PROBLEM SETS
NORTHWESTERN RTG SUMMER SCHOOL 2023

1. INVARIANT RANDOM SUBGROUP

1.1. Raz Slutsky.

(1) Let G be a locally compact second countable group. Prove that Sub(G) is a compact space *.

(2) Let T' be a discrete countable group. Consider the space 2'' with the product topology. Show that
the subset of subgroups inside 2! is closed, and that it is homeomorphic to Sub(T).

(3) Let {T',;} be a sequence of subgroups, and suppose that there exists U < G, an identity neighbourhood,
such that I';, n U = {id} for every I';,. Suppose that I',, — H. Show that H is discrete. Show that if
all the I',, are torsion-free, then so is H.

(4) Let G be a finitely generated group. Prove that every finite-index subgroup of G is an isolated point
in Sub(G).

(5) Show that if G surjects on S!, then G is not an isolated point in Sub(G).

(6) Show that if G acts on (X, u) ergodically, then the associated invariant random subgroup is also
ergodic.

(7) Fix a left-invariant metric d on G/K, a symmetric space. Show that the following sets form a basis

of open sets around {e} in Sub(G).
Ur = {H € Sub(G) |[#h e H\{e} ; d([e] hle]) < R}

where [e] is the projection of e € G to G/K. What does this say about a sequence of IRS’s p,, which
converge to (.37 What does it say about a sequence of lattice IRS’s, ur, which converge to d¢.,7?
1.2. Kurt Vinhage.
(1) Show that Sub(R™) is path connected.

1.3. Mikolaj Fraczyk.
(1) Let G be a simple Lie group. If T" is a lattice and I” is a normal subgroup of T', then I is confined.

2. SUPERRIGIDITY AND ARITHMETICITY

2.1. Homin Lee. Let I" be a lattice in G. (Here, G will be always a simple non-compact “Lie group”.)
Reference is [Morl15].

(1) Prove that SLo(Z) is a lattice in SLa(R). (Hint: Use the hyperbolic plane.)

(2) (Unimodular group) Let p be a left Haar measure on G. Define a measure fi as fi(A) = u(A~1) for any

measurable set A. Show that [1 is a right Haar measure. Also, show that there is a homomorphism
0 : G — R* such that
u(gAg™) = d(g)u(A)
for all measurable set A in G. Conclude that G is unimodular, that is the left Haar measure is also
the right Haar measure.
1Hint: First show that the space of closed subsets of a topological space is compact (using the Alexander sub-basis theorem).

Then, show that the space of closed subgroups is a closed subset of it.
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(3) (A property of higher rank)Let G = SL(3,R). Find subgroups L, ..., L, in G such that

(b) L; n A is non-compact for all i = 1,...,r, and
(c) {ae A:al =la, Vle L;}isnon-compact foralli=1,...,r.
Convince yourself that it is not true for rank 1 groups.
(4) Let T be a subgroup in SL(n, Q). Assume that

I' c {A = (ai;)i,; € Mat,xn(Q) : for all 4, j, the denominator of a; ; < N}

for some N. Show that there is a finite index subgroup I'V in I" such that IV < SL(n, Z).

(5) (Compact factor) Let L, H be Lie groups. Let A be a lattice in the Lie group L. Let ¢ : L — H be
a continuous surjective homomorphism with a compact kernel. Show that ¢(A) is a lattice in H.

(6) (Commensurator) Show that SL3(Q) = Commgy,, g)(SL3(Z)).

(7) (Restriction of Scalar) Let I' = SL(2,Z[v/2]) and G = SL(2,R) x SL(2,R). We will show that T
can be realized as an arithmetic group (“integer points”) so that it is a lattice in G by Borel and
Harish-Chandra’s theorem. Let k = Q(v/2), O = Z[v/2] and A : k — R? be A(z) = (x,0(z)) where
o is the Galois conjugation, o(a + by/2) = a — by/2 for a,b € Q. Prove the followings.

(a) A(O) is discrete in R%. (This already suggests that I' can be realized as a discrete subgroup in
G using the embedding ¥ : T' — G, X(y) = (v,0(%)).)

