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So you want to win at poker? Certainly you need to know how good any hand is,
but that isn’t the whole story: You still need to know what to do. That is, in the words
of Don Schlitz [16] (made famous by Kenny Rogers [15]), you gotta know when to
hold ’em, know when to fold ’em, know when to walk away, know when to run. Well,
you’re on your own for when to walk away and when to run. That leaves when to hold
’em, when to fold ’em, and a crucial question that was left out: when to bet.

We should pay attention to the real world, and the real world tells us the answers
are probably interesting. Good poker players do some strange-looking things:

• Bet with very bad hands.
• Fail to bet with very good hands.
• Fold with good hands.

They even have names for these. The first is called bluffing and the second is called
slow-playing. The third I guess is just called folding. One thing to think about is, are
these actually good strategies? In some sense they must be, since the best players use
them, but why? One possibility is that it is psychological: the players are messing with
each other, trying to get each other to make mistakes. Let’s eliminate that explanation.
What if you are playing against a computer, and the computer is programmed to play
perfectly. Then does it make sense to bluff? Or to slow-play?

We will answer these questions, but starting with real poker is too complicated.
Instead we think about some simplified games to gain insight into the real thing. Sim-
plified poker has been studied before, including by Borel [2] and von-Neumann and
Morgenstern [14], and more recently by Chen and Ankenman [4] and Ferguson, Fer-
guson, and Gawargy [8]. This last we draw on quite heavily.

Dice poker

Here are the rules to the first game we will consider:

• There are only two players, P1 and P2.
• Each player begins by putting $1 in the pot (the “ante”).
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• Each player’s hand is determined by rolling a die, so the possible hands are

1,2,3,4,5,6, and all are equally likely. The roll is hidden from the other player.
• After seeing their hand, P1 can either bet another $1 or pass.
• If P1 bet, P2 can either call by also placing an extra $1 in the pot, or fold, in which

case P1 gets the money in the pot.
• If P1 passed or P1 bet and P2 called they compare hands and the higher number gets

all the money in the pot. If there is a tie, they split the pot.

What we call passing is often called checking in poker. We use the term pass because
call and check both start with C, which messes up notation.

We want to understand how P1 should play, where, as in the introduction, P2 is a
computer that plays perfectly. But first we need to understand what we mean when we
say that P2 plays perfectly. This is confusing because how P2 should play certainly
depends on how P1 is playing . . . it gets circular!

Here is how we get around this: Instead of just letting them play, we make the
players each write a computer program to play for them (like in pokerbots [3]). Fur-
thermore, we make P1 write their program first, and they let P2 see it. We assume P2
is an expert poker player/programmer and writes the perfect program to do as well as
possible, using their knowledge of P1’s program. The question is, under these condi-
tions, what is P1’s best strategy?

Letting P2 see P1’s strategy seems unfair, but it is also sort of realistic: Players can
usually observe each other and learn about each other’s strategies. So another way of
wording this is that P2 has been observing P1 for a long time, and knows how P1 plays.
Note that P2 does not get to see P1’s hand.

We are looking for P1’s best strategy, but what exactly is a strategy? Well, it is the
program P1 writes, which has to take P1’s hand and decide whether to bet or pass. So
a strategy should be the information of what to do with each possible hand.

Let’s try a reasonable looking strategy and see what happens: say P1 passes if they
have 1, 2, or 3 and bets if they have 4, 5, or 6. P2 gets to take this information and
figure out what to do. They should only think about what to do if P1 bets, since if P1
passes then hands are revealed without P2 ever having to make a decision. If P1 bets
then P2 knows they have 4, 5, or 6. If P2 has 1, 2, or 3, they will definitely lose, and
therefore should fold. If P2 has 6, they definitely don’t lose, and therefore should call.
The only question is what to do with 4 or 5. To figure that out, P2 can use Table 1. The
rows show what happens after P1 bets if P2 has 4 or 5 and either calls or folds. In each
case, the expected payout to P2 is the average the three entries in that row. If P2 has 4,
then folding is better (−1 > − 4

3 ), and if P2 has 5, then calling is better. We have just
figured out that P2’s best response to P1’s strategy is to fold if they have 1234, and call
if they have 5 or 6.

