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It is well-known that the periodic cyclic homology HP•(A) of an algebra A is homotopy invariant
(see Connes [3], Goodwillie [8] and Block [1]). Let A be an algebra over a field k and let Aν be a
formal deformation of A, that is, an associative product

mν ∈ Hom(A⊗2, A)[[ν1, . . . , νn]]

such that m|ν=0 is the product on A. We will define a connection on the periodic cyclic bar complex
of Aν for which the differential is covariant constant, thus inducing a connection on the periodic
homology HP•(Aν), thought of as a module over k[[ν1, . . . , νn]]. This connection generalizes the
classical Gauss-Manin connection, and indeed we will prove that it has curvature chain homotopic
to zero.

The Gauss-Manin connection is obtained by a generalization of Rinehart’s result: if D is a
derivation on A, then the operator uL(D) on the cyclic bar complex C(A)[[u]] of A is chain homotopic
to zero (see Rinehart [10], and also Goodwillie [8]). Inspired by the work of Nistor [9], we prove a
more general result on the action of the cochains C•(A,A) on the cyclic bar complex C(A), where
A is an A∞-algebra. (Recall that A∞-algebras are a generalization of differential graded algebras.
It is shown in [6] that A∞-algebras form a natural setting for the study of cyclic homology.)

The author would like to thank J. Block, V. Nistor, D. Quillen and B. Tsygan for helpful
conversations on the subject of this article; in particular, the term Gauss-Manin connection is used
at Quillen’s suggestion. Note that some similar formulas, in the setting of Hochschild homology,
have been obtained by Gelfand, Daletskĭı and Tsygan [4].

1. Hochschild cochains and A∞-algebras

In this paper, all vector spaces will be over a field k. If V and W are graded vector spaces,
we denote by V ⊗ W the graded tensor product: thus, if A ∈ End(V ) and B ∈ End(W ), then
(A ⊗ B)(v ⊗ w) = (−1)|B| |v|(Av) ⊗ (Bw). If V is a graded vector space, we denote by V (k) the
tensor power V ⊗k.

Let A be a graded vector space, and let sA be its suspension

(sA)i = Ai−1.

The bar coalgebra of A is the direct sum

B(A) =
∞∑

n=0

(sA)(n);
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2 EZRA GETZLER

we denote the element (sa1) ⊗ . . . ⊗ (san) ∈ B(A) by [a1| . . . |an]. The coproduct is given by the
formula

∆[a1| . . . |an] =
n∑

i=0

[a1| . . . |ai]⊗ [ai+1| . . . |an],

and the counit ε sends [ ] to 1, and [a1| . . . |an] to 0 if n ≥ 1.

Definition 1.1. If A and B are graded vector spaces, the space of Hochschild cochains on A with
values in B is

C•(A,B) = Hom(B(A), sB).

If D is a homogeneous function of A, we denote its degree of homogeneity by d(D).

Given D ∈ C•(B,C) and Di ∈ C•(A,B), 1 ≤ i ≤ k, define an element D{D1, . . . , Dk} ∈
C•(A,C) with |D{D1, . . . , Dk}| = |D|+

∑k
i=1 |Di|, given for homogeneous Di by the formula

D{D1, . . . , Dk}[a1| . . . |an] =
∑

(j1,...,jk)∈J

(−1)
∑k

i=1 ωji
|Di|

D[a1| . . . |aj1 |D1[aj1+1| . . . |aj1+d(D1)]|aj1+d(D1)+1| . . .
. . . |ajk

|Dk[ajk+1| . . . |ajk+d(Dk)]|ajk+d(Dk)+1| . . . |an],

where ηi = |a1|+ · · ·+ |ai| − i and

J = {(j1, . . . , jk) | 0 ≤ j1, ji + di ≤ ji+1 for 1 ≤ i ≤ k − 1, jk ≤ n− dk}.

In the case k = 1, this operation was introduced by Gerstenhaber [5], and is denoted

D0{D1} = D0 ◦D1.

Lemma 1.2. If D0, D1, D2 ∈ C•(A,A), then

(D0 ◦D1) ◦D2 −D0 ◦ (D1 ◦D2) = D0{D1, D2}+ (−1)|D1| |D2|D0{D2, D1}.