(b) Show that {(1,1), (v/2,—+/2)} is a Q-basis of A(k). Find a Q basis of A(k?) = {(v,0(v)) : v e
k%}. Let A(k?) = Vg. Note that Vg is a Q-form on R%, that is, Vg is a Q-vector space and
Vo ®g R = R%. Also A(O?) can be thought as an “integer lattice” in Vg.

(c) Using the Q-basis of A(k?) you found in (c), show that X(T') can be written as a subgroup of
SL(4,Z).

(d) Let Matyxa(R)g = {A € Matsxa(R) : A(Vg) = V}. Show that

A B

Mataxa(R)e = { o(4) o(B)

:A,Be Matgxg(ki)} .

(e) As W = Matyw4(R) is a 16 dimensional vector space, we can think about a polynomial f :
W — W. We call that f is defined over Q with respect to a Q-form Wy if f(Wg) € Wy where
Wgo = Matsxa(R)g is a Q-form of W induced by V. Find a set of polynomials @ such that
1) for all f € @ is defined over Q with respect to Wy and 2) the common zero set G’ of for all
f € @ is isomorphic to SLa(R) x SLa(R) < SL4(R).

(f) Similarly, define Matyxs(R)z = {A € Matsxa(R)g : A(A(O?)) = A(O?)}. Show that Matsx4(R)zN
G’ is X(T'). Therefore, T is arithmetic, especially, I' is a lattice in G.

2.2. Kurt Vinhage.

(1) Let A < R™ be a discrete subgroup. Prove that A is Zariski dense if and only if A is a lattice.
(2) Let A € GL(n,R). We have a homomorphism ¢ : Z — GL(n,R) that is defined by ¢(1) = A. Show
that the R action on
{(v,t) :veR™",0 <t <1}/(v,0) ~ (Av, 1)

with r.[(v,t)] = [(v,r + t)] is equivalent to the R action on
(R x R™)/Z

with r.[(t,v)] = [(r + ¢, v)].
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2.3. Nick Miller.

(1) Show that the inclusion SL3(Q) = Commgy,, (r)(SL3(Z)) is proper, i.e., SL3(Q) # Commgy,, (&) (SL3(Z)).
Does PGL3(Q) coincide with Commpgr,, &) (PGL3(Z))?

(2) Suppose you have semi simple Q-group H (you can think about it as a subgroup of SL,(R) such
that there are finitely many polynomials (variables are matrix entries) with rational coefficients so
that the intersection of zero sets is H) and a lattice I' < H(Q) < H for which the image under the
natural maps to H(Q,) is bounded. Show that I' is commensurable with H(Z).

(3) Let G = SL(3,R) (more generally, simple Lie group). Let I" be a lattice in G. Show that I" has an
infinite index in Comme(T") if and only if Comme(T") is dense in G.

(4) Let H be a group and L be a subgroup of H. Show that Auty(H/L) is isomorphic to Ny (L)/L.

2.4. Amir Mohammadi.

(1) Construct irreducible cocompact lattice in SL(2, R) x SL(2,R). Also, construct a reducible cocompact
lattice in SL(2,R) x SL(2,R). (Hint: SL(2,R) x SL(2,R) ~ SO(2,2)°)

3. KAKUTANI EQUIVALENCE

3.1. Kurt Vinhage.

(1) Let T: (X, ) — (X, p) be a probability measure preserving transformation, and r : X — R be an
L'-function. Show that the suspension space can be constructed by quotienting X x R by the action
of the transformation T'(z,t) = (T(z),t — r(z)).

(a) Show that both the vertical flow and T preserve the measure p x Leb on X x R.

(b) Show that u x Leb induces a finite measure on the suspension space which is invariant under
the vertical flow.

(¢) Find a formula for the total mass of the suspension space with respect to the invariant measure.

(2) Let T: (X, ) — (X, u) be a probability measure preserving transformation, and r1,75 : X — Ry be
two L'-functions. Show that the suspensions with roofs r; and ry are Kakutani equivalent by finding
an explicit equivalence. [Hint: The time change functions 7(x,t) will be piecewise linear!]