TABLE 1: Deciding on a response to P1 betting on 4, 5 and 6.

4 5 6 Average

4C 0 −2 −2 −1.33

4F −1 −1 −1 −1

5C 2 0 −2 0

5F −1 −1 −1 −1
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So, is this a good strategy for P1? To decide, we need to find the expected payout,
which we do by making a table of possibilities, showing payouts to P2. See Table 2.
All pairs of hands are equally likely, so the expected payout to P2 is the average of the
36 possibilities, which is 1

36 .

TABLE 2: Possible outcomes to P2 if P1 bets with 456 and P2 calls with 56.

Hand 1P 2P 3P 4B 5B 6B Total of row

1F 0 −1 −1 −1 −1 −1 −5

2F 1 0 −1 −1 −1 −1 −3

3F 1 1 0 −1 −1 −1 −1

4F 1 1 1 −1 −1 −1 0

5C 1 1 1 2 0 −2 3

6C 1 1 1 2 2 0 7

P1 is losing money! Is this reasonable? Maybe, since P2 did get to look at P1’s
strategy . . . but actually P1 has an obvious strategy to break even: never bet! Then both
players are equally likely to have the better hand and win $1.

Can P1 do better than break even? We could try some other straightforward strate-
gies. Similar calculations show that betting on 56 or betting on only 6 both lead to
breaking even. Betting on more highish hands, such as on 3456, loses even more
money. There is no way for P1 to make money with this type of strategy.

Right, but we forgot one of our main questions: should P1 bluff? We need to try
a strategy involving bluffing! That is, P1 should try betting on some bad hands. They
should probably bet on more good hands than bad hands, so let’s try betting on 156. To
figure out P2’s best response, we fill out the whole table of possibilities, see Table 3.
This shows that P1 should fold with 1 and call with 23456. The expected outcome to
P2 is the average of the resulting 36 possibilities, which is now − 2

36 . This time P1 is
making money. And to do so their strategy must involve bluffing!

You should pause and think about this: We just showed that, even though P2 knows
P1’s strategy, and plays perfectly, P1 can still make money, but only if their strategy
includes bluffing. So bluffing is a necessary part of a good strategy for P1. It is not just
psychological. This is a simplified game, but we hope you agree it is realistic enough
to suggest that bluffing is a good idea more generally (which it is).

Notice, though, that P2 is playing pretty strangely. For instance, does it really make
sense to call with 2? This should suggest that we don’t have the full answer yet.

If both players know each other’s strategies: Nash equilibrium

One part of this setup tends to make people uncomfortable: letting P2 see P1’s strategy.
We argued that this was reasonable because over time P2 could observe what P1 does
and figure out their strategy. But by that logic P1 can just as easily observe P2’s strat-
egy. So, if good players play each other many times, it seems they should end up each
playing a best response to the other. This is essentially the idea of a Nash equilibrium.

This idea is usually attributed to John Nash [10, 11] for his work from the early
1950s, but the concept existed earlier, at least in special cases. See, for instance,
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TABLE 3: P2’s possible responses if P1 bets on 156, showing payouts to P2. P2’s best
response is to choose the behaviors (call or fold) that has the highest expected outcome
with each possible hand. So they should fold with 1 and call with 23456.