It follows from this lemma that the bracket

[D0, D1] = D0 ◦D1 − (−1)|D0| |D1|D1 ◦D0

gives C•(A,A) the structure of a graded Lie algebra.
Recall that a coderivation on a coalgebra C is a linear map δ : C −→ C such that

(δ ⊗ 1 + 1⊗ δ)∆a = ∆(δa)

for a ∈ C. The space of coderivations Coder(C) is a graded Lie algebra, with bracket the graded
commutator.

Proposition 1.3. There is an isomorphism of graded Lie algebras

δ : C•(A,A) −→ Coder(B(A)),

given for homogeneous D by the formula

δ(D)[a1| . . . |an] =
n−d∑
i=0

(−1)ωi |D|[a1| . . . |ai|D[ai+1| . . . |ai+d(D)]|ai+d(D)+1| . . . |an].

The following definition is due to Stasheff [11] (see also [6]).
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Definition 1.4. An A∞-algebra structure on a graded vector space A is a codifferential δ of degree
−1 on B(A) such that δ[ ] = 0

A codifferential δ on B(A) corresponds to a Hochschild cochain m ∈ C•(A,A), which may be
viewed as a sequence of multilinear maps

mk : A(k) −→ A, k ≥ 1,

of degree k − 2. The equation δ2 = 0 translates to a sequence of identities which are summed up
in the formula m ◦m = 0, or more explicitly, the sequence of identities for k ≥ 1,,

k∑
j=1

j−1∑
i=0

(−1)ωimj(a1, . . . , ai,mk−j+1(ai+1, . . . , ai+k−j+1), ai+k−j+2, . . . , ak) = 0.

Lemma 1.5. An A∞-algebra such that mk = 0 for k > 2 is the same as a differential graded
algebra, with product a1a2 = (−1)|a1|m2(a1, a2) and differential m1.

An algebra is analogous to a connection: the cochain m ∈ C2(A,A) is homogeneous of degree
2, just as a connection is homogeneous of degree 1. In this language, an A∞-structure m is the
analogue of a superconnection.

The augmention A+ of an A∞-algebra A is the A∞-algebra whose underlying space is A ⊕ ke,
where the element e acts as an identity for A+; that is, m ∈ C•(A,A) is extended to A+ by setting

m2(e, a) = (−1)|a|m2(a, e) = a,

m2(e, e) = e,

mk(. . . , e, . . . ) = 0, for k 6= 2.

The following lemma follows from Lemma 1.2, and is analogous to Steenrod’s formula

a1 ∪0 a2 − (−1)|a1| |a2|a2 ∪0 a1 = δ(a1 ∪1 a2)− (δa1) ∪1 a2 − (−1)|a1|a1 ∪1 (δa2).

In particular, it implies that the cup product is graded commutative on the Hochschild cohomology
H•(A,A).

Lemma 1.6.

(δD1) ◦D2 − δ(D1 ◦D2) + (−1)|D1|D1 ◦ (δD2) = m{D1, D2}+ (−1)|D1| |D2|m{D2, D1}

Let A be an A∞-algebra, with A∞-structure m ∈ C•(A,A). Define a Hochschild cochain M ∈
C•(C•(A,A), C•(A,A)) by

M [D1| . . . |Dk] =


0, k = 0,

m ◦D1 − (−1)|D1|D1 ◦m, k = 1,

m{D1, . . . , Dk}, k > 1.

Proposition 1.7. The cochain M is an A∞-structure on C•(A,A).

Proof. By the definition of M ◦M , we see that, if k > 1,

(M ◦M)[D1| . . . |Dk]

=
∑

0≤i≤j≤k

(−1)
∑i

`=1 |D`|m{D1, . . . , Di,m{Di+1, . . . , Dj}, Dj+1, . . . , Dk}

−
k∑

i=1

(−1)
∑i

`=1 |D`|m{D1, . . . , Di ◦m,Di+1, . . . , Dk}

+ (−1)
∑k

i=1 |Di|m{D1, . . . , Dk} ◦m.
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The last two terms add up to
k∑

i=1

(−1)
∑i

`=1 |D`|m{D1, . . . , Di,m, Di+1, . . . , Dk}.

