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Abstract

We study the design of mechanisms involving agents that have limited strategic

sophistication. We define a mechanism to be simple if—given the assumed level

of strategic sophistication—agents can determine their optimal strategy. We

examine whether it is optimal for the mechanism designer who faces strategically

unsophisticated agents to offer a simple mechanism. We show that when the

designer uses a mechanism that is not simple, while she loses the ability to predict

play, she may nevertheless be better off no matter how agents resolve their strategic

confusion.
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1 Introduction

It is widely accepted that “real-life” economic agents are not as rational as their
counterparts in economic models. When agents have limited strategic sophistication,
economists lose confidence in the performance of mechanisms that require participants to
engage in complicated mental tasks. For example, achieving a Bayesian Nash equilibrium
requires each agent to know the distribution of their opponents’ private information and
correctly forecast the strategies they play; this is why dominant-strategy (or strategy-
proof or SP) mechanisms are generally perceived to be superior for practical purposes.
Following the mounting evidence that even dominant strategies are difficult to identify for
real-life agents, several recent papers introduced classes of mechanisms in which agents
can determine their optimal strategy under even weaker assumptions about strategic
sophistication. For instance, Li (2017) proposes the notion of obviously strategy-proof
(OSP) mechanisms in which agents can determine their optimal strategy even if they
cannot engage in contingent reasoning.

This paper studies the design of mechanisms involving agents that have limited
strategic sophistication. We call a mechanism simple if, given the assumed level of
strategic sophistication, agents can determine their optimal strategy in the mechanism.
For example, if we are only comfortable assuming that agents avoid obviously dominated
strategies (Li, 2017), then an OSP mechanism is simple because the obviously dominant
strategy is the unique strategy that is not obviously dominated. If the designer instead
offers a mechanism that is not OSP, she can no longer predict how agents will behave.
We call a mechanism complex if it creates strategic confusion for the agents, understood
as the inability to determine their optimal strategy.

We introduce a general framework for studying simple and complex mechanisms.
We use a black-box approach to modeling strategic sophistication by working with
arbitrary partial orders over strategies available to each player. A strategy is ranked
higher than another strategy if the agent choosing between them can recognize that the
former strategy is superior. A mechanism is simple if each agent has a unique strategy
that is maximal according to the partial order; a mechanism is complex otherwise. This
framework, while abstract, allows us to identify economic trade-offs that underlie the
choice between simple and complex mechanisms for a wide range of solution concepts.

Our key observation is that the inability of the designer to predict the outcome
of a complex mechanism need not be a sufficient reason to use simple mechanisms. As

2



long as the designer is ultimately concerned with maximizing her own payoff—which is
typically assumed in mechanism design—complex mechanisms may in fact be strictly
preferred by the designer to simple ones. The following example illustrates our point.

Example 1. In this and the next example, we consider agents that avoid obviously
dominated strategies but do not make any assumption about how agents choose among
the remaining strategies.1 OSP mechanisms are simple, while non-OSP mechanisms are
complex—their outcomes cannot be uniquely predicted.

Consider the problem of designing a trading platform for two traders, A and B,
with the goal of maximizing the platform’s intermediation profit. Each trader can buy
or (short) sell one unit of the asset. Trader A’s valuation for the asset is either 0 or 2/3.
Trader B’s valuation for the asset is either 1/3 or 1. The designer believes individual
types to be equally likely but correlated across traders: π((0, 1/3)) = π((2/3, 1)) = 2/5.2

The platform cannot hold inventory, so we impose ex-post market-clearing.
The optimal OSP mechanism yields an expected profit of 1/5 for the platform

and is implemented by the following extensive-form game, which can be viewed as an
ascending personal-clock auction:

1. Trader A is asked whether she would like to sell the asset at the price 0; if she says
“yes,” then that trade is implemented; if she says “no,” then:

2. Trader B is asked whether she would like to sell the asset at the price 1/3; if she
says “yes,” then that trade is implemented; if she says “no,” then there is no trade.

Conditional on trade, the platform charges a fee of 1/3 to the buyer, that is, the buyer
pays the trading price plus 1/3.3

It is obviously dominant for type 0 of trader A to accept the offer in the first stage,
and for type 2/3 to reject it. It is obviously dominant for type 1/3 of trader B to accept

1A strategy obviously dominates another strategy if, at any information set where the two strategies
first diverge, the best outcome under the second strategy is no better than the worst outcome under the
first strategy. A strategy is obviously dominated if there exists another strategy that obviously dominates
it. A strategy is obviously dominant if it obviously dominates any other strategy. A mechanism is OSP
if it has an equilibrium in obviously dominant strategies. See Appendix A.1 for formal definitions.

2Because each trader’s role as a buyer or a seller is endogenously determined, the binding incentive
constraints cannot be pinned down ex-ante. The correlation of types (and the specific value of 2/5)
plays no role in our analysis, except for ensuring that the type profile (0, 1) is relatively unlikely, which
leads to a particular structure of binding IC and IR constraints in the optimal simple mechanism. For
related models, see Cramton et al. (1987), Lu and Robert (2001), Chen and Li (2018), and Loertscher
and Marx (2020).

3We show the optimality of this mechanism in Appendix A.2.
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the offer in the second stage, and for type 1 to reject it. It follows that the platform’s
profit is 1/3 except when the type profile is (2/3, 1). Intuitively, the inefficient no-trade
outcome at the type profile (2/3, 1) is implemented so that type 0 has an obviously
dominant strategy: If trader B were to buy the asset from trader A conditional on the
profile (2/3, 1), then the best possible outcome for type 0 from rejecting the initial offer
would yield a strictly positive payoff, while her equilibrium strategy yields a payoff of 0.

Consider now an alternative mechanism:

1. Trader A is asked whether she would like to sell the asset at the price 0; if she says
“yes,” then that trade is implemented; if she says “no,” then:

2. Trader B is asked whether she would like to sell the asset at the price 1/3; if she
says “yes,” then that trade is implemented; if she says “no,” then:

3. Trader A is asked whether she would like to sell the asset at the price 2/3; if she
says “yes,” then that trade is implemented; if she says “no,” then there is no trade.

Conditional on trade, the platform charges a fee of 1/3 to the buyer.
In comparison to the optimal OSP mechanism, this alternative mechanism gives

trader A an option of selling the asset at the price 2/3 should the two traders fail to reach
an agreement in the first two stages. In particular, trade happens at the type profile
(2/3, 1) because it is obviously dominant for type 2/3 of trader A to reject the first offer
but to accept the second one. However, as discussed above, the best possible outcome
for type 0 from rejecting the first offer now yields a strictly positive payoff. Thus, this
mechanism is no longer OSP: Type 0 of trader A is confused between accepting the
initial offer (which gives her 0) and rejecting it while accepting the second offer (which
gives her −2/3 or 2/3, depending on the behavior of trader B).4 The key observation is
that, regardless of how trader A resolves this confusion, trade always happens. Thus,
the platform achieves a profit of 1/3 ex post, and hence also in expectation. Finally, for
each type, non-participation is obviously dominated.5 Thus, as long as traders do not
play obviously dominated strategies, by adopting a complex mechanism, the platform is
guaranteed to achieve a strictly higher revenue than in the optimal OSP mechanism. □

In Example 1, there exists a complex mechanism that generates a strictly higher
expected payoff for the designer than the best simple mechanism regardless of how agents

4Both types of trader B still have obviously dominant strategies: It is obviously dominant for type
1/3 to accept her offer, and for type 1 to reject it.

5The platform could ensure that non-participation is obviously strictly dominated by adjusting the
fee and the prices by an arbitrarily small ϵ > 0.
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resolve their strategic confusion. In such cases, we say that the complex mechanism
strongly dominates the best simple mechanism.

We derive two general results concerning strong dominance. These results provide
sufficient conditions under which, respectively, the best simple mechanism may or may
not be strongly dominated. For the first result, we observe that simple mechanisms
may be overly restrictive by requiring that no type be strategically confused. In many
settings, the set of outcomes implementable by simple mechanisms shrinks as the type
space expands. In such cases, the designer faces a trade-off: Simplicity of the mechanism
(for all types) comes at the cost of excluding the possibility of implementing certain
outcomes conditional on a subset of types. Thus, the designer might benefit from
imposing simplicity only for a subset of types with the remaining types being potentially
confused. We formalize this idea by defining a property called “accommodation of
additional types” (AAT). The AAT property requires that, for any simple mechanism
on a subset of the type space, we can accommodate additional types while implementing
the same outcome on the subset. We show that whenever the AAT property is violated,
strong dominance of the best simple mechanism occurs for some objective function of
the designer. The AAT property fails in many classical social choice environments. We
illustrate this via a voting example in which the designer attempts to maximize Rawlsian
welfare of two agents with privately observed preferences over three alternatives. For
the solution concept of OSP, the best simple mechanism—dictatorship—is strongly
dominated by a complex mechanism in which both agents influence the final choice of
the alternative.

For the second result, we identify environments in which simple mechanisms are
not strongly dominated. We show that the optimal simple mechanism is not strongly
dominated when the designer’s maximized objective function is the same as the value of
a relaxed problem in which the incentives constraints are only imposed along the edges
of some directed tree in the type space. A notable instance of such a setting under the
solution concept of OSP is the single-unit auction. In this and other settings, the result
establishes an optimality foundation for the use of simple mechanisms.

The notion of strong dominance is demanding, as it requires that the superior
complex mechanism generate a strictly higher expected payoff to the designer, even if
agents choose their strategies to minimize the designer’s expected payoff whenever they
are confused. This property ensures robustness to how agents choose among undominated
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strategies; if agents turn out to be more sophisticated and rule out more strategies (than
hypothesized by the designer), the performance guarantee of a complex mechanism can
only improve. However, in some applications, the designer may be satisfied with a weaker
property of a superior complex mechanism: It never yields a lower payoff than the best
simple mechanism, and sometimes yields a strictly higher payoff. We call this property
“weak dominance.”6

By means of an extensive example focusing on the solution concept of OSP, we argue
that weak dominance of the best simple mechanism is a common phenomenon. Intuitively,
a weakly dominant complex mechanism can often be constructed by augmenting the
simple mechanism with an additional option that—if taken—benefits the designer. The
additional option is made sufficiently attractive for the agent so that choosing it cannot
be ruled out given the assumed level of sophistication. The following example illustrates
this logic.

