PROBLEM SETS NORTHWESTERN RTG SUMMER SCHOOL 2023

1. INVARIANT RANDOM SUBGROUP

1.1. Raz Slutsky.

- (1) Let G be a locally compact second countable group. Prove that Sub(G) is a compact space ¹.
- (2) Let Γ be a discrete countable group. Consider the space 2^{Γ} with the product topology. Show that the subset of subgroups inside 2^{Γ} is closed, and that it is homeomorphic to Sub(Γ).
- (3) Let $\{\Gamma_n\}$ be a sequence of subgroups, and suppose that there exists $U \subset G$, an identity neighbourhood, such that $\Gamma_n \cap U = \{id\}$ for every Γ_n . Suppose that $\Gamma_n \to H$. Show that H is discrete. Show that if all the Γ_n are torsion-free, then so is H.
- (4) Let G be a finitely generated group. Prove that every finite-index subgroup of G is an isolated point in Sub(G).
- (5) Show that if G surjects on S^1 , then G is not an isolated point in Sub(G).
- (6) Show that if G acts on (X, μ) ergodically, then the associated invariant random subgroup is also ergodic.
- (7) Fix a left-invariant metric d on G/K, a symmetric space. Show that the following sets form a basis of open sets around $\{e\}$ in Sub(G).

$$U_R = \{ H \in \operatorname{Sub}(G) \mid \nexists h \in H \setminus \{e\} ; \ d([e], h[e]) \leq R \}$$

where [e] is the projection of $e \in G$ to G/K. What does this say about a sequence of IRS's μ_n which converge to $\delta_{\{e\}}$? What does it say about a sequence of lattice IRS's, μ_{Γ_n} which converge to $\delta_{\{e\}}$?

1.2. Kurt Vinhage.

(1) Show that $\operatorname{Sub}(\mathbb{R}^n)$ is path connected.

1.3. Mikolaj Fraczyk.

(1) Let G be a simple Lie group. If Γ is a lattice and Γ' is a normal subgroup of Γ , then Γ' is confined.

2. Superrigidity and Arithmeticity

2.1. Homin Lee. Let Γ be a lattice in G. (Here, G will be always a simple non-compact "Lie group".) Reference is [Mor15].

- (1) Prove that $SL_2(\mathbb{Z})$ is a lattice in $SL_2(\mathbb{R})$. (Hint: Use the hyperbolic plane.)
- (2) (Unimodular group) Let μ be a left Haar measure on G. Define a measure μ̃ as μ̃(A) = μ(A⁻¹) for any measurable set A. Show that μ̃ is a right Haar measure. Also, show that there is a homomorphism δ : G → ℝ⁺ such that

$$\mu(gAg^{-1}) = \delta(g)\mu(A)$$

for all measurable set A in G. Conclude that G is unimodular, that is the left Haar measure is also the right Haar measure.

¹Hint: First show that the space of closed subsets of a topological space is compact (using the Alexander sub-basis theorem). Then, show that the space of closed subgroups is a closed subset of it.

- (3) (A property of higher rank)Let G = SL(3, ℝ). Find subgroups L₁,...,L_r in G such that
 (a) G = L_r ····· L₁,
 - (b) $L_i \cap A$ is non-compact for all $i = 1, \ldots, r$, and
 - (c) $\{a \in A : al = la, \forall l \in L_i\}$ is non-compact for all i = 1, ..., r.
 - Convince yourself that it is not true for rank 1 groups.
- (4) Let Γ be a subgroup in $SL(n, \mathbb{Q})$. Assume that

 $\Gamma \subset \{A = (a_{i,j})_{i,j} \in \operatorname{Mat}_{n \times n}(\mathbb{Q}) : \text{for all } i, j, \text{the denominator of } a_{i,j} < N\}$

for some N. Show that there is a finite index subgroup Γ' in Γ such that $\Gamma' \subset SL(n,\mathbb{Z})$.

