
PROBLEM SETS
NORTHWESTERN RTG SUMMER SCHOOL 2023

1. Invariant Random Subgroup

1.1. Raz Slutsky.
(1) Let G be a locally compact second countable group. Prove that SubpGq is a compact space 1.
(2) Let Γ be a discrete countable group. Consider the space 2Γ with the product topology. Show that

the subset of subgroups inside 2Γ is closed, and that it is homeomorphic to SubpΓq.
(3) Let tΓnu be a sequence of subgroups, and suppose that there exists U Ă G, an identity neighbourhood,

such that Γn XU “ tidu for every Γn. Suppose that Γn Ñ H. Show that H is discrete. Show that if
all the Γn are torsion-free, then so is H.

(4) Let G be a finitely generated group. Prove that every finite-index subgroup of G is an isolated point
in SubpGq.

(5) Show that if G surjects on S1, then G is not an isolated point in SubpGq.
(6) Show that if G acts on pX,µq ergodically, then the associated invariant random subgroup is also

ergodic.
(7) Fix a left-invariant metric d on G{K, a symmetric space. Show that the following sets form a basis

of open sets around teu in SubpGq.

UR “ tH P SubpGq |∄h P Hzteu ; dpres, hresq ď Ru

where res is the projection of e P G to G{K. What does this say about a sequence of IRS’s µn which
converge to δteu? What does it say about a sequence of lattice IRS’s, µΓn which converge to δteu?

1.2. Kurt Vinhage.
(1) Show that SubpRnq is path connected.

1.3. Mikolaj Fraczyk.
(1) Let G be a simple Lie group. If Γ is a lattice and Γ1 is a normal subgroup of Γ, then Γ1 is confined.

2. Superrigidity and Arithmeticity

2.1. Homin Lee. Let Γ be a lattice in G. (Here, G will be always a simple non-compact “Lie group”.)
Reference is [Mor15].

(1) Prove that SL2pZq is a lattice in SL2pRq. (Hint: Use the hyperbolic plane.)
(2) (Unimodular group) Let µ be a left Haar measure on G. Define a measure rµ as rµpAq “ µpA´1q for any

measurable set A. Show that rµ is a right Haar measure. Also, show that there is a homomorphism
δ : G Ñ R` such that

µpgAg´1q “ δpgqµpAq

for all measurable set A in G. Conclude that G is unimodular, that is the left Haar measure is also
the right Haar measure.

1Hint: First show that the space of closed subsets of a topological space is compact (using the Alexander sub-basis theorem).
Then, show that the space of closed subgroups is a closed subset of it.
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(3) (A property of higher rank)Let G “ SLp3,Rq. Find subgroups L1, . . . , Lr in G such that
(a) G “ Lr ¨ ¨ ¨ ¨ ¨ L1,
(b) Li XA is non-compact for all i “ 1, . . . , r, and
(c) ta P A : al “ la, @l P Liu is non-compact for all i “ 1, . . . , r.

Convince yourself that it is not true for rank 1 groups.
(4) Let Γ be a subgroup in SLpn,Qq. Assume that

Γ Ă tA “ pai,jqi,j P MatnˆnpQq : for all i, j, the denominator of ai,j ă Nu

for some N . Show that there is a finite index subgroup Γ1 in Γ such that Γ1 Ă SLpn,Zq.
(5) (Compact factor) Let L,H be Lie groups. Let Λ be a lattice in the Lie group L. Let φ : L Ñ H be

a continuous surjective homomorphism with a compact kernel. Show that φpΛq is a lattice in H.
(6) (Commensurator) Show that SL3pQq Ă CommSL3pRqpSL3pZqq.
(7) (Restriction of Scalar) Let Γ “ SLp2,Zr

?
2sq and G “ SLp2,Rq ˆ SLp2,Rq. We will show that Γ

can be realized as an arithmetic group (“integer points”) so that it is a lattice in G by Borel and
Harish–Chandra’s theorem. Let k “ Qp

?
2q, O “ Zr

?
2s and ∆ : k Ñ R2 be ∆pxq “ px, σpxqq where

σ is the Galois conjugation, σpa` b
?

2q “ a´ b
?

2 for a, b P Q. Prove the followings.
(a) ∆pOq is discrete in R2. (This already suggests that Γ can be realized as a discrete subgroup in

G using the embedding Σ : Γ Ñ G, Σpγq “ pγ, σpγqq.)
(b) Show that tp1, 1q, p

?
2,´

?
2qu is a Q-basis of ∆pkq. Find a Q basis of ∆pk2q “ tpv, σpvqq : v P

k2u. Let ∆pk2q “ VQ. Note that VQ is a Q-form on R4, that is, VQ is a Q-vector space and
VQ bQ R “ R4. Also ∆pO2q can be thought as an “integer lattice” in VQ.