Example 2. Consider the problem of selling an item to one of N bidders with independent
private values distributed according to a regular and symmetric distribution. The best
simple mechanism is an ascending clock auction with a distribution-dependent reserve
price. In the ascending clock auction, active bidders choose whether to exit as the clock
price increases, and bidders who exit remain inactive thereafter. The auction stops when
all but one bidder exit. The remaining bidder wins the object and pays the clock price.

The following modified mechanism, which we call the ascending clock auction with
jump bidding, weakly dominates the best simple mechanism: Each bidder is allowed
to speed up the clock by jump bidding, that is, to make a higher bid than the current
clock price. This mechanism is not OSP because making a jump bid (to a bid b) is not
obviously dominated for a bidder with value v > b at the clock price p < b. Indeed,
making a jump bid to b yields the best-case payoff of v − b to the bidder, while following
the default strategy (of exiting when the clock price reaches v) yields a payoff of 0 in
the worst case.7 Agents are strategically confused as they now have multiple strategies
that are not obviously dominated—the mechanism is complex.

Given the assumed strategic sophistication of the bidders, the designer cannot
6It may be useful to draw an analogy to the notion of weak dominance between two strategies in

game theory. The arguments for and against playing weakly dominated strategies carry over to selecting
weakly dominated mechanisms.

7Of course, bidders would not jump bid if they could engage in contingent reasoning—jump bidding
is weakly dominated but not obviously dominated.
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predict whether jump bidding will occur or not. Nonetheless, a revenue-maximizing
auctioneer might prefer the ascending clock auction with jump bidding to the ascending
clock auction: If none of the bidders jump bids, then the performance of the ascending
clock auction with jump bidding is the same as that of the ascending clock auction;
in the event that some bidder jump bids, the expected revenue of the ascending clock
auction with jump bidding is strictly higher than that of the ascending clock auction. □

We use a similar construction to show that the best OSP mechanism is weakly
dominated for a revenue-maximizing designer in a variety of settings. On a flip side,
we also prove that, generically, single-agent posted price mechanisms are not weakly
dominated.

Overall, the paper proposes a systematic framework for thinking about the issues
of strategic simplicity and complexity. By offering results that both oppose and support
the use of simple mechanisms, we emphasize that whether simplicity is desirable or not
is not merely a function of agents’ sophistication. Instead, each environment in question
must be carefully analyzed before deciding whether a simple mechanism should be used.

1.1 Related literature

Simple mechanisms: Our paper contributes to the litrature on the design of mechanisms
involving strategically unsophisticated agents. While Li (2017), Börgers and Li (2019),
and Pycia and Troyan (2023) provide notions of simplicity and characterize simple
mechanisms according to these notions, our focus is on the trade-off between simplicity
and optimality, and on whether there is a foundation for the use of simple mechanisms
from an optimality perspective.8 Indeed, we show that in many cases, the designer might
prefer a mechanism that is not simple.

Robust mechanism design: Traditional models in mechanism design make strong
assumptions about the detailed knowledge of the designer about the inputs to the
mechanism design model. The literature of robust mechanism design seeks to relax these
assumptions; see Carroll (2019) for a recent survey. While the leading interpretation of our
exercise is that agents have limited strategic sophistication, an alternative interpretation—
tying our work to the burgeoning literature of robust mechanism design—is that we

8There are, of course, many dimensions of simplicity. Our paper and the papers cited here consider
the strategic dimension.
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relax the assumption about the designer’s knowledge of the strategic reasoning process
of the agents (beyond some minimal rationality assumptions).

Implementation in undominated strategies: To the best of our knowledge, this
paper is the first to study the trade-off between simplicity and optimality under the
black-box approach to solution concepts modeled via the partial order on strategies; it is
also first to provide examples of strong and weak dominance for the solution concept
of OSP, which is our leading application. However, for the solution concept of SP, our
analysis has antecedents in the literature that study implementation in undominated
strategies; see, for example, Börgers (1991), Jackson (1992), Börgers and Smith (2012),
Carroll (2014), Yamashita (2015), Mukherjee et al. (2019), and Mukherjee et al. (2024).
In particular, it is known from these papers that the optimal SP mechanism could be
weakly or strongly dominated by complex mechanisms; our analysis contributes new
results and examples, and extends some of the insights from this literature to other
solution concepts.

Simple versus complex mechanisms: There is a large computer-science literature—
too vast to be surveyed here—that quantifies the worst-case loss from using certain simple
classes of mechanisms relative to the optimal mechanism; for example, see Hartline
and Roughgarden (2009). Pycia and Troyan (2023) ask whether restricting attention
to simple mechanisms entails any loss by studying how the set of allocations that
are simply-implementable depends on agents’ degree of strategic sophistication. The
fundamental difference to our work is that these papers compare the performance of
mechanisms across solution concepts and the corresponding classes of mechanisms. In
contrast, we fix the assumption about agents’ rationality and compare the performance of
simple mechanisms (in which agents know what to do) with the performance of complex
mechanisms (in which agents are confused).

Our paper is related to the growing literature that studies bounded rationality in
industrial organization and shows that firms might benefit from purposefully confusing
consumers in the presence of naive consumers; see Spiegler (2011) and references therein.
Glazer and Rubinstein (2012, 2014) study persuasion and mechanism design models with
boundedly rational agents and show that a listener could benefit from committing to a
complex mechanism that makes it difficult for a dishonest speaker to cheat. Jakobsen
(2020) considers a boundedly rational agent who has both imperfect memory and limited
deductive (computational) ability, and shows that the principal could benefit by using
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a complex contract. These papers impose specific assumptions about the reasoning
procedure of the agent (even in complex mechanisms). In contrast, we take a robust
approach, and do not impose any assumptions on how agents resolve their confusion in
complex mechanisms.

2 Framework

We first introduce a general framework for studying simple and complex mechanisms.
We model the strategic reasoning by a player via a partial order on the set of available
strategies. We use the solution concept of obvious dominance as a leading example.

Environment. There is a finite set of N players, N = {1, 2, . . . , N}, and an arbitrary
(possibly infinite) set of alternatives X . Each player i has payoff-relevant information
indexed by θi ∈ Θi, where Θi is finite. We refer to θi as player i’s type. The set of
possible type profiles is Θ = ×i∈N Θi with its representative element θ = (θ1, θ2, . . . , θN ).
The type profile is distributed according to a prior probability distribution π ∈ ∆Θ.

Each player i is endowed with a utility function ui : X × Θi → R (we assume
private values). The designer has a utility function v : X × Θ → R. That is, ui(x, θi)
and v(x, θ) denote type θi’s utility and the designer’s utility, respectively, when the type
profile is θ and the implemented alternative is x. We assume that the designer knows
the distribution π and is an expected utility maximizer.

Mechanisms. We consider mechanisms that are finite, imperfect-information, extensive-
form games with perfect recall and consequences in X , belonging to some arbitrarily
large but fixed set M.9 We relegate the formal definition of an extensive-form game to
Appendix A.1. For our current purposes, all that matters is that every game Γ ∈ M
specifies a finite set of (pure) strategies Si available to player i, with a representative
element Si.

In our abstract framework, a solution concept τ associates with every game Γ ∈ M
and type θi of player i a partial order (a reflexive and transitive binary relation) ⪯θi

on
the set of strategies Si available to player i. We let Si ∼θi

S ′
i denote the equivalence

9Finiteness is an important assumption: Jackson (1992) shows that infinite mechanisms may
implement virtually any decision rule in undominated strategies, relying on an infinite hierarchy of
weakly dominated strategies with no dominant strategy “at the top.”
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relation associated with ⪯θi
(that is, Si ∼θi

S ′
i if both Si ⪯θi

S ′
i and S ′

i ⪯θi
Si). We

let ≺θi
denote the strict partial order induced by ⪯θi

(that is, Si ≺θi
S ′

i if Si ⪯θi
S ′

i

but S ′
i ⪯̸θi

Si). The interpretation of Si ≺θi
S ′

i is that type θi of player i recognizes
strategy Si as unambiguously worse than strategy S ′

i. Whenever Si ≺θi
S ′

i, we say that
S ′

i dominates Si (for type θi), or, equivalently, that Si is dominated by S ′
i (for type

θi). The relation Si ∼θi
S ′

i is interpreted as the agent’s indifference between the two
strategies; in this case, we say that the two strategies are equivalent for type θi. Finally,
if the two strategies Si and S ′

i are not ranked by ⪯θi
, the agent is unsure how to make a

choice between them.
Throughout, we rely on the straightforward interpretation of the partial order as

capturing the agent’s true (and typically incomplete) ranking over strategies that is
known to the designer. However, a more precise interpretation of the model is that the
order induced by τ reflects what the designer is willing to assume about the agent’s
induced preference over strategies. For example, even if the agent “knows” which of the
strategies Si or S ′

i she prefers to choose, the partial order would not rank them if the
designer lacked the knowledge needed to determine the agent’s choice between Si and S ′

i.
In our leading example, the partial order ≺θi

captures (weak) obvious dominance,
as introduced by Li (2017). Under this solution concept, a strategy Si is dominated by
a strategy S ′

i for type θi of player i, if starting at any earliest point of departure, the
worst-possible payoff for θi from playing S ′

i (across all possible choices of other players)
is weakly better than the best-possible payoff for θi (across all possible choices of other
players). We provide formal definitions in Appendix A.1.

In general, a solution concept τ in our framework can be an arbitrary mapping
from the set of games to a profile of partial orders on strategies. This flexibility allows
us to cover a wide range of solution concepts that were studied in the literature (we
discuss additional examples at the end of this section).10

Strategic confusion, simple and complex mechanisms. For any mechanism Γ,
we let

Ui(θi) = {Si ∈ Si : ∄S ′
i ∈ Si such that S ′

i ≻θi
Si}.