- (5) (Compact factor) Let L, H be Lie groups. Let Λ be a lattice in the Lie group L. Let $\varphi : L \to H$ be a continuous surjective homomorphism with a compact kernel. Show that $\varphi(\Lambda)$ is a lattice in H.
- (6) (Commensurator) Show that $SL_3(\mathbb{Q}) \subset Comm_{SL_3(\mathbb{R})}(SL_3(\mathbb{Z}))$.
- (7) (Restriction of Scalar) Let $\Gamma = \operatorname{SL}(2, \mathbb{Z}[\sqrt{2}])$ and $G = \operatorname{SL}(2, \mathbb{R}) \times \operatorname{SL}(2, \mathbb{R})$. We will show that Γ can be realized as an arithmetic group ("integer points") so that it is a lattice in G by Borel and Harish–Chandra's theorem. Let $k = \mathbb{Q}(\sqrt{2})$, $\mathcal{O} = \mathbb{Z}[\sqrt{2}]$ and $\Delta : k \to \mathbb{R}^2$ be $\Delta(x) = (x, \sigma(x))$ where σ is the Galois conjugation, $\sigma(a + b\sqrt{2}) = a b\sqrt{2}$ for $a, b \in \mathbb{Q}$. Prove the followings.
 - (a) $\Delta(\mathcal{O})$ is discrete in \mathbb{R}^2 . (This already suggests that Γ can be realized as a discrete subgroup in G using the embedding $\Sigma : \Gamma \to G$, $\Sigma(\gamma) = (\gamma, \sigma(\gamma))$.)
 - (b) Show that $\{(1,1), (\sqrt{2}, -\sqrt{2})\}$ is a \mathbb{Q} -basis of $\Delta(k)$. Find a \mathbb{Q} basis of $\Delta(k^2) = \{(v, \sigma(v)) : v \in k^2\}$. Let $\Delta(k^2) = V_{\mathbb{Q}}$. Note that $V_{\mathbb{Q}}$ is a \mathbb{Q} -form on \mathbb{R}^4 , that is, $V_{\mathbb{Q}}$ is a \mathbb{Q} -vector space and $V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R} = \mathbb{R}^4$. Also $\Delta(\mathcal{O}^2)$ can be thought as an "integer lattice" in $V_{\mathbb{Q}}$.
 - (c) Using the Q-basis of $\Delta(k^2)$ you found in (c), show that $\Sigma(\Gamma)$ can be written as a subgroup of $SL(4,\mathbb{Z})$.
 - (d) Let $Mat_{4\times 4}(\mathbb{R})_{\mathbb{Q}} = \{A \in Mat_{4\times 4}(\mathbb{R}) : A(V_{\mathbb{Q}}) = V_{\mathbb{Q}}\}$. Show that

$$Mat_{4\times 4}(\mathbb{R})_{\mathbb{Q}} = \left\{ \begin{bmatrix} A & B \\ \sigma(A) & \sigma(B) \end{bmatrix} : A, B \in Mat_{2\times 2}(k) \right\}.$$

- (e) As W = Mat_{4×4}(ℝ) is a 16 dimensional vector space, we can think about a polynomial f : W → W. We call that f is defined over Q with respect to a Q-form W_Q if f(W_Q) ⊂ W_Q where W_Q = Mat_{4×4}(ℝ)_Q is a Q-form of W induced by V_Q. Find a set of polynomials Q such that 1) for all f ∈ Q is defined over Q with respect to W_Q and 2) the common zero set G' of for all f ∈ Q is isomorphic to SL₂(ℝ) × SL₂(ℝ) ⊂ SL₄(ℝ).
- (f) Similarly, define $Mat_{4\times 4}(\mathbb{R})_{\mathbb{Z}} = \{A \in Mat_{4\times 4}(\mathbb{R})_{\mathbb{Q}} : A(\Delta(\mathcal{O}^2)) \subset \Delta(\mathcal{O}^2)\}$. Show that $Mat_{4\times 4}(\mathbb{R})_{\mathbb{Z}} \cap G'$ is $\Sigma(\Gamma)$. Therefore, Γ is arithmetic, especially, Γ is a lattice in G.

