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Abstract. Using the Bargmann representation, we show that the index of an elliptic
pseudodifferential operator on Rn equals the index of a generalized Dirac operator on the
cotangent bundle T ∗Rn ∼= Cn. We extend the local index theorem for Dirac operators to
this setting, and thereby obtain a proof of Fedosov’s index theorem.

This paper consists of two parts. In the first, we describe a new approach to the Atiyah-
Singer index theorem on Euclidean space, which we hope will be of use in studying more
general index problems. Let L be the trivial line bundle L = Cn×C on Cn, with connection
one-form

θ = 1
2(z, dz̄)− 1

2(z̄, dz) = i(ξ, dx)− i(x, dξ),

where z = x + iξ, and let D0 be the Dirac operator on Cn twisted by L. Let a(x, ξ) be the
symbol of an elliptic pseudodifferential operator on Rn, which we think of as a function on
T ∗Rn ∼= Cn. Let C1|1 be the Z/2-graded vector space whose even and odd subspaces each
have dimension 1. The vector bundle Λ0,∗Cn ⊗ C1|1 ⊗ L obtained by tensoring L with the
trivial bundle with fibre Λ0,∗Cn⊗C1|1 is Z/2-graded by the sum of the gradations on Λ0,∗Cn

and C1|1. We prove that the index of the elliptic pseudodifferential operator obtained by

quantizing the symbol a equals the index of the twisted Dirac operator
(

D0 a∗

a D0

)
on the

Z/2-graded bundle Λ0,∗Cn ⊗ C1|1 ⊗ L.
Our main tool is the Bargmann representation which shows, by an explicit formula,

that the operation of projection onto the kernel of D0 is a zeroth-order pseudodifferential
operator on Cn. We expect that the results of this paper likewise extend to the more general
situation where Cn is replaced by the cotangent bundle T ∗M of a Riemannian manifold M ,
although the proofs will be more complicated, since the analogue of the Bargmann kernel
will have to be constructed by microlocal methods. We also expect that the results of
this paper will lead to a new proof of Vergne’s equivariant index theorem for transversally
elliptic pseudodifferential operators on a Euclidean space carrying a linear representation
of a compact Lie group [11].

The methods of the first part echo those of [8], in which we proved a closely related result
in the setting of Toeplitz operators on CR manifolds.

In the second part of this paper, we prove a local Atiyah-Singer index theorem for
generalized Dirac operators, or Dirac operators twisted by a superconnection. Our proof is
almost identical to the proof of the local index theorem in [7] for Dirac operators twisted
by a connection. We have not been successful in finding a proof which avoids the use of
stochastic processes.

Note that proofs of similar results are sketched in Bismut [4] and Bismut-Cheeger [5].
They are also forced to use stochastic methods.
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2 E. GETZLER

Applying the local index theorem to calculate the index of the Dirac operator
(

D0 a∗

a D0

)
on Cn, we obtain a new proof of the index theorem in Rn (see Hörmander [10], Section
19.3, for the far more elementary proof of Fedosov).

In another paper, we will generalize the local index theorem of this paper to Dirac oper-
ators acting on infinite-dimensional vector bundles, in this way obtaining a generalization
of Theorem 2.10 of Bismut-Freed [6] (who study the case where the base is the real line).

Acknowledgements. Much of the first part of this paper was written while the author was
a guest of the Ecole Normale Supérieure, Paris, in 1992, and is inspired by conversations
with N. Berline and M. Vergne on Vergne’s equivariant index theorem for transversally
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profited from a number of conversations with D. Freed at the Aspen Physics Institute in
1987, and from an unpublished conjecture of Varghese Mathai. Finally, we thank Y. Maeda,
H. Omori and A. Weinstein for the opportunity to lecture on this work at the conference
at Keio University.

1. The Bargmann representation and pseudodifferential operators

1.1. Pseudodifferential operators and their symbols. Let W be a vector space, and
let V = W ⊕W ∗ be its cotangent bundle, with symplectic form 〈(x, ξ), (y, η)〉 = ξ(y)−η(x).

If s ≥ 0 and m ∈ Z, let Sm
s (V ) ⊂ C∞(V ) be the class of symbols which satisfy the

estimates
|∂αa| ≤ C(α) (1 + | · |)m−s|α|,

where |·| is a norm function on V . The constants C(α) may be used to give Sm
s the structure

of Fréchet space. When s = 1, we will write Sm instead of Sm
s . For example, polynomials,

and more generally, classical symbols, lie in Sm. We refer the reader to Section 18.5 of
Hörmander [10] for further details.

Recall the main technical result used in the study of pseudodifferential operators.

Proposition 1.1. Let A be an element of S2(V ) (the second symmetric power of V ) whose
imaginary part is positive definite. The operator eiA(∂,∂) is bounded on Sm

s , and if a ∈ Sm
s ,

there is an asymptotic expansion

eiA(∂,∂)a ∼
∞∑

n=0

in

n!
A(∂, ∂)na,

where A(∂, ∂)na ∈ Sm−2ns
s .

Quantization is a procedure associating to a symbol a ∈ Sm
s (V ) an unbounded operator

ac on L2(W ): if a is a function of W ⊂ V alone, its quantization is the operation of
multiplication by a, while if a is a function of W ∗ ⊂ V alone, it acts as a Fourier multiplier.
Our conventions for Fourier multipliers differ from the usual one, in that we quantize the
linear function ξ on T ∗R to i∂x and not i−1∂x as is usual: this will prove convenient when
we turn to the Bargmann quantization.

