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Cyclic Homology and the
Atiyah-Patodi-Singer Index Theorem

Ezra Getzler

Abstract. We apply the boundary pseudodifferential calculus of Melrose to

study the Chern character in entire cyclic homology of the Dirac operator of
a manifold with boundary.

Recently, Melrose has proved the Atiyah-Patodi-Singer index theorem using a
calculus of pseudodifferential operators for manifolds with boundary [11]. In this
article, we apply his method to study the Chern character of the Dirac operator of
a manifold with boundary, working in the setting of entire cyclic cohomology.

Recall that if M is an n-dimensional spin-manifold with boundary, its Dirac
operator D defines an element [D] ∈ Kn(M,∂M) of the K-homology of the pair
(M,∂M). (There is a more general construction using Clifford modules, but we
prefer in this introduction to restrict ourselves to the simplest case.) It has been
proved by Baum, Douglas and Taylor [1] and Melrose and Piazza [12] that in the
long exact homology sequence

−→ Kn(∂M) −→ Kn(M) −→ Kn(M,∂M) ∂−→ Kn−1(∂M) −→ ,

[D] ∈ Kn(M,∂M) maps to the Dirac operator of the boundary [D∂ ] ∈ Kn−1(∂M).
The homology Chern character Ch∗ maps this sequence into the long exact sequence

−→ Hn(∂M) −→ Hn(M) −→ Hn(M,∂M) ∂−→ Hn−1(∂M) −→ .

In this article, we will prove an extension of the Atiyah-Patodi-Singer index theorem
to entire cyclic cohomology, which realizes the formula ∂ Ch∗[D] = Ch∗[D∂ ] at the
level of cyclic cochains instead of cohomology classes.

Let us describe Melrose’s proof in outline. He introduces a calculus of pseudo-
differential operators Ψ∗

b(M), generated by the vector fields tangential to the bound-
ary. Such vector fields are sections of a bundle bTM naturally associated to the
manifold with boundary, called the b-tangent bundle. (This bundle is isomorphic
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2 EZRA GETZLER

to TM , although not naturally.) A metric on bTM is called a b-metric: these give
M the structure of a manifold with an asymptotically cylindrical end. (In fact, we
must suppose that the metric is exact, a technical condition which will be explained
in Section 5.)

If M is a spin-manifold with a b-metric, and S is the associated bundle of
spinors, its Dirac operator D lies in Ψ1

b(M,S) and its heat kernel etD2
lies in

Ψ−∞
b (M,S). However, owing to the presence of a boundary, operators in Ψ−∞

b (M,S)
are not automatically trace class. Melrose defines a renormalized trace bTr on
Ψ−∞

b (M,S), by subtracting a logarithmic divergence contributed by the boundary.
The b-trace is not a trace — in the language of physics, it is anomalous.

Suppose that M is even-dimensional, and denote by
bStr(K) = bTr|S+(K)− bTr|S−(K)

the renormalized supertrace of K ∈ Ψ−∞
b (M,S). If D∂ is invertible, the operator

D is Fredholm, and the limit

lim
t→∞

bStr(etD2
) = ind(D+)

equals the index of the operator D+ : L2(M,S+) −→ L2(M,S−). On the other
hand, the local index theorem holds, in the form

lim
t→0

bStr(etD2
) =

∫
M

Â(bT ∗M).

The theorem is proved by interpolating between these two endpoints, just as in
the proof of the local index theorem for Dirac operators on a closed manifold. If
K ∈ Ψ−∞

b (M,S), there is a simple formula for bTr[D,K] (see Section 5), from which
we see that

d

dt
bStr(etD2

) =
1
2

bStr[D,DetD2
] =

1
2i

1
(πt)1/2

∂Tr
(
D∂etD2

∂
)
.

Since D∂ is invertible, the integral∫ ∞

0

bStr[D, etD2
] dt = −η(D∂)

is minus the eta-invariant of D∂ . Combining these formulas, we obtain the Atiyah-
Patodi-Singer index theorem:

ind(D+) =
∫

M

Â(bT ∗M)− 1
2
η(D∂).

In this article, we will follow the steps outlined above to obtain a formula at the
level of cyclic cochains, replacing the function bStr(etD2

) by a cyclic cochain anal-
ogous to the Chern character defined by Jaffe-Lesniewski-Osterwalder [8], except
that we replace the supertrace by the b-supertrace. This cochain is the multi-linear
form on C∞(M) defined by the formula

(f0, . . . , fk) 7→
∫

∆k

bStr
(
f0e

σ0D
2
t [Dt, f1]eσ1D

2
t . . . [Dt, fk]eσkD

2
t
)
dσ,

where Dt = t1/2D and ∆k is the simplex

{(σ0, . . . , σk) ∈ [0, 1]k | σ0 + . . . + σk = 1},
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with Lebesgue measure dσ. However, unlike in the case of the JLO Chern character,
the cochain which we obtain is not closed, since the b-supertrace is not a trace. By
calculating its coboundary, we will obtain an index theorem which extends the
Atiyah-Patodi-Singer theorem to the setting of cyclic cohomology. In our theorem,
the role of the eta-invariant is played by a cyclic cochain which has been studied
independently by Wu [16]. Wu calls it the higher eta-invariant: however, motivated
by Theorem 7.1 and at the suggestion of J. Kaminker, we prefer to call it the total
eta-invariant.

We have taken the opportunity to impose a series of conventions for Dirac
operators and Clifford algebras, which have the effect of supressing extraneous
constant factors in the formulas. Dirac operators are skew-symmetric, in order that
the commutator a 7→ [D, a] maps self-adjoint operators to self-adjoint operators.
Consistent with this choice, we define the Clifford algebra by the relation

vw + wv = 2(v, w).

In the Appendix, we define the Clifford supertrace StrC(q)(A) on Clifford modules,
which allows us to discuss in a uniform way the even and odd dimensional cases;
this is an extension of a trick of Quillen [13] for modules over the Clifford algebra
C(1).

I would like to thank Jerry Kaminker, Richard Melrose and Paolo Piazza for
their helpful comments on this article.

1. Cyclic cochains

Cyclic cochains were introduced by Connes as a generalization, to non-commu-
tative algebras, of the complex of currents on a manifold [5]. (They were introduced
independently by Tsygan in an algebraic setting.) Just as the Chern character of
a vector bundle with connection is a differential form, Connes defines the Chern
character of a Fredholm module, representing a K-homology class, as a cyclic chain.
In this section, we will describe the complex of cyclic cochains, and in the next, we
will define the Chern character in the setting in which we need it, that of theta-
summable Fredholm modules (those with trace-class heat kernel).

Definition 1.1. If A is a topological algebra, the space of cyclic k-cochains
Ck(A) on A is the space of continuous multilinear forms on A× (A/C)k.

Note that cyclic cochains, as we understand them here, are not invariant under
the action of the cyclic group: in the Connes-Tsygan (b, B)-complex, the role of the
cyclicity condition is played by the B-operator (see Loday-Quillen [10] for more on
this point).

Cyclic cochains generalize currents on a manifold, in the following sense: if µ is
a k-current on the compact manifold M , we may form a k-cochain cµ on C∞(M)
by the formula

cµ(a0, . . . , ak) =
1
k!

∫
µ

a0 da1 . . . dak.

Since d(1) = 0, we see that cµ(a0, . . . , ak) = 0 if ai is a multiple of 1 for some
1 ≤ i ≤ k.

Incidentally, the reversal of variance which links the homology of a space M to
the (cyclic) cohomology of C∞(M) comes about because the functor from manifolds
M to algebras C∞(M) is contravariant — functions pull back.
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Let b : Ck(A) −→ Ck+1(A) be the operator

(bc)(a0, . . . , ak+1)

=
k∑

i=0

(−1)i+1c(a0, . . . , aiai+1, . . . , ak+1) + (−1)kc(ak+1a0, . . . , ak).

Note that b satisfies the formula b2 = 0. The following lemma gives one motivation
for its introduction.

Lemma 1.2. If µ is a current on a compact manifold M , then bcµ = 0.