10The flexibility also permits nonsensical solution concepts: no consistency is imposed on how the
partial order varies across games (e.g., an agent can behave very differently in games that look arbitrarily
similar) and how it relates to agents’ payoffs (e.g, an agent may be minimizing their own payoff)—our
results remain true in such cases but will have little or no economic significance.
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That is, Ui(θi) is the set of strategies that are not dominated for type θi. We will
call such strategies undominated. Given the finiteness of the mechanism, the set of
undominated strategies is non-empty. The designer assumes that players will avoid
dominated strategies:

Assumption 1 (Behavioral assumption). For any i ∈ N , each type θi of player i plays
a strategy from the set Ui(θi).

The behavioral assumption allows us to interpret the partial order as reflecting
the agent’s sophistication. For example, a clueless agent might be unable to rank any of
her strategies in any mechanism; based on Assumption 1, the designer cannot make any
prediction about that agent’s behavior. On the other extreme, a Bayesian, fully-rational
agent with perfect insight into other agents’ choices could be captured via a total order
on her strategies induced by expected utility comparisons. The interesting cases are
the intermediate ones in which the agent is able to rank some, but not necessarily
all, strategies. For example, obvious dominance captures agents who are sophisticated
enough to rule out obviously dominated strategies but not sophisticated enough to
rule out strategies that are weakly dominated (in the usual sense) but not obviously
dominated.11

Having fixed a solution concept τ , based on our behavioral assumption, we can
classify mechanisms as being either simple or complex.

Definition 1 (Strategic confusion and complex mechanisms). Fixing a mechanism Γ,
type θi of player i is strategically confused if Ui(θi) contains at least two strategies (that
are not equivalent for type θi); in this case, we call mechanism Γ complex.

Definition 2 (Simple mechanisms). A mechanism Γ is simple if for any player i ∈ N ,
no type θi is strategically confused.

Strategic confusion means that at least one type of some player has more than
one undominated strategy in the mechanism, and therefore, in the absence of further
assumptions on behavior or strategic reasoning, it is impossible to determine which
strategy she will select. In contrast, a simple mechanism gives each type of every player a

11In this case, Assumption 1 is the same assumption that forms the basis for the simplicity notion of
OSP. If one thinks that participants will play obviously dominant strategies when they are available,
then one seems also compelled to reason that participants will avoid obviously dominated strategies
(even when no strategy is obviously dominant).
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unique (up to equivalence) undominated strategy. Such strategy must then be dominant
in the sense that it dominates any other strategy.

Every solution concept τ is associated with a different class of simple mechanisms.
For example, when the ranking over strategies is derived from the solution concept
of obvious dominance, only OSP mechanisms are simple. Any mechanism that is not
OSP is complex. If we instead assume that agents will never play weakly dominated
strategies (in the usual sense), the set of simple mechanisms includes all strategy-proof
mechanisms. More generally, as agents get more sophisticated, that is, as the partial
order ≻θi

becomes more complete, the class of simple mechanisms expands. If agents
can always totally rank all their strategies, all mechanisms are simple.

As is customary in mechanism design, we let the designer select which strategy
player i should choose in case of indifference between Si and S ′

i.12 Formally, we will
treat Ui(θi) as consisting of equivalence classes induced by the indifference relation ∼θi

,
and we let the designer pick the representative of each equivalence class (we leave this
description verbal in order not to further complicate our notation).

Strong and weak dominance of mechanisms. An advantage of a simple mechanism
from the point of view of the designer is that she can predict how players will
behave. In contrast, if any player is strategically confused, the designer—based only
on Assumption 1—cannot determine the path of play. This seems to provide a strong
argument in favor of simple mechanisms. However, that benefit is diminished if the
designer can achieve better outcomes using a mechanism that confuses some types.

To formalize this idea, fixing a game Γ, let Si denote a type-strategy for player
i, that is, Si(θi) is the strategy selected by type θi of player i. We let Si ⊂ Ui

mean that Si is a selection from the correspondence of undominated strategies, i.e.,
Si(θi) ∈ Ui(θi) for all θi ∈ Θi. Let g be the outcome function mapping a profile
of strategies S = (S1, ..., SN) into an outcome in X . Abusing notation slightly, let
v(S) = Eθ∼π [v(g(S1(θ1), ..., SN(θN)), θ)] denote the expected payoff of the designer
when each player i behaves according to Si. We define a correspondence

V (Γ) = Conv. Hull ({v(S) : {Si ⊂ Ui}i∈N })

12One justification for this assumption is that the mechanism is paired with “recommended” strategies
for the players, and the players follow the recommendation when they are indifferent.
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to be the range of the designer’s expected payoffs over all possible ways in which confused
types can resolve their strategic confusion.13 By definition, V (Γ) is a singleton when Γ
is a simple mechanism but it may be a (closed) interval when Γ is complex.

Definition 3 (Strong dominance). A mechanism Γ is strongly dominated if there exists
a mechanism Γ′ such that

max V (Γ) < min V (Γ′).

Intuitively, a mechanism Γ is strongly dominated by a mechanism Γ′ if the expected
payoff for the designer under Γ′ is strictly larger than the expected payoff under Γ,
regardless of how players choose from undominated strategies. Throughout, we will
primarily apply this definition to the case in which Γ is the best simple mechanism (that
is, Γ maximizes the designer’s expected payoff among all simple mechanisms), and hence
can only be strongly dominated by a complex mechanism.

In settings in which the value of simplicity is instrumental, that is, when the
designer only cares about her ultimate expected utility, there is no reason for the designer
to choose a simple mechanism over a complex mechanism that strongly dominates it.
Later, we will also study a weaker version of that criterion, called weak dominance, under
which the complex mechanism is guaranteed to yield weakly higher expected utility to
the designer and may sometimes yield strictly higher expected utility (compared to the
best simple mechanism).

2.1 Discussion

Modeling the solution concept via an arbitrary partial order on strategies paired with
the behavioral assumption (Assumption 1) gives us significant flexibility but requires
careful interpretation. We illustrate our definitions with a few examples.

The most straightforward application of our framework is to solution concepts in
which the partial order ≻θi

depends solely on player i’s payoffs and the structure of
the game, but not on any characteristics of the other players. Apart from the already
discussed obvious dominance, the classical notion of weak dominance, the strong obvious
dominance, and all intermediate solution concepts discussed in Pycia and Troyan (2023)
can be captured by our model. When the partial order is derived from weak dominance,

13Note that when computing the range of designer’s payoffs, we assume that which undominated
strategy a player selects cannot depend on the realization of other players’ types.
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simple mechanisms are exactly dominant-strategy mechanisms. When the partial order
captures strong obvious dominance, simple mechanisms correspond to the class of strong
obviously strategy-proof mechanisms of Pycia and Troyan (2023).

The partial order ≻θi
may also depend on the characteristics of other players and

their assumed level of rationality. For example, we can define ≻θi
in such a way that

Ui(θi) includes all strategies that survive K iterations of elimination of strictly dominated
strategies. The level of rationality could be player-specific, allowing the modeler to
capture differences in sophistication across players. “Stategically simple” mechanisms of
Börgers and Li (2019) correspond to simple mechanisms in our terminology when the
partial order is derived by assuming that agents have correct first-order beliefs about
their opponents’ preferences, and assume that their opponents are rational.

Finally, the flexibility of the partial order allows us to capture a number of behavioral
phenomena that are not strategic in nature. For example, the partial order could reflect
computational limitations (two strategies are not comparable if it is computationally
infeasible to check which one performs better), context-dependent choice (the ranking
of two strategies may depend on what other strategies are available to the player), or
framing (two strategically equivalent games have different partial orders). The meaning of
simplicity has to be adjusted accordingly. For instance, under computational limitations,
a mechanism is simple if all agents can verify optimality of their prescribed strategy in a
computationally feasible way.

Participation constraint. Even when simple mechanisms are strongly dominated, a
possible argument in their favor is that players may be discouraged from participation
if they face a complex mechanism. Moreover, in many settings (including the ones in
which the designer’s objective is to maximize her revenue), it is necessary to impose a
participation constraint for the problem to be well defined.

To model participation, we may assume that all mechanisms Γ ∈ M contain a
special strategy—called non-participation and denoted S∅

i —that is available to every
player. For a simple mechanism, it is natural to model voluntary participation by
requiring that the unique undominated strategy must dominate the non-participation
strategy. We introduce two extensions of this condition to complex mechanisms. We
say that a mechanism Γ provides partial incentives to participate if for all i ∈ N , all
θi ∈ Θi, there exists an undominated strategy Si ∈ Ui(θi) that dominates S∅

i (equivalently,
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S∅
i /∈ Ui(θi)). We say that a mechanism Γ provides full incentives to participate if for all

i ∈ N , all θi ∈ Θi, all undominated strategies Si ∈ Ui(θi) dominate S∅
i . The notion of

partial incentives to participate is more appropriate when the participation decision is
made at the outset of the game. The condition states that the player has a strategy in
the ensuing game that she can identify as superior to non-participation. The notion of
full incentives to participate is more appropriate if non-participation is thought of as an
option for each player to walk away from the mechanism at any point, including after
deciding which strategy to play.

Randomized mechanisms. In some cases, the designer may want to rely on
randomization in the mechanism. Our modeling assumptions allow us to capture
randomization as a special case of the framework. Indeed, one can think of player N in
the game as “Nature” endowed with a type space and a probability distribution over
types chosen by the designer (independent of other player’s types), as well as a partial
order that features indifference between all strategies in any mechanism. Then, the
designer can choose any distribution over Nature’s actions in the game, which replicates
the effects of having explicit randomization at some nodes of the game tree. Of course,
how other players reason about Nature’s moves is then captured by the solution concept
τ. For example, under the solution concept of obvious dominance, it is customary to
treat Nature just like any other strategic player: When evaluating the worst-case payoff
from a strategy Si, player i takes into account all possible realizations of randomization
performed by the designer (this is what we assume when defining obvious dominance in
Appendix A.1).