Combining this with the first term, we obtain (m ◦ m){D1, . . . , Dk}, which clearly vanishes. To
complete the proof, we must check that (M ◦M)[D1] vanishes:

(M ◦M)[D1] = [m, [m,D1]] = [m ◦m,D1] = 0. �

When A is a differential graded algebra, the A∞-algebra C•(A,A) is a differential graded algebra;
our construction generalizes that of Gerstenhaber [5].

The operator D 7→ M [D] is a differential on C•(A,A) which is usually denoted D 7→ δD, and
its cohomology is the Hochschild cohomology H•(A,A) of the A∞-algebra A.

If A and B are A∞-algebras, a morphism between them is a map of differential graded coalgebras
f : B(A) −→ B(B), such that f [ ] = [ ].

Proposition 1.8. Let A and B be A∞-algebras with A∞-structures m ∈ C•(A,A), and n ∈
C•(B,B). A twisting cochain on A with values in B is a cochain ρ ∈ C•(A,B) of degree zero
such that ρ[ ] = 0 and

n1(ρ) + n2(ρ, ρ) + n3(ρ, ρ, ρ) + · · · = ρ ◦m.

There is a correspondence between A∞-morphisms and twisting cochains, given by the formula

f(ρ)[a1| . . . |ak] =
k∑

`=1

∑
0≤j1≤···≤j`−1≤k

[ρ[a1| . . . |aj1 ]| . . . |ρ[aji−1+1| . . . |aji
]| . . . |ρ[aj`−1+1| . . . |ak]].

If B is a differential graded algebra, the formula for a twisting cochain becomes δρ + ρ ∪ ρ = 0,
where

(f1 ∪ f2)(a1, . . . , ak) =
k∑

i=1

(−1)ηi|f2|f1(a1, . . . , ai)f2(ai+1, . . . , ak),

(δf)(a1, . . . , ak) = df(a1, . . . , ak)− (−1)|f |(f ◦m)(a1, . . . , ak).

The Hochschild chain complex C(A) =
∑∞

n=0 Cn(A) of a graded vector space A is the graded
vector space such that

C(A) =
{

A, n = 0,

A+ ⊗ (sA)(n), n > 0.

The element a0 ⊗ . . .⊗ an of Cn(A) will be denoted (a0, . . . , an); it has degree |a0|+ · · ·+ |an|+ n.
For such an element, let ηj = |a0| + · · · + |aj | − j. In the rest of this section, we will construct a
twisting cochain of the A∞-algebra C•(A,A) with values in End(C(A)).

Given D1, . . . , Dk ∈ C•(A,A), define an operator b{D1, . . . , Dk} on C(A) by the formula

b{D1, . . . , Dk}(a0, . . . , an)

=
∞∑

`=k+1

∑
(j0,...,jk)∈J(`)

ε(j0, . . . , jk)

(m`(aj0+1, . . . , D1[. . . ], . . . , Dk[. . . ], . . . , an, a0, . . . ), . . . , aj0)

+


∞∑

`=0

n−∑̀
j=0

(−1)ηj−1(a0, . . . ,m`(aj+1, . . . , aj+`), . . . , an), k = 0,

0, k > 0,
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where ε(j0, . . . , jk) = (−1)ηn(ηn−ηj0 )+
∑k

i=1 |Di|(ηji
−ηj0 ), we write Di[. . . ] as an abbreviation for

Di[aji+1| . . . |aji+d(Di)], and

J(`) =
{

(j0, . . . , jk) | n− (`− 1)−
k∑

i=1

|Di| ≤ j0 ≤ j1,

ji + d(Di) ≤ ji+1 for 1 ≤ i ≤ k − 1, jk ≤ n− d(Dk)
}

.

For k = 0, b{} is the Hochschild boundary b on C(A). For k = 1, we obtain an operator b{D},
which in the special case where A is a differential graded algebra may be written

b{D}(a0, . . . , an)

= (−1)(ηn−1)(ηn−ηn−d(D))+|D|+1(D[an−d(D)+1| . . . |an]a0, . . . , an−d(D))

This operator, with D ∈ C1(A,A), is considered by Rinehart, where it is denoted by e(D).

Theorem 1.9. b is a twisting cochain of C•(A,A) with values in End(C(A)).