Proof. Leibniz’s formula d(a1a2) = (da1)a2 + a1(da2) shows that

(bcµ)(a0, . . . , ak+1) =
(−1)k

k!

∫
µ

[ak+1, a0 da1 . . . dak].

But this vanishes by commutativity of C∞(M). �

We introduce another operator B : Ck+1(A) −→ Ck(A), by the formula

(Bc)(a0, . . . , ak) =
k∑

i=0

(−1)ikc(1, ai, . . . , ak, a0, . . . , ai−1).

It may be shown that B2 and bB+Bb vanish. The following lemma, due to Rinehart
[15] and Connes [5], gives one motivation behind its introduction: it corresponds
to the boundary operator on currents.

Lemma 1.3. If µ is a k-current, then Bcµ = cδµ.

Proof.

(Bcµ)(a0, . . . , ak−1) =
k−1∑
i=0

(−1)i(k−1)cµ(1, ai, . . . , ak−1, a0, . . . , ai−1)

=
1
k!

k−1∑
i=0

(−1)i(k−1)

∫
µ

dai . . . dak−1 da0 . . . dai−1

=
1

(k − 1)!

∫
µ

da0 . . . dak−1 =
1

(k − 1)!

∫
δµ

a0 da1 . . . ak�

The cohomology of the differential b + B on the vector space
⊕∞

k=0 Ck(A) is
naturally Z/2-graded, and not Z-graded, because b and B have degree +1 and −1
respectively. This cohomology is called the the periodic cyclic cohomology of A,
written

HP∗(A) = HP+(A)⊕HP−(A).

In this and a number of other ways, periodic cyclic cohomology is closer to K-
homology than to ordinary homology (this may be seen more clearly in the study
of the periodic cyclic homology of group actions). In any case, we have the following
result, due to Connes [5].
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Proposition 1.4. The map µ 7→ cµ from the Z/2-graded complex of currents
on M to the complex of periodic cyclic cochains induces an isomorphism between
the Z/2-graded space HP∗(C∞(M)) and∑

i even

Hi(M)⊕
∑
i odd

Hi(M).

The cyclic cochains defining periodic cyclic homology are finite sums
∑N

k=0 ck,
where ck ∈ Ck(A). This is appropriate in the algebraic setting, but when A is a
Fréchet algebra, it is useful to consider infinite sums c =

∑∞
k=0 ck with bounds on

the size of ck as k −→ ∞. The most useful such class of cyclic cochains is that of
Connes’s entire cyclic cochains [6]. If A is a Fréchet algebra, and ‖·‖ is a continuous
seminorm on A, we introduce a sequence of seminorms on the space of such sums,

‖c0 + c1 + . . . ‖n =
∑

k

Γ(k/2) nk‖ck‖.

The space of entire cyclic cochains C∗ω(A) is the Fréchet space of sequences of cyclic
cochains on which all of these seminorms are finite. The cohomology of b + B on
C∗ω(A) is called the entire cyclic cohomology of A, written HE∗(A). Just as in the
case of periodic cyclic cohomology, it is Z/2-graded:

HE∗(A) = HE+(A)⊕HE−(A).

It is known that the periodic cyclic cohomology HP∗(C∞(M)) of the algebra
C∞(M) is a summand of the entire cyclic homology HE∗(C∞(M)), and it is ex-
pected that they are equal, although this has not been proved except when M is
one-dimensional.

2. Theta-summable Fredholm modules

Entire cyclic cocycles typically arise as the Chern character of theta-summable
Fredholm modules. In this section, we recall some aspects of this theory (see also
[6], [7], [8] and [14]). We use the theory of Hilbert modules over Clifford algebras,
for which we refer to the appendix.

Definition 2.1. A degree q theta-summable Fredholm module (H,D) over a
Fréchet algebra A consists of a continuous representation ρ : A −→ LC(q)(H), where
H is a Hilbert module over C(q), and an odd skew-adjoint operator D on H, such
that

1. if a ∈ A, the supercommutator [D, ρ(a)] is densely defined and extends to a
bounded operator on H, and the map a 7→ [D, ρ(a)] is bounded from A to
LC(q)(H).

2. for each t > 0, the operators etD2
and DetD2

are in L1
C(q)(H).

We will now define the Chern character of a Fredholm module (H,D): this is
an entire cyclic cocycle, to be thought of as a generalized current. We will often
write a instead of ρ(a).

We define multilinear forms on the space of operators on H by integrating over
the simplex ∆k: if Ai, 0 ≤ i ≤ k, are operators on H,

〈A0, . . . , Ak〉 =
∫

∆k

StrC(q)(A0e
σ0D

2
. . . AkeσkD

2
) dσ.



6 EZRA GETZLER

(For the definition of the Clifford supertrace StrC(q)(A), see the Appendix.)

Lemma 2.2. If I ⊂ {1, . . . , k}, we have the estimate

|〈A0, . . . , Ak〉| ≤
O(1)k

Γ(k − |I|/2 + 1)
· Tr

(
eD

2/2
)
·
∏
i/∈I

‖Ai‖ ·
∏
i∈I

‖Ai(1− D2)−1/2‖

Proof. We use the Hölder inequality for the trace on a Hilbert space: if ‖A‖p

denotes the p-Schatten norm of an operator A, and σ0 + . . . + σk = 1, we have

|StrC(q)(B0 . . . Bk)| ≤ O(1)‖B0‖σ−1
0

. . . ‖Bk‖σ−1
k

.

This shows that

|〈A0, . . . , Ak〉| ≤ O(1)
∫

∆k

‖A0e
σ0D

2
‖σ−1

0
. . . ‖AkeσkD

2
‖σ−1

k
dσ.

We now observe that for positive s,

‖AeσD2
‖σ−1 ≤ ‖A(1− D2)−s/2‖ · ‖(1− D2)s/2eσD2/2‖ · ‖eσD2/2‖σ−1

≤ O(1)
( s

σ

)s/2

· ‖A(1− D2)−s/2‖ · Tr
(
eD

2/2
)σ

.

Apply this with s = 1 for i ∈ I, and s = 0 for i /∈ I. The proof is completed by
noting that ∫

∆k

∏
i∈I

σ
−1/2
i dσ =

π|I|/2

Γ(k − |I|/2 + 1)
.�

The Jaffe-Lesniewski-Osterwalder Chern character [8] of a theta-summable
Fredholm module (H,D), is the entire cyclic cochain Ch∗(D) ∈ C∗ω(A) on A de-
fined by the formula

Chk(D)(a0, . . . , ak) = 〈a0, [D, a1], . . . , [D, ak]〉.

This cochain is closed:
(b + B)Ch∗(D) = 0.

The component Chk(D) vanishes unless k and the degree q of (H,D) have the same
parity: thus, the Chern character is in C+

ω (A) if q is even, and in C−ω (A) if q is odd.
Note the close similarity between the definitions of the cochain cµ associated

to a current µ and of Ch∗(D): instead of dai, we have [D, ai], while the integral is
replaced by the supertrace over H, and the factor 1/k! equals the volume of the
simplex ∆k used in the definition of 〈A0, . . . , Ak〉.

The basic example of a theta-summable Fredholm module of degree 0 is the
Dirac operator on a compact even-dimensional spin-manifold M , with A = C∞(M)
the algebra of differentiable functions. The Hilbert spaces H± are the spaces of
square-summable sections of the half-spinor bundles S±, and the operator D is
the Dirac operator. The commutator [D, a] is just the operator c(da) of Clifford
multiplication by the one-form da. It is proved in Block-Fox [3] that the cyclic
cocycle Ch∗(t1/2D) converges as t → 0 to the current Poincaré dual to the Â-genus
of the manifold M :

lim
t→0

Chk(t1/2D)(a0, . . . , ak)) = (2πi)−n/2

∫
M

a0 da1 . . . dak ∧ det1/2

(
R/2

sinhR/2

)
.
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We will use a version of the Chern character parametrized by an open subset
U of Rn — it is a closed element of Ω∗(U,C∗ω(A)), the differential forms on U
with values in the entire cyclic cochains on A. This is a Z/2-graded complex with
differential d + b + B; the operators d, b and B have bidegrees (1, 0), (0, 1) and
(0,−1) respectively.