Mixed strategies. We assumed that the set of strategies available to any player i in a
game Γ ∈ M is finite, which guaranteed that for each strategy that is dominated, there
exists another strategy that dominates it but is itself undominated. We interpreted Si

as the set of pure strategies available to player i. Consequently, the implicit assumption
is that the solution concept τ only pins down agents’ preferences over pure strategies.
We can accommodate mixed strategies for solution concepts where for each strategy
(pure or mixed) that is dominated, there exists a pure strategy that dominates it but is
undominated according to the partial order.
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3 Main results

In this section, we study strong dominance of simple mechanisms. Section 3.1 identifies
environments in which the best simple mechanism may be strongly dominated. Section 3.2
provides a condition under which the best simple mechanism is not strongly dominated.

3.1 Simple mechanisms may be overly restrictive

A weakness of simple mechanisms is that they can be overly restrictive by requiring
that no type should be confused. In some settings, the presence of certain preference
types implies that the set of outcome functions implementable by simple mechanisms
is small. However, the behavior of some agents’ types could be insignificant for the
designer, either because these types do not contribute to the designer’s payoff, or they
have low probability. In such cases, the designer may want to impose simplicity only for
a subset of types with the remaining types being potentially confused.

To formalize this idea, we introduce a property that we call the “accommodation
of additional types” (AAT). We show that if the AAT property is violated, the best
simple mechanism is strongly dominated by a complex mechanism for at least some
preferences of the designer. By means of an example (application of the concept of
obvious dominance to a voting game), we show that failure of AAT may lead to strong
dominance of the best simple mechanism under a natural objective function for the
designer.

For a subset Θ′ ⊂ Θ of the type space, we say that a mechanism Γ is simple on Θ′,
if no type θi ∈ Θ′

i of any player i is strategically confused. We denote by Θ \ {θi} the
type space Θ1 × . . . × (Θi \ {θi}) × . . . × ΘN .

Definition 4. Fixing the primitive environment, we say that the accommodation of
additional types (AAT) property holds if for any i, θi, and any mechanism Γ′ ∈ M
that is simple on Θ \ {θi}, there exists a mechanism Γ ∈ M that is simple on Θ and
implements the same outcome as Γ′ on Θ \ {θi}.

The AAT property says that for any simple mechanism on Θ \ {θi} we can always
“accommodate” an additional type θi of agent i, that is, assign a dominant strategy
to θi while keeping the outcome of the mechanism for the remaining types unchanged.
To gain some intuition, fix some mechanism Γ′ that is simple on Θ \ {θi}. To find the
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required mechanism Γ that is simple also for type θi, the designer has three possibilities.
First, if type θi has a dominant strategy among the strategies already offered by Γ′,
then setting Γ = Γ′ satisfies the definition. This implies that the AAT property holds
for solution concepts that induce a total order ⪰θi

; it also holds for many classical
solution concepts (like dominant-strategy implementation) in environments satisfying
an appropriate single-crossing condition. Second, the designer can accommodate the
additional type θi by adding a new strategy Si to the game Γ′ that is dominant for
θi but dominated for all types θ′

i ̸= θi. However, one must verify that the addition of
the new strategy Si does not alter the set of undominated strategies for other players.
For example, under the solution concept of obvious dominance, the AAT property
always holds in settings with a single agent for deterministic mechanisms (but may fail
when mechanisms are stochastic—see Subsection 3.1.1). Finally, it may be possible to
“redesign” the mechanism Γ′ more substantially in a way that accommodates the type θi

while preserving the outcomes for other types. When it is not possible to accommodate
additional types, strong dominance of the best simple mechanism may occur.

Proposition 1. Suppose that the AAT property fails. Then, there exists a utility function
for the designer such that the best simple mechanism is strongly dominated.

The intuition behind Proposition 1 is straightforward. Failure of the AAT property
implies that the designer faces a trade-off: Simplicity of the mechanism comes at the cost
of excluding the possibility of implementing certain outcomes conditional on a subset of
types Θ′. If the designer’s objective function is invariant to the outcomes implemented
conditional on the remaining types Θ \ Θ′, then the trade-off is resolved in favor of
implementing the most preferred outcome on Θ′ and letting the types in Θ \ Θ′ be
strategically confused. Effectively, if some types are problematic for the designer in the
sense that their presence restricts the set of simple mechanisms, the designer may be
better off ignoring these types when designing the mechanism. The proof of Proposition
1—which formalizes these arguments—can be found in Appendix A.3. It is easy to adapt
the proof to show a version of Proposition 1 in which the designer’s objective is fixed,
but the probability of the “problematic types” becomes small enough.14

Next, we illustrate Proposition 1 with an example in which the partial order over
stategies is generated by obvious dominance.

14See an earlier version of the paper Li r⃝ Dworczak (2022) for a formalization.
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Example 3. Consider a voting environment with two agents and three alternatives,
X = {a, b, c}. Each agent’s type can be represented as a ranking of the three alternatives.
More specifically, each agent gets utility 1 if her top choice is implemented, 1/2 if her
second choice is implemented, and 0 otherwise. The distribution of types π is i.i.d. uniform.
The designer would like to maximize welfare but is Rawlsian and risk-averse: If ui is the
ex-post utility of agent i, then the designer’s payoff is v(min(u1, u2)) for some strictly
concave and increasing function v.

The best OSP mechanism is dictatorship with full range.15 The outcome function
of that mechanism (with the row player being a dictator) is illustrated in Table 1.

Table 1: The best simple mechanism

abc acb bac bca cab cba
abc a a a a a a
acb a a a a a a
bac b b b b b b
bca b b b b b b
cab c c c c c c
cba c c c c c c

Table 2: A complex mechanism

abc acb bac bca cab cba
abc a a a a a a
acb a a a a a a
bac b b b b b b
bca b b b b b b
cab a a a c c c

cba(1) a a a c c c
cba(2) b b b b b b

Consider instead a delegation mechanism in which the designer specifies a set
of menus from which the row player chooses one, with the other player selecting an
alternative from the chosen menu. The row player can choose menu {a}, menu {b}, or
menu {a, c}.

Types abc, acb, bac, bca of the row player retain their (obviously) dominant strategies.
Type cab has a dominant strategy to choose the menu {a, c}. However, type cba does
not have a dominant strategy: Both menu {b} and menu {a, c} are not dominated—the
mechanism is complex. This is illustrated in Table 2.

However, whichever strategy type cba chooses, the expected payoff to the designer
is strictly higher than in the best simple mechanism. Indeed, consider first the case
in which type cba chooses menu {a, c}. Then, the difference in expected payoffs to
the designer between the complex mechanism and the best simple mechanism (which
can be calculated by comparing the cells of the two tables with different outcomes) is
1
36 × [v (1/2) − v(0)] > 0. Now, consider the case in which type cba chooses menu b. The

15Given the definition of obvious dominance (see Appendix A.1), it is without loss of optimality to
look at deterministic mechanisms, and thus only ordinal preferences of players matter. We can then
directly verify that dictatorship with full range is optimal for our objective function.
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difference in the expected payoffs of the designer is 1
36 × [−2v(1) + 4v(1/2) − 2v(0)] > 0,

by strict concavity of v. Thus, the complex mechanism is guaranteed to yield a strictly
higher expected payoff to the designer regardless of how type cba resolves her confusion.

Note that the AAT property is violated in the above implementation environment:
The simple mechanism defined by the first 5 rows of Table 2 by excluding type cba

cannot be extended to a simple mechanism with type cba added back. While type cba

influences the designer’s payoff, the designer nevertheless prefers to “ignore” that type
by implementing a mechanism that is simple for the remaining types and that makes
cba strategically confused. □

More generally, the AAT property fails in many classical social choice environments.
It is well known that the only strategy-proof mechanisms whose range contains at
least three alternatives are dictatorships; however, there are nontrivial strategy-proof
social choice functions on restricted domains. Indeed, much of the research on strategy-
proof social choice can be seen as establishing possibility results for (various) restricted
domains.16 Thus, the AAT property fails. Proposition 1 then implies that in the social
choice environment, it might be beneficial to “ignore” some types and employ a social
choice rule that is implementable on a smaller domain, rather than using a strategy-proof
mechanism on a larger domain. In particular, this will hold if the “problematic” types
occur with sufficiently low probability. For example, it is known that a social choice
function on profiles of single-peaked preferences over a totally ordered set is strategy-
proof if and only if it is a generalized median voter scheme. If the designer finds the
outcome function of some generalized median voter scheme more desirable than that
of a dictatorship, and the probability that the true type profile is contained in the set
of single-peaked preferences is high enough, then the generalized median voter scheme
strongly dominates the best simple mechanism on the full domain. Similar examples can
be found for the solution concept of OSP; for example, Arribillaga et al. (2020) and Bade
and Gonczarowski (2017) characterize the class of OSP-implementable and unanimous
social choice functions for single-peaked preferences.

3.1.1 Confusing a single agent via randomization

Consider the case of a single agent, and suppose that the agent has complete preferences
over outcomes in X . Then, the AAT property trivially holds if we restrict attention

16We refer interested readers to Barberà (2010) for a survey on strategy-proof social choice.
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to deterministic mechanisms (and assume that the agent can predict the outcome of
every strategy).17 Indeed, an additional type of the agent can always be accommodated
by letting that type choose among strategies already made available to other types. In
fact, AAT must hold by Proposition 1 because simple mechanisms cannot be strongly
dominated when the partial order ⪰θ1 is complete.

If we allow for randomization in the mechanism (and the agent is not Bayesian),
then the AAT property may fail. This is not surprising: As we explained in Section 2,
we capture randomization in the mechanism by introducing an auxiliary player (Nature),
so the mechanism effectively has two players. However, Proposition 1 is unsatisfactory
in this case because it allows the designer’s objective function to depend on the outcome
of randomization (Nature’s type). Thus, Proposition 1 does not resolve the question of
whether the best simple mechanism can become strongly dominated by confusing the
agent with randomization.