(3) Let T, X, p r1 and ro be as in the previous problem. If there exists an L' function f : X — R such
that ro(x) = ri(x) + f(T(x)) — f(z) for all x € X, show the the suspesion flows with roofs r; and 7,
are measurably conjugate by finding an explicit conjugacy. [Hint: Let the segment above x “borrow”
a segment of length f(7'(x)) from the segment above T'(z) and ”lend” a segment of length f(z) to
()

(4) Let ¢ : (X, 1) — (X, p) and ¢ : (Y,v) — (Y,v) be probability measure preserving flows, and
assume that H : X — Y is a Kakutani equivalence such that H,pu = v. Show that H is a measurable
isomorphism. [Hint: First show that if 7 : R — R is an increasing homeomorphism preserving

Lebesgue and fixing 0, then 7 = Idg]

3.2. Homin Lee.
(1) Let G and G2 be groups. Let X; and X3 be G7 and G2 spaces, respectively. Let T : G1 x X1 — X3

and S : Go x Xo — X5 be action maps. Assume that there is an orbit equivalence H : X7 — Xy

with respect to G; and G5 actions. Define a map o : G1 x X; — G5 as

a(g,x) =h < H(T(g)(x)) = [S(h)](H (x))-
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Show that a satisfies a cocycle equation, that is

a(pg,z) = a(p,T(q)(z))o(q, x).

Let G be a discrete group and X be a topological spce. Let p;1 : G x X - X and po : G x X - X
be 2 continuous actions on the space X by the group G; and G respectively. Assume that p; and
po are orbit equivalent to each other. As above, we can define a cocycle a : G x X — G from the
orbit equivalence. Show that p; and ps are topologically conjugate if and only if « is cohomologous

with the identity map, that is there is a map ¢ : X — G such that a(g,z) = ¢(p1(9)(x)) tge(z).

3.3. Daren Wei.

(1)

(2)

Let p(t) = ZZ:O ait® be a polynomial of degree d. For every e > 0, show that there exists C' =
C(d) = 1 such that if [p(t)| < € for all t € [0,T], then |ax| < CT%e¢ for all k = 0,...,d. Conversely,
show that if |ay| < C~'T~%¢ for all k, then |p(t)| < € for all t € [0, T].

Let G a connected group. Show that if H is a discrete normal subgroup of G, then H is contained
in the center of G.

Let’s define f as follows.

Definition 3.1. If w,w’ € {1,2,...,m}™, then
frn(w,w') =1—k/n

where k is the maximal integer for which we can find subsequences i1 < is < ... < ig, j1 < jJo <

oo < gk with w(i,) = w'(j,) for 1 <r < k.

(a) Show f, defines a metric on {1,2,...,m}™.
(b) if w = 1212...12, i.e. n copies of 12, w’ = 2121...21, i.e. n copies of 21, what is f, (w,w’)?
(c) if w is k copies of 123...m and w' is in the form k copies of 1, k copies of 2, ..., k copies of m,

what is fp(w, w’)?
Suppose that T is an ergodic measure preserving transformation acting on (X, u) and A ¢ X is a

measurable subset. For every z € X, let 74(x) = min{k > 1: T*x € A} and define T4 as
Tz =T A®) g,

(a) Show that §, ra(z)du = 1.

(b) Show that T, is ergodic with respect to measure py(-) = R

(c) If Ay © Ay, show that (Ta,)a, = Ta,.
Suppose that S is an ergodic measure preserving transformation on (Y,v) and h: Y — Z™ has finite
integral. Let Y = {(z,i) : z € Y,1 <i < h(x)} and define S" as

Sh(;v,z')—{ (z,i+1), ifi+1<h(x);

(Sz, 1), if i +1> h(z).

Moreover, let " be the product measure of v and Lebesgue measure on R that normalized by SY hdv.
(a) Show that S” is ergodic with respect to measure v/".

(b) Suppose that A < Y is a measurable subset, show that (S4)" is measurable isomorphic to S.

4. HOMOGENEOUS DYNAMICS

4.1. Osama Khalil.
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(1) Let G = SL(2,R), Show that
7:N'xAx Nt -G, n(a,b,c)=abc

is a diffeomorphism near (id,id,id) onto its image where

S| | M R [

4.2. Amir Mohammadi.
(1) Fix 0 < J < 1. Show that there is ¢(§) > 0 such that for any ¢ > 0 and v € R?\{(0,0)},

1 JQW do c(8)e~t(1=9)

o ag +0 v
2m Jo  lasrov|[*+° o] +0

cosf —sinf
sinf  cosf
(2) Let g = sl3(C). For every 0 < o < 1 there is 8 = min{«/2, (1 — «)/2} such that
Jl dr Ce bt

< (0%
o lawurwl|| — wl|

where a; = diag(e?',e=%) and 7y is

for all w € g\{0}.