Definition 2.3. A degree q family of theta-summable Fredholm modules

(H,D = (Du)u∈U )

over a Fréchet algebra A consists of a continuous representation ρ : A −→ LC(q)(H)
on a Hilbert module H over C(q), and a family of odd skew-adjoint operators Du :
H −→ H, parametrized by u ∈ U , such that

1. if ∂ is a differential operator on U , the map u 7→ ∂Du(1 − D2
u)−1/2 is a

continuous map from U to LC(q)(H);
2. if a ∈ A, the supercommutator [Du, ρ(a)] is densely defined and extends to

a family of bounded operators on H, and the map a 7→ [Du, ρ(a)] is bounded
from A to C∞(U,LC(q)(H));

3. for each t > 0, and for u in a compact subset K ⊂ U , the operators etD2
u lie

in a bounded subset of L1
C(q)(H).

If D is a family (Du)u∈U of Fredholm modules parametrized by U and Ai,
0 ≤ i ≤ k, are operators, 〈A0, . . . , Ak〉 ∈ C∞(U) is the degree 0 component of the
differential form 〈〈A0, . . . , Ak〉〉, which is defined by the formula

〈〈A0, . . . , Ak〉〉 =
∫

∆k

StrC(q)(A0e
σ0(dD+D2) . . . Akeσk(dD+D2)) dσ.

Here, et(dD+D2) is given by the formula

et(dD+D2) =
∞∑

k=0

tk
∫

∆k

eσ0tD2
dDeσ1tD2

. . . dDeσktD2
dσ,

where dD is the one-form dD =
∑n

i=1 dui∂iD. The following easy lemma allows us
to extend the estimates of Lemma 2.2 to the multilinear forms 〈〈A0, . . . , Ak〉〉.

Lemma 2.5. The multilinear forms 〈〈A0, . . . , Ak〉〉 are given by the formula

〈〈A0, . . . , Ak〉〉 =
∑

1≤α1,...,αm≤n

∑
0≤i1≤···≤im≤k

〈A0, . . . , Ai1 , duα1∂α1D, Ai1+1, . . . , Aim
, duαm∂αm

D, Aim+1, . . . , Ak〉.

In particular, if U ⊂ R, so that Du depends on a single parameter u,

〈〈A0, . . . , Ak〉〉 = 〈A0, . . . , Ak〉+
k∑

i=0

〈A0, . . . , Ai, dDu, Ai+1, . . . , Ak〉.

If D = (Du)u∈U is a family of Fredholm modules, its Chern character is the
differential form on U with values in entire cyclic cochains on A, defined by the
formula

Chk(D)(a0, . . . , ak) = 〈〈a0, [D, a1], . . . , [D, ak]〉〉.
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The following homotopy formula, similar to the Chern-Simons transgression formula
of Chern-Weil theory, may be proved

(d + b + B)Ch∗(D) = 0.

3. The index theorem for theta-summable Fredholm modules

In this section, we recall the abstract index theorem for a theta-summable
Fredholm module (H,D) of degree 0 (see [6] and [7]). Consider an idempotent
p = (pij) ∈ Mr(A), which represents the class [p] ∈ K0(A). Associated to such
an idempotent is its Chern character, the even entire cyclic chain defined by the
formula

Ch∗(p) =
∑

i

pii +
∞∑

`=1

(−1)` (2`)!
`!

∑
i0...i2`

(
pi0i1 − 1

2δi0i1 , pi1i2 , . . . , pi2`i0

)
.

This Chern character is closed, (b + B) Ch∗(p) = 0 (see Section 1 of Getzler-Szenes
[7]).

Given an idempotent p and a Fredholm module (H,D) of degree 0 over A, we
define a Hilbert space Hp, equal to the image of the idempotent ρ(p) acting on
H⊗ Cr, and a Fredholm operator

Dp = pDp : Hp −→ Hp,

(where we write p instead of ρ(p)). The index pairing between the Fredholm module
D and the idempotent p is defined to be the index of the operator D+

p : H+
p −→ H−

p .
Its value only depends on the equivalence class of p in K0(A), and we denote it by
〈D, p〉. The following abstract index theorem gives a formula for this index, in terms
of the Chern character Ch∗(D) of the theta-summable Fredholm module (H,D).

Theorem 3.1. If p is an idempotent in Mr(A), the index pairing with a Fred-
holm module (H,D) of degree 0 is given by the formula

〈D, p〉 = (Ch∗(D),Ch∗(p)).

Proof. Following Connes [6], we consider the family of Fredholm modules
parametrized by u ∈ R,

Du = (1− u)D + u(pDp + (1− p)D(1− p))
= D + u(2p− 1)[D, p].

This family is introduced because it interpolates between D and the operator pDp+
(1− p)D(1− p), which commutes with p.

Now, observe that both 〈Du, p〉 and (Ch∗(Du),Ch∗(p)) are independent of u.
For the index pairing 〈Du, p〉, this follows from homotopy invariance of the index,
while for (Ch∗(Du),Ch∗(p)), it follows from the fact that both Ch∗(D) and Ch∗(p)
are closed:

d
(
Ch∗(Du),Ch∗(p)

)
=

(
(d + b + B)Ch∗(Du),Ch∗(p)

)
−

(
Ch∗(Du), (b + B)Ch∗(p)

)
= 0
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Thus, it suffices to prove the theorem under the assumption that D commutes with
p. But then

(Ch∗(D),Ch∗(p)) = StrH
(
p e(pDp+(1−p)D(1−p))2

)
= StrHp(e(pDp)2).

This equals the index of the operator pD+p, by the McKean-Singer formula. �

It is interesting to see what the above index theorem says for the Fredholm
module associated to the Dirac operator on an even-dimensional spin-manifold.
An idempotent p ∈ Mr(C∞(M)) determines a vector bundle im(p) over M , with
connection

pdp + (1− p)d(1− p) = d + (2p− 1)dp,

and curvature
F = (d + (2p− 1)dp)2 = (dp)2.

If µ is a 2`-current on M , we see that

(cµ,Ch∗(p)) =
(−1)`

(2`)!
(2`)!
`!

∫
µ

Tr
(
p(dp)2`

)
− 1

2 Tr
(
(dp)2`

)
=

(−1)`

`!

∫
µ

Tr
(
p(dp)2`

)
=

∫
µ

Tr
(
pe−F

)
,

and we recover the usual Chern character associated to the bundle im(p). The
index pairing 〈D, p〉 is invariant under replacement of D by t1/2D; sending t −→ 0,
we see that

(Ch∗(D),Ch∗(p)) = (2πi)−n/2

∫
M

Tr
(
pe−F

)
det1/2

(
R/2

sinhR/2

)
,

which is the Atiyah-Singer index theorem.
There is another proof of Theorem 3.1, which is more difficult, but avoids

mention of the operators b and B of cyclic cohomology: we give it because an
extension of the same technique will be used in the study of the total eta-invariant
in Section 7.

We introduce an auxilliary parameter s ∈ [0, 1] and an auxilliary Clifford vari-
able σ, and consider the family of Fredholm modules on [0, 1]× R

D̃ = Du + isσ(p− 1
2 ).

As the character of a superconnection, the differential form StrC(1)

(
e(d+D̃)2

)
∈

Ω∗([0, 1] × R) is closed; this may be seen either as a special case of the formula
(d + b + B) Ch∗(D) = 0 combined with the fact that

StrC(1)

(
e(d+D̃)2

)
=

(
Ch∗(D̃),Ch∗(1)

)
,

or directly, by using the formula

d StrC(1)

(
e(d+D̃)2

)
= StrC(1)

[
d + D̃, e(d+D̃)2

]
= 0.
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Let Γu be the contour in [0, 1] × R which goes from s = −∞ to s = ∞ along
the line of constant u. We see that the integral

a(u) =
∫

Γu

StrC(1)

(
e(d+D̃)2

)
is independent of u. We will prove Theorem 3.1 by evaluating the integral at u = 0
and at u = 1.