Hand 1B 2P 3P 4P 5B 6B Row Total

1F −1 −1 −1 −1 −1 −1 −6

1C 0 −1 −1 −1 −2 −2 −7

2F −1 0 −1 −1 −1 −1 −5

2C 2 0 −1 −1 −2 -2 −4

3F −1 1 0 −1 −1 −1 −3

3C 2 1 0 −1 −2 −2 −2

4F −1 1 1 0 −1 −1 −1

4C 2 1 1 0 −2 −2 0

5F −1 1 1 1 −1 −1 0

5C 2 1 1 1 0 −2 3

6F −1 1 1 1 −1 −1 0

6C 2 1 1 1 2 0 7

Cournot’s work from 1838 [5]. Our games are zero-sum (gain to one player equals
loss to the other), and Nash equilibria in that setting were studied by von Neumann
and Morgenstern in the 1940s [14], where they are called saddle points in strategies.
Anyway, this is so crucial we will actually define it!

Definition 1. A Nash equilibrium for a two-player game is a pair of strategies, one for
each player, such that each is a best response to the other.

This means that, if one player changes their strategy and the other does not, the player
who changes does no better (on average) than they would have done by following their
original strategy. Essentially, each is doing as well as possible assuming their opponent
is playing well, so in that sense the strategies are optimal.

Let’s think about dice poker some more. We found that P1 betting on 156 is a pretty
good strategy, and that P2’s best response is to call with 23456. But, if P1 knows that
P2 will call with 23456, do they still want to bet on 156? The answer is no: As shown
in Table 4, P1 would now like to bet with 56 and pass with 123, and it doesn’t matter
with 4. So P1 betting on 156 is not their best response, and hence these strategies (P1
bet on 156, P2 call on 23456) are not a Nash equilibrium.

Is there a Nash equilibrium? Well, if you let two good players play repeatedly, they
should settle on strategies somehow, and it seems that these should be an equilibrium.
Or they could just keep changing strategies, so maybe not.

In fact, with the type of strategy we’ve been using, there is no Nash equilibrium.
One way to see this is to check that, for any P1 strategy, if you (i) find P2’s best
response, and then (ii) find P1’s best response to that, you don’t get back the same P1
strategy. So, that strategy cannot be part of an equilibrium pair. Doing this in every
case is annoying, but you can probably convince yourself it is true by checking a few
plausible P1 strategies (maybe bet on 1456 or on 1256).
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TABLE 4: P1’s options if P2 will call with 23456. Payouts are to P1. For each hand P1
should choose the behavior (bet or pass) with the highest expected payout, so they should
bet with 56 and pass with 123, and either choice is equally good with 4.

Hand 1P 1B 2P 2B 3P 3B 4P 4B 5P 5B 6P 6B

1F 0 1 1 1 1 1 1 1 1 1 1 1

2C −1 −2 0 0 1 2 1 2 1 2 1 2

3C −1 −2 −1 −2 0 0 1 2 1 2 1 2

4C −1 −2 −1 −2 −1 −2 0 0 1 2 1 2

5C −1 −2 −1 −2 −1 −2 −1 −2 0 0 1 2

6C − −2 −1 −2 −1 −2 −1 −2 −1 −2 0 0

Column total −5 −9 −3 −7 −1 −3 1 1 4 5 5 9

It might seem that we are stuck, but we missed another important thing you can
learn from the real world: poker players like to be unpredictable, and don’t always do
the same thing in the same situation. We need more randomness!

Mixed strategies

A mixed strategy is a strategy where a player doesn’t always do the same thing in the
same situation. For instance, P1 can decide that, if they have 4, they will bet half the
time and pass half the time. Then, whenever they are dealt 4, they randomize, maybe
by flipping a coin, to decide which to do.

The famous (but kind of difficult) von-Neumann mini-max theorem [13] (see also,
for example, Barron [1, Chapter 1.2]) implies that, if mixed strategies are allowed,
Nash equilibria always exist (provided the number of unmixed strategies is finite, or
some other more technical conditions hold). In any case, such an equilibrium does
exist for our game. It is: P1 bets with 56, and bets 2

3 of the time with 1. P2 calls with
456, and also calls 2

3 of the time with 3. The table of payouts is given in Table 5, and
works out to an expected payout to P2 of −3.33

36 . So P1 is making significantly more
money than with the strategy “bet with 156” we studied before (which is actually the
best possible unmixed strategy).