Proof. Apply the cochains δb and b ∪ b to {D1, . . . , Dk}. If k = 0, the term δb{} vanishes, and
we must show that b{}b{} = 0. This is the standard fact that the Hochschild boundary b = b{}
is a differential on C(A), and follows from the formula m ◦ m = 0. Thus, take k ≥ 1. We use a
rather abbreviated notation in the proof, but the reader will have little difficulty in reconstituting
the full formulas, if so desired.

Observe that (δb){D1, . . . , Dk} = P + Q, where

P =
∑

0≤i<j≤k

(−1)
∑i

`=1 |D`|b{D1, . . . ,m{Di+1, . . . , Dj}, . . . , Dk},

Q = −
∑

1≤i≤k

(−1)
∑i−1

`=1 |D`|b{D1, . . . , Di ◦m, . . . ,Dk}.

Using the formula m ◦m = 0, we see that b{}b{D1, . . . , Dk} = R, where

R =
∑

(j0,...,jk)

∑
j

ε(j0, . . . , jk) (−1)
∑k

i=1 |Di|+(ηn−ηj0 )+ηj

(m(. . . , D1[. . . ], . . . , Dk[. . . ], . . . , a0, . . . ), . . . ,m(aj+1, . . . ), . . . ).

Similarly, we check that (−1)
∑i

`=1 |D`|b{D1, . . . , Di}b{Di+1, . . . , Dk} = S, where

S =
∑

(j0,...,jk)

∑
j

ε(j0, . . . , jk) (−1)
∑k

i=1 |Di|+(ηj−ηj0 )

(m(. . . , D1[. . . ], . . . ,m(aj+1, . . . , Di+1[. . . ], . . . , Dk[. . . ], . . . , a0, . . . ), . . . ), . . . ).

Finally, we check that (−1)
∑k

i=1 |Di|b{D1, . . . , Dk}b{}+ Q + R = T + U + V , where

T =
k∑

i=0

(−1)
∑i

`=1 |D`|b{D1, . . . , Di,m, Di+1, . . . , Dk},

U =
∑

ε(j0, . . . , jk) (−1)
∑k

i=1 |Di|+ηj−ηj0

(m(. . . , D1[. . . ], . . . , Dk[. . . ], . . . ,m(aj+1, . . . , a0, . . . ), . . . ), . . . ),

V =
∑

ε(j0, . . . , jk) (−1)
∑k

i=1 |Di|+(ηn−ηj0 )+(ηj−1)

(m(. . . , D1[. . . ], . . . , Dk[. . . ], . . . , a0, . . . ,m(aj+1, . . . ), . . . ), . . . ).



6 EZRA GETZLER

It only remains to observe that

P + S + T + U + V =
∞∑

`=k+1

∑
(j0,...,jk)∈J(`)

ε(j0, . . . , jk)

((m ◦m)`(aj0+1, . . . , D1[. . . ], . . . , Dk[. . . ], . . . , a0, . . . ), . . . , aj0),

which vanishes, because m ◦m = 0. �

2. The Cartan homotopy formula

Let t be the operator on C(A) defined by the formulas

t(a0, . . . , an) = (−1)ηn(|an|−1)(an, a0, . . . , an−1),

t(e, a1, . . . , an) = 0.

If D is a Hochschild k-cochain on A, define the operator D : Cn(A) −→ Cn−k+1(A) by

D(a0, . . . , an) = (D[a0| . . . |ak−1], ak, . . . , an).

Given D1, . . . , Dk ∈ C•(A,A), define an operator B{D1, . . . , Dk} on C(A) by the formula

B{D1, . . . , Dk} =
∑

(j0,j1,...,jk)∈J

σ · tj1−j0 ·D1 · tj2−j1 ·D2 · . . . · tjk−jk−1 ·Dk · t−jk−1,

where σ(a0, . . . , an) = (e, a0, . . . , an), and

J = {(j0, . . . , jk) | 0 ≤ j0, ji + d(Di) ≤ ji+1 for 1 ≤ i ≤ k, jk ≤ n− d(Dk)}.