First, we prove that

a(0) =
∫

Γ0

StrC(1)

(
e(d+D̃)2

)
= i

(
Ch∗(D),Ch∗(p)− 1

2 rk(p) Ch∗(1)
)
.

Since (d + D̃)2 is given by the formula

D2
u − s2/4− i(1− u)sσ[D, p] + ids σ(p− 1/2) + du (2p− 1)[D, p],

we see that∫
Γ0

StrC(1)

(
e(d+D̃)2

)
=

∫
Γ0

StrC(1)

(
eD

2−s2/4−isσ[D,p]+ids σ(p− 1
2 )

)
.

Expanding in powers of s, and only keeping terms with one factor of ds and an odd
number of factors of σ, we see that this equals the sum

∞∑
`=0

i(−1)`

(4π)1/2

∫ ∞

−∞
s2`e−s2/4 ds×

2∑̀
i=0

〈1, [D, p], . . . , [D, p]︸ ︷︷ ︸
i times

, p− 1
2 , [D, p], . . . , [D, p]︸ ︷︷ ︸

2`−i times

〉

Lemma 3.2.
1

(4π)1/2

∫ ∞

−∞
s2`e−s2/4 ds =

(2`)!
`!

Proof. Completing the square, we see that∫ ∞

−∞
e−s2/4+as ds = ea2

∫ ∞

−∞
e−s2/4 ds.

Expanding in a power series in a, we obtain the lemma. �

Using the identity

〈A0, . . . , Ak〉 =
k∑

i=0

(−1)ηi(ηk−ηi)〈1, Ai, . . . , Ak, A0, . . . , Ai−1〉,

where ηi = |A0|+ · · ·+ |Ai|, we see that

2∑̀
i=0

〈1, [D, p], . . . , [D, p]︸ ︷︷ ︸
i times

, p− 1
2 , [D, p], . . . , [D, p]︸ ︷︷ ︸

2`−i times

〉 = 〈p− 1
2 , [D, p], . . . , [D, p]︸ ︷︷ ︸

2` times

〉.

The formula for a(0) follows by combining these formulas with Lemma 3.2. Note
that the contribution − 1

2 rk(p)(Ch∗(D),Ch∗(p)) comes from the fact that the lead-
ing term of Ch∗(p) is Tr(p) and not Tr(p− 1

2 )).
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We now evalute a(1). From the explicit formula for (d + D̃)2, it follows that∫
Γ1

StrC(1)

(
e(d+D̃)2

)
=

i

(4π)1/2

∫ ∞

−∞
e−s2/4 ds× Tr

(
(p− 1

2 )e(pDp+(1−p)D(1−p))2
)

= i
(
Str

(
p · e(pDp+(1−p)D(1−p))2

)
− 1

2 rk(p) Str
(
eD

2))
.

In this way, we obtain our second proof of Theorem 3.1: the unwanted term
1
2 rk(p) (Ch∗(D),Ch∗(1)) cancels from both sides.

4. The Melrose b-calculus

In this section, we briefly review Melrose’s b-calculus of pseudodifferential op-
erators for a manifold with boundary M .

The starting point of the calculus is the fact that the vector fields tangential to
the boundary of M form a Lie algebra: these are the b-vector fields. The b-vector
fields are the smooth sections of a vector bundle bTM , which is isomorphic to the
ordinary tangent bundle TM , although not naturally.

The dual of the b-tangent bundle is the b-cotangent bundle bT ∗M . We also
have the b-differential forms

Ωk
b (M, E) = Γ(M, E ⊗ Λk(bT ∗M)).

Reflecting the fact that the b-vector fields form a Lie algebra, there is an exterior
differential bd on Ω∗b(M).

Definition 4.1. A b-connection on a bundle E is an operator

b∇ : Ω∗b(M, E) −→ Ω∗+1
b (M, E),

such that if α ∈ Ωk
b (M) and ω ∈ Ω`

b(M, E), then

b∇(α ∧ ω) = bdα ∧ ω + (−1)kα ∧ b∇ω.

The curvature b∇2 of a b-connection is an element of Ω2
b(M,End(E)).

Let x be a defining function for the boundary, that is, x vanishes on the bound-
ary and dx is positive when evaluated on an inward pointing normal vector to the
boundary. The restriction of the b-vector field x∂x to the boundary is independent
of the defining function x. When restricted to the boundary, the b-tangent bundle
fits into a short-exact sequence:

0 −→ span(x∂x) −→ bTM |∂M −→ T (∂M) −→ 0.

We also have the dual short-exact sequence

0 −→ T ∗(∂M) −→ bT ∗M |∂M −→ M × R −→ 0.

These sequences may be split by the choice of a defining function x for the boundary.
This determines a b-cotangent vector x−1dx ∈ Ω1

b(M), whose restriction to the
boundary ν gives the desired splitting. This splitting only depends on the one-jet
of x at the boundary, and we call it a conormal structure on the b-manifold M .

Lemma 4.2. The space of conormal structures is an affine space modelled on
the space of exact one-forms on the boundary.
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Proof. Given two defining functions x and x′ = eϕx for the boundary, we
have

dx′

x′
=

d(eϕx)
eϕx

=
dx

x
+ dϕ.�

Given a conormal structure, the restriction of a b-differential form ω to the
boundary of M has a unique decomposition ω = ω0 +ω1ν, with ωi ∈ Ω∗(∂M). The
residue Resν(ω) is defined by the formula

Resν(ω0 + ω1ν) =
∫

∂M

ω1.

Suppose that M is oriented. If ω is a b-differential form, we define its ν-integral
by the formula ∫

ν

ω = lim
ε→0

(∫
x≥ε

ω + log ε Resν(ω)
)
.

The ν-integral only depends on the conormal structure ν, and not on the defining
function x. There is an analogue of the residue and the ν-integral for densities.

The b-differential operators are sums of operators of the form D = fX1 . . . Xk,
where Xi are b-vector fields. A b-vector field X defines a smooth function σ(X)
on bT ∗M , linear along the fibres, called its symbol. Associated to a b-differential
operator is the leading symbol

σ(D) = f σ(X1) . . . σ(Xk) ∈ C∞(bT ∗M).

There is an algebra of b-pseudodifferential operators, bearing the same relation-
ship to the b-differential operators that the classical pseudodifferential operators on
a closed manifold bears to the classical differential operators. We will only recall
those parts of their calculus which are needed for our construction of the Chern
character.

Denote the space of b-pseudodifferential operators of order k on a vector bundle
E by Ψk

b (M, E). There is a homomorphism of filtered algebras

A 7→ A∂ : Ψk
b (M, E) −→ Ψk(∂M, E)

defined as follows. Given a section s ∈ Γ(∂M, E), we extend it to a section s̃ ∈
Γ(M, E) over the interior, and then define

A∂s = As̃|∂M .

This is well-defined, since elements of Ψk
b (M, E) map the space of sections which

vanish on the boundary Γ0(M, E) to itself. For example, if X is a b-vector field,
then X∂ is the restriction of X to the boundary.

Let ν be a conormal structure on M , and let x be an associated defining
function for the boundary ∂M . The indicial family of a b-pseudodifferential operator
A ∈ Ψk

b (M, E) is the map from R to Ψk(∂M, E) defined by

Iν(A, λ) =
(
x−iλ ·A · xiλ

)
∂

.

It is easily shown that the indicial family only depends on the conormal structure
ν determined by x, and not on x itself. We will only need the indicial family for
b-differential operators, when it is polynomial in λ, and for b-smoothing operators,
for which it is a morphism of algebras

Iν : Ψ−∞
b (M, E) −→ S(R,Ψ−∞(∂M, E))
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to the algebra of rapidly decreasing functions with values in smoothing operators
on the boundary.

The restriction of the kernel of an element K ∈ Ψ−∞
b (M, E) to the diagonal,

denoted 〈x, y|K|x, y〉, is a section of the bundle bΩ ⊗ End(E) of b-densities with
values in End(E). If tr〈x, y|K|x, y〉 is the b-density obtained by taking the trace of
this kernel point by point, we have the formula

Resν tr〈x, y|K|x, y〉 =
∫ ∞

−∞

∂Tr(Iν(K, λ)) dλ.