There are a number of quantization procedures, two of the best known of which are the
following. Here, we use Dirac’s bra-ket notation for kernels: if K is an operator on W , we
denote by 〈x|K|y〉 its Schwartz kernel, a distribution on W ×W .

(1) The classical quantization associates to the symbol a ∈ Sm
s the operator A with

kernel 〈
x

∣∣ ac
∣∣ y

〉
= (2π)− dim(W )

∫
W ∗

a(x, ξ)eiξ(y−x) dξ.
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(2) The Weyl ordering, characterized by equivariance under conjugation by metaplectic
transformations, associates to the symbol a the operator aw with kernel〈

x
∣∣ aw

∣∣ y
〉

= (2π)− dim(W )

∫
W ∗

a(x+y
2 , ξ)eiξ(y−x) dξ.

The classical symbol of a pseudodifferential operator P may be recovered by the formula

p(x, ξ) = (Peiξ(x−y))(y)|y=x. (1)

These two quantizations, applied to the space of symbols Sm
s , yield the same set of

operators, which we denote by Ψk
s . The two quantizations are related by the formula

ac = (e(∂x,∂ξ)/2ia)w. (2)

Composition of operators induces a bounded bilinear map

◦ : Sm
s × Sn

t −→ Sm+n
min(s,t),

characterized by the property that aw · bw = (a ◦ b)w. Furthermore, if a ∈ Sm
s and b ∈ Sn

t ,
then a ◦ b− ab ∈ Sm+n−s−t

min(s,t) . It follows that if a ∈ Sm, then

[p, a] = p ◦ a− a ◦ p ∈ Sm−1
0 .

1.2. The Bargmann representation. If W is a Euclidean vector space, its cotangent
bundle V = W ⊕W ∗ carries a complex structure on V , defined by the matrix

J =
(

0 −F ∗

F 0

)
where F : W −→ W ∗ is the isomorphism induced by the Euclidean structure. We will
identify the element (x, ξ) ∈ V with x+ iFξ ∈ W ⊗C, which we will write simply as x+ iξ.

The vector space V = W ⊕W ∗ of the last section carries a Euclidean structure, in which
|x + iξ|2 = |x|2 + |ξ|2. Let dµ be the Gaussian measure on V

dµ = π−ne−|z|
2
d (vol),

where d (vol) is the Lebesgue measure of V , and n is the dimension of W .
Let (w, z) be the complex bilinear form on V

(x + iξ, y + iη) = (x, y)− (ξ, η) + i(x, η)− i(ξ, y),

whose imaginary part is the symplectic form of V .
Let K be the operator on L2(dµ) given by the integral

(Kf)(w) =
∫

V
e(w,z̄)f(z, z̄) dµ(z).

The following result is due to Bargmann [1]

Proposition 1.2. The operator K is the projection onto the closed subspace H ⊂ L2(dµ)
of holomorphic functions.

Denote by Ω0,∗(dµ) the space of L2-sections of the bundle of antiholomorphic forms on
V , with respect to the measure dµ. The operator K extends to an operator on Ω0,∗(dµ), in
such a way that it commutes with exterior multiplication by constant (0, 1)-forms. Clearly,
we may identify the Hilbert space H with the kernel of ∂̄ + ∂̄∗.

The unitary operator U : Ω0,∗(V ) −→Ω0,∗(dµ)

f(z) 7→ πn/2e|z|
2/2f(z).

identifies the Hilbert space Ω0,∗(dµ) with the Hilbert space Ω0,∗(V ) associated to the
Lebesgue measure d (vol) on V . Let P be the projection P = U−1KU on L2(V ).
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Proposition 1.3. The operator P is a pseudodifferential operator of order zero, with clas-
sical symbol

p(z, ζ) = 2ne−|z−iζ|2/2 ∈ S0
0(T

∗V ).

Proof. Write z = x + iy, w = u + iv, and ζ = ξ + iη. By Equation (1), the classical symbol
of the operator P is given by the formula

p(x + iy, ξ + iη) =
∫

V
e−|w|

2/2+(w,z̄)+|z|2/2+i(ξ,u−x)+i(η,v−y) dµ(z)
∣∣
z=w

= π−nei(ξ,u)−|u|2/2+i(η,v)−|v|2/2∫
V

e(u+iv−iξ,x)−|x|2/2+(v−iu−iη,y)−|y|2/2 dx dy
∣∣
x=u,y=v

= 2nei(ξ,u)−|u|2/2+(u+iv−iξ,u+iv−iξ)2/2
∣∣
x=u

× ei(η,v)−|v|2/2+(v−iu−iη,v−iu−iη)2/2
∣∣
y=v

= 2ne−|u+η|2/2−|v−ξ|2/2
∣∣
x=u,y=v

. �

Corollary 1.4. The Weyl and classical symbols of P are equal.

Proof. The symbol p is invariant under the action of the operator

(∂x, ∂ξ) + (∂y, ∂η);

the corollary follows from Equation (2). �

Let Q : L2(W ) −→L2(dµ) be the operator with kernel〈
z

∣∣ Q
∣∣ y

〉
= π−n/4e−(z,z)/2+21/2(z,y)−(y,y)/2.

