(ak, bk)S∗Rn .

15



We will now consider the action of various diffeomorphisms of Rn on R. We start
with the group of translations and rotations of Rn on S∗M ; invariance of R under
the action of this group on S∗M shows that the distributions bk are independent of
x and ξ, that is, are a multiple of integration over the cosphere bundle with repect
to the volume form ι(R)ωn. Next we consider the group of dilations of Rn, which
sends a(x, ξ) to a(λx, λ−1ξ). Since we know that R(a(x, ξ)) = R(a(λx, λ−1ξ)), it
follows that bk = λn+kbk, so that bk = 0 unless k = −n. This completes the
calculation of the formula for RM up to a constant; in fact, it can be shown that
c = 2π.

(2) For the proof of this formula, see the articles of Guillemin and Wodzicki. �

Let us briefly mention the relationship between our description of the Hochschild
homology of the algebra of the symbol algebra with Wodzicki’s higher residue.
Starting from the isomorphism of HH∗(Pc) with H2n−∗

c (S∗M)⊕H2n−∗−1
c (S∗M), it

follows by Poincaré duality that the Hochschild cohomology groups are given by
the formula

HH∗(Pc) = H∗−1(S∗M)⊕H∗(S∗M).

Hence, every m-form α on S∗M determines a Hochschild m-cochain on Pc, that is,
a m + 1-multilinear functional on Pc, whose image in the E1 term of the spectral
sequence is given by the current on Ṫ ∗M given by

β 7→
{ ∫

S∗M
ι(R)(?β) ∧ α if β is homogeneous of degree m− n

0 otherwise

(where β is a homogeneous differential form on Ṫ ∗M). Note that

ι(R)(∗f0 df1 ∧ . . . ∧ dfm) = f0ε
∗(df1) . . . ε∗(dfm)(dξ′).

The higher residue defined by Wodzicki [20] is given by the following formula: if
β = f0 df1 ∧ . . . ∧ dfm is a homogeneous differential form on Ṫ ∗M , then

Resm(β) =
{

f0 ε∗(df1) . . . ε∗(dfm)(dξ′) if β has degree m− n,
0 otherwise.

Hence, we may write the Hochschild cochain corresponding to the differential form
α as

(Tα)(a0, a1, . . . , am) =
∫

S∗M

Resm(a0 da1 ∧ . . . ∧ dam) ∧ α.
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§5. Poincaré lemma for differential and
pseudo-differential operators

We present in this section another approach to the Hochschild and cyclic homo-
logy of algebras of (pseudo)differential operators, based on a Poincaré lemma for
these theories.

Before explaining this, let us recall the essence of Weil’s well-known sheaf-theoretic
proof [17] that for a smooth manifold, the Čech cohomology groups Hi(M, C) are
computed by the de Rham complex

. . .
d−−−−→ Ωi(M) d−−−−→ Ωi+1(M) d−−−−→ . . .

(1) The space of differential forms Ωi(M) is the space of sections of a fine
sheaf Ωi on M ; therefore, the de Rham cohomology of M is equal to the
hypercohomology of the complex of sheaves

. . .
d−−−−→ Ωi d−−−−→ Ωi+1 d−−−−→ . . .

(2) The classical Poincaré lemma tells us that this complex of sheaves is a
resolution of the constant sheaf CM ; therefore, its hypercohomology is equal
to the Čech cohomology of M , i. e. the cohomology of the sheaf CM .

(The same proof shows that the cohomology of the complex

. . .
d−−−−→ Ωi

c(M) d−−−−→ Ωi+1
c (M) d−−−−→ . . .

of compactly supported differential forms on M is equal to Hi
c(M, C).)

Now consider the algebra D(M) of differential operators on M . As in [3], we
denote by DM the sheaf of germs of differential operators on M . The Hochschild
cohomology of this sheaf may be calculated as the hypercohomology of the complex
of sheaves C∗, where Cn is the sheaf associated to the presheaf U 7→ C−n(D(U)).
(Here, C∗(D(U)) is the complex of Hochschild chains of the algebra D(U).) This
completes the analogue of the first part of Weil’s proof.

The analogue of the Poincaré lemma for differential operators is the following
result:

Lemma. If U is an open set in M diffeomorphic to the ball, then

HHq(D(U)) =
{ C if q = 2n,

0 otherwise.
(This lemma, with U equal to the polynomial coefficient differential operators on an
affine space, is due to Feigin and Tsygan [6].)

Proof. In the spectral sequence of Section 1, the term E2
q = H2n−q(T ∗U) equals 0

unless q = 2n. Hence, the spectral sequence degenerates. �

With this Poincaré lemma in hand, we see that the complex C∗ is quasi-isomorphic
to CM [2n]. We immediately obtain the following result.