We extend the trace to all of K ∈ Ψ−∞
b (M, E) by using the ν-integral:

bTrν(K) =
∫

ν

tr〈x, y|K|x, y〉.

The algebra S(R,Ψ−∞
b (∂M, E)) has, up to a scalar factor, a unique central

extension, defined by the Kac-Moody cocycle

c(K0(λ),K1(λ)) =
∫ ∞

−∞

∂Tr
(

dK0(λ)
dλ

K1(λ)
)

dλ,

where ∂Tr is the trace on Γ(∂M, E). Although the b-trace is not a trace, its “anom-
aly” is Morita equivalent to the Kac-Moody cocycle, suitably normalized, as is
shown by the following formula of Melrose [11].

Proposition 4.3. If A ∈ Ψk
b (M, E) and K ∈ Ψ−∞

b (M, E), the b-trace of the
commutator [A,K] is given by the formula

bTr[A,K] =
1

2πi

∫ ∞

−∞

∂Tr
(

dIν(A, λ)
dλ

Iν(K, λ)
)

dλ.

5. Riemannian b-metrics and Dirac operators

Let us now turn to the theory of Riemannian geometry on b-manifolds.

Definition 5.1. A b-metric on a manifold M with boundary is a metric on
the b-tangent bundle bTM such that (x∂x, x∂x) = 1 + O(x).

Given a b-metric, there is a unique Levi-Civita b-connection

b∇ : Ωk
b (M, bTM) −→ Ωk+1

b (M, bTM),

that is, a torsion-free b-connection such that for any b-vector fields X, Y and Z,

Z(X, Y ) = (b∇ZX, Y ) + (X, b∇ZY ).

It is given by exactly the same formula as in the absence of a boundary:

2
(
b∇XY, Z

)
= X(Y,Z) + Y (X, Z)− Z(X, Y )

+ (X, [Y, Z]) + (Y, [X, Z])− (Z, [X, Y ]).

Given a conormal structure ν on M , the restriction of the b-metric g to the
boundary ∂M decomposes as

g = ν ⊗ ν + ν ⊗ α + α⊗ ν + h,
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where α ∈ Ω1(∂M), and h is a Riemannian metric on ∂M . We say that the b-metric
is exact if α is an exact one-form. Adding α to the conormal structure ν, we obtain
a new conormal structure ν′ such that

g = ν′ ⊗ ν′ + h′,

where h′ = h− α⊗ α. Thus, an exact b-metric determines a conormal structure ν
and a metric on the boundary ∂M . When we work with an exact b-metric, we will
always use the indicial family and b-trace appropriate to this conormal structure.
Thus, we will write bTr and I(A, λ) instead of bTrν and Iν(A, λ).

The following lemma is an easy consequence of the formula for the Levi-Civita
b-connection.

Lemma 5.2. Let g be an exact b-metric on M , and let ν be the associated conor-
mal structure. Then the Levi-Civita b-connection associated to g, when restricted to
∂M , preserves the splitting bTM ∼= T (∂M) ⊕ span(x∂x), inducing the Levi-Civita
connection associated to the metric h on T (∂M), and the trivial connection on the
line bundle spanned by x∂/∂x.

Associated to a b-metric g is the bundle C(bT ∗M) of Clifford algebras, whose
fibre at z ∈ M is the Clifford algebra generated by vectors v ∈ bT ∗zM subject to the
relations vw + wv = 2gz(v, w).

Definition 5.3. A degree q Clifford module E over M is a Z/2-graded Hermit-
ian vector bundle over M , with commuting graded ∗-actions of the Clifford algebra
C(q) and the bundle C(bT ∗M).

A Clifford superconnection bA on a degree q Clifford module E over M is a
superconnection bA : Ω∗b(M, E) −→ Ω∗b(M, E) commuting with the action of C(q),
and such that if α ∈ Ω1

b(M),
[
bA, c(α)

]
= c

(
b∇α

)
.

If M is a spin-manifold, the spinor bundle leads to an example of a Clifford
module. The even and odd dimensional cases must be treated a little differently:

1. if dim(M) = 2` is even, then the spinor bundle S = S+ ⊕ S− associated to
bT ∗M is Z/2-graded, the action of C(bT ∗M) on S respects the grading, and
S is a degree 0 Clifford module;

2. if dim(M) = 2` + 1 is odd, let S to be the spinor bundle associated to the
even-dimensional spin-bundle bT ∗M ⊕ R. Since

C(bT ∗M ⊕ R) ∼= C(bT ∗M)⊗ C(1),

the bundle S = S+ ⊕ S− is a degree 1 Clifford module, with action of
α ∈ Γ(M,C(bT ∗M)) given by

(
0 c(α)

c(α) 0

)
and the generator e1 ∈ C(1)

acting by
(

0 −i

i 0

)
.

In both cases, the Levi-Civita connection induces a Clifford superconnection on S.
Restricted to the boundary, the Clifford bundle C(bT ∗M) splits into a tensor

product
C(bT ∗M)|∂M

∼= C(T ∗(∂M))⊗ C(1),
where C(1) is the Clifford algebra generated by c(ν). This shows that the restriction
of a degree q Clifford module E over M to the boundary is a degree q + 1 Clifford
module over ∂M , with eq+1 = c(ν). If the b-metric on M is exact, then b∇c(ν) = 0,
and Lemma 5.2 shows that any Clifford superconnection bA on E restricts to a
Clifford superconnection on E|∂M .
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There is a canonical isomorphism of bundles Λ∗(bT ∗M) ∼= C(bT ∗M), defined
by sending a differential form f0 df1 . . . dfk to the antisymmetrization

1
k!

∑
π∈Sk

f0 c(dfπ(1)) . . . c(dfπ(k)).

We use this to define the action of a differential form on a Clifford module. If E
is a Clifford module of degree q on M , with Clifford superconnection bA, we define
the associated Dirac operator D, by the composition

Γ(M, E)
bA−→ Γ(M,Λ∗(bT ∗M)⊗ E)

Clifford multiplication−−−−−−−−−−−−−−→ Γ(M, E).

This gives a Fredholm module of degree q over the algebra C∞(M): the Hilbert
space H is the space of L2-sections of E , the algebra C∞(M) acts by pointwise
multiplication, and the Fredholm operator is D.

Let E be a Clifford module on M with Clifford superconnection bA. Denote by
D∂ the Dirac operator associated to the restriction of E and bA to the boundary
∂M .

Proposition 5.4. If (M, g) is an exact Riemannian b-manifold, then

I(D, λ) = D∂ + iλc(ν), and I(D2, λ) = D2
∂ − λ2.

Proof. Around a point p in the boundary ∂M , choose an orthonormal frame
{e1, . . . , en−1} for T ∗(∂M), and a frame for the bundle E . Then bA decomposes as
follows:

bA = bd +
∑

α⊂{1,...,n−1}

eα (ωα + ν ω̃α) ,

where ωα and ω̃α are sections of End(E). From this, we see that if x is a defining
function compatible with the conormal structure ν,

x−iλbAxiλ = bd + iλν +
∑

α⊂{1,...,n−1}

eα (ωα + ν ω̃α) .

Since bA is a Clifford b-superconnection, [bA, c(ν)] = c(b∇ν), and since M carries an
exact metric, we see that this vanishes on the boundary; in other words, for each
α, ω̃α vanishes on the boundary. Thus,

I(bA, λ) = bA|∂ + iλν,

from which the formula for I(D, λ) follows, on applying Clifford multiplication to
both sides. The formula for I(D2, λ) follows from the formula for I(D, λ), since

c(ν)D∂ + D∂c(ν) = 0.�

Corollary 5.5. If K ∈ Ψ−∞
b (M,S), then

bStrC(q)[D,K] =
1√
π

∫ ∞

−∞

∂StrC(q+1)(I(K, λ)) dλ.
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Proof. Proposition 5.4 shows that
dI(D, λ)

dλ
= ieq+1, so by Proposition 3.3

bStrC(q)[D,K]

=
1

2π(4π)q/2

∫ ∞

−∞

(
Tr |Γ(∂M,E+) − Tr |Γ(∂M,E−)

)
(e1 . . . eq+1I(K, λ)) dλ

=
1√
π

∫ ∞

−∞

∂StrC(q+1)(I(K, λ)) dλ.�

6. The Chern character of Dirac operators on b-manifolds

In this section, we extend the definition of the Chern character of a Dirac
operator to the setting of b-manifolds, replacing the supertrace Str by bStr in all
of the formulas. The Chern character thus defined is not closed, but we will show
that its boundary is the Chern character of the Dirac operator on the boundary.