More explicitly, we may write

B{D1, . . . , Dk}(a0, . . . , an) =
∑

(j0,...,jk)∈J

(−1)ηn(ηj0−1)+
∑k

i=1 |Di|(ηji
−ηj0 )

(e, aj0+1, . . . , D1[. . . ], . . . , Dk[. . . ], . . . , a0, . . . , aj0),

where we write Di[. . . ] as an abbreviation for Di[aji+1| . . . |aji+d(Di)]. For k = 0, the operator
B{} is Connes’s differential B. For k = 1, we obtain an operator B{D}. This operator, with
D ∈ C1(A,A), is considered by Rinehart, where it is denoted by E(D).

Let C(A)[[u]] be the space of power series in a variable u of degree −2. Consider b and B to be
cochains on C•(A,A) with values in the algebra End(C(A))[[u]], extending it linearly over k[[u]].

Definition 2.1.
(1) Let ι ∈ C−(C•(A,A),End(C(A))[[u]]) equal b− uB.
(2) Let L ∈ C+(C•(A,A),End(C(A))[[u]]) be the curvature of ι, defined by the formula

δι + ι ∪ ι = uL.

Since L is the curvature of ι, it satisfies the Bianchi identity

δL+ ι ∪ L − L ∪ ι = 0.

For example, this shows that [b− uB,L{D}] = L{δD}.
From the definition of the curvature L{D}, we see that

(2.1) [b− uB, ι{D}] = uL{D} − ι{δD}.

This formula is the non-commutative analogue of the Cartan homotopy formula in differential
geometry: if X is a vector field on a smooth manifold, [d, ι(X)] = L(X).

The main results of this paper is the calculation of L.
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Theorem 2.2. For k = 0, L{} = 0 (that is, (b − uB)2 = 0). For k ≥ 1, L{D1, . . . , Dk} is given
by the formula

L{D1, . . . , Dk}(a0, . . . , an)

=
∑

(j1,...,jk)∈J

(−1)
∑k

i=1 |Di|(ηji
−1)(a0, . . . , D1[. . . ], . . . , Dk[. . . ], . . . , an)

+
k∑

i=1

∑
(j1,...,jk)∈J(i)

(−1)ηn(ηn−ηj1+
∑i

`=2 |D`|)+
∑k

`=2 |D`|(ηj`
−ηj1+

∑i
`=2 |D`|)

(D1[aj1+1| . . . |Di+1[. . . ]| . . . |Dk[. . . ]| . . . |a0| . . . ], . . .
. . . , D2[. . . ], . . . , Di[. . . ], . . . , aj1),

where

J = {0 ≤ j1 , j` + d(D`) ≤ j`+1 , jk + d(Dk) ≤ n},
J(i) = {0 ≤ j2 , j` + d(D`) ≤ j`+1 , jk + d(Dk) ≤ n, ji + d(Di) ≤ j1 ≤ ji+1}.

Proof. We first calculate that

b{}B{D1, . . . , Dk}+
k∑

i=1

(−1)
∑i

`=1 |D`|B{D1, . . . , Di}b{Di+1, . . . , Dk}

= P + Q + R + S,

where

P = −
∑

0≤i≤j≤k

(−1)
∑i

`=1 |D`|B{D1, . . . ,m{Di+1, . . . , Dj}, . . . , Dk},

Q =
k∑

i=1

(−1)
∑i

`=1 |D`|B{D1, . . . , Di ◦m, . . . ,Dk},

R = −
∑

(j1,...,jk)∈J

(−1)
∑k

i=1 |Di|(ηji
−1)(a0, . . . , D1[. . . ], . . . , Dk[. . . ], an),

S =
∑

{(j0,...,jk)∈J|j0=j1}

(−1)ηn(ηn−ηj0 )+
∑k

`=2 |D`|(ηj`
−ηj0 )

(D1[. . . ], . . . , Dk[. . . ], . . . , a0, . . . ).

Next, we check that (δB){D1, . . . , Dk}+ P + Q = 0, and that

(−1)|D1|b{D1}B{D2, . . . , Dk}+ R + S = −L{D1, . . . , Dk}.