It is easily shown that Q∗Q is the identity on L2(W ), and that QQ∗ = K on L2(dµ)
(Bargmann [1]).

Definition 1.5. If a is a symbol in Sk
s(V ), the Bargmann quantization of a is the operator

ab = Q∗aQ on L2(W ).

Proposition 1.6. The Bargmann quantization ab is a pseudodifferential operator with Weyl
symbol e−(∂2

x+∂2
ξ )/8a.

Proof. Choose an orthonormal basis {xi | 1 ≤ i ≤ n} of linear forms on W , with dual basis
{ξi | 1 ≤ i ≤ n} of linear forms on W ∗. We obtain the basis

zi = xi + iξi , z̄i = xi − iξi

of linear forms on V ⊗ C.
Suppose that a is the monomial z̄αzβ . The operator Q satisfies

Q · ηi = zi ·Q,

where
ηi = 2−1/2(yi − ∂yi).

From this, we see that Q∗z̄αzβQ = (η∗)αηβ. Thus, if a is polynomial, Q∗aQ is given by the
formula

e(η∗,∂z̄)e(η,∂z)
∣∣
z=z̄=0

a(z, z̄).

The Baker-Campbell-Hausdorff formula eAeB = eA+B+
1
2 [A,B] + . . . shows that

e(η∗,∂z̄)e(η,∂z) = e(y,∂x)+i(∂y ,∂ξ) e(∂2
x+∂2

ξ )/8.
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The proposition now follows for polynomial symbols from the fact that the Weyl quantiza-
tion of a polynomial equals

e(y,∂x)+i(∂y ,∂ξ)
∣∣
x=ξ=0

a(x, ξ).

We do not give the details of the extension of this proof to all symbols: it is merely a
matter of expressing the above argument in terms of Gaussian oscillatory integrals. �

1.3. A twisted Dirac operator on Cn. Let εi be the operation of exterior multiplication
by dz̄i on Ω0,∗(dµ), and let ε∗i be its adjoint. Thus,

[εj , ε
∗
k] = 2δjk , [εj , εk] = [ε∗j , ε

∗
k] = 0.

Define the Clifford action of V on Ω0,∗(dµ) by

c(xj) = 2−1/2(εj − ε∗j ) , c(ξj) = 2−1/2i(εj + ε∗j ).

Thus, c(z̄j) = 21/2εj , while c(zj) = −21/2ε∗j .
Let L be the trivial holomorphic line bundle V × C on V with metric

|1|2L = π−ne−|z|
2/2,

and connection one-form

Θ = −
n∑

j=1

z̄j dzj . (3)

Proposition 1.7. The operator ∂̄ + ∂̄∗ equals 2−1/2 times the Dirac operator on W asso-
ciated to the line bundle L.

Proof. Since ∂̄ =
∑n

j=1 εj∂z̄j , it follows that

∂̄∗ =
n∑

j=1

ε∗j (−∂zj + z̄j)

and hence that

21/2(∂̄ + ∂̄∗) =
n∑

j=1

c(xj)
∂

∂xj
+

n∑
j=1

c(yj)
∂

∂yj
+ 21/2

n∑
j=1

ε∗j z̄j .

The first two terms are the Dirac operator with respect to the flat connection d, while the
third term is Cliford multiplication by the connection one-form Θ. �

Let a ∈ S1(V ) ⊗ End(E) be a symbol on V , where E is a Hermitian vector space. We
say that a is elliptic if for some positive constant ε > 0,

a∗a + 1 ≥ ε| · |2,
where |·| is a norm function on V . It is an easy consequence of the pseudodifferential calculus
that the operators ac, aw and ab obtained by quantizing the symbol a are Fredholm from
the Sobolev space H2,1(W )⊗E to L2(W )⊗E = H2,0(W )⊗E, and that they all have the
same index.

Let C1|1 be the graded vector space with one even basis element e0 and one odd basis
vector e1, and let ε and ε∗ be the matrices acting on C1|1,

ε =
(

0 0
1 0

)
, ε∗ =

(
0 1
0 0

)
.

One may think of C1|1 as the spinor space of R2.
The Hilbert space

H = Ω0,∗(dµ)⊗ E ⊗ C1|1
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is the tensor product of two Z/2-graded vector spaces, and hence is itself Z/2-graded, by
the subspaces

H+ =
∑

i even

Ω0,i(dµ)⊗ E ⊗ Ce0,

H− =
∑
i odd

Ω0,i(dµ)⊗ E ⊗ Ce1.

The operator

(∂̄ + εa) + (∂̄ + εa)∗ =
(

∂̄ + ∂̄∗ a∗

a ∂̄ + ∂̄∗

)
(4)

acts on H, and is an odd operator, in the sense that it exchanges H+ and H−.

Definition 1.8. If M is an odd self-adjoint operator on Ω0,∗(dµ)⊗ E ⊗ C1|1, the index of
M is the integer

ind(M) = dim kerH+(M)− dim kerH−(M).

Theorem 1.9. If the symbol a is elliptic, the operator
(

∂̄ + ∂̄∗ a∗

a ∂̄ + ∂̄∗

)
is Fredholm on

Ω0,∗(dµ)⊗E ⊗C1|1, and its index equals the index of the pseudodifferential operator aw on
L2(W )⊗ E.