To check that this is a Nash equilibrium just check that, in every situation, each
player’s expected value does not go up if they change strategies. For instance, if P1
decided to pass with 5, their expected payout would be 3, which is worse than the 3.66
they are currently getting. If P2 has a 4 and decides to fold, they get exactly the same
as if they call (−0.33), which is still alright.

Something interesting: If P1 has 1, sometimes they bet and sometimes they pass. If
this is a Nash equilibrium, in either case they should not want to change. That means
the two possible strategies must lead to the same expected payout: if one was worse,
P1 would never want to play it! This observation is called the principle of indifference.
By the same argument P2 should get the same payout for passing and calling with 3.

If we somehow knew P1 and P2 should randomize with 1 and 3 respectively, this
gives a way to find the Nash equilibrium: Let x be the probability P 1 bets with 1. If
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TABLE 5: Table of payouts to P2 for the Nash equilibrium in dice poker. Some outcomes
now have probabilities associated with them. For instance, if P1 has 1 and P2 has 3, there
is a probability of 1

3
2
3 that the outcome is −1 to P2, because P1 bets with probability 2

3 ,
and then P2 folds with probability 1

3 .

Hand 1: 2
3 B + 1

3P 2P 3P 4P 5B 6B Total of row

1 F 2
3 (−1) + 1

3 0 −1 −1 −1 −1 −1 −5.66

2 F 2
3 (−1) + 1

3 1 0 −1 −1 −1 −1 −4.33

3 1
3F

1
3

2
3 (−1) + 1

3
1
3 1 1

3 1 1
3 0 1

3 (-1) 1
3 (−1) 1

3 (−1) -2.33

+ 2
3C

2
3

2
3 (2) + 2

3
1
3 1 2

3 1 2
3 0 2

3 (-1) 2
3 (-2) 2

3 (-2)

4 C 2
3 (2) + 1

3 1 1 1 0 −2 −2 −0.33

5 C 2
3 (2) + 1

3 1 1 1 1 0 −2 2.66

6 C 2
3 (2) + 1

3 1 1 1 1 2 0 6.66

P2 gets a 3, then their expected payouts are:

Fold:
x(−1) + (1 − x)1 + 1 + 0 − 1 − 1 − 1

6
= −1 − 2x

6
.

Call:
x(2) + (1 − x)1 + 1 + 0 − 1 − 2 − 2

6
= −3 + x

6
.

These must be equal. Solving gives x = 2
3 . A similar calculation using P1’s indiffer-

ence with 1 gives that P2 should fold with probability 1
3 with a 3.

We had to guess which hands to randomize with. If we had guessed wrong, we
would have figured that out. For instance, if we guessed that P2 should fold with 3 and
randomize with 4, then P1’s indifference with 1 would imply that P2 should call with
probability 5

3 with 4, which is impossible. We could keep trying until we got it right,
but that is annoying. We now move to a more continuous situation, which eliminates
some of the guessing.

Allowing infinitely many possible hands

Now let’s think about the same game but with one change: each player’s hand is now a
random number in the interval [0,1]. This is actually closer to real poker, where there
are lots of possible hands and each has a different probability of winning, which can
be expressed as a number in [0, 1]. This has been studied many times before, dating
to von-Neumann and Morgenstern [14, Sections 19.14–19.16] (see also, for example,
Chen and Ankenman [4, Ex. 11.3], Ferguson and Ferguson [6,7]; Ferguson, Ferguson,
and Gawargy [8], and Mazalov [12, Chapter 5], ). A variant where P1 must fold if they
don’t bet was studied even earlier by Borel [2, Chapter 5] (see also Karlin [9, §9.2]).