The proof is completed by observing that b{D1, . . . , Di}B{Di+1, . . . , Dk} = 0 for i > 1, and
B{D1, . . . , Di}B{Di+1, . . . , Dk} = 0. �

We will need an explicit formula for L{D}:

L{D}(a0, . . . , an) =
n−d(D)∑

j=0

(−1)|D|(ηj−1)(a0, . . . , D[aj+1| . . . |aj+d(D)], . . . , an)

+
n∑

j=n−d(D)

(−1)ηn(ηn−ηj)(D[aj+1| . . . |a0| . . . |aj+d(D)−n−1], . . . , aj).
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The Hochschild boundary b = b{} on C(A) is equal to L(m), where m ∈ C•(A,A) defines the
A∞-structure on A.

Given cochains D1 and D2 on A, define ρ{D1, D2} by the formula

ρ{D1, D2}(a0, . . . , an) =
∑

j1≤j2

(−1)ηn(ηn−ηj1 )+|D2|(ηj2−ηj1 )

(D1[aj1+1| . . . |D2[aj2+1| . . . ]| . . . |a0| . . . ], . . . , aj1).

Note that ρ{m,D} = b{D}.

Lemma 2.3.

L{D1, D2}+ (−1)|D1| |D2|L{D2, D1}+ L{D1 ◦D2}

= L{D1}L{D2}+ ρ{D1, D2}+ (−1)|D1| |D2|ρ{D2, D1}

Proof. It is easily checked that

L{D1}L{D2} = L{D1 ◦D2}+ P1 + (−1)|D1| |D2|P2 + Q1 + (−1)|D1| |D2|Q2,

where

P1 =
∑

(−1)|D1|(ηn−ηj1 )+|D2|(ηn−ηj2 )(a0, . . . , D1[. . . ], . . . , D2[. . . ], . . . , an),

P2 =
∑

(−1)|D1|(ηn−ηj1 )+|D2|(ηn−ηj2 )(a0, . . . , D2[. . . ], . . . , D1[. . . ], . . . , an),

Q1 =
∑

(−1)ηn(ηn−ηj1 )+|D2|(ηj2−ηj1 )(D1[. . . |a0| . . . ], . . . , D2[. . . ], . . . ),

Q2 =
∑

(−1)ηn(ηn−ηj2 )+|D2|(ηj1−ηj2 )(D2[. . . |a0| . . . ], . . . , D1[. . . ], . . . ).

Here, we abbreviate Di[aji+1| . . . |aji+d(Di)] to Di[. . . ], and in the definitions of Qi, the sum is
taken over ji > n− d(Di). Since L{D1, D2} = P1 + Q1 + ρ{D1, D2} and (−1)|D1| |D2|L{D2, D1} =
P2 + Q2 + ρ{D2, D1}, the proof of the lemma is completed. �

It follows from this lemma that

[L(D1),L(D2)] = L([D1, D2])

which gives another proof that b2 = 0.
If W is a graded module over the ring k[u], the cyclic homology HC•(A;W ) with coefficients in

W is the homology of the complex

(C(A)⊗W, b− uB) .

Let us list some examples with different coefficients W .
(1) W = k[u] gives the negative cyclic homology HC−

• (A);
(2) W = k[u, u−1] gives the periodic cyclic homology HP•(A);
(3) W = k[u, u−1]/uk[u] gives the positive cyclic homology HC•(A);
(4) W = k[u]/uk[u] gives the Hochschild homology HH•(A).

The following theorem is a consequence of the results of Sections 1 and 2.

Theorem 2.4.
(1) The graded Lie algebra H•(A,A) acts on HC•(A;W ) by the Lie derivative D 7→ L(D), for

any coefficients W .
(2) If D ∈ Z•(A,A) is a cocycle, then uL(D) is chain homotopic to zero on the cyclic bar

complex C(A)[[u]]. In particular, L(D) acts as zero on the periodic cyclic homology HP•(A).
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3. The Gauss-Manin connection

Let Aν be an n-parameter formal deformation of the A∞-algebra A; in other words, the A∞-
structure on Aν is defined by a cochain mν ∈ C•(A,A+)[[ν1, . . . , νn]] such that m|ν=0 is the product
on A and mν◦mν = 0. The cohomology of the periodic cyclic bar complex C(A)[[ν1, . . . , νn]]((u)) with
differential bν−uB is the periodic cyclic homology HP•(A), which is a module over k[[ν1, . . . , νn]]((u)).
Let

Ai =
∂mν

∂νi
∈ C•(A,A)[[ν1, . . . , νn]].