Proof. Conjugating by the isomorphism of Hilbert spaces U , we may transfer the problem
to one involving operators on the Z/2-graded Hilbert space Ω0,∗(V )⊗E ⊗C1|1. Denote by
D0 the operator D0 = U−1(∂̄ + ∂̄∗)U on Ω0,∗(V ); it equals 2−1/2 times the Dirac operator
on V associated to the trivial line bundle V × C with connection one-form

θ = Θ + 1
2

∑n
j=1(zj dz̄j + z̄j dzj) = 1

2

∑n
j=1(zj dz̄j − z̄j dzj).

The operator D2
0 has Weyl symbol

1
2
|z − iζ|2 + (k − n/2) ∈ S2

1(T
∗V ),

where k is the operator of multiplication by k on Ω0,k(V ). The operator P = U−1KU is
the projection onto the kernel of D0.

Denote by A the operator εa + ε∗a∗ acting on Ω0,∗(V ) ⊗ E ⊗ C1|1. Up to an error in
S1(T ∗V ), the symbol of the operator (D0 + A)2 equals the sum of the symbols of D2

0 and
A2. Thus, if a is an elliptic symbol in S1

1(V ), the operator (D0 + A)2 has elliptic symbol in
S2

1(T
∗V ), and hence the operator D0 + A is Fredholm.

Denote by P⊥ the projection I − P . Since A ∈ Ψ1
1 and P ∈ Ψ0

0, the operator PAP +
P⊥AP⊥ = (2P − 1)[A,P ] is in Ψ0

0. Thus, the operator

Dt,u = tD0 + (1− u)A + u(PAP + P⊥AP⊥)

is elliptic for all (t, u) ∈ (0,∞)× [0, 1].

Lemma 1.10. The function f(t, u) = Str(e−D2
t,u) is independent of t ∈ (0,∞) and u ∈

[0, 1].

Proof. Taking a derivative with respect to the t, we see that

∂f(u, t)
∂t

= −Str[D0e
−D2

u,t/2,Dt,ue−D2
u,t/2],

which vanishes, being the supertrace of a graded commutator of two trace class operators.
The vanishing of ∂uf(u, t) is proved in a similar fashion. �
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Setting t = 1 and u = 0, we see that f(t, u) = Str(e−(D0+A)2) = ind(D0+A). To complete
the proof of the theorem, we will calculate limt−→∞ f(t, 1).

Since the operator D0 + PAP + P⊥AP⊥ commutes with P , the supertrace of its heat
kernel may be divided into supertraces over im(P ) and im(P⊥), the second of which decays
exponentially fast as t −→∞:

f(t, 1) = Str
(
e−(tD0+PAP+P⊥AP⊥)2

)
= Str

(
Pe−(PAP )2

)
+ Str

(
P⊥e−(tD0+P⊥AP⊥)2

)
= Str

(
Pe−(PAP )2

)
+ O(e−ct).

But Str
(
Pe−(PAP )2

)
is the index of the pseudodifferential operator ab = Q∗aQ, which

equals the index of aw by Proposition 1.6. �

2. Generalized Dirac operators

2.1. Superconnections. Let us briefly recall Quillen’s formalism of superconnections: for
further details, see Sections 1.4 and 1.5 of [3].

Let E = E+⊕E− be a Z/2-graded vector bundle over a manifold M . The space of differ-
ential forms A∗(M, E) is Z/2-graded, by the sum of the degree (modulo 2) as a differential
form to the degree as a section of E .

A superconnection is an operator A on A∗(M, E), odd with respect to the total Z/2-
grading, such that if α ∈ A∗(M) and ω ∈ A∗(M, E),

A(α ∧ ω) = dα ∧ ω + (−1)|α|α ∧ Aω.

A superconnection A splits into a sum of operators

A[k] : A∗(M, E) −→A∗+k(M, E),

such that A[1] is a connection on the bundle E , and A[k] ∈ Ak(M,End(E)) for k 6= 1.
The curvature of a superconnection A is the operator A2: it is a local operator, that is,

a differential form on M with values in the bundle of endomorphisms End(E).
There is a bundle map Str : End(E) −→ M × C, equal on each fibre to the supertrace

TrE+ −TrE− . This induces a map Str : A∗(M,End(E)) −→A∗(M). The exponential eA2
of

the curvature A2 is an element ofA∗(M,End(E)). The Chern character of a superconnection
A is defined by the formula

Ch(A) = Str(e−A2
).

It is closed differential form of even degree.

2.2. Clifford modules. Let V be a Euclidean vector bundle over M , that is, an oriented
real bundle with positive-definite metric. Let C(V) be the associated bundle of Clifford
algebras, generated by V subject to the relations

vw + wv = −2(v, w)

for sections v, w ∈ Γ(M,V). Setting the degree of the subbundle V ⊂ C(V) to be odd, C(V)
is made into a bundle of Z/2-graded algebras. There is a natural isomorphism between the
bundles Λ∗V and C(V).