5. (GENERAL) DYNAMICS

5.1. Osama Khalil.
(1) (Weyl’s Theorem) Let o € R\Q and denote by R, : S' — S! the rotation by a. Prove that for every
x € S, the orbit of x under « is equidistributed, i.e., for every open set £ < S,

iy #OSn<N-1:Riw)eE} _
N—0 N

Leb(E).
This can be done in the following steps:
(a) Prove that it suffices to show that for every continuous function f e C(S?),

. 1 N—-1 . B
lim — T;o f(R(z)) = Ll f dLeb. (5.1)

N—ow N

(b) Use density of trig polynomials in C'(S*) to show that it is enough to prove (5.1) for the functions
fly) =¥ ke Z.
(¢) Prove (5.1) for fi(y) [Hint: geometric sums].
(2) Show that hypp(Re) =0 for any a € R.
(3) Let f : S' — S! be an expanding map and g be an invariant probability measure under f. Let
g :=inf, |f(z)|/2 and let = be a finite measurable partition of S! such that each element of = has

diameter at most €. Prove that = realizes the metric entropy of u, i.e. prove that

) 1 B (Viss s @)

n—o n

Recall that for any partition P, H(P) = — >} pcp p(P) log pu(P).
(4) (van der Corput’s Trick) Prove that there is a constant C' > 1 so that for every N, H > 1 and every

sequence (ay, ), of complex numbers of magnitude at most 1, we have
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_ 1/2
1 JEV: 12 3 . CH
< 2,0 < |5 D, v ), @nan —
N n=1 H h=0 N n=1 o N

[Hint: Cauchy-Schwarz.
(5) Let a € R\Q. Prove that the sequence (n’a),>; is equidistributed mod 1, i.e., for every open set
Ec0,1),
i #{O<n<N71:n2a modleE}
Nl—r>noo N

— Leb(E).

[Hint: Apply van der Corput’s trick with a, = exp(2mikn2a) for arbitrary fixed k& then use Weyl’s
criterion (Weyl’s Theorem).]

(6) Show that hypp(Re) =0 for any a € R.

(7) Let f : S' — S! be an expanding map and g be an invariant probability measure under f. Let
e := inf, |f’(z)|/2 and let Z be a finite measurable partition of S such that each element of = has

diameter at most . Prove that = realizes the metric entropy of yu, i.e. prove that

) — (Vis f"“(E)).

n—o0 n

Recall that for any partition P, H(P) = — 3} pcp p(P) log pu(P).

5.2. Solly Coles.

(1) Prove irrational rotations are minimal.

(2) Find a symbolic coding for the expanding map E,, : St — S!, E,,(z) = mz(mod1). Here S' = R/Z.
(3) Describe the periodic orbits of E,,(x) (notice that the growth rate as period goes to infinity is the
topological entropy).

Show topological entropy is a (topological) conjugacy invariant.

Show that the definitions of entropy by separated sets and spanning sets are equal.

Calculate topological entropy of the cat map.

)
)
)
7) Show the cat map is transitive (or harder - mixing).
) Show Lebesgue is ergodic for E,,.

) Show deg(f) is CY locally constant for f a smooth expanding map of the circle.

) Show that the Lyapunov exponent A(f,z) is independent of base point « for expanding map f (up

to measure 0).

5.3. Kurt Vinhage.
(1) Find an expanding map f such that the function A(z) = limsup,,_,,(1/n)log[(f™)'(x)] is nowhere

continuous. (Hint: it is constant almost everywhere by Birkhoff ergodic theorem. Get it to be
different at every periodic point.

(2) Let f be an expanding map of the circle and p be an f-invariant probability measure. Recall the
metric d,, given by the maximal distance between the points along the orbit of two points up to time
n—1. Given 0 < € < 1 and n, let N(e,n) denote the minimal number of e-balls in the metric d,,
needed to cover a Borel set of measure at least 1/2. Prove that the following special case of a result
of Anatoly Katok which says that the metric entropy h,(f) is equal to

lgn lim sup(1/n)log N (¢, n)

n—ao0
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