2.2. Kurt Vinhage.

- (1) Let $\Lambda < \mathbb{R}^n$ be a discrete subgroup. Prove that Λ is Zariski dense if and only if Λ is a lattice.
- (2) Let $A \in GL(n, \mathbb{R})$. We have a homomorphism $\varphi : \mathbb{Z} \to GL(n, \mathbb{R})$ that is defined by $\varphi(1) = A$. Show that the \mathbb{R} action on

$$\{(v,t): v \in \mathbb{R}^n, 0 \le t \le 1\}/(v,0) \sim (Av,1)$$

with r.[(v,t)] = [(v,r+t)] is equivalent to the \mathbb{R} action on

$$(\mathbb{R} \times \mathbb{R}^n)/\mathbb{Z}$$

with r.[(t, v)] = [(r + t, v)].

2.3. Nick Miller.

- (1) Show that the inclusion $SL_3(\mathbb{Q}) \subset Comm_{SL_3(\mathbb{R})}(SL_3(\mathbb{Z}))$ is proper, i.e., $SL_3(\mathbb{Q}) \neq Comm_{SL_3(\mathbb{R})}(SL_3(\mathbb{Z}))$. Does $PGL_3(\mathbb{Q})$ coincide with $Comm_{PGL_3(\mathbb{R})}(PGL_3(\mathbb{Z}))$?
- (2) Suppose you have semi simple \mathbb{Q} -group H (you can think about it as a subgroup of $\mathrm{SL}_n(\mathbb{R})$ such that there are finitely many polynomials (variables are matrix entries) with rational coefficients so that the intersection of zero sets is H) and a lattice $\Gamma < H(\mathbb{Q}) < H$ for which the image under the natural maps to $H(\mathbb{Q}_p)$ is bounded. Show that Γ is commensurable with $H(\mathbb{Z})$.
- (3) Let $G = SL(3, \mathbb{R})$ (more generally, simple Lie group). Let Γ be a lattice in G. Show that Γ has an infinite index in $Comm_G(\Gamma)$ if and only if $Comm_G(\Gamma)$ is dense in G.
- (4) Let H be a group and L be a subgroup of H. Show that $\operatorname{Aut}_H(H/L)$ is isomorphic to $N_H(L)/L$.

2.4. Amir Mohammadi.

(1) Construct irreducible cocompact lattice in $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$. Also, construct a reducible cocompact lattice in $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$. (Hint: $SL(2, \mathbb{R}) \times SL(2, \mathbb{R}) \simeq SO(2, 2)^{\circ}$)

3. Kakutani equivalence

3.1. Kurt Vinhage.

- (1) Let $T: (X, \mu) \to (X, \mu)$ be a probability measure preserving transformation, and $r: X \to \mathbb{R}_+$ be an L^1 -function. Show that the suspension space can be constructed by quotienting $X \times \mathbb{R}$ by the action of the transformation $\tilde{T}(x,t) = (T(x), t r(x))$.
 - (a) Show that both the vertical flow and \tilde{T} preserve the measure $\mu \times \text{Leb}$ on $X \times \mathbb{R}$.
 - (b) Show that $\mu \times \text{Leb}$ induces a finite measure on the suspension space which is invariant under the vertical flow.
 - (c) Find a formula for the total mass of the suspension space with respect to the invariant measure.
- (2) Let $T: (X, \mu) \to (X, \mu)$ be a probability measure preserving transformation, and $r_1, r_2: X \to \mathbb{R}_+$ be two L^1 -functions. Show that the suspensions with roofs r_1 and r_2 are Kakutani equivalent by finding an explicit equivalence. [*Hint*: The time change functions $\tau(x, t)$ will be piecewise linear!]
- (3) Let $T, X, \mu r_1$ and r_2 be as in the previous problem. If there exists an L^1 function $f: X \to \mathbb{R}$ such that $r_2(x) = r_1(x) + f(T(x)) f(x)$ for all $x \in X$, show the the suspession flows with roots r_1 and r_2 are measurably conjugate by finding an explicit conjugacy. [*Hint*: Let the segment above x "borrow" a segment of length f(T(x)) from the segment above T(x) and "lend" a segment of length f(x) to $T^{-1}(x)$]
- (4) Let $\varphi_t : (X, \mu) \to (X, \mu)$ and $\psi_t : (Y, \nu) \to (Y, \nu)$ be probability measure preserving flows, and assume that $H : X \to Y$ is a Kakutani equivalence such that $H_*\mu = \nu$. Show that H is a measurable isomorphism. [*Hint*: First show that if $\tau : \mathbb{R} \to \mathbb{R}$ is an increasing homeomorphism preserving Lebesgue and fixing 0, then $\tau = \mathrm{Id}_{\mathbb{R}}$]