Let {ei|1 ≤ i ≤ rank(V)} be an oriented orthonormal local frame of V. Let ωV be the
section of C(V) defined by the local formula

ωV = e1 . . . erank(V);

it is easily checked that this product is independent of the oriented orthonormal frame used
in its definition, and hence defines a global section of C(V). Note that ω2

V = (−1)rank(V)(rank(V )+1)/2.
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Definition 2.1. A C(V)-module is a graded representation v 7→ c(v) of C(V) on a Z/2-
graded vector bundle E .

If V is an even-dimensional spin-bundle, it has a spinor bundle S; this is a C(V)-module
such that C(V) ∼= End(S). (Any two such spinor bundles differ by a flat line bundle whose
square is the trivial bundle, in other words, a Z/2-bundle.) Any C(V)-module then E splits
as a tensor product S⊗W, where W is the super vector bundle HomC(V)(S, E).

Let Γ denote the operator equal to ±1 on E±. We will frequently make use of the fact
that if V has odd rank, the operator

σ = i(rank(V)+1)/2Γ ωV

is an odd operator with square σ2 = 1, which commutes with C(V), and hence defines an
action of the Clifford algebra C(V ⊕ R) on E . This enables us to reduce the verification of
results about Clifford modules to the case in which V has even rank.

Proposition 2.2. Let EndV(E) be the commutant (with respect to the graded commutator)
of C(V) in the bundle of algebras End(E). Then

End(E) ∼= C(V)⊗ EndV(E).

Proof. If E has even rank, this follows from the fact that locally, there is a Clifford module
S (the spinor bundle) such that C(V) ∼= End(S). It follows that, again locally, we have a
decomposition E ∼= S⊗ F , where the action of C(V) on F is trivial, and F = HomV(S, E).
Thus, we see that EndV(E) ∼= End(F), and that

End(E) ∼= End(S⊗F) ∼= End(S)⊗ End(F) ∼= C(S)⊗ EndV(S).

If V has odd rank, replace it by V ⊕ R, as above. Since

EndV(E) = EndV⊕R(E)⊕ σ EndV⊕R(E),

we see that

End(E) ∼= C(V ⊕ R)⊗ EndV⊕R(E)
∼=

(
C(V)⊕ σC(V)

)
⊗ EndV⊕R(E)

∼= C(V)⊗ EndV(E). �

2.3. Clifford superconnections. Let ∇V be a connection on the Euclidean vector bundle
V preserving the metric. This induces a connection on the Clifford bundle C(V), compatible
with the product.

Definition 2.3. A Clifford superconnection A on a module E over C(V) is a superconnec-
tion on E such that if v ∈ Γ(M,V) and ω ∈ A∗(M, E),

A(c(v)ω) = c(∇Vv)ω − c(v)Aω.

If V is an even-dimensional spin-bundle with spinor bundle S, then S inherits a con-
nection ∇S from the connection ∇V on V. By Proposition 3.40 of [3], there is a bijec-
tive correspondence between Clifford superconnections A on E and superconnections B on
W = HomC(V)(S, E), given by sending B to ∇S ⊗ 1 + 1⊗ B.

The following result is Proposition 3.43 of [3].

Proposition 2.4. The curvature A2 of a Clifford superconnection A on E decomposes under
the isomorphism End(E) ∼= C(V)⊗ EndV(E) as

A2 = c(R) + F(A),
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where c(R) ∈ A2(M,C(V)) ⊂ A2(M,End(E)) is the action of the curvature R of V on the
bundle E, given by the formula

c(R)(∂i, ∂j) =
1
2

∑
a<b

(R(∂i, ∂j)ea, eb)cacb,

and F(A) ∈ A∗(M,EndV(E)).

Proof. Since A is compatible with the Clifford action, we see that for v ∈ Γ(M,V),

[A2, c(v)] = [A, [A, c(v)]] = [A, c(∇Vv)] = c
(
(∇V)2v

)
= c(Rv).

Since c(R) = [c(R), c(v)], we see that [A2, c(v)] = c(Rv) = [c(R), c(v)].
It follows that F(A) = A2 − c(R) commutes with the operators c(v), and hence lies in

A(M,EndV(E)). �

We call F(A) the curvature of the Clifford superconnection A; it is called the “twisting
curvature” in [3]. If V is an even-dimensional spin bundle, with spinor bundle S, the
curvature of a Clifford superconnection A on a Clifford module E ∼= S ⊗ W equals the
curvature of the corresponding superconnection on the supervector bundle W.

Definition 2.5. If E is a C(V)-module, StrV is the supertrace on the bundle of algebras
EndV(E) given by the formula

StrV(A) = (−4π)− rank(V)/2 StrE(ωVA).

It takes values in the flat line bundle det(V).

The exponential e−F(A) of F(A) is an element of A∗(M,EndV(E)). The Chern character
of a Clifford superconnection A is defined by the formula

ChV(A) = StrV(e−F(A)).

It is an even (odd) closed differential form if rank(V) is even (odd). This Chern character
is the relative Chern character of Section 4.1 of [3], though normalized in a fashion which
is motivated by the calculations of [9].

The following proposition gives another formula for ChV(A) which is sometimes more
convenient.

Proposition 2.6.

ChV(A) =
StrV(e−A2

)
det1/2(coshR/2)

Proof. First, suppose that rank(V) is even. Let ci1 . . . ci` , i1 < · · · < i`, be a basis element
of the Clifford algebra C(V). If a ∈ A∗(M,EndV(E)), then StrV(ci1 . . . ci`a) = 0 unless
k = 0 (see [3], Proposition 3.21). The result now follows from Proposition 3.13 of [3], which
shows that

e−c(R) = det1/2(coshR/2) + terms involving Clifford multiplication.