In Appendix A.4, we answer this question affirmatively by constructing an example
of strong dominance in the single-agent setting under the solution concept of OSP. The
example is based on the observation that the designer can use a randomization device to
implement an outcome that is not implementable as ex-ante randomization over simple
mechanisms. It is known (see, for example, Ashlagi and Gonczarowski (2018) and Pycia
and Troyan (2023)) that randomization cannot increase the designer’s payoff within the
class of OSP mechanisms. Interestingly, the example shows that this does not imply
that the designer should never randomize when facing unsophisticated agents. On the
contrary, randomization can sometimes be used to purposefully confuse the agents in
order to obtain a superior outcome.

3.2 An optimality foundation for simple mechanisms

In this subsection, we provide conditions under which the best simple mechanism is not
strongly dominated. The key observation is that for any finite mechanism Γ (simple
or complex), min V (Γ) is weakly less than the maximum expected payoff the designer
could obtain in a mechanism that only satisfies a subset of incentive constraints that
correspond to the edges of an arbitrary tree in the type space. Thus, if the designer’s
expected payoff from the best simple mechanism is the same as that in the relaxed

17The same conclusions holds if the agent is Bayesian, and X already contains all randomized
outcomes.
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problem with incentive constraints that correspond to the edges of some tree in the
type space, then the best simple mechanism is not strongly dominated. This argument
builds on the insights of Yamashita (2015) developed for implementation in weakly
undominated strategies.

Let G = (V, E) be a directed graph with vertex set V and edge set E ⊆ V × V . A
graph is called a (rooted) tree if it has exactly one vertex with no outgoing edges (called
the “root”) and exactly one path from every vertex to the root. For each agent i, consider
a tree Ti = (Θi, Ei) where Ei ⊆ Θi × Θi. Each directed edge (θi, θ′

i) ∈ E, also denoted
θi → θ′

i, corresponds to the incentive constraint that type θi does not want to adopt the
strategy of type θ′

i. For each agent i, fix a tree Ti. The collection of trees {Ti}i∈N then
defines a relaxed optimization problem in which the only incentive constraints are the
ones that correspond to the edges on the trees. Formally, a mechanism Γ ∈ M is feasible
for the IC-relaxed problem if there exists an assignment of strategies Si(θi) to each type
θi of each player i such that Si(θi) ≻θi

Si(θ′
i) whenever θi → θ′

i. Clearly, this is a weaker
requirement than forcing the mechanism Γ to be simple (which would correspond to
imposing the condition for the complete graph on the type space Θi). The designer’s
payoff from the IC-relaxed optimization problem is then defined as the supremum over
expected payoffs for the designer generated by feasible mechanisms evaluated at any
assignment of strategies that makes them feasible.

Proposition 2. Suppose that there exists a collection of trees {Ti}i∈N such that the
designer’s expected payoff from the IC-relaxed optimization problem corresponding to
{Ti}i∈N is the same as that from using the optimal simple mechanism. Then, the optimal
simple mechanism is not strongly dominated.

We now explain how to incorporate participation constraints. Recall from Section 2
that we model participation decisions by assuming that each feasible mechanism must
include a non-participation strategy S∅

i for every player. We define the IR-non-relaxed
problem by requiring that every type of every player is assigned a strategy that dominates
non-participation. We define the IR-relaxed problem by only requiring that the strategy
assigned to the root of each tree Ti dominates non-participation.

Proposition 2’. Suppose that there exists a collection of trees {Ti}i∈N such that the
designer’s expected payoff from the (i) IR-relaxed and IC-relaxed or (ii) IR-non-relaxed
and IC-relaxed optimization problem corresponding to {Ti}i∈N is the same as that from
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using the optimal simple mechanism with participation constraints. Then, the optimal
simple mechanism is not strongly dominated by any mechanism with, respectively, (i)
partial or (ii) full incentives to participate.

Proposition 2(2’), while abstract, offers a concrete procedure to establish optimality
foundations for simple mechanisms. For illustration, we revisit the two examples in the
introduction. Applying Proposition 2’, we show that the best simple mechanism is not
strongly dominated by any mechanism with full incentives to participate in Example
1, and the best simple mechanism is not strongly dominated by any mechanism with
partial (and hence full) incentives to participate in Example 2.

Example 4 (Example 1 revisited). Recall that the best simple mechanism gives the
designer an expected profit of 1/5. It can be directly verified (by considering all possible
trees for both players, see Appendix A.2) that the trees that yield the lowest value of the
relaxed problem are TA = {{0, 2/3}, 0 → 2/3} and TB = {{1/3, 1}, 1 → 1/3}. That
is, for trader A we only impose the IC constraint that type 0 does not want to imitate
type 2/3, and for trader B that type 1 does not want to imitate type 1/3. The value of
the IC-relaxed and IR-non-relaxed problem is 1/5. Thus, the best simple mechanism
is not strongly dominated by any mechanism with full incentives to participate, by
Proposition 2’.

The superior complex mechanism (which satisfies the partial incentives to
participate) from Example 1 can be understood as partially capturing the benefits of the
relaxed IR constraint of type 0 of trader A. Indeed, if we removed the first offer to trader
A from the mechanism, type 2/3’s optimal choice would be unaffected (since accepting
the first offer was obviously dominated for that type anyway), while type 0 would no
longer be confused—she would follow the same strategy as type 2/3. However, type 0
would lose its partial incentives to participate since following 2/3’s strategy sometimes
results in a strictly negative payoff. This reveals that the reason for making the first
offer to trader A in the complex mechanism is to ensure participation. By confusing
type 0 of trader A, the designer extracts more surplus with one undominated strategy
(“reject the first offer but accept the next offer”) while dominating non-participation
with a second undominated strategy (“accept the first offer”). □

Failure of the premise of Proposition 2 or 2’ indicates that a strict improvement
could be made in the problem of finding the best simple mechanism if some IC or IR
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constraint were relaxed. In a simple mechanism, however, a strategy assigned to each
type must satisfy all these constraints (that is, no IC or IR constraint can be relaxed), and
hence it is not possible to achieve that potential improvement. In a complex mechanism,
by contrast, each type may be assigned multiple undominated strategies (as in Example
1 for the case of partial incentives to participate) and, at least in principle, no single
strategy must satisfy all the constraints. This additional flexibility of complex mechanism
may sometimes allow the designer to achieve the improvement.

Example 5 (Example 2 revisited). Proposition 2’, adopted to the solution concept of
SP, can be used to show that in a large class of environments with a revenue-maximizing
designer—including single-unit auctions—the optimal SP is not strongly dominated
by any mechanism with partial incentive to participate.18 Thus, if the optimal SP
mechanism can be implemented via an OSP mechanism, as in Example 2, the optimal
OSP mechanism is not strongly dominated by any mechanism with partial incentives to
participate (and hence not strongly dominated by any mechanism with full incentives to
participate).

4 Weak dominance

In this section, we briefly investigate the concept of weak dominance.

Definition 5 (Weak dominance). A mechanism Γ is weakly dominated if there exists a
mechanism Γ′ such that

max V (Γ) ≤ min V (Γ′) and max V (Γ) < max V (Γ′).

Weak dominance of the best simple mechanism by a complex mechanism gives the
designer a guarantee of a weakly better payoff together with the possibility of a strictly
better payoff. This is a less demanding requirement (compared to strong dominance)
for a complex mechanism to be deemed superior. Nevertheless, it highlights a sense in

18Formally, this holds when the uniform shortest-path tree condition holds and the distribution
π is regular, as formulated by Chen and Li (2018). This covers many classical applications of
mechanism design such as single-unit auctions (e.g., Myerson (1981)), public goods (e.g., Mailath
and Postlewaite (1990)), standard bilateral trade (e.g., Myerson and Satterthwaite (1983)) and also some
multi-dimensional environments such as the auction for capacity constrained bidders (see Malakhov and
Vohra (2009)). The detailed analysis can be found in Li r⃝ Dworczak (2022).
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which the designer cannot lose (and has the potential to gain) by opting for the complex
mechanism.

By means of an extended example—the problem of maximizing revenue over OSP
mechanisms—we argue that weak dominance of simple mechanisms by complex ones is
a common occurrence. We also provide one positive result: Under additional conditions,
the posted price mechanism is not weakly dominated when agents are assumed to avoid
obviously dominated strategies.19

We analyze a standard revenue-maximization problem with quasi-linear utilities.
Let X be the space of possible allocations (which could involve randomization), and define
X = X × RN , with (y, t1, ..., tN) ∈ X interpreted as an outcome in which allocation
y is implemented, and player i pays the designer ti. We have ui((y, t1, ..., tN), θi) =
ũi(y, θi) − ti, for some arbitrary ũi(y, θi) assumed non-negative and non-constant in θi.
The designer maximizes expected revenue. We will consider two cases. In the first case,
the designer is satisfied with a mechanism that provides partial incentives to participate;
we will show that this leads to the best simple mechanism being weakly dominated in a
particularly blatant way, with revenue that is unbounded in the best case for the designer.
In the second case, the superior mechanism will provide full incentives to participate. In
both cases, we normalize the payoff from the non-participation strategy to be zero.

Throughout, we assume that the partial order on strategies is derived from obvious
dominance, as defined in Appendix A.1. The proofs of all claims can be found in
Appendix A.6.20

Claim 1. The revenue-maximizing OSP mechanism is weakly dominated by a complex
mechanism with partial incentives to participate.

The superior complex mechanism exploits—in a very stark way—the possibility
that agents lack strategic sophistication. The designer approaches some agent i and
proposes to her the following additional bet: Agent i gets a large amount of money
M if a coin is heads but pays the designer M if the coin is tails. The designer biases
the coin so that tails has probability 1 − ϵ for an arbitrarily small ϵ. The agent finds

19In an independent paper, Mukherjee et al. (2024) provide sufficient conditions for a social choice
correspondence to be implemented in weakly undominated strategies. They apply their results to several
economic environments; their results are broadly consistent with and complementary to our analysis on
weak dominance. The message of this section is reinforced by additional examples of weak dominance
described in Mukherjee et al. (2024).