3.2. Homin Lee.

(1) Let G_1 and G_2 be groups. Let X_1 and X_2 be G_1 and G_2 spaces, respectively. Let $T : G_1 \times X_1 \to X_1$ and $S : G_2 \times X_2 \to X_2$ be action maps. Assume that there is an orbit equivalence $H : X_1 \to X_2$ with respect to G_1 and G_2 actions. Define a map $\alpha : G_1 \times X_1 \to G_2$ as

$$\alpha(g, x) = h \iff H(T(g)(x)) = [S(h)](H(x)).$$

Show that α satisfies a cocycle equation, that is

$$\alpha(pq, x) = \alpha(p, T(q)(x))\alpha(q, x).$$

(2) Let G be a discrete group and X be a topological spee. Let $\rho_1 : G \times X \to X$ and $\rho_2 : G \times X \to X$ be 2 continuous actions on the space X by the group G_1 and G_2 respectively. Assume that ρ_1 and ρ_2 are orbit equivalent to each other. As above, we can define a cocycle $\alpha : G \times X \to G$ from the orbit equivalence. Show that ρ_1 and ρ_2 are topologically conjugate if and only if α is cohomologous with the identity map, that is there is a map $\varphi : X \to G$ such that $\alpha(g, x) = \varphi(\rho_1(g)(x))^{-1}g\varphi(x)$.

3.3. Daren Wei.

- (1) Let $p(t) = \sum_{k=0}^{d} a_k t^k$ be a polynomial of degree d. For every $\epsilon > 0$, show that there exists $C = C(d) \ge 1$ such that if $|p(t)| \le \epsilon$ for all $t \in [0, T]$, then $|a_k| < CT^{-k}\epsilon$ for all $k = 0, \ldots, d$. Conversely, show that if $|a_k| \le C^{-1}T^{-k}\epsilon$ for all k, then $|p(t)| < \epsilon$ for all $t \in [0, T]$.
- (2) Let G a connected group. Show that if H is a discrete normal subgroup of G, then H is contained in the center of G.
- (3) Let's define \bar{f} as follows.

Definition 3.1. If $w, w' \in \{1, 2, ..., m\}^n$, then

$$\bar{f}_n(w,w') = 1 - k/n$$

where k is the maximal integer for which we can find subsequences $i_1 < i_2 < \ldots < i_k$, $j_1 < j_2 < \ldots < j_k$ with $w(i_r) = w'(j_r)$ for $1 \leq r \leq k$.

- (a) Show \overline{f}_n defines a metric on $\{1, 2, \ldots, m\}^n$.
- (b) if w = 1212...12, i.e. *n* copies of 12, w' = 2121...21, i.e. *n* copies of 21, what is $\bar{f}_n(w, w')$?
- (c) if w is k copies of 123...m and w' is in the form k copies of 1, k copies of 2, ..., k copies of m, what is $\bar{f}_{mk}(w, w')$?
- (4) Suppose that T is an ergodic measure preserving transformation acting on (X, μ) and $A \subset X$ is a measurable subset. For every $x \in X$, let $r_A(x) = \min\{k \ge 1 : T^k x \in A\}$ and define T_A as

$$T_A x = T^{r_A(x)} x.$$

- (a) Show that $\int_A r_A(x) d\mu = 1$.
- (b) Show that T_A is ergodic with respect to measure $\mu_A(\cdot) = \frac{\mu(\cdot)}{\mu(A)}$.
- (c) If $A_1 \subset A_2$, show that $(T_{A_2})_{A_1} = T_{A_1}$.
- (5) Suppose that S is an ergodic measure preserving transformation on (Y, ν) and $h: Y \to \mathbb{Z}^+$ has finite integral. Let $Y^h = \{(x, i) : x \in Y, 1 \le i \le h(x)\}$ and define S^h as

$$S^{h}(x,i) = \begin{cases} (x,i+1), & \text{if } i+1 \le h(x); \\ (Sx,1), & \text{if } i+1 > h(x). \end{cases}$$

Moreover, let ν^h be the product measure of ν and Lebesgue measure on \mathbb{R} that normalized by $\int_Y h d\nu$.