(c) Using the Q-basis of ∆pk2q you found in (c), show that ΣpΓq can be written as a subgroup of
SLp4,Zq.

(d) Let Mat4ˆ4pRqQ “ tA P Mat4ˆ4pRq : ApVQq “ VQu. Show that

Mat4ˆ4pRqQ “

#«

A B

σpAq σpBq

ff

: A,B P Mat2ˆ2pkq

+

.

(e) As W “ Mat4ˆ4pRq is a 16 dimensional vector space, we can think about a polynomial f :
W Ñ W . We call that f is defined over Q with respect to a Q-form WQ if fpWQq Ă WQ where
WQ “ Mat4ˆ4pRqQ is a Q-form of W induced by VQ. Find a set of polynomials Q such that
1) for all f P Q is defined over Q with respect to WQ and 2) the common zero set G1 of for all
f P Q is isomorphic to SL2pRq ˆ SL2pRq Ă SL4pRq.

(f) Similarly, defineMat4ˆ4pRqZ “ tA P Mat4ˆ4pRqQ : Ap∆pO2qq Ă ∆pO2qu. Show thatMat4ˆ4pRqZX

G1 is ΣpΓq. Therefore, Γ is arithmetic, especially, Γ is a lattice in G.

2.2. Kurt Vinhage.

(1) Let Λ ă Rn be a discrete subgroup. Prove that Λ is Zariski dense if and only if Λ is a lattice.
(2) Let A P GLpn,Rq. We have a homomorphism φ : Z Ñ GLpn,Rq that is defined by φp1q “ A. Show

that the R action on
tpv, tq : v P Rn, 0 ď t ď 1u{pv, 0q „ pAv, 1q

with r.rpv, tqs “ rpv, r ` tqs is equivalent to the R action on

pR ˆ Rnq{Z

with r.rpt, vqs “ rpr ` t, vqs.
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2.3. Nick Miller.

(1) Show that the inclusion SL3pQq Ă CommSL3pRqpSL3pZqq is proper, i.e., SL3pQq ‰ CommSL3pRqpSL3pZqq.
Does PGL3pQq coincide with CommPGL3pRqpPGL3pZqq?

(2) Suppose you have semi simple Q-group H (you can think about it as a subgroup of SLnpRq such
that there are finitely many polynomials (variables are matrix entries) with rational coefficients so
that the intersection of zero sets is H) and a lattice Γ ă HpQq ă H for which the image under the
natural maps to HpQpq is bounded. Show that Γ is commensurable with HpZq.

(3) Let G “ SLp3,Rq (more generally, simple Lie group). Let Γ be a lattice in G. Show that Γ has an
infinite index in CommGpΓq if and only if CommGpΓq is dense in G.

(4) Let H be a group and L be a subgroup of H. Show that AutHpH{Lq is isomorphic to NHpLq{L.

2.4. Amir Mohammadi.

(1) Construct irreducible cocompact lattice in SLp2,RqˆSLp2,Rq. Also, construct a reducible cocompact
lattice in SLp2,Rq ˆ SLp2,Rq. (Hint: SLp2,Rq ˆ SLp2,Rq » SOp2, 2q˝)

3. Kakutani equivalence

3.1. Kurt Vinhage.

(1) Let T : pX,µq Ñ pX,µq be a probability measure preserving transformation, and r : X Ñ R` be an
L1-function. Show that the suspension space can be constructed by quotienting X ˆR by the action
of the transformation T̃ px, tq “ pT pxq, t´ rpxqq.
(a) Show that both the vertical flow and T̃ preserve the measure µˆ Leb on X ˆ R.
(b) Show that µ ˆ Leb induces a finite measure on the suspension space which is invariant under

the vertical flow.
(c) Find a formula for the total mass of the suspension space with respect to the invariant measure.

(2) Let T : pX,µq Ñ pX,µq be a probability measure preserving transformation, and r1, r2 : X Ñ R` be
two L1-functions. Show that the suspensions with roofs r1 and r2 are Kakutani equivalent by finding
an explicit equivalence. [Hint: The time change functions τpx, tq will be piecewise linear!]