20The proofs are based on a more general result that can be used in other contexts to identify
weakly-dominating mechanisms.
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accepting the bet OSP-undominated because she evaluates her outcomes conditional
on each realization of the randomization device: When M is sufficiently large, taking
the bet dominates all other strategies conditional on the coin being heads. If the agent
refuses to take the bet, the designer is still guaranteed the same revenue as in the original
simple mechanism; and if the agent accepts the bet, the designer’s expected revenue is
unbounded.

Reinforcing the message of Subsection 3.1.1, we conclude that—even though
randomization cannot increase the designer’s expected payoff from the best OSP
mechanism—it might nevertheless be beneficial to use against unsophisticated agents.

Even if agents were assumed to be Bayesian with respect to the designer’s
randomization, the designer could still achieve an unbounded revenue in the best case of
a complex mechanism when N ≥ 2. The additional option for agent i has the same two
outcomes for i, but the choice between them is made by some other agent j who is paid
ϵ > 0 to choose the outcome in which agent i pays M . Accepting this modified “bet” is
OSP-undominated for i because agent i is not assumed to believe that agent j will never
play a dominated strategy.

The above weakly-dominating mechanisms may seem unlikely to “work” in practice,
in the sense that the additional strategic option offered in the complex mechanism
is clearly “unattractive” for the agent. We offer two comments: First, similarly to
how many results are interpreted in mechanism design, we view the value of these
examples as illustrating the possibility that a simple mechanism may be dominated. Our
construction is optimized for making the mathematical argument concise; there may
exist more subtle ways to weakly dominate a simple mechanism. Second, anecdotally,
sellers frequently offer seemingly unattractive options to customers hoping to exploit
their potential inability to rank these options as inferior.21 And in any case, the designer
never loses by switching to a superior complex mechanism, so she may prefer the complex
mechanism even if she thinks that the agent is unlikely to choose the additional option.

A different criticism of the above complex mechanisms is that the agent will
sometimes walk away with a negative payoff. We thus turn attention to the case when
the complex mechanism is required to provide full incentives to participate. To simplify
exposition, we consider the classical problem of allocating a single object to one of N

21See, for example, Chernev et al. (2015) for a survey of results on choice overload.
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ex-ante identical bidders.22

Claim 2. Suppose that N ≥ 2, and let ū be the highest possible valuation for the object.
If it is not a revenue-maximizing OSP mechanism to sequentially offer the object at a
price of ū to all the players, then the best OSP mechanism is weakly dominated by a
complex mechanism with full incentives to participate.

The proof resembles the mechanism we described previously for the case N ≥ 2.
The main difference is that the additional option is carefully constructed so that it
always yields a non-negative payoff to the types that may choose it.

The assumption of Claim 2 cannot be completely relaxed. For a simple example,
note that if all players have a value of ū for the object with probability one, then
sequentially offering the object at a price of ū to all the players is an optimal simple
mechanism that is not weakly dominated under full incentives to participate (for it to be
dominated, there would have to exist an on-path history in which some player is charged
more than ū but that would be incompatible with full incentives to participate).

Next, we prove a general positive result for the case of N = 1.

Claim 3. Suppose that the designer sells a single indivisible object to a single agent,
attempting to maximize revenue. Assume that there exists a unique optimal OSP
mechanism (in which case it must be outcome-equivalent to a posted price mechanism).
Then, that mechanism is not weakly dominated by any complex mechanism with full
incentives to participate.

We emphasize that not being weakly dominated is a particularly strong optimality
foundation; it implies that any complex mechanism that sometimes leads to a higher
payoff for the designer must necessarily be strictly worse in some other case.

The proof of Claim 3 is relatively involved. The assumption that the optimal
simple mechanism is unique (which holds generically) is needed. In Appendix A.6.5, we
construct an example in which the optimal simple mechanism is not unique and we show
that it is weakly dominated.

22Note that the ascending clock auction with jump-bidding in Example 2 in the introduction provides
full incentives to participate under OSP. This is because if type v ≥ b makes a jump bid to b at price
p < b (jump-bidding is dominated for all other types), then she gets a non-negative payoff after every
possible history. Obviously, her payoff is also non-negative if she does not jump-bid.
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5 Conclusion

In mechanism design, it seems useful to distinguish (simple) mechanisms in which agents
face a straightforward choice problem from (complex) mechanisms that require agents
to engage in complex mental tasks to determine their optimal strategy. The literature
has made a great deal of progress in terms of formulating different notions of simplicity
and characterizing mechanisms that are simple according to these notions. However, the
understanding of the design of mechanisms with unsophisticated agents, as we argued
in this paper, is far from complete. Indeed, in many cases, the designer might prefer
mechanisms that are not simple, even under the assumption that agents choose strategies
that are the worst possible for the designer whenever they are confused.

We suggest some directions for further research. An important avenue is the
optimal design of mechanisms when agents are strategically unsophisticated. Our
analysis indicates that the optimal design of mechanisms with unsophisticated agents
could be challenging: One should not simply optimize over the class of simple mechanisms,
at least not without first establishing their optimality. Searching over all mechanisms
presents new challenges, as the designer cannot rely on any standard revelation principle
when mechanisms are evaluated by their worst-case performance.

Relatedly, while we focused primarily on negative results throughout the paper,
we expect that establishing optimality foundations for simple mechanisms—not being
weakly or strongly dominated—might be a particularly promising research direction.
This is because such a foundation can often be found by first solving an easier relaxed
problem, and then showing that the upper bound is achieved by a simple mechanism
(see Section 3.2).

While we focused on obvious dominance as the leading application in this paper,
our framework could be used to study a number of other solution concepts, even ones not
traditionally associated with simplicity. Because we have not imposed any restrictions
on the partial order on strategies that reflects agents’ reasoning, the order could depend
on agents’ beliefs. This would allow us to study solution concepts such as Bayesian
Nash equilibrium; depending on how the partial order is defined, simplicity would
correspond to either robustness to selecting a best response at equilibrium, or robustness
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to equilibrium selection.23 Relatedly, while we studied a private-value environment,
questions of simplicity versus complexity are equally intriguing in the interdependent-
value setting.24

Finally, it would be interesting to conduct experimental tests of the best simple
mechanism against the complex mechanism that dominates it, such as the ascending-clock
auction and the ascending-clock auction with jump bidding. These findings could then
be used to support or invalidate the superiority of complex mechanisms.
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A Appendix

A.1 The partial order under the notion of OSP

We consider finite mechanisms that are imperfect-information, extensive-form games
with perfect recall and consequences in X . The designer may wish to use randomization
in the mechanism. As explained in the main text, to incorporate this possibility, we can
treat agent N as a dummy player (“Nature”) with constant preferences. The distribution
over Nature’s strategies can then be picked by the designer. To shorten the exposition,
we only introduce notation associated with a generic game Γ that we are going to use:

(1) H is the set of histories, with representative element h, and h∅ denoting the initial
(empty) history;

(2) ⊂ is the precedence relation over histories;
(3) Z is the set of terminal histories, with representative element z;
(4) g(z) ∈ X is the outcome resulting from z;
(5) Ii denotes an information set of agent i;
(6) A(Ii) is the set of actions available at information set Ii;
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(7) A (pure) strategy Si chooses an action a ∈ A(Ii) at every information set Ii of
agent i ∈ N , and Si is the collection of all (pure) strategies for player i;

(8) A strategy profile S = (S1, ..., SN) specifies a strategy for each player;
(9) z(h, S) denotes the terminal history that results when we start at history h and

play proceeds according to the strategy profile S.

We follow Li (2017) to define the partial order ≻θi
corresponding to the solution

concept of obvious dominance. We say that the information set Ii is on the path of play
of strategy Si if there exists S−i and h ∈ Ii such that h ⊂ z(h∅, Si, S−i). Given two
strategies Si and S ′

i, we define β(Si, S ′
i) to be the set of information sets that are on the

path of play of both Si and S ′
i. Under perfect recall, Ii ∈ β(Si, S ′

i) implies that Si and
S ′

i choose the same actions at all information sets preceding Ii. If Ii ∈ β(Si, S ′
i) but Si

and S ′
i choose different actions at Ii, then we call Ii an earliest point of departure for

these two strategies. We let α(Si, S ′
i) denote the set of all earliest points of departure

for these two strategies.

Definition 6 (OSP). Si ⪯θi
S ′

i if for all Ii ∈ α(Si, S ′
i),

max
h∈Ii, S−i

ui(g(z(h, Si, S−i)), θi) ≤ min
h∈Ii, S−i

ui(g(z(h, S ′
i, S−i)), θi).

We say that strategy Si is obviously dominated by strategy S ′
i for type θi of agent i if

Si ≺θi
S ′

i, that is, if Si ⪯θi
S ′

i but not S ′
i ⪯θi

Si.

Thus, a strategy Si is obviously dominated for type θi if there exists another
strategy S ′

i such that, starting at any earliest point of departure, the worst possible
payoff under S ′

i for type θi across all strategies of other players and Nature is higher
than the best possible payoff under Si for type θi across all strategies of other players
and Nature. A strategy Si is obviously dominant if all non-equivalent strategies S ′

i are
obviously dominated by it.

A.2 The optimal OSP mechanism for Example 1

It follows from Theorem 3.1 of Bade and Gonczarowski (2017) that it is without loss
of optimality for OSP implementation to look at gradual revelation mechanisms (see
Ashlagi and Gonczarowski, 2018, Pycia and Troyan, 2023 and Mackenzie, 2019 for related
revelation principles for OSP mechanisms). In our simple example with two players and
two types, this means that we can assume that in the best OSP mechanism, at the first
decision node, one of the players (“leader”) makes a binary decision (with the two types
choosing different actions—potentially leading to the same outcome—as part of their
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obviously dominant strategies), and then in each of the two possible histories, having
observed the choice of the leader, the other player (“follower”) makes a binary decision.