Let bAu be a differentiable family of Clifford superconnections on E parametriz-
ed by an open subset U of Rn, let Du be the associated family of Dirac operators,
and consider the family of Dirac operators Dt,u = t1/2Du parametrized by (t, u) ∈
(0,∞)× U .

Proposition 6.1. The Ω∗((0,∞)× U)-valued multilinear form on Ψ1
b(M, E)

〈〈A0, . . . , Ak〉〉b =
∫

∆k

bStr(A0e
σ0(dD+D2) . . . Akeσk(dD+D2)) dσ,

is continuous.

Proof. Denoting by eij the matrix with one non-vanishing entry, in the i-th
row and j-th column, let P be the (k + 1)× (k + 1)-matrix of b-pseudodifferential
operators

P = ek,0A0,

and let Q be the (k + 1)× (k + 1)-matrix of b-pseudodifferential operators

Q =
k∑

i=0

ei,idD +
k∑

i=1

ei−1,iAi.

Observe that

exp(D2 + Q) =
∑

0≤i≤j≤k

ei,j

∫
∆j−i

eσ0(dD+D2)Ai+1 . . . Aje
σj−i(dD+D2),

and hence that 〈〈A0, . . . , Ak〉〉b = bStr(P exp(D2 + Q)). But D2 + Q is elliptic in
the b-calculus (indeed, it has the same symbol as D2), so that the matrix entries of
exp(D2 + Q) lie in Ψ−∞

b (M, E). This shows that the matrix entries of P exp(D2 +
Q) lie in Ψ−∞

b (M, E), and hence that it has well-defined b-supertrace. From this
representation, the continuity is evident. �

The Chern character of the family of b-Dirac operators Dt,u on a manifold with
boundary M is the cochain Ch∗(D) on C∞(M), with values in Ω∗((0,∞) × U),
defined by the formula

Chk(D)(a0, . . . , ak) = 〈〈a0, [D, a1], . . . , [D, ak]〉〉b.
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This is an entire cyclic cochain, as may be shown by careful estimation using the
method of Proposition 6.1. The following result is our generalization of the Atiyah-
Patodi-Singer index theorem.

Theorem 6.2. (d + b + B)Ch∗(D) = Ch∗(D∂)

Before proving this, we need a number of formulas which we collect in a lemma.
In the following, denote by 〈〈A0, . . . , Ak〉〉∂ the multilinear form associated to the
Dirac operator on the boundary ∂M . Let Φb(M, E) be the subalgebra of Ψb(M, E)
consisting of b-pseudodifferential operators A such that the indicial family I(A, λ)
of A is independent of λ and commutes with the actions of C(q) and c(ν).

Lemma 6.3. Let Ai be b-pseudodifferential operators in Φb(M, E).
1. If εi = (|A0|+ · · ·+ |Ai−1|)(|Ai|+ · · ·+ |Ak|), then

〈〈A0, . . . , Ak〉〉b = (−1)εi〈〈Ai, . . . , Ak, A0, . . . , Ai−1〉〉b
2.

〈〈A0, . . . , Ak〉〉b =
k∑

i=0

(−1)εi〈〈1, Ai, . . . , Ak, A0, . . . , Ai−1〉〉b

3.

d〈〈A0, . . . , Ak〉〉b +
k∑

i=0

(−1)|A0|+···+|Ai−1|〈〈A0, . . . , [D, Ai], . . . , Ak〉〉b

= 〈〈(A0)∂ , . . . , (Ak)∂〉〉∂
4.

〈〈A0, . . . , [dD + D2, Ai], . . . , Ak〉〉b
= 〈〈A0, . . . , AiAi+1, . . . , Ak〉〉b − 〈〈A0, . . . , Ai−1Ai, . . . , Ak〉〉b

Proof. In the proof, we use the formula

I(dD + D2, λ) = dD∂ + D2
∂ − λ2 − ic(ν)λ dt

2t1/2
,

which follows from Proposition 5.4.
The cyclic symmetry in (1) follows from the fact that

〈〈Ak, A0, . . . , Ak−1〉〉b − (−1)|Ak|(|A0|+···+|Ak−1|)〈〈A0, . . . , Ak〉〉b

=
∫

∆k

bStrC(q)

[
Akeσk(dD+D2), A0e

σ0(dD+D2) . . . Ak−1e
σk−1(dD+D2)

]
.

Applying Proposition 4.3, and using the independence of I(Ak, λ) = (Ak)∂ on λ
and the fact that I(Ai, λ) commutes with c(ν) and with C(q), we see that this is
proportional to the integral over (λ;σ0, . . . , σk) ∈ R×∆k of

∂StrC(q)

(
F (λ) (Ak)∂ eσk(dD∂+D2

∂)(A0)∂ eσ0(dD∂+D2
∂) . . . (Ak−1)∂ eσk−1(dD∂+D2

∂)
)

,

where

F (λ) = σk

(
−2λ− ic(ν) dt

2t1/2

)
exp

(
−λ2 − ic(ν) dt

2t1/2

)
= σk

(
−2λ− (1− 2λ2)

ic(ν) dt

2t1/2

)
e−λ2

.
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But the integral of F (λ) over λ vanishes, proving the result.
To prove (2), we start from the equation

〈〈A0, . . . , Ak〉〉b =
∫

[0,1]×∆k

bStr(A0e
σ0(dD+D2) . . . Akeσk(dD+D2)) ds dσ.

We divide the region of integration into k + 1 pieces

Ri = {σ0 + · · ·+ σi ≤ s ≤ σ0 + · · ·+ σi+1}.

Each of these regions Ri is a simplex, which contributes the term

〈〈A0, . . . , Ai, 1, Ai+1, . . . , Ak〉〉b,

to the sum. Part (2) now follows by applying (1) to each term.
Part (3) follows from Corollary 5.5, which shows that

d〈〈A0, . . . , Ak〉〉b +
k∑

i=0

(−1)|A0|+···+|Ai−1|〈〈A0, . . . , [D, Ai], . . . , Ak〉〉b

= bStrC(q)[D, A0e
σ0(dD+D2) . . . Akeσk(dD+D2)]

=
1√
π

∫ ∞

−∞

∫
∆k

∂StrC(q+1)

(
(A0)∂ eσ0I(dD+D2,λ) . . . (Ak)∂ eσkI(dD+D2,λ)

)
dλ

=
1√
π

∫ ∞

−∞
e−λ2

dλ× 〈〈(A0)∂ , . . . , (Ak)∂〉〉∂

+
idt

(4πt)1/2

∫ ∞

−∞
λ e−λ2

dλ× 〈〈c(ν) (A0)∂ , . . . , (Ak)∂〉〉∂ .

On integration, the second term vanishes, while the first gains a factor of
√

π.
To prove part (4) we insert the formula

[eσi(dD+D2), Ai] =
∫ σi

0

e(σi−σ)(dD+D2)[dD + D2, Ai]eσ(dD+D2) dσ.

into the definition of 〈〈A0, . . . , [dD + D2, Ai], . . . , Ak〉〉b. �

Proof of Theorem 6.2. If a ∈ C∞(M), then I(a, λ) = a∂ and

I([D, a], λ) = [D∂ + ic(ν)λ, a∂ ] = [D∂ , a∂ ].

Applying part (3) of the lemma with A0 = a0 and Ai = [D, ai] for 1 ≤ i < k gives

Chk−1(D∂)(a0, . . . , ak−1) = d〈〈a0, [D, a1], . . . , [D, ak−1]〉〉b
+ 〈〈[D, a0], . . . , [D, ak−1]〉〉b

+
k∑

i=1

(−1)i−1〈〈a0, [D, a1], . . . , [D2, ai], . . . , [D, ak−1]〉〉b.