If rank(V) is odd, then as above, E is a module for the Clifford bundle C(V ⊕ R), and

StrV(e−A2
) = i−(rank(V)+1)/2 Tr(σe−c(R) e−F(A)).

The only contribution to StrV(exp(−A2)) will come from the coefficient of σ in e−F(A),
multiplied by the coefficient of 1 in e−c(R), and once more the result follows. �

Define an involution on the bundle of algebras C(V), by setting v∗ = −v for v ∈ Γ(M,V).
From now on, we restrict attention to ∗-modules over C(V): a ∗-module is a C(V)-module
E , with Hermitian structures on E±, such that c(v) is skew-adjoint for all v ∈ Γ(M,V).
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2.4. Generalized Dirac operators. Following Kasparov, we denote the cotangent bundle
T ∗M of a Riemannian manifold M by τ . Let∇τ be the Levi-Civita connection on τ . Denote
the dimension of M by n. We will assume that M is oriented, allowing us to identify the
line bundle det(τ) with the trivial line bundle M × R.

Definition 2.7. Let A be a Clifford superconnection on the C(τ)-module E . The associated
Dirac operator DA is the first-order differential operator on Γ(M, E) given by composing
the arrows in the following diagram:

Γ(M, E) A−→ A∗(M, E) ∼= Γ(M,C(τ)⊗ E) −→Γ(M, E),

where the last map is given by the action of C(τ) on E .

By Proposition 3.42 of [3], the assignment A 7→ DA is a bijection between Clifford super-
connections A and first-order differential operators D such that

(1) [D, f ] = c(df) for all f ∈ C∞(M);
(2) D is odd.

Let xi be a local coordinate system on M . Denote by gij = (dxi, dxj) the Riemmanian
metric in this local coordinate system, by r its scalar curvature, by Γijk the Christoffel
coefficients

∇τ
∂i

∂j = gk`Γijk∂`

representing the Levi-Civita connection ∇τ , and by c(dxi1 . . . dxi`) the image of the differ-
ential form dxi1 . . . dxi` under the isomorphism Λ∗τ ∼= C(τ). The Clifford superconnection
A may be written

A =
n∑

i=1

dxi ⊗
(
∂i + 1

2c(dxjdxk) Γijk

)
+

∑n
k=0

∑
i1<···<ik

dxi1 . . . dxik ⊗ ωi1...ik ,

where ωi1...ik is a section of Endτ (E). We will denote the zero-form component A[0] by D,
and the connection A[1] by ∇.

The associated Dirac operator may be written

DA =
n∑

i=1

c(dxi)
(
∂i + 1

2c(dxjdxk) Γijk

)
+

∑n
k=0

∑
i1<···<ik

c(dxi1 . . . dxik)ωi1...ik .

The operator DA is self-adjoint if and only if the Clifford superconnection satisfies the
condition

(A[k]x, y) = (−1)k(k+1)/2(x, A[k]y)
for all x, y ∈ Γ(M, E) (Proposition 3.44 of [3]). For k = 0, this says that D = A[0] is self-
adjoint, while for k = 1, it states the compatibility of the connection A[1] with the inner
product on E .

The following result generalizes Lichnerowicz’s formula (Theorem 3.52 of [3]). Let α =∑n
i=1 dxiαi, where

αi =
∑
k≥2

ι(∂i)A[k] ∈ A∗(M,Λ∗τ ⊗ Endτ (E)).

Proposition 2.8. If A is a Clifford superconnection, the operator (DA)2 is given in local
coordinates by the formula

(DA)2 = −
∑
ij

gij
(
∇α

i ∇α
j + Γk

ij∇α
k

)
+ c(F(A)) +

r

4
+ P (A, g),

where ∇α
i = ∇i + c(αi), and P is an invariant polynomial in the differential forms A[k],

k ≥ 2, and Riemannian metric g on τ .
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For example, if A = A[0] + A[1] + A[2], then the polynomial P is equal to

2gijc(dxkdx`) ωik ωj` − gijgk` ωik ωj`,

where A[2] =
∑

i<j dxidxj ωij .

2.5. The heat kernel of a generalized Dirac operator. In this section, following
closely the treatment of [7], we prove a local index theorem for the Dirac operator associated
to a Clifford superconnection A on a C(τ)-module E . The proof consists of two steps:

(1) given a point x ∈ M , we show that the asymptotics of the heat kernel of the Dirac
operator DA around x ∈ M are the same as those of a heat equation on tangent
space TxM ;

(2) having transferred the problem to the tangent space TxM , we use a rescaling ar-
gument to reduce the problem to one which can be solved explicitly.

In both of these steps, we use stochastic differential equations to make the necessary esti-
mates. However, it is only in the second step that stochastic differential equations appear
to us to be essential to the proof.