17



Proposition. The Hochschild homology of the algebra of differential operators on
the manifold M (respectively, differential operators of compact support) is given by

HH∗(D(M)) ∼= H2n−∗(M, C),

HH∗(Dc(M)) ∼= H2n−∗
c (M, C). �

This proposition gives another proof of the degeneracy of the spectral sequence
of Section 1 in the case of differential operators, directly from the “Poincaré lemma”
and a bit of sheaf theory.

We now turn to the calculation of the cyclic homology groups HC∗(D(M)). They
are given by the hypercohomology of the complex of sheaves Cλ,∗, where Cλ,n is the
sheaf associated to the presheaf U 7→ Cλ

−n(D(U)) (here, Cλ
. is the cyclic chain

complex of Connes, [4, 15]). The Poincaré lemma for the complex Cλ,∗ is more
complicated, since the cohomology sheaves of Cλ,∗ are:{ CM in degrees −2n, −2n− 2, etc.

0 in all other degrees.

Lemma. The complex Cλ,∗ is quasi-isomorphic to
⊕

j≥0 CM [2n + 2j].

Proof. We first show that CM [2n] is, up to a quasi-isomorphism, a direct factor
of the complex of sheaves Cλ,∗. On the one hand, there is a natural morphism
Cλ,∗ → CM [2n] since −2n is the largest degree in which the complex Cλ,∗ has a
non-zero cohomology sheaf. On the other hand, if C∗ is the sheaf corresponding to
the Hochschild complex, we have the natural injection of complexes I : C∗ → Cλ,∗.
The Poincaré lemma for C∗ shows that C∗ is quasi-isomorphic to CM [2n]; thus, I is
a left inverse to the map CM [2n] → Cλ,∗.

From the short exact sequence of complexes of sheaves [15]

0 −−−−→ C∗ I−−−−→ Cλ,∗ S−−−−→ Cλ,∗[2] −−−−→ 0∥∥∥
C[2n]

we deduce that Cλ,∗ ∼= CM [2n] ⊕ Cλ,∗[2]. Now, Cλ,∗[2n] contains CM [2n + 2] as a
direct factor; the lemma follows by induction. �

From this Poincaré lemma, we immediately deduce:

Proposition. The cyclic homology of the algebra of differential operators on the
manifold M (respectively, differential operators of compact support) is given by

HC∗(D(M)) = H2n−∗(M, C)[u],

HC∗(Dc(M)) = H2n−∗
c (M, C)[u].
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Proof. We will illustrate the case of D(M):

HC∗(D(M)) = H−∗(M, Cλ,∗) ∼=
⊕
j≥0

H−∗(M, CM [2n + 2j])

∼=
⊕
j≥0

H2n+2j−∗(M, C). �

The same method gives the Hochschild and cyclic homology of the algebra of
complex analytic differential operators on a Stein manifold, which we denote by
Dan(M). If, in addition, M is an algebraic manifold over C, let Dalg(M) denote
the algebra of polynomial (i.e. regular) differential operators. The morphism of
algebras Dalg(M) → Dan(M) is compatible with the filtrations, hence defines a map
between the spectral sequences of Section 4 for these two algebras. At the E2 term,
we recover the natural map from the algebraic de Rham cohomology to the analytic
de Rham cohomology, which Grothendieck has shown to be an isomorphism [7].
So, Dan(M) and Dalg(M) have the same Hochschild homology, and hence the same
cyclic homology. Using the Lefschetz principle, we deduce the following result.

Proposition (Kassel and Mitschi [13]). If M is a smooth affine algebraic vari-
ety, of pure dimension n over a field k of characteristic 0, then we have:

HH∗(Dalg(M)) = H2n−∗
DR (M |k),

HC∗(Dalg(M)) = H2n−∗
DR (M |k)[u]. �

Now we will apply the sheaf theoretic method to the Hochschild and cyclic ho-
mologies of the algebras of pseudo-differential symbols on M . Since M may be
endowed with a real-analytic structure, we may replace the algebra of smooth sym-
bols P considered in Section 4 by the sheaf of micro-differential operators E on
S∗M , of Sato, Kashiwara and Kawai [16] (see also [12]). This is the algebra of sums∑m

i=−∞ ai(x, ξ) of analytic homogeneous functions satisfying certain growth condi-
tions. A comparison of the spectral sequences associated to the standard filtrations,
of the Hochschild homology of P and the Hochschild hyperhomology of E , shows
that these invariants of M are isomorphic, so we can concentrate on the case of E .