We want to find optimal strategies, which we now know means we are looking for
a Nash equilibrium. We start by guessing that things are qualitatively similar to the
dice game, and P1 should use a bluffing strategy: For some x1 < x2 P1 should bet with
hands h < x1 and h > x2, and pass for x1 ≤ h ≤ x2. P2 should call with hands better
than some cutoff value y1. It also seems reasonable to guess that x1 ≤ y1 ≤ x2. The
strategies and payouts to P2 are then described by a “table,” as in Figure 1.
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Figure 1 Strategies and payouts for the continuous game. This is interpreted as follows:
If P1 gets hand x and P2 gets hand y, plot x and y on the top and left respectively, and
then read off what they do. The number in the region containing (x, y) is the resulting
payout to P2.

We want to find the cutoffs. The key idea is that, if e.g. P1 has hand exactly x1, it
shouldn’t matter if they bet or pass. This is because with a slightly better hand passing
is better, and with a slightly worse hand betting is better. But if the behavior (bet or
pass) is kept fixed and the hand varies the payout changes continuously. So the payout
for a bet and a pass with exactly x1 must be identical. This is really an indifference
principle as above: P1 can play a mixed strategy with x1 if they like, although getting
exactly x1 has probability zero, so never happens.

To find the payout if P1 has x1 and bets, we average over possible P2 hands:

• If P2 has hand h < y1 they fold and P1 wins $1. This has probability y1
• If P2 has hand h > y1 they call and P1 loses $2. This has probability 1 − y1.

If P1 has hand x1 and passes,

• If P2 has hand h < x1 then P1 wins $1. This has probability x1
• If P2 has hand h > x1 then P1 loses $1. This has probability 1 − x1.

So we get the indifference equation:

y1 − 2(1 − y1) = x1 − (1 − x1).

We also get equations from P1’s indifference with x2 and P2’s indifference with y1:

P1 with x2: − x2 + (1 − x2) = −y1 − 2(x2 − y1) + 2(1 − x2),

P2 with y1: − x1 − (1 − x2) = 2x1 − 2(1 − x2).
(1)

This is just a system of three equations in three unknowns! Solving,

x1 = 1

10
, x2 = 7

10
, y1 = 4

10
.

We made a guess: that the solution has the rough form shown in Figure 1. So we
need to check that our answer really is a Nash equilibrium. There are three cases:
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1. If P2 has hand h = 4
10 , they get the same payout for calling and folding. After a

bet, the payout for folding is constant (−1), and the payout for calling is weakly
increasing with h. Thus, folding is best if h < 4

10 and calling is best if h > 4
10 .

2. P1 gets the same payout for passing as bluffing with hand h = 1
10 . The payout for

bluffing is independent of h for h ≤ 4
10 and the payout for passing is increasing, so

this implies that bluffing is better than passing for h < 1
10 , and that passing is better

than bluffing for 1
10 < h < 4

10 .

3. If P1 has a hand h > 4
10 , their expected payout if they bet is

4

10
+ 2(h − 4

10
) − 2(1 − h),

and their expected payout if they pass is 2h − 1. Subtracting, they expect to win
2h − 7

5 more by betting, which is positive for h > 7
10 and negative for h < 7

10 , so
passing is better if 4

10 < h < 7
10 and betting is better if h > 7

10 .

Neither player wants to change in any situation, so this is in fact a Nash equilibrium.
Things often work this way: you make some guesses, then solve indifference equa-

tions to get an answer, then you have to check that it really is an equilibrium, which
proves your guesses were correct . . . or they weren’t, and you try again.

Anyway, we have an answer! P1 bluffs with the worst 10% of hands, value bets on
the best 30% of hands, and otherwise passes. P2 calls a bet with any hand better than
0.4. To find the expected payout, just add up the payout in each region times its area
(the probability of landing in that region). It works out to P2 losing $0.1 a hand.