For the first step, we use the well-known fact that the asympotics of the heat kernel
〈expx x|e−t(DA)2 |x〉 in the limit (x, t) −→ 0 are local, in the sense that regions of M outside a
ball Bδ(x) of radius δ > 0 contribute an exponentially vanishing amount to the heat kernel
inside this ball. For example, this follows immediately from the Feynman-Kac formula for
the heat kernel as an integral with respect to a Brownian bridge measure:〈

y
∣∣ e−t(DA)2

∣∣ x
〉

=
∫

ω∈Px,y,t(M)
Φ(ω, t) dbx,y,t.

Here, Px,y,t(M) is the space of all continuous paths ω : [0, t] −→ M such that ω0 = x and
ωt = y, dbx,y,t is the Brownian bridge measure on Px,y,t(M) associated to the Riemmanian
metric of M , and Φ(ω, s) ∈ Hom(Ex, Eωs) is the solution of the Stratanovich stochastic
differential equation

DΦ(ω, s) · Φ(ω, s)−1 = −c(α(ωs)) ◦ db

−
(

c(F(A))(ωs) +
r(ωs)

4
+ P (A(ωs), g(ωs)

)
ds,

with initial condition Φ(ω, 0) = I. (Here, DΦ denotes the covariant stochastic differential
with respect to the connection ∇ on the bundle E .) For more details of this construction,
see the appendix of [7].

Examination of this stochastic differential equation shows that Φ(ω, t) is uniformly
bounded by a constant depending only on the sum of supremum norms

‖R‖+ ‖F‖+ ‖∇D‖+
∑
k≥2

(‖A[k]‖+ ‖∇A[k]‖);

here, F is the curvature of the connection ∇. The supremum of D is not needed for this
estimate, since it enters in the stochastic differential equation only through the sum

−
(
D(ωs)2 +∇D(ωs) +

∑
k≥2

[A[k](ωs),D(ωs))]
)
ds.

But D2 is a positive-definite section of End(E), so that

D2 +∇D +
∑
k≥2

[A[k],D] ≥ −‖∇D‖ −
∑
k≥2

‖A[k]‖2,

allowing us to majorize Φ(ω, t) without D being bounded. This is important since typically,
D is indeed unbounded.
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Thus, at the cost of a uniformly bounded error O(e−at/δ), where a > 0 depends only on
the norm ‖R‖ of the Riemannian metric, we may assume that the manifold M is diffeo-
morphic to the tangent space V = TxM at a point x ∈ M , that the Riemannian metric is
a small perturbation of the Euclidean metric inside the ball Bδ(0) ⊂ V , that the Clifford
module E is a trivial bundle over V with fibre E = Ex, and that the Clifford superconnec-
tion A equals the trivial connection d outside the ball Bδ(0). We may also assume that
the exponential map from V to M by x 7→ expx x is the identity map, and that parallel
translation respect to the connection ∇ along the geodesic t 7→ tx from 0 to x is the identity
map of E, for all x ∈ V .

We now turn to the second step of the proof. By means of the identifications

C∞(V,End(E)) ∼= C∞(V,C(V )⊗ EndV ∗(E)) ∼= C∞(V,Λ∗V ∗ ⊗ EndV ∗(E))
∼= A∗(V,EndV ∗(E)),

we may think of the kernel 〈x|e−t(DA)2 |0〉 as a differential form on V , denoted kt(x) ∈
A∗(V,EndV ∗(E)).

Let kt(x, ε) denote the kernel analogous to kt(x), except that the Clifford superconnection
A is replaced by

A(ε) = ε−1A[0] + A[1] + εA[2] + ε2A[3] + . . . .

Note that if we replace the superconnection A by A(ε) in the first step, the estimates which
we used are uniform in ε as ε −→ 0.

The fundamental technique in the proof of the local index theorem of [7] is the rescaling
of this kernel. If ω is a differential form on the vector space V , let Tεω be the differential
form

(Tεω)(x)[k] = εn−kω(εx)[k].

Let kε
t(x) be the kernel kε

t(x) = Tεkε2t(x, ε), and let k0
t (x) be the kernel

k0
t (x) = (4πt)−n/2 det1/2

( tR(0)/2
sinh(tR(0)/2)

)
exp

(
− 1

4t

〈
x

∣∣ tR(0)/2
tanh(tR(0)/2)

∣∣ x
〉
− tF(A)(0) + ι(R)α(0)

)
,

where R(0) ∈ Λ2V ∗ ⊗ End(V ) is the curvature of M at 0 ∈ V , and

ι(R)α(0) =
n∑

i=1

xi αi(0) ∈ Λ∗V ∗ ⊗ EndV ∗(E)

is the pairing of the one-form α(0) ∈ V ∗⊗Λ∗V ∗⊗EndV ∗(E) at 0 ∈ V with the Euler vector
field R = xi∂i. We may now state our main result.

Theorem 2.9. If A is a Clifford superconnection on a C(τ)-module E over the Riemannian
manifold M , denote by fA the function on M obtained by adding the pointwise norms of
the following geometric objects:

(1) the Riemannian curvature R of M and its covariant derivative;
(2) the curvature F of the connection ∇ = A[1] and its covariant derivative;
(3) ∇D and ∇2D;
(4) A[k], ∇A[k] and ∇2A[k] for k ≥ 2.