By part (2) of the lemma, the second of the terms on the right-hand side equals

(B Chk(D))(a0, . . . , ak−1).
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By part (4) of the lemma, we see that

(−1)i−1〈〈a0, [D, a1], . . . , [D2, ai], . . . , [D, ak−1]〉〉b
= (−1)i〈〈a0, [D, a1], . . . , [D, ai−1]ai, [D, ai+1], . . . , [D, ak]〉〉b
+ (−1)i−1〈〈a0, [D, a1], . . . , [D, ai−1], ai[D, ai+1], . . . , [D, ak]〉〉b

Adding all of this up and using the fact that [D, aiai+1] = [D, ai]ai+1 + ai[D, ai+1],
we easily see that these terms conspire to give b Chk−2(D, t) evaluated on the chain
(a0, . . . , ak−1). �

7. The Atiyah-Patodi-Singer theorem for twisted Dirac operators

In this section, we will relate the main result of this paper, Theorem 6.2, to the
Atiyah-Patodi-Singer index theorem, obtaining an analogue of Theorem 4.1 of Wu
[16] in the setting of the b-calculus.

If (H,D) is a theta-summable Fredholm module, let

Ch∗(D, t) ∈ Ω∗((0,∞),C∗ω(A))

be the Chern character associated to the family Dt = t1/2D; the zero-form compo-
nent of Ch∗(D, t) is the Chern character of Dt, while the one-form component is
the secondary characteristic class C̃h∗(Dt, Ḋt) of Getzler-Szenes [7]. Denoting the
multilinear form associated to Dt by 〈A0, . . . , Ak〉t, we easily obtain the explicit
formula

Chk(D, t)(a0, . . . , ak) = 〈a0, [Dt, a1], . . . , [Dt, ak]〉t

+
k∑

i=0

(−1)idt

2t
〈a0, [Dt, a1], . . . , [Dt, ai],Dt, [Dt, ai+1], . . . , [Dt, ak]〉t.

Note that the first (second) term vanishes unless k + q is even (odd).
If the operator D is sufficiently well-behaved, we can integrate Ch∗(D, t) over

the interval (0,∞), obtaining the total eta-invariant of Wu,

η∗(D) =
∫ ∞

0

Ch∗(D, t),

which is an even (odd) cyclic cochain if (H,D) has odd (even) degree.
In the rest of this section, we will restrict attention to the following situation.

Let N be a compact odd-dimensional manifold (which we will eventually take to be
∂M , where M is an even-dimensional b-manifold). Let E be an ungraded Clifford
module over N with Clifford connection b∇E , and let D be the associated Dirac
operator. Associate to D a Fredholm operator on the C(1)-module Γ(M, E ⊕ E)

D =
(

0 D

D 0

)
.

The convergence of the integral defining η∗(D) as t −→ 0 is guaranteed by a
generalization of the calculation showing that the residue of the eta-function of a
Dirac operator at s = 0 vanishes (see Bismut-Freed [2]), provided D is associated
to a Clifford connection b∇E , as against a general Clifford superconnection. (Al-
ternatively, the pseudodifferential calculus used to prove the local index theorem
for Dirac operators [3] yields the same result.) The convergence of the integral as
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t −→∞ is controlled by the lowest eigenvalue λ of |D|: thus, the total eta-invariant
is not an entire cyclic cochain, but has finite radius of convergence proportional to
λ. We now have the following analogue of Theorem 3.1, which has been proved
under the hypothesis that N = ∂M is a boundary and the idempotent p extends
to the interior of M by Wu [16].

Theorem 7.1. Let λ be the lowest eigenvalue of |D|. If p is an idempotent in
Mr(C∞(N)) and η∗(D) is the total eta-invariant of D, then the pairing

(η∗(D),Ch∗(p))

is convergent if the idempotent p satisfies the estimate |dp| < λ, and equals − 1
2

times the eta-invariant of the Dirac operator pDp.

Proof. The fact that the pairing of η∗(D) with Ch∗(p) is finite of |dp| is
smaller than the lowest eigenvalue of |D| is Theorem 3.1 of Wu [16]. We will
calculate (η∗(D),Ch∗(p)) by a modification of our second proof of Theorem 3.1.

As in that proof, we consider a family of Fredholm modules on [0, 1]×R×[0,∞),
parametrized by (u, s, t),

D̃ = t1/2Du + isσ(p− 1
2 ).

Thus, we are now working in the Clifford module Γ(M, E ⊕ E)⊕ Γ(M, E ⊕ E) over
the Clifford algebra C(2) generated by e1 and σ.

If π : [0, 1] × R × [0,∞) −→ [0, 1] × R is the projection which sends (u, s, t) to
(u, s), we see that

d
(
π∗ StrC(2)

(
e(d+D̃)2

))
= lim

t−→0
StrC(2)

(
e(d+D̃)2

)
∈ Ω∗([0, 1]× R).

This may be shown to vanish, by the method of Bismut-Freed [2] or the asymptotic
pseudodifferential calculus [3]. Thus, the integral

a(u) =
∫

Γu

π∗ StrC(2)

(
e(d+D̃)2

)
is independent of u. We will prove Theorem 7.1 by evaluating the integral at u = 0
and at u = 1.

First, we prove that

a(0) =
∫

Γ0

π∗ StrC(2)

(
e(d+D̃)2

)
= i

(
η∗(D),Ch∗(p)− 1

2 rk(p) Ch∗(1)
)
.

Since (d + D̃)2 is given by the formula

tD2
u − s2/4− i(1− u)t1/2sσ[D, p] + ids σ(p− 1

2 ) + t1/2du (2p− 1)[D, p] + 1
2 t−1/2dt D,

we see that∫
Γ0

π∗ StrC(2)

(
e(d+D̃)2

)
=

∫
Γ0

∫ ∞

0

StrC(2)

(
etD2−s2/4−it1/2sσ[D,p]+ids σ(p− 1

2 )+dtD/2t1/2)
.
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Expanding in powers of s, and only keeping terms with one factor of ds, one factor
of dt, and an odd number of factors of σ, we see that this equals the sum

− i
∞∑

`=0

(−1)`

2(4π)1/2

∫ ∞

−∞
s2`e−s2/4 ds×

∫ ∞

0

t`−1/2

2∑̀
i=0

2`−i∑
j=0

{
〈1, [D, p], . . . , [D, p]︸ ︷︷ ︸

i times

, p− 1
2 , [D, p], . . . , [D, p]︸ ︷︷ ︸

j times

, dt D, [D, p], . . . , [D, p]︸ ︷︷ ︸
2`−i−j times

〉t

+ 〈1, [D, p], . . . , [D, p]︸ ︷︷ ︸
i times

, dt D, [D, p], . . . , [D, p]︸ ︷︷ ︸
j times

, p− 1
2 , [D, p], . . . , [D, p]︸ ︷︷ ︸

2`−i−j times

〉t
}

.

This in turn equals

i

2

∞∑
`=0

(2`)!
`!

∫ ∞

0

t`−1/2
2∑̀

i=0

(−1)`+i〈p− 1
2 , [D, p], . . . , [D, p]︸ ︷︷ ︸

i times

,D, [D, p], . . . , [D, p]︸ ︷︷ ︸
2`−i times

〉t

= i
(
η∗(D),Ch∗(p)− 1

2 rk(p) Ch∗(1)
)
.

We now evalute a(1). From the explicit formula for (d + D̃)2, it follows that∫
Γ1

StrC(2)

(
e(d+D̃)2

)
=

1
2i(4π)1/2

∫ ∞

−∞
e−s2/4 ds

∫ ∞

0

StrC(1)

(
(p− 1

2 )D1e
tD2

1
) dt

t1/2
,

where D1 = pDp + (1− p)D(1− p). The Clifford supertrace is given by the formula

StrC(1)

(
(p− 1

2 )D1e
tD2

1
)

=
1

(4π)1/2
Str

{
(p− 1

2 )
(

0 −i
i 0

) (
0 D1e

tD2
1

D1e
tD2

1 0

)}
=

1
(4π)1/2

Str
(
−i(p− 1

2 )D1e
tD2

1 0
0 i(p− 1

2 )D1e
tD2

1

)
= −iπ−1/2 Tr

(
(p− 1

2 )D1e
tD2

1
)
.