This game makes sense for any bet size a. The “table” is the same, except all 2s
become 1 + a. The cutoffs are the solutions x1, x2, y1 to the indifference equations

2(y1 − x1) = a(1 − y1), 1 − x2 = x2 − y1, (2 + a)x1 = a(1 − x2). (2)

Different bet sizes lead to different payouts, and it turns out that a = 2 is best for P1,
giving a payout of 1

9 (see Ferguson, Ferguson, and Gawarkey [8, §1.1]). However, if
P1 can bet different amounts with different hands, then they can do even better, up to
a payout of 1

7 (see Mazalov [12, §5.2]).

More betting

We now allow P2 to bet, but only if P1 passes. That is, we consider the game as above,
with P1’s bet size being a, and the following new options:

• If P1 passes then P2 can choose to bet a fixed amount b.
• If P2 bets then P1 can call or fold.

We do not assume P1 and P2 use the same bet size, but we do assume each uses a single
fixed bet size whenever they bet. This can be described by the tree in Figure 2. This
game has been studied before, for instance in Ferguson, Ferguson, and Gawarkey[8],
where all the results presented here can be found. See also [4, Example 17.1].

As usual we have to guess the rough layout, and this time we make two separate
guesses. See Figure 3. For any value of a, b we solve indifference equations to find the
cutoffs. The diagram also implies an assumed ordering on the cutoffs. For example, in
(L), x1 ≤ y1 ≤ x2, y2 ≤ x3 ≤ y3 ≤ x4. These constraints must hold in addition to the
indifference equations. We will see that (L) works when a ≤ b and (R) works when
a ≥ b. If a = b this means there are two natural Nash equilibria!



VOL. 94, NO. 3, JUNE 2021 209

Figure 2 Betting tree if P2 can bet after a P1 pass. Here payouts are to P2 and ± means
+ if P2 has the higher hand and − if P1 has the higher hand.

Figure 3 Two candidate Nash equilibria. Here P1’s hand is increasing left to right and
P2’s hand is increasing top to bottom. The strategies are given on the top and left respec-
tively, where B stands for bet, P for pass, C for call, and F for fold. There are two rows
for P1’s strategy, since there are two situations where they may have to make a choice: at
the start of the game (S) and after a P2 bet (B). Similarly there are two columns for P2’s
strategy, showing what P2 does if P1 passed (P) or bet (B). The quantities in the interior
show payouts to P2.

Each cutoff determines one indifference equation: If a player has exactly that hand,
then the strategies on the two sides of the cutoff must give the same expected payout.
For instance, for (L), there are 7 equations:

−y2 + (1 + a)(1 − y2) = 1 (3)

y1 + (1 − y3) = −(1 + b)y1 + (1 + b)(1 − y3) (4)

− (1 + b)y1 − (x3 − y1) + (y3 − x3) + (1 + b)(1 − y3) =
− y2 − (1 + a)(x3 − y2) + (1 + a)(1 − x3)

(5)

− y2 − (1 + a)(x4 − y2) + (1 + a)(1 − x4) =
− (1 + b)y1 − (y3 − y1) − (1 + b)(x4 − y3) + (1 + b)(1 − x4)

(6)
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Figure 4 P1’s expected payout as a function of hand for their three possible behaviors if
P2 plays with cutoffs from equation (10). Here the dotted line is for PF, the dashed line
for PC, and the gray line for B.

(x2 − y1) − (1 + b)(x3 − x2) − (1 + b)(1 − x4) = −(x3 − y1) − (1 − x4) (7)

−x1 − (x4 − x3) = (1 + a)x1 − (1 + a)(x4 − x3) (8)

(x3 − x2) − (1 − x4) = (1 + b)(x3 − x2) − (1 + b)(1 − x4). (9)

We solve using Mathematica∗. For a = b = 1 we get

(L) : x1 = 1

9
, x2 = 1

3
, x3 = 1

2
, x4 = 5

6
, y1 = 1

6
, y2 = 1

3
, y3 = 1

2
.

(R) : x ′
1 = 1

9
, x ′

2 = 1

3
x ′

3 = 2

3
, y ′

1 = 1

6
, y ′

2 = 1

3
, y ′

3 = 1

2
.