(3) Let T , X, µ r1 and r2 be as in the previous problem. If there exists an L1 function f : X Ñ R such
that r2pxq “ r1pxq ` fpT pxqq ´ fpxq for all x P X, show the the suspesion flows with roofs r1 and r2

are measurably conjugate by finding an explicit conjugacy. [Hint: Let the segment above x “borrow”
a segment of length fpT pxqq from the segment above T pxq and ”lend” a segment of length fpxq to
T´1pxq]

(4) Let φt : pX,µq Ñ pX,µq and ψt : pY, νq Ñ pY, νq be probability measure preserving flows, and
assume that H : X Ñ Y is a Kakutani equivalence such that H˚µ “ ν. Show that H is a measurable
isomorphism. [Hint: First show that if τ : R Ñ R is an increasing homeomorphism preserving
Lebesgue and fixing 0, then τ “ IdR]

3.2. Homin Lee.

(1) Let G1 and G2 be groups. Let X1 and X2 be G1 and G2 spaces, respectively. Let T : G1 ˆX1 Ñ X1

and S : G2 ˆ X2 Ñ X2 be action maps. Assume that there is an orbit equivalence H : X1 Ñ X2

with respect to G1 and G2 actions. Define a map α : G1 ˆX1 Ñ G2 as

αpg, xq “ h ðñ HpT pgqpxqq “ rSphqspHpxqq.
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Show that α satisfies a cocycle equation, that is

αppq, xq “ αpp, T pqqpxqqαpq, xq.

(2) Let G be a discrete group and X be a topological spce. Let ρ1 : G ˆ X Ñ X and ρ2 : G ˆ X Ñ X

be 2 continuous actions on the space X by the group G1 and G2 respectively. Assume that ρ1 and
ρ2 are orbit equivalent to each other. As above, we can define a cocycle α : G ˆ X Ñ G from the
orbit equivalence. Show that ρ1 and ρ2 are topologically conjugate if and only if α is cohomologous
with the identity map, that is there is a map φ : X Ñ G such that αpg, xq “ φpρ1pgqpxqq´1gφpxq.

3.3. Daren Wei.

(1) Let pptq “
řd

k“0 akt
k be a polynomial of degree d. For every ϵ ą 0, show that there exists C “

Cpdq ě 1 such that if |pptq| ď ϵ for all t P r0, T s, then |ak| ă CT´kϵ for all k “ 0, . . . , d. Conversely,
show that if |ak| ď C´1T´kϵ for all k, then |pptq| ă ϵ for all t P r0, T s.

(2) Let G a connected group. Show that if H is a discrete normal subgroup of G, then H is contained
in the center of G.

(3) Let’s define f̄ as follows.

Definition 3.1. If w,w1 P t1, 2, . . . ,mun, then

f̄npw,w1q “ 1 ´ k{n

where k is the maximal integer for which we can find subsequences i1 ă i2 ă . . . ă ik, j1 ă j2 ă

. . . ă jk with wpirq “ w1pjrq for 1 ď r ď k.

(a) Show f̄n defines a metric on t1, 2, . . . ,mun.
(b) if w “ 1212 . . . 12, i.e. n copies of 12, w1 “ 2121 . . . 21, i.e. n copies of 21, what is f̄npw,w1q?
(c) if w is k copies of 123 . . .m and w1 is in the form k copies of 1, k copies of 2, . . ., k copies of m,

what is f̄mkpw,w1q?
(4) Suppose that T is an ergodic measure preserving transformation acting on pX,µq and A Ă X is a

measurable subset. For every x P X, let rApxq “ mintk ě 1 : T kx P Au and define TA as

TAx “ T rApxqx.

(a) Show that
ş

A
rApxqdµ “ 1.

(b) Show that TA is ergodic with respect to measure µAp¨q “
µp¨q

µpAq
.

(c) If A1 Ă A2, show that pTA2 qA1 “ TA1 .
(5) Suppose that S is an ergodic measure preserving transformation on pY, νq and h : Y Ñ Z` has finite

integral. Let Y h “ tpx, iq : x P Y, 1 ď i ď hpxqu and define Sh as

Shpx, iq “

#

px, i` 1q, if i` 1 ď hpxq;
pSx, 1q, if i` 1 ą hpxq.

Moreover, let νh be the product measure of ν and Lebesgue measure on R that normalized by
ş

Y
hdν.

(a) Show that Sh is ergodic with respect to measure νh.
(b) Suppose that A Ă Y is a measurable subset, show that pSAqrA is measurable isomorphic to S.

4. Homogeneous dynamics

4.1. Osama Khalil.
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(1) Let G “ SLp2,Rq, Show that

π : N´1 ˆAˆN` Ñ G, πpa, b, cq “ abc

is a diffeomorphism near pid,id,idq onto its image where

N´ “

#«

1 0
˚ 0

ff+

, A “

#«

et 0
0 e´t

ff+

, N` “

#«

1 ˚

0 1

ff+

.

4.2. Amir Mohammadi.

(1) Fix 0 ď δ ă 1. Show that there is cpδq ą 0 such that for any t ą 0 and v P R2ztp0, 0qu,

1
2π

ż 2π

0

dθ

||atrθv||1`δ
ď
cpδqe´tp1´δq

||v||1`δ

where at “ diagpe2t, e´2tq and rθ is
«

cos θ ´ sin θ
sin θ cos θ

ff

(2) Let g “ sl2pCq. For every 0 ă α ă 1 there is β “ mintα{2, p1 ´ αq{2u such that
ż 1

0

dr

||aturw||
ă
Ce´βt

||w||α

for all ω P gzt0u.