Thus, we see that∫
Γ1

StrC(2)

(
e(d+D̃)2

)
=

1
2iπ1/2

∫ ∞

0

Tr
(
(p− 1

2 )D1e
tD2

1
) dt

t1/2

= − 1
2η(Dp)− i

2 rk(p)(η∗(D),Ch∗(1)).

The unwanted term i
2 rk(p)(η∗(D),Ch∗(1)) cancels from both a(0) and a(1), proving

the theorem. �

The following theorem generalizes the Atiyah-Patodi-Singer index theorem, al-
lowing us to twist the operator by a bundle which is sufficiently flat on the boundary.
Taking p = 1 in the theorem, we recover the original Atiyah-Patodi-Singer index
theorem, in which D is untwisted.

Theorem 7.2. Let D be a Dirac operator on a degree 0 Clifford module E over
a compact manifold M associated to a Clifford connection b∇E . Let λ be the lowest
eigenvalue of |D∂ |. Let p be an idempotent in Mr(C∞(M)) such that |dp∂ | < λ,
where p∂ is the restriction of p to the boundary. Then the operator pDp is Fredholm
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on Γ(M, E ⊗ im(p)), and the following higher Atiyah-Patodi-Singer index theorem
holds:

〈D, p〉 = (2πi)−n/2

∫
ν

Tr
(
pe−F

)
det1/2

(
bR/2

sinh bR/2

)
+ (η∗(D∂),Ch∗(p∂)).

(The integral here is the ν-integral introduced in the Section 5.)

Proof. Form the family of Dirac operators Du on E ⊗ Cr, parametrized by
u ∈ [0, 1],

Du = (1− u)D + u
(
pDp + (1− p)D(1− p)

)
.

Let α ∈ Ω∗((0,∞)× C) be the differential form given by the formula

α = (Ch∗(Du, t),Ch∗(p)).

Then by Theorem 6.2,

dα = (Ch∗(D∂,u, t),Ch∗(p∂)),

where D∂.u = (1 − u)D∂ + u
(
p∂D∂p∂ + (1 − p∂)D∂(1 − p∂)

)
. The fundamental

theorem of calculus shows that

α(t2, 0)− α(t1, 0) =
(∫ t2

t1

Ch∗(D∂ , t),Ch∗(p∂)
)
,

and hence that

lim
t−→∞

α(t, 0)− lim
t−→0

α(t, 0) = (η∗(D∂),Ch∗(p∂)),

where the right-hand side is defined by Theorem 7.1.
A generalization of the methods of Block and Fox [3] (see also Chapter 8 of

Melrose [11]) shows that

lim
t−→0

Chk(D, t)(a0, . . . , ak) = (2πi)−n/2

∫
ν

a0 da1 . . . dak ∧ det1/2

(
bR/2

sinh bR/2

)
,

where bR is the curvature of the Levi-Civita b-connection b∇. This shows that

lim
t−→0

α(t, 0) = (2πi)−n/2

∫
ν

Tr
(
pe−F

)
det1/2

(
bR/2

sinh bR/2

)
.

Thus, it remains to show that α(∞, 0) equals the index of the operator pD+p.
By the hypothesis on |dp∂ |, the operator D∂,u = D∂ +u(2p∂ −1)c(dp∂) satisfies

the lower bound
|D∂,u| > λ− |(2p∂ − 1)c(dp∂)| > 0,

since |(2p∂ − 1)c(dp∂)| = |dp∂ |. Thus, the operators Du are Fredholm for u ∈ [0, 1].
Melrose’s analogue of the McKean-Singer formula shows that for all t > 0,

〈D, p〉 = lim
t−→∞

bStr(petD2
1) = lim

t−→∞
α(t, 1).

The proof will be completed by the following lemma, which shows that

lim
t−→∞

α(t, 0) = 〈D, p〉.

Lemma 7.3. α(t, 1)− α(t, 0) = O(e−(λ−|dp∂ |)2t/2)
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Proof. Since [D∂,u, p∂ ] = (1 − u)c(dp∂), we see that α(t, 1) − α(t, 0) is given
by the sum

∞∑
`=0

(2`)!
`!

t`+1/2
2∑̀

i=0

(−1)i+`

∫
u∈[0,1]

(1− u)2`〈p∂ − 1
2 , c(dp∂), . . . , c((2p∂ − 1)dp∂), . . . , c(dp∂)〉t,u.

Now, the operator D2
∂,u is bounded below by (λ − |dp∂ |)2, and its heat kernel is

uniformly trace-class, so the term indexed by ` may be bounded by

(2`)!
(`!)2

(t1/2|dp∂ |)2`+1e−3(λ−|dp∂ |)2t/4
2∑̀

i=0

1
(2` + 2)!

∫ 1

0

(1− u)2` du

=
(t1/2|dp∂ |)2`+1

(`!)2
e−3(λ−|dp∂ |)2t/4.

Summing over `, the result follows. �

Appendix. Clifford modules

In this appendix, we discuss some of the properties of Hilbert modules over
Clifford algebras used in this article.

If q is a natural number, let C(q) be the Clifford algebra on generators ei,
1 ≤ i ≤ q, such that

eiej + ejei = 2δij .

The 2q vectors eI = eI1 . . . eIj form a basis of C(q), where I ranges over subsets
1 ≤ I1 < · · · < Ij ≤ q of {1, . . . , q}. There is a canonical invariant inner product
on C(q), for which the vectors eI form an orthonormal basis. The embedding of
C(q) in End(C(q)) defines a norm ‖ · ‖C(q) on C(q), for which it is a C∗-algebra;
the conjugation is given by e∗i = ei. The algebra C(q) has a Z/2-grading defined
by taking ei odd.

Definition A.1. A Hilbert module for C(q) is a graded ∗-representation of
C(q) on a Z/2-graded Hilbert space H = H+ ⊕H−.

This definition of a Hilbert module is not the same as the usual one (Kasparov
[9]): however, it is equivalent to it, as we will now explain.

Recall that if B is a C∗-algebra, a Hilbert module H over B is a vector space
H, together with a bilinear map

〈·, ·〉 : H×H −→ B

with the following properties:
1. if v, w ∈ H and a, b ∈ B, then 〈w, v〉 = 〈v, w〉∗ and 〈av, bw〉 = a〈v, w〉b∗;
2. the norm ‖〈v, v〉‖1/2

B on H is complete.

Lemma A.2. If H is a Hilbert module for the Clifford algebra C(q) in the sense
of Definition A.1, then it is a Hilbert module for C(q) in the usual sense.
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Proof. If v, w ∈ C(q), we define

〈v, w〉 =
∑

I⊂{1,...,n}

(v, eI · w)eI .

It is easily verified that this satisfies the formulas

〈w, v〉 = 〈v, w〉∗, 〈v, ei · w〉 = 〈v, w〉ei, and 〈ei · v, w〉 = ei〈v, w〉.

Furthermore, the norm v 7→ ‖〈v, v〉‖1/2
C(q) on H is equivalent to its Hilbert norm, so

that H is complete with respect to it. �

We denote by LC(q)(H) the commutant of C(q) in the algebra of bounded
operators on H, and by L1

C(q)(H) the commutant of C(q) in the algebra of trace-
class operators on H.

The following definition agrees, up to a factor of (2π)−q/2, with the relative
supertrace of Berline-Getzler-Vergne [4], and extends Quillen’s definition of the
supertrace [13] on L1

C(1)(H).

Definition A.3. If H is a Hilbert module over C(q), the Clifford supertrace
StrC(q) is the supertrace on the algebra of trace class operators A ∈ L1

C(q)(H), given
by the formula

StrC(q)(A) = (4π)−q/2 Tr |H+(e1 . . . eqA)− (4π)−q/2 Tr |H−(e1 . . . eqA).
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