(10)

Note that for these values P 2 uses the same strategy in both (L) and (R).
We made some guesses, so we need to check if these really are Nash equilibria. For

now we restrict to a = b = 1 when we show that both are. They then give the same
payout (as they must, see, e.g., [1, §1.1]) which is 1

18 to P2.
We start by showing that P1 is responding optimally to P2’s strategy. Consider P1’s

expected payout as a function of their hand h if P2 uses the cutoffs y1 = 1
6 , y2 =

1
3 , y3 = 1

2 from (10) and P1 plays

PF: pass then fold if P2 bets, PC: pass then call if P2 bets, B: bet.

A little work shows these functions are

PF(h) =

⎧⎪⎨
⎪⎩

−1 h ≤ 1
6

− 4
3 + 2h 1

6 ≤ h ≤ 1
2

− 1
3 h ≥ 1

2

PC(h) =

⎧⎪⎨
⎪⎩

− 5
3 + 4h h ≤ 1

6

− 4
3 + 2h 1

6 ≤ h ≤ 1
2

− 7
3 + 4h h ≥ 1

2

(11)

B(h) =
{

−1 h ≤ 1
3

− 7
3 + 4h h ≥ 1

3 .

These are shown in Figure 4. Both of P1’s strategies in equation (10) always choose
an optimal response. For instance for h > 5

6 , (L) plays PC and (R) plays B, but both
are optimal because the dashed and gray lines coincide and are at the top in that range.

∗Our code is available at http://webpages.math.luc.edu/∼ptingley/

http://webpages.math.luc.edu/~ptingley/
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Figure 5 P2’s payout as a function of hand if P1 plays as in (L), shown on the left, and
(R), on the right. The lines are for P2 playing: (i) Solid: FP, fold after a bet and pass after a
pass. (ii) Dashed: FB, fold after a bet and bet after a pass. (iii) Dotted: CP, call after a bet
and pass after a pass. (iv) Gray: CB, call after a bet and bet after a pass.

We also need to show that P2 is responding optimally in every situation. This time
we need two graphs to show what happens against P1’s two different strategies in
(10). See Figure 5. In both cases the dashed line is maximal for h < 1

6 , the solid line is
maximal for 1

6 < h < 1
3 , the dotted line is maximal for 1

3 < h < 1
2 , and the gray line

is maximal for h > 1
2 . So this P2 strategy is a best response to both P1 strategies.

We have now shown that, at a = b = 1, both (L) and (R) really are Nash equilibria!
In (L) P1 is slow-playing their very best hands, by passing and hoping P2 bets. So
slow-playing is a reasonable strategy. Although, as discussed in Ferguson, Ferguson,
and Gawarkey [8], (R) may be better for P1 in practice since it penalizes more common
P2 errors.

This argument works to show that (L) is an equilibrium in most cases with a ≤ b,
(R) is an equilibrium in most cases with a ≥ b, and both are equilibria whenever
a = b. If a and b are far apart some other cases appear, basically because the bluff
cutoffs x1 and y1 reverse, changing the indifference equations. These are handled in
our previously mentioned Mathematica code.

If b > a then (R) is never an equilibrium, even though solving the equations often
gives cutoffs in the correct order (this happens at e.g. a = 1, b = 2). This is because,
if b > a, then PC(h) is increasing faster than B(h) for h > x ′

3. But B(x ′
3) = PC(x ′

3)

so, for h > x ′
3, PC(h) > B(h). Since (R) plays B for h > x ′

3 this violates the Nash
condition. Similarly (L) is never a Nash equilibrium if a > b.

Remark. A situation like this one shows up in real poker: if there are only two players,
and one of them has so few chips that only one bet can be made. But even then there are
additional complications, for instance due to a flop or draw. Some of our conclusions,
such as that optimal play involves bluffing, certainly still hold. But we will not analyze
even the simplest situation in a real game here.
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