Proposition 3.1. The Gauss-Manin connection

∇ = d + u−1
n∑

i=1

ιν{Ai} dνi

commutes with bν − uB, and thus induces a connection on the module HP•(Aν).

Proof. Taking a partial derivative of the formula mν ◦ mν = 0 with respect to νi, we see that
[mν ,Ai] = 0. Observe that

∂(bν − uB)
∂νi

= L{Ai},

since bν = L{mν}. Thus, it follows from (2.1) that

[∇, bν − uB] =
n∑

i=1

(
∂(bν − uB)

∂νi
− [ιν{Ai}, bν − uB]

)
dνi

=
n∑

i=1

(L{Ai} − L{Ai}) dνi = 0. �

As an example, suppose we have a one-parameter family of associative products a1 ∗ν a2 on the
ungraded vector space A. Then ιν{Aν} is given by the formula

ιν{Aν}(a0, . . . , an) = (Aν(an−1, an) ∗ν a0, a1, . . . , an−2)

−
∑

1≤i≤j≤n−1

(−1)ni+(j−i)(e, ai, . . . ,Aν(aj , aj+1), . . . , a0, . . . , ai−1).

In the remainder of this section, we give an expression for the curvature of the Gauss-Manin
connection ∇. We show that it has the form [bν − uB, P ] for a certain operator P , and hence that
it induces a flat connection on the periodic cyclic homology.

Let σ{D1, D2} be the operator on C(A) be defined by the formula

σ{D1, D2} = ι{D1, D2}+ (−1)|D1| |D2|ι{D2, D1} − ι{D1 ◦D2}.

The following lemma will enable us to calculate the curvature of ∇.

Lemma 3.2.

[b− uB, σ{D1, D2}] + σ{δD1, D2}+ (−1)|D1|σ{D1, δD2}+ (−1)|D1|[ι{D1}, ι{D2}]

= u(L{D1}L{D2}+ ρ{D1, D2}+ (−1)|D1| |D2|ρ{D2, D1})
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Proof. The definition of L in terms of ι shows that

[b− uB, ι{D1, D2}] + ι{δD1, D2}+ (−1)|D1|ι{D1, δD2}

+ (−1)|D1|ι{D1} ι{D2}+ ι{m{D1, D2}} = uL{D1, D2}.

If we let σ0{D1, D2} = ι{D1, D2}+ (−1)|D1| |D2|ι{D2, D1}, we see that

[b− uB, σ0{D1, D2}] + σ0{δD1, D2}+ (−1)|D1|σ0{D1, δD2}

+ (−1)|D1|[ι{D1}, ι{D2}] + ι
{
m{D1, D2}+ (−1)|D1| |D2|m{D2, D1}

}
= u

(
L{D1, D2}+ (−1)|D1| |D2|L{D2, D1}

)
.

On the other hand, by Lemma 1.6, we have

[b− uB, ι{D1 ◦D2}] + ι{δD1 ◦D2}+ (−1)|D1|ι{D1 ◦ δD2)

= ι
{
m{D1, D2}+ (−1)|D1| |D2|m{D2, D1}

}
+ uL(D1 ◦D2).

Combining these two equations with Lemma 2.4 proves the lemma. �

It is now easy to prove the following theorem.

Theorem 3.3. The curvature ∇2 of the Gauss-Manin connection is given by the formula

∇2 = u−2
∑

1≤i≤j≤n

([bν − uB, σν{Ai,Aj}]− uL{Ai}L{Aj}) dνi ∧ dνj

= u−2
∑

1≤i≤j≤n

[bν − uB, σν{Ai,Aj}+ uι{Ai}L{Aj}] dνi ∧ dνj ,

and hence is chain homotopic to zero.

Proof. Observe that
∂ιν{Aj}

∂νi
= ι

{
∂2mν

∂νi∂νj

}
+ ρ{Ai,Aj}.

The formula for the curvature of ∇ is seen as follows:[ ∂

∂νi
+ ιν{Ai},

∂

∂νj
+ ιν{Aj}

]
= ι

( ∂2mν

∂νj∂νi

)
− ι

( ∂2mν

∂νi∂νj

)
+ ρ{Ai,Aj} − ρ{Aj ,Ai}+ [ιν(Ai), ιν(Aj)].