Looking at the form of the main result of Section 4, we see that the would-be
Poincaré lemma for pseudo-differential operators would have to occur on S∗M×S1,
or the homotopy-equivalent space S∗M×C×. To geometrize this situation, we have
to introduce a complexification M

i
↪→ MC. This leads to the following commutative
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diagram.
S∗M × C× −−−−→ Ṫ ∗MC

π

y π′

y
S∗M

i′−−−−→ Ṫ ∗MC/C×y y
M

i−−−−→ MC

(Here, i′ is the composition of a closed immersion and an étale map of degree 2.)
The point of this diagram is the geometrical fact that the C×-principal bundle
Ṫ ∗MC over Ṫ ∗MC/C× trivializes canonically when pulled back to S∗M , once a
Riemannian metric has been chosen.

Now consider the complex of sheaves on Ṫ ∗MC, the Hochschild complex C∗(ER)
of the sheaf of algebras ER, introduced by Sato, Kashiwara and Kawai [16]. We will
not give a detailed discussion here of this sheaf, but will summarize the discussion
of Kashiwara ([12, Chapter III, §2]), who gives a description of the stalks of ER in
local coordinates.

We will describe the stalk of ER at the point (0, dz1) of T ∗Cn. Let D be a fixed
polydisk at the origin of Cn, and let Vj be the subsets of Cn×Cn consisting of pairs
(z, w) satisfying

{
a1 Re(w1 − z1) < Im(w1 − z1), for j = 1,
aj |z1 − w1| < |zj − wj |, for 2 ≤ j ≤ n,

where (a1, . . . , an) are chosen positive numbers. An element of the stalk at (0, dz1)
is represented (for suitable D and aj) by a holomorphic “kernel” K(z, w) on the
region (D × D) ∩n

j=1 Vj , which is considered to equal 0 if, for some k, it extends
to a holomorphic function on the set (D ×D) ∩j 6=k Vj . Let us make the following
comments on this definition:

(1) the stalk of ER has a description in terms of “local cohomology with sup-
port”, similar to (but more complicated than) the description of the differ-
ential operators as cohomology with support;

(2) the multiplication on ER only exists modulo holomorphic kernels on (D ×
D) ∩j 6=k Vj .

We refer the reader to the book of Kashiwara for the definition of the product
on the stalks of ER. The outcome is that ER is a sheaf of algebras locally constant
on the orbits of the R+-action on Ṫ ∗MC. Its most important property for us is the
following Poincaré lemma.
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Lemma. If U is an open set in Ṫ ∗MC diffeomorphic to the ball, then we have

HHk(ER(U)) =
{ C q = 2n

0 q 6= 2n

Proof. Since we are working on Cn, we will identify algebras of microdifferential
operators with their opposite algebras.

In the notation of [3, §2], the dual of the E(U × U)-module E(U) is isomorphic
to E(U)[−2n] ([3, Lemma 2.2.1]). Since ER(U) is faithfully flat over E(U) ([16]), it
follows that the dual of the ER(U ×U)-module ER(U) is isomorphic to ER(U)[−2n].

We see from this that HH∗(ER(U)) is equal to Ext2n−∗
ER(U×U)(ER(U), ER(U)) (see

[3, §2]). But E(U) is a holonomic module over E(U × U), with support on the
diagonal, of multiplicity one. The proof of lemma is completed by application of
Theorem 3.2.1 of [12]. �

From this Poincaré lemma, we can compute the Hochschild homology of the ring
E∞ of microdifferential operators of order infinity, since E∞ = π′∗ER. To finish our
computation, we require yet one more

Lemma. The inclusion E ⊂ E∞ induces an isomorphism on Hochschild homology
(and hence, on cyclic homology as well, by Connes’s spectral sequence linking these
two theories).

Proof. By expressing the Hochschild homology groups as Ext groups, as in the proof
of the last lemma, we may reduce the proof to the following two statements.

(1) ECn is a holonomic ECn×Cn -module with regular singularities—this follows
from Theorem 5.4.1 of [16].

(2) If X is a complex manifold, M and N are two holonomic EX -modules with
regular singularities, and M∞ = E∞⊗EM, N∞ = E∞⊗E N , then we have

ExtiEX
(M,N ) ≈−→ ExtiE∞X (M∞,N∞).

This is Theorem 6.1.3 of Kashiwara and Kawai’s article [11], and is actually
one of the deepest results of this article. �

As a reward for all of this hard work, but without giving all the detailed sheaf-
theory arguments required, we obtain:

Theorem. If U is an open set in (Ṫ ∗X)/C×, where X is a complex manifold, then
the Hochschild and cyclic homology groups of E(U) (or, what amounts to the same
thing, of E∞(U)) are given by

HH∗(E(U)) = H2n−∗(π′−1(U))

HC∗(E(U)) = H2n−∗(π′−1(U))[u]. �
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Taking X to be the complexification MC of a real analytic manifold M , we
also obtain, by taking the limit over neighbourhoods of S∗M in (Ṫ ∗MC)/C×, the
computation of the Hochschild and cyclic homologies of P that we did in Section 4
by a different method. The point of all this is simply that π−1S∗M is diffeomorphic
to S∗M × C×.
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