- (a) Show that S^h is ergodic with respect to measure ν^h .
- (b) Suppose that $A \subset Y$ is a measurable subset, show that $(S_A)^{r_A}$ is measurable isomorphic to S.

4. Homogeneous dynamics

4.1. Osama Khalil.

(1) Let $G = SL(2, \mathbb{R})$, Show that

$$\pi: N^{-1} \times A \times N^+ \to G, \quad \pi(a, b, c) = abc$$

is a diffeomorphism near (id,id,id) onto its image where

$$N^{-} = \left\{ \begin{bmatrix} 1 & 0 \\ * & 0 \end{bmatrix} \right\}, \quad A = \left\{ \begin{bmatrix} e^{t} & 0 \\ 0 & e^{-t} \end{bmatrix} \right\}, \quad N^{+} = \left\{ \begin{bmatrix} 1 & * \\ 0 & 1 \end{bmatrix} \right\}.$$

4.2. Amir Mohammadi.

(1) Fix $0 \leq \delta < 1$. Show that there is $c(\delta) > 0$ such that for any t > 0 and $v \in \mathbb{R}^2 \setminus \{(0,0)\},\$

$$\frac{1}{2\pi} \int_0^{2\pi} \frac{d\theta}{||a_t r_\theta v||^{1+\delta}} \leqslant \frac{c(\delta)e^{-t(1-\delta)}}{||v||^{1+\delta}}$$

where $a_t = \text{diag}(e^{2t}, e^{-2t})$ and r_{θ} is

$$\begin{bmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}$$

(2) Let $\mathfrak{g} = \mathfrak{sl}_2(\mathbb{C})$. For every $0 < \alpha < 1$ there is $\beta = \min\{\alpha/2, (1-\alpha)/2\}$ such that

$$\int_0^1 \frac{dr}{||a_t u_r w||} < \frac{C e^{-\beta t}}{||w||^{\alpha}}$$

for all $\omega \in \mathfrak{g} \setminus \{0\}$.

5. (GENERAL) DYNAMICS

5.1. Osama Khalil.

(1) (Weyl's Theorem) Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ and denote by $R_{\alpha} : S^1 \to S^1$ the rotation by α . Prove that for every $x \in S^1$, the orbit of x under α is equidistributed, i.e., for every open set $E \subseteq S^1$,

$$\lim_{N \to \infty} \frac{\# \{ 0 \le n \le N - 1 : R^n_\alpha(x) \in E \}}{N} = \operatorname{Leb}(E).$$

This can be done in the following steps:

(a) Prove that it suffices to show that for every continuous function $f \in C(S^1)$,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} f(R^n_{\alpha}(x)) = \int_{S^1} f \, d\text{Leb.}$$
(5.1)

- (b) Use density of trig polynomials in $C(S^1)$ to show that it is enough to prove (5.1) for the functions $f(y) = e^{2\pi i k y}, k \in \mathbb{Z}.$
- (c) Prove (5.1) for $f_k(y)$ [Hint: geometric sums].

(2) Show that $h_{top}(R_{\alpha}) = 0$ for any $\alpha \in \mathbb{R}$.

(3) Let $f: S^1 \to S^1$ be an expanding map and μ be an invariant probability measure under f. Let $\varepsilon := \inf_x |f'(x)|/2$ and let Ξ be a finite measurable partition of S^1 such that each element of Ξ has diameter at most ε . Prove that Ξ realizes the metric entropy of μ , i.e. prove that

$$h_{\mu}(f) = \lim_{n \to \infty} \frac{\log H\left(\bigvee_{k=0}^{n-1} f^{-k}(\Xi)\right)}{n}.$$

Recall that for any partition \mathcal{P} , $H(\mathcal{P}) = -\sum_{P \in \mathcal{P}} \mu(P) \log \mu(P)$.