5. (General) Dynamics

5.1. Osama Khalil.

(1) (Weyl’s Theorem) Let α P RzQ and denote by Rα : S1 Ñ S1 the rotation by α. Prove that for every
x P S1, the orbit of x under α is equidistributed, i.e., for every open set E Ď S1,

lim
NÑ8

# t0 ď n ď N ´ 1 : Rn
αpxq P Eu

N
“ LebpEq.

This can be done in the following steps:
(a) Prove that it suffices to show that for every continuous function f P CpS1q,

lim
NÑ8

1
N

N´1
ÿ

n“0
fpRn

αpxqq “

ż

S1
f dLeb. (5.1)

(b) Use density of trig polynomials in CpS1q to show that it is enough to prove (5.1) for the functions
fpyq “ e2πiky, k P Z.

(c) Prove (5.1) for fkpyq [Hint: geometric sums].
(2) Show that htoppRαq “ 0 for any α P R.
(3) Let f : S1 Ñ S1 be an expanding map and µ be an invariant probability measure under f . Let

ε :“ infx |f 1pxq|{2 and let Ξ be a finite measurable partition of S1 such that each element of Ξ has
diameter at most ε. Prove that Ξ realizes the metric entropy of µ, i.e. prove that

hµpfq “ lim
nÑ8

logH
´

Žn´1
k“0 f

´kpΞq

¯

n
.

Recall that for any partition P, HpPq “ ´
ř

P PP µpP q logµpP q.
(4) (van der Corput’s Trick) Prove that there is a constant C ě 1 so that for every N,H ě 1 and every

sequence panqn of complex numbers of magnitude at most 1, we have
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ˇ

ˇ

ˇ

ˇ

ˇ

1
N

N
ÿ

n“1
an

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

1
H

H´1
ÿ

h“0

1
N

N
ÿ

n“1
anan`h

¸1{2

`
CH

N
.

[Hint: Cauchy-Schwarz.]
(5) Let α P RzQ. Prove that the sequence pn2αqně1 is equidistributed mod 1, i.e., for every open set

E Ď r0, 1q,

lim
NÑ8

#
␣

0 ď n ď N ´ 1 : n2α mod 1 P E
(

N
“ LebpEq.

[Hint: Apply van der Corput’s trick with an “ expp2πikn2αq for arbitrary fixed k then use Weyl’s
criterion (Weyl’s Theorem).]

(6) Show that htoppRαq “ 0 for any α P R.
(7) Let f : S1 Ñ S1 be an expanding map and µ be an invariant probability measure under f . Let

ε :“ infx |f 1pxq|{2 and let Ξ be a finite measurable partition of S1 such that each element of Ξ has
diameter at most ε. Prove that Ξ realizes the metric entropy of µ, i.e. prove that

hµpfq “ lim
nÑ8

H
´

Žn´1
k“0 f

´kpΞq

¯

n
.

Recall that for any partition P, HpPq “ ´
ř

P PP µpP q logµpP q.

5.2. Solly Coles.

(1) Prove irrational rotations are minimal.
(2) Find a symbolic coding for the expanding map Em : S1 Ñ S1, Empxq “ mxpmod1q. Here S1 “ R{Z.
(3) Describe the periodic orbits of Empxq (notice that the growth rate as period goes to infinity is the

topological entropy).
(4) Show topological entropy is a (topological) conjugacy invariant.
(5) Show that the definitions of entropy by separated sets and spanning sets are equal.
(6) Calculate topological entropy of the cat map.
(7) Show the cat map is transitive (or harder - mixing).
(8) Show Lebesgue is ergodic for Em.
(9) Show degpfq is C0 locally constant for f a smooth expanding map of the circle.

(10) Show that the Lyapunov exponent λpf, xq is independent of base point x for expanding map f (up
to measure 0).

5.3. Kurt Vinhage.

(1) Find an expanding map f such that the function λpxq “ lim supnÑ8p1{nq log rpfnq1pxqs is nowhere
continuous. (Hint: it is constant almost everywhere by Birkhoff ergodic theorem. Get it to be
different at every periodic point.

(2) Let f be an expanding map of the circle and µ be an f -invariant probability measure. Recall the
metric dn given by the maximal distance between the points along the orbit of two points up to time
n ´ 1. Given 0 ă ϵ ă 1 and n, let Npϵ, nq denote the minimal number of ϵ-balls in the metric dn

needed to cover a Borel set of measure at least 1{2. Prove that the following special case of a result
of Anatoly Katok which says that the metric entropy hµpfq is equal to

lim
ϵÑ0

lim sup
nÑ8

p1{nq logNpϵ, nq
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