Therefore, an upper bound on the profit in the optimal OSP mechanism can be
derived in the following way. When the follower chooses her optimal action, she already
knows the action chosen by the leader. OSP requires that for any choice of the leader,
each type of the follower must weakly prefer her equilibrium strategy (action) to choosing
the alternative action. Thus, each type of the follower must have a standard dominant
strategy in the normal-form representation of the game. In contrast, when the leader
chooses her action at the initial decision node, it must be that the worst possible payoff
from choosing her equilibrium action (over the two possible actions that can be selected
by the follower in the subgame) is weakly higher than the best possible payoff from
choosing the alternative action. In the normal-form representation of the game, this can
be captured by requiring that the payoff from the equilibrium strategy of each type of
the leader under any choice of the strategy Sf for the follower is weakly higher than
the payoff from following the alternative strategy under any choice of the strategy S ′

f

(where, importantly, Sf could be different from S ′
f ).

Summarizing, an upper bound can be derived by using a normal-form game with
the usual strategy-proof constraints, except that for the leader the constraints are
strengthened in the way described above. Crucially, all these constraints are linear in
the allocation and transfers, and so is the objective function of the designer (intuitively,
we avoid taking the min and max in the definition of obvious dominance by iterating
over all possible pairs of strategies (Sf , S ′

f) for the follower when comparing the two
strategies of the leader). Thus, we obtain a linear program that can be solved using
standard linear-programming tools, yielding an upper bound of 1/5. This upper bound
is achieved by the OSP mechanism described in the example, proving its optimality.

A.3 Proof of Proposition 1

If the AAT property fails, then there exists a type θi of some agent i and a mechanism
Γ′ that is simple on Θ \ {θi} but cannot be extended to a simple mechanism on Θ with
the same outcome on Θ \ {θi}. Because the mechanism Γ′ is simple on Θ \ {θi}, it
leads to a unique outcome conditional on these types that we can denote by a function
λ : Θ \ {θi} → X . Define an objective function v of the designer by

v(x, θ) = 1{x=λ(θ), θ∈Θ\{θi}}.

With the objective function v, the best simple mechanism on Θ must yield an optimal
payoff strictly lower than π(Θ \ {θi}) because, by definition, the outcome λ cannot be
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implemented by a simple mechanism on Θ. Consider, however, the mechanism Γ′. This
mechanism must be complex on Θ. However, the worst-possible expected payoff from
using this mechanism is π(Θ \ {θi}) because conditional on Θ \ {θi} the outcome λ is
implemented, while the outcome implemented conditional on player i having type θi

does not effect the designer’s objective. Therefore, the optimal simple mechanism is
strongly dominated.

A.4 Example for Subsection 3.1.1

We explicitly construct an example in which the best OSP mechanism is strongly
dominated. There is one player with three equally-likely types, Θ = {u, m, d}, with the
following ordinal preferences over X = {U, U ′, M, M ′, D, D′}:

1. type u: M > U > D′ > D > M ′ > U ′;
2. type m: D > M > U ′ > U > D′ > M ′;
3. type d: U > D > M ′ > M > U ′ > D′.

The designer gets a utility of 1 if the type is j ∈ {u, m, d} and she implements outcome
J or J ′; she gets −1 otherwise.

Lemma 1. The best simple mechanism is to implement any fixed (possibly random)
outcome; the expected payoff for the designer is −1/3.

Recall that it is without loss of optimality for the designer to consider deterministic
mechanisms when optimizing in the class of simple (OSP) mechanisms. A deterministic
simple mechanism for a single agent can be represented as a direct assignment of
alternatives to types such that no type strictly prefers another type’s assignment to her
own. Suppose that there exists such an assignment that gives the designer an expected
payoff strictly above −1/3. Then, at least two types j ∈ {u, m, d} must be assigned
either J or J ′. If any type j is assigned J ′, then no other alternative can be offered by
the mechanism since j ranks J ′ last. Thus, the mechanism must offer J to two distinct
types j. However, that’s a contradiction because at least one of these types would prefer
the allocation of the other one, no matter which two types j ∈ {u, m, d} we choose.

To finish the proof, we construct a superior complex mechanism Γ.

Lemma 2. There exists a complex mechanism Γ that guarantees the designer an expected
payoff of 0.

In the mechanism Γ, the designer uses a randomization device that has equally
likely outcomes H and T , and offers three possible strategies to the agent, as represented
by the following normal form:
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H T

SU U D′

SM M U ′

SD D M ′

Type j ∈ {u, m, d} is confused between the two strategies offering J and J ′,
respectively, with the former one (denoted SJ) leading to the 2nd or 3rd alternative, and
the latter to the 1st or 6th alternative. However, the remaining strategy is obviously
dominated for j by the strategy SJ as it leads to the 4th or 5th alternative. Regardless
of how j resolves her strategic confusion, either J or J ′ is implemented with probability
1/2, and thus the designer obtains 0 in expectation.

A.5 Proof of Proposition 2 and 2’

We prove Proposition 2 first, and then explain how to modify the steps to obtain
Proposition 2’. We start with a lemma that builds on the insight in Yamashita (2015,
Theorem 1), which can be viewed as its generalization to a larger class of environments
and our abstract notion of a solution concept.

Lemma 3. For any mechanism Γ, min V (Γ) is upper-bounded by the value of the IC-
relaxed problem corresponding to any fixed collection of trees {Ti}i∈N (as defined in
Section 3.2).

Proof. Fix an arbitrary finite mechanism Γ, an agent i, and a tree Ti. Let T +
i (θi) =

{θ′
i : θ′

i → θi} be the set of types who point towards type θi in the tree Ti. Consider the
following procedure. Starting at the root of the tree Ti—which is some type θ0

i with
no edges coming out of it—select any undominated strategy for θ0

i , S0
i ∈ Ui(θ0

i ). Next,
for any type θ′

i ∈ T +
i (θ0

i ), we can find an undominated strategy S ′
i ∈ Ui(θ′

i) that either
dominates S0

i or is equal to S0
i (this step uses finiteness of the mechanism; if S0

i is not
in Ui(θ′

i), then there must exist a strategy in Ui(θ′
i) that dominates it). We proceed

inductively. Once some type θi is assigned a strategy, we assign undominated strategies
to all types T +

i (θi) that either equal or dominate the strategy assigned to θi. Because Ti

is a finite tree, this procedure must stop at some point, with every type being assigned a
strategy. The same procedure is carried out for all other agents.

Because each type is assigned a strategy from Ui(·) in the procedure, when all
types execute their assigned strategies, the expected payoff v̄ to the designer must weakly
exceed min V (Γ) (which is the outcome of the designer-adversarial selection from Ui(·)).
Moreover, the procedure guarantees that the mechanism—along with the assignment
of strategies—is feasible for the IC-relaxed problem corresponding to the collection of

34



trees {Ti}i∈N . Therefore, v̄, and hence also min V (Γ), is weakly below the value of the
IC-relaxed problem.

Proposition 2 follows immediately: By assumption, there exists a collection of
trees {Ti}i∈N such that the value of the IC-relaxed problem corresponding to {Ti}i∈N

is the same as the designer’s expected payoff from the best simple mechanism. Hence,
by applying Lemma 3 for the collection {Ti}i∈N , we conclude that there cannot exist
a mechanism Γ with min V (Γ) strictly above the expected payoff of the best simple
mechanism, and hence the best simple mechanism is not strongly dominated.

We now explain how to incorporate participation constraints in the above procedure
to obtain Proposition 2’. Suppose that the superior complex mechanism is required to
provide partial incentives to participate. In that case, in the proof of Lemma 3, we can
select an undominated strategy for type θ0

i —the root of the tree Ti—that dominates
the non-participation strategy S∅

i (such a strategy exists by the definition of partial
incentives to participate). Thus, we can obtain a version of Lemma 3 that assumes
that Γ provides partial incentives to participate and concludes that min V (Γ) is upper-
bounded by the value of the IC-relaxed and IR-relaxed problem. If the superior complex
mechanism is required to provide full incentives to participate, then we know that all
undominated strategies must dominate the non-participation strategy S∅

i . Thus, we can
obtain a version of Lemma 3 which assumes that Γ provides full incentives to participate
and concludes that min V (Γ) is upper-bounded by the value of the IC-relaxed and
IR-non-relaxed problem.

A.6 Proofs for Section 4

We begin by formulating an abstract result providing sufficient conditions under which a
given simple mechanism Γ is weakly dominated by a complex mechanism. Let Y ⊆ X
and define

ΘY
i =

{
θi ∈ Θi : max

x∈Y
ui(x, θi) > min

S−i

ui(g(z(h∅, Si(θi), S−i)), θi)
}

.

That is, ΘY
i is the set of types of agent i that strictly prefer some outcome in Y to the

worst possible outcome in the simple mechanism Γ.

Proposition 3. Suppose the solution concept is obvious dominance.25 Fix a simple
mechanism Γ. Suppose that for some agent i ∈ N , there exists Y ⊆ X and a simple
mechanism ΓY

−i played by agents −i with an outcome space Y such that
25In an earlier version of the paper Li r⃝ Dworczak (2022), we showed that this result also holds for

the solution concepts of weak dominance and strong obvious dominance.
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1. Each outcome x ∈ Y occurs at some terminal node in ΓY
−i;

2. For any θi ∈ ΘY
i ̸= ∅, the designer prefers (strictly for some θi ∈ ΘY

i ) the conditional
expected payoff from the mechanism ΓY

−i to the conditional expected payoff from the
mechanism Γ.

Then, the mechanism Γ is weakly dominated.

The proof can be found in Appendix A.6.1. The idea is straightforward: Given
some initial simple mechanism Γ, agent i is offered an additional option that guarantees
herself an outcome in Y. If this option is not chosen, play proceeds as in the original
mechanism Γ. The key difference between a player and the designer when evaluating
the additional option is that the player is only assumed to avoid obviously dominated
strategies while the designer is an expected-payoff maximizer. The agent will not rule
out a strategy that gives her a high enough payoff in some scenario, no matter how
improbable that scenario is. The designer can structure the set Y and the mechanism
ΓY

−i in a way that gives her a high payoff on average, while guaranteeing at least one
contingency with a good outcome for player i.