Then for ε < 1, δ > 0 and t < T , we have the estimate

|kε
t(x)− k0

t (x)| ≤ c ε t−n/2+1−δ e−|x|
2/8t

∥∥e−tD2/2
∥∥,

where T and c are constants depending only on the dimension of M , δ and the supremum
of fA over M .
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Remark 2.10. This result is quite different from the special case, proved in [7], where A
is a connection, since the superconnection A is replaced by A(ε) at the same time as t is
rescaled to ε2t. That this is necessary may be seen by considering the case in which M is a
point: a C(τ)-module is a Z/2-graded vector space E, a Clifford superconnection A reduces
to an odd endomorphism of E, and the heat kernel kt equals e−tA2

. It is clear that if t is
replaced by ε2t, then A must be multiplied by ε−1 in order that kε

t(A) have a limit.

Proof. The Z/2-graded vector space Λ∗V ∗ is a C(V ∗)-module, with respect to the action
c(α) = ε(α)− ε∗(α). Using this action, we may transfer the operator (DA)2 to an operator
L acting on A∗(V,EndV ∗(E)), and kt(x) may be characterized as solving the heat equation
for L with initial condition

lim
t−→0

kt(x) = δ(x).

Similarly, there is a family of operators Lε acting on A∗(V,EndV ∗(E)), such that kε
t(x) is

the solution of the heat equation for Lε with the same initial condition as kt(x). To define
Lε, we repeat the definition of L, replacing the superconnection A by A(ε), conjugating the
resulting operator on A∗(V,EndV ∗(E)) by Tε, and finally multiplying by ε. To obtain an
explicit formula for Lε, introduce the rescaled Clifford action cε(α) = ε(α) − ε2ε∗(α), and
the connection on the trivial bundle over V with fibre E given by the formula

∇ε =
n∑

i=1

dxi ⊗
(
∂i +

1
2ε

cε(dxjdxk) Γijk(εx) + εωi(εx) + αi(εx)
)
.

Then we see that

Lε =−
∑
ij

gij(εx)
(
∇ε

i∇ε
j + εΓk

ij(εx)∇ε
k

)
+ cε(F(A)(εx)) +

ε2

4
r(εx) + εP (A(ε), g)(εx),

Generalizing the proof of Proposition 4.19 in [3], we see that Lε converges as ε −→ 0 to
the operator

L0 = −
n∑

i=1

(
∂i −

1
4

n∑
j=1

Rij(0)xj + αi(0)
)2

+ F(A)(0).

Lemma 2.11. The kernel k0
t (x) is the solution of the heat equation for L0 with initial

condition limt−→0 k0
t (x) = δ(x).

Proof. This follows the observation that

eι(R)α(0)L0e−ι(R)α(0) = −
n∑

i=1

(
∂i −

1
4

n∑
j=1

Rij(0)xj
)2

+ F(A).

It is shown in Theorem 4.20 of [3] that the heat equation for the operator on the right-hand
side of this equation equals eι(R)α(0)k0

t (x). �

The following estimate is a generalization of a theorem of [7].

Lemma 2.12. Uniformly in x and small t,∥∥(Lε − L0)k0
t (x)

∥∥ ≤ c ε t−n/2e−|x|
2/8t

∥∥e−tD2(0)/2
∥∥,

where the constant c depends only on fA(0).
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Proof. For multi-indices α, β ≥ 0, we have the estimate

‖xα∂βk0
t (x)‖ ≤ c t(|α|−|β|−n)/2 e−|x|

2/8t
∥∥e−tD2(0)/2

∥∥,

where the constant c depends only on α, β, and the norms of Ω(0), α(0) and F(A)[k](0),
k > 0. The lemma follows by a straightforward, if lengthy, estimation of the family of
differential operators Lε − L0. �

Duhamel’s formula now shows that

kε
t(x)− k0

t (x) =
∫ t

0

∫
V
〈x|e−sLε |y〉 (L0 − Lε)k0

t−s(y) dy ds.

The proof of Theorem 2.9 is an immediate consequence of Appendix A of [7]. �

The following result extends the local index theorem of Patodi to generalized Dirac
operators.

Corollary 2.13. Let A be a Clifford superconnection such that
(1) A satisfies the conditions of Theorem 2.9;
(2) ‖e−D2‖ is integrable.

Then the index of the generalized Dirac operator DA is given by the absolutely convergent
integral

ind(DA) =
∫

M
det1/2

( R/2
sinh(R/2)

)
Chτ (A).

Proof. This follows from Theorem 2.9 by the same argument as is employed in the proof of
Theorem 4.2 of [3]. �

We may apply this corollary to the operator (∂̄ + εa) + (∂̄ + a)∗ of Equation (4). This is
proportional to the generalized Dirac operator associated to the Clifford superconnection

A = d +
(

Θ 21/2a∗

21/2a Θ

)
on the C(τ)-bundle Λ0,∗τ⊗E⊗C1|1 over V , where Θ is the connection one-form of Equation
(3). It is easily seen that this superconnection verifies the conditions of Corollary 2.13: the
curvature of the connection d + Θ is constant, while the essential hypothesis, that the
functions ‖e−2a∗a‖ and ‖e−2aa∗‖ are absolutely convergent, is equivalent to the assumption
that the symbol a ∈ S1(V ) is elliptic. Combining Theorem 2.13, which gives an explicit
formula for the index of the generalized Dirac operator DA, with Theorem 1.9, we obtain
Fedosov’s index theorem, in the form

ind(aw) =
∫

V
Chτ (A).
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