The first two terms cancel, and the remaining terms are shown by Lemma 3.2 to equal

[bν − uB, σν{Ai,Aj}]− uL{Ai}L{Aj}. �

4. The Gauss-Manin connection and iterated integrals

In this section, we will illustrate the Gauss-Manin connection of the last section in a simple
example. Let A be a differential graded algebra. There are three commuting differentials on the
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cyclic bar complex C(A), which we denote

d(a0, . . . , ak) =
k∑

i=0

(−1)ηi−1+1(a0, . . . , dai, . . . , ak),

b(a0, . . . , ak) =
k−1∑
i=0

(−1)ηi(a0, . . . , aiai+1, . . . , ak)

+ (−1)ηk(|ak|+1)(aka0, a1, . . . , ak−1),

B(a0, . . . , ak) =
k∑

i=0

(−1)ηk(ηi−1+1)(e, ai, . . . , ak, a0, . . . , ai−1);

as usual, ηi = |a0|+ · · ·+ |ai| − i. The total differential on C(A) is d + b−B.
If A−i = Ωi(M) is the differential graded algebra of differential forms on a smooth manifold M ,

there is a map of complexes
C(Ω(M)) σ−−−−→ Ω(LM)

d+b−B

y d−ι(T )

y
C(Ω(M)) σ−−−−→ Ω(LM)

called the iterated integral (see Chen [2] and Getzler-Jones-Petrack [7]). If ∆k is the k-simplex
0 ≤ t0 ≤ · · · ≤ tk ≤ 1, and a(t) is the pull-back of the differential form a ∈ Ω(M) by the evaluation
map γ 7→ γ(t), then σ is defined on C(Ω(M)) by the formula

σ(a0, . . . , ak) = (−1)k

∫
∆k

a0(0) ι(T )a1(t1) . . . ι(T )ak(tk) dt.

The cyclic bar complex algebra (C(C∞(M)), b−B) of the algebra of smooth functions C∞(M)
on M maps to the complex of differential forms (Ω(M), d) by the map

(f0, . . . , fk) α7−→ (−1)k

k!
f0 df1 . . . dfk.

Now consider the operator ι{d} = b{d}−B{d} : C(Ω(M)) −→ C(Ω(M)) of Section 2; the operators
b{d} and B{d} are given by the formulas

b{d}(a0, . . . , ak) = (−1)(ηk−1)(|ak|+1)(dak a0, a1, . . . , ak−1)

B{d}(a0, . . . , ak) =
∑

1≤i≤j≤k

(−1)ηk(ηi−1−1)+(ηj−1−ηi−1)

(e, ai, . . . , daj , . . . , a0, . . . , ai−1).

We will be interested in the operator e−ι{d}, which may be rewritten as a Volterra series

e−ι{d} =
∞∑

k=0

∫
∆k

e−t1b{d}B{d}e−(t2−t1)b{d} . . . e−(tk−tk−1)b{d}B{d}e−(1−tk)b{d} dt,

using the formula B{d}2 = 0.
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Proposition 4.1. Let i∗ : Ω(LM) −→ Ω(M) denote the restriction of differential forms under the
inclusion M ⊂ LM . We have a commuting diagram of complexes(

C(C∞(M)), b−B
) α−−−−→

(
Ω(M), d

)
e−ι{d}

y i∗
x(

C(Ω(M)), d + b−B
) σ−−−−→

(
Ω(LM), d− ι(T )

)
Proof. In Section 3, we proved that

(d + b−B) · e−ι{d} = e−ι{d} · (b−B).

Thus, it only remains to show that if fi ∈ C∞(M), then

i∗σ · e−ι{d}(f0, . . . , fk) =
(−1)k

k!
f0 df1 . . . dfk.

The key observation is that i∗σ(a0, . . . , ak) = 0 if k > 0. Thus, only the term proportional to b{d}k

contributes, and we see that

i∗σ · e−ι{d}(f0, . . . , fk) =
1
k!

i∗σ · b{d}k(f0, . . . , fk)

=
1
k!

i∗σ(df1 . . . dfk f0)

=
(−1)k

k!
f0 df1 . . . dfk �
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