The above construction bears some high-level resemblance to ideas first considered
by Börgers and Smith (2012) and Börgers (2017) in the context of specific design
environments. Given an optimal dominant-strategy mechanism, these papers introduce
additional options for players in such a way that the Bayesian Nash equilibria of the
resulting new mechanism provide weakly higher payoffs to the designer regardless of
players’ higher-order beliefs. The intuition behind Proposition 3 is indeed similar;
however, Proposition 3 applies to a different solution concept and does not rely on fixing
any particular environment or objective function.

A.6.1 Proof of Proposition 3

We show that the simple mechanism Γ is weakly dominated by explicitly constructing a
complex mechanism that dominates it. The mechanism we construct can be interpreted
as a delegation mechanism in which one agent is delegated to choose a simple mechanism
(for the agents to play) from a menu of two simple mechanisms specified by the designer.26

Fix a player i such that the conditions in Proposition 3 are satisfied. We add a new
node for player i from which play begins. Player i chooses from two options: “Choose Γ”
or “Choose ΓY

−i.” If she chooses Γ, the game tree is the one associated with Γ. If she
chooses ΓY

−i, the game tree is the one associated with the game ΓY
−i. We call this new

composite game Γ′.
26These complex mechanisms are “type 1 strategically simple” according to the notion in Börgers

and Li (2019).
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First, we claim that all players other than i have an obviously dominant strategy
in Γ′. This is immediate from the fact that each player −i has an obviously dominant
strategy in Γ and an obviously dominant strategy in ΓY

−i. Second, all types of player
i not in ΘY

i also have an obviously dominant strategy which is to choose Γ, and then
follow the same strategy Si(θi) that was obviously dominant for Γ. This is immediate
from the fact that, for these types, the best that can happen after choosing ΓY

−i cannot
be better than the worst possible outcome in Γ when they follow Si(θi). Third, we
claim that, for all types θi ∈ ΘY

i , the option to choose ΓY
−i is not obviously dominated.

Indeed, fix the strategy profile S−i that yields the minimum in the definition of ΘY
i ,

and—using condition 1 in the proposition—let SY
−i be the profile that leads to the

outcome x⋆ ∈ argmaxx∈Yui(x, θi) in the game ΓY
−i. Then, if players −i follow the

strategy (S−i, SY
−i) in Γ′, by definition of ΘY

i , the best response for type θi is to choose
the game ΓY

−i at the first decision node.
Overall, it is not obviously dominated for types θi ∈ ΘY

i to choose the game ΓY
−i,

and when they do, play among players −i in that subgame proceeds as in the original
game ΓY

−i. By condition 2 in the proposition, the designer receives a higher (sometimes
strictly) conditional expected payoff in that case, compared to the conditional expected
payoff she would have received in the game Γ. Therefore, the game Γ is weakly dominated
by Γ′.

A.6.2 Proof of Claim 1

We first consider the construction for the case N = 2 without relying on randomization.
We then cover the case N = 1.

Fix a simple mechanism Γ, with some expected revenue R. Suppose that N ≥ 2.
For any i, define Y ⊂ X to contain two outcomes: (1) Player i pays M to the designer
while some player j receives ϵ > 0 from the designer, and (2) Player i receives M

from the designer while player j receives 0 from the designer. The mechanism ΓY
−i is

defined as having just one information node for player j who chooses between the two
options in Y. This satisfies condition 1 of Proposition 3. Moreover, the mechanism
ΓY

−i is simple because player j has an obviously dominant strategy to select option
(1)—player i pays M to the designer while player j receives ϵ > 0 from the designer.
When M is large enough, ΘY

i = Θi, and when additionally ϵ is small enough, condition
2 of Proposition 3 holds, since the conditional expected payoff from the mechanism
ΓY

−i is unbounded in M . Thus, by Proposition 3, the simple mechanism Γ is weakly
dominated. It remains to check that the weakly-dominating complex mechanism provides
partial incentives to participate. This is immediate from the proof of Proposition 3 that
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explicitly constructs the weakly-dominating complex mechanism Γ′: Intuitively, in Γ′,
player i chooses between the games Γ and ΓY

−i; thus, since each type of player i had an
obviously dominant strategy dominating non-participation in Γ, each type continues to
have at least one OSP-undominated strategy dominating non-participation in Γ′.

Consider the case N = 1. Let Y ⊂ X contain two outcomes: (1) Player i pays
M to the designer, and (2) Player i receives M from the designer. The mechanism
ΓY

−i is defined as having just one information node for Nature that chooses option (1)
with probability 1 − ϵ and option (2) with probability ϵ. For ϵ sufficiently small, by
Proposition 3 and the same arguments as before, the mechanism Γ is weakly dominated.
(Of course, this construction could also be used for general N .)

A.6.3 Proof of Claim 2

Fix Γ that is a revenue-maximizing simple mechanism. Because of symmetry, we can
assume without loss of optimality for the designer that Γ is symmetric as well. Define
Y to contain two options: (1) Player i wins the object and pays ū while some player j

receives ϵ > 0, and (2) Player i wins the object and pays ū − δ while player j receives
0. In the game ΓY

−i, player j selects one option from Y . ΓY
−i is thus simple, with player

j always selecting option (1). Take δ > 0 small enough so that Θi ∩ (ū − δ, ū) = ∅
(using finiteness of the type space). Then, we have ΘY

i = {ū}, because for all other
types the payoff from Y is strictly negative (while the original strategy in Γ guarantees a
non-negative payoff).27 Moreover, type ū always gets a non-negative payoff in ΓY

−i so she
has a full incentive to participate. Condition 1 of Proposition 3 holds, while condition
2 is satisfied as long as the mechanism Γ extracts less than ū from type ū of player i.
Thus, by Proposition 3, Γ is weakly dominated as long as it is not a mechanism that
offers a price ū to player i. By symmetry, the only case not covered by the argument is
when Γ is payoff-equivalent to a mechanism that offers a price ū to all players in random
order. However, such a mechanism is suboptimal by assumption.

A.6.4 Proof of Claim 3

By assumption, the unique optimal simple mechanism is outcome-equivalent to offering
some price p⋆; let v̄ denote the corresponding optimal expected revenue. Note that, by
optimality, there must exist a type θ = p⋆ in Θ.

Towards a contradiction, suppose that there exists a weakly dominating complex
mechanism Γ. By definition, min V (Γ) ≥ v̄; we will first show that min V (Γ) = v̄. We

27ū ∈ ΘY
i as long as there is positive probability that she does not receive the object in Γ—that is

guaranteed by the assumption that the players and Γ are symmetric.
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claim that there exists a selection from the set of OSP-undominated strategies Ui(·) in
Γ such that (i) if every type plays the assigned strategy, the expected revenue for the
designer is equal to at least min V (Γ), and (ii) local downward incentive constraints
hold, that is, the strategy assigned to type θi obviously dominates (for θi) the strategy
assigned to the highest type lower than θi. This follows from Lemma 3 in Appendix
A.5 that establishes a more general result. Moreover, it is well known that for revenue
maximization with a single player, only local downward incentive constraints bind in the
optimal mechanism; hence, the expected revenue under the selection of undominated
strategies described above is upper-bounded by v̄. Since v̄ ≤ min V (Γ), we conclude that
min V (Γ) = v̄ and there exists a selection from the set of undominated strategies which
satisfies local downward incentive constraints and yields an expected revenue of v̄.

By the assumption that the optimal simple mechanism is unique, the only way to
generate the expected revenue of v̄ while satisfying local downward incentive constraints
is for all types weakly above p⋆ to buy for sure at the expected price of p⋆. Because of
full incentive to participate, type p⋆ must have a strategy under which she buys for sure
at a price of p⋆ in every history. In particular, Γ must offer such a strategy. Moreover,
again because of full incentives to participate, this strategy must be obviously dominant
for type p⋆.

By the assumption that Γ weakly dominates the simple mechanism, there must
exist a strategy S1 that is OSP-undominated for some type θ, and a strategy for Nature
S0 such that the agent pays q > p⋆ in the outcome g(z(h∅, S0, S1)). Because the strategy
“buy for sure at a price of p⋆” is available, for S1 to be OSP-undominated, it must
sometimes (for some strategy of Nature) generate an outcome “buy with probability x

at a price of r” that is strictly preferred by θ to the outcome “buy for sure at a price
of p⋆.” At the same time, type p⋆ cannot derive positive utility from the outcome “buy
with probability x at a price of r” as otherwise the strategy S1 would be undominated
for type p⋆, violating full incentives to participate (since S1 sometimes leads to the agent
paying q > p⋆). Moreover, note that θ > p⋆, because of full incentives to participate. We
are ready to obtain a contradiction: By the above reasoning, we have θx − r > θ − p⋆

and p⋆x − r ≤ 0. This implies

θ − p⋆ < θx − r ≤ θx − p⋆x = x(θ − p⋆) ≤ θ − p⋆,

a contradiction.
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A.6.5 Supplemental Material for Section 4

We show that the uniqueness assumption in Claim 3 is needed. We construct an example
in which the optimal OSP mechanisms are not unique, and they are weakly dominated.
The agent has value 1 or 2, with equal probabilities. The OSP mechanisms generate
an expected revenue of 1 (which can be obtained by charging a price of 1, or a price of
2). The weakly dominating mechanism features Nature that plays H with some small
probability ϵ > 0, and T otherwise. The mechanism offers three strategies to the agent,
where the first number in every cell is the probability of trade, and the second number
is the payment to the designer.

H T

S1 (1, 3/2) (1, 3/2)
S2 (1, 1) (1, 2)
S3 (1/2, 1/2) (1/2, 1/2)

For type 2, S1 and S2 are OSP-undominated (playing S3 can be ruled out under the
assumption that the designer can choose between strategies that are payoff equivalent, in
this case S1 and S3). Type 1 has an obviously dominant strategy S3. Thus, Γ provides
full incentives to participate. In the worst case, type 2 plays S1, and the designer obtains
an expected revenue of 1. In the best case, type 2 plays S2, and the designer obtains an
expected revenue of 1/2 + 1/2 · (2 − ϵ) which can be arbitrarily close to 3/2.
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