(4) (van der Corput's Trick) Prove that there is a constant $C \ge 1$ so that for every $N, H \ge 1$ and every sequence $(a_n)_n$ of complex numbers of magnitude at most 1, we have

$$\left|\frac{1}{N}\sum_{n=1}^{N}a_{n}\right| \leqslant \left(\frac{1}{H}\sum_{h=0}^{H-1}\frac{1}{N}\sum_{n=1}^{N}a_{n}a_{n+h}\right)^{1/2} + \frac{CH}{N}.$$

[Hint: Cauchy-Schwarz.]

(5) Let $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Prove that the sequence $(n^2 \alpha)_{n \ge 1}$ is equidistributed mod 1, i.e., for every open set $E \subseteq [0, 1)$,

$$\lim_{N \to \infty} \frac{\# \left\{ 0 \le n \le N - 1 : n^2 \alpha \mod 1 \in E \right\}}{N} = \operatorname{Leb}(E).$$

[Hint: Apply van der Corput's trick with $a_n = \exp(2\pi i k n^2 \alpha)$ for arbitrary fixed k then use Weyl's criterion (Weyl's Theorem).]

- (6) Show that $h_{top}(R_{\alpha}) = 0$ for any $\alpha \in \mathbb{R}$.
- (7) Let $f: S^1 \to S^1$ be an expanding map and μ be an invariant probability measure under f. Let $\varepsilon := \inf_x |f'(x)|/2$ and let Ξ be a finite measurable partition of S^1 such that each element of Ξ has diameter at most ε . Prove that Ξ realizes the metric entropy of μ , i.e. prove that

$$h_{\mu}(f) = \lim_{n \to \infty} \frac{H\left(\bigvee_{k=0}^{n-1} f^{-k}(\Xi)\right)}{n}.$$

Recall that for any partition \mathcal{P} , $H(\mathcal{P}) = -\sum_{P \in \mathcal{P}} \mu(P) \log \mu(P)$.

5.2. Solly Coles.

- (1) Prove irrational rotations are minimal.
- (2) Find a symbolic coding for the expanding map $E_m : \mathbb{S}^1 \to \mathbb{S}^1$, $E_m(x) = mx \pmod{1}$. Here $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$.
- (3) Describe the periodic orbits of $E_m(x)$ (notice that the growth rate as period goes to infinity is the topological entropy).
- (4) Show topological entropy is a (topological) conjugacy invariant.
- (5) Show that the definitions of entropy by separated sets and spanning sets are equal.
- (6) Calculate topological entropy of the cat map.
- (7) Show the cat map is transitive (or harder mixing).
- (8) Show Lebesgue is ergodic for E_m .
- (9) Show $\deg(f)$ is C^0 locally constant for f a smooth expanding map of the circle.
- (10) Show that the Lyapunov exponent $\lambda(f, x)$ is independent of base point x for expanding map f (up to measure 0).

5.3. Kurt Vinhage.

- (1) Find an expanding map f such that the function λ(x) = lim sup_{n→∞}(1/n) log [(fⁿ)'(x)] is nowhere continuous. (Hint: it is constant almost everywhere by Birkhoff ergodic theorem. Get it to be different at every periodic point.
- (2) Let f be an expanding map of the circle and μ be an f-invariant probability measure. Recall the metric d_n given by the maximal distance between the points along the orbit of two points up to time n-1. Given $0 < \epsilon < 1$ and n, let $N(\epsilon, n)$ denote the minimal number of ϵ -balls in the metric d_n needed to cover a Borel set of measure at least 1/2. Prove that the following special case of a result of Anatoly Katok which says that the metric entropy $h_{\mu}(f)$ is equal to

$$\lim_{\epsilon \to 0} \limsup_{n \to \infty} (1/n) \log N(\epsilon, n)$$

References

 $[{\rm Mor15}]$ D. W. Morris, Introduction to arithmetic groups, Deductive Press, 2015. MR3307755 $\uparrow 1$

•