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Abstract

We propose a framework for studying the optimal design of rights relating to the
control of an economic resource, which we broadly refer to as property rights. An
agent makes an investment decision affecting her valuation for the resource, and then
participates in a trading mechanism chosen by a principal in a sequentially rational
way, leading to a hold-up problem. A designer—who would like to incentivize efficient
investment and whose preferences may differ from those of the principal—can endow
the agent with a menu of rights that determine the agent’s outside options in the
interaction with the principal. We characterize the optimal menu of rights as a function
of the designer’s and the principal’s objectives, and the investment technology. The
optimal menu requires at most two types of rights, including an option-to-own that
grants the agent control over the resource upon paying a pre-specified price.
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Lipnowski, Paul Milgrom, Stephen Morris, Georg Nöldeke, Bruno Jullien, Alessandro Pavan, Patrick Rey,
Anna Sanktjohanser, Ilya Segal, Bruno Strulovici, and seminar audiences at Harvard/MIT, Yale, Columbia,
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1 Introduction

The assignment of property rights has important implications for the distribution of surplus

within society and—in the presence of transaction costs—economic efficiency (Coase, 1960,

Williamson, 1979). Consequently, there are trade-offs associated with the design of these

rights. Awarding a full property right over an economic resource incentivizes the owner

to make efficient investment decisions related to its use. However, when transaction costs

(such as bargaining frictions) are present, strong property rights may inhibit the future

reallocation of economic resources to agents who can utilize them most efficiently. Moreover,

the assignment of property rights may give rise to market power or conflict with society’s

distributive objectives.

One example that highlights the trade-offs involved in the design of property rights is the

design of radio spectrum licenses. As the Federal Communications Commission (FCC)—

which regulates the use of spectrum in the US—has noted: If radio spectrum licenses grant

holders full property rights over the underlying spectrum, then this incentivizes investment in

the costly infrastructure that enables individual holders to efficiently utilize their spectrum.

However, due to the complexity and high transaction costs associated with the market-

wide reassignment of spectrum (see, for example, the FCC’s 2016-17 “Incentive Auction”),

awarding spectrum licenses that endow holders with such strong property rights may impede

the efficient reallocation of spectrum in response to technological progress.1 This raises a

natural question: How should spectrum licenses—and property rights more generally—be

optimally designed?

The starting point of our analysis is the observation that property rights differ from other

legal contracts in that they do not typically explicitly specify the sides of the contract; rather,

they give the holder the authority to unilaterally implement certain outcomes pertaining to

the underlying economic resource. For example, a full property right always gives the owner

an option to use or generate income from the resource regardless of what other options (such

as selling the resource) might become available by interacting with other agents.2 Conse-

quently, we model property rights as determining the holder’s outside options in economic

interactions. This simplified perspective allows us to use mechanism-design techniques to

characterize optimal property rights.

1The current design of spectrum licenses effectively grants holders full property rights over the underlying
spectrum for a fixed term. As Milgrom et al. (2017) observe: “Existing license designs present regulators
with a stark choice between encouraging entry and innovation or ensuring that licensees’ complementary,
long-term investments are secure.”

2In the legal nomenclature going back to Hohfeld (1917), property rights can be thought of as in rem
rights that are “good against the world,” as opposed to in personam rights that typically arise out of bilateral
(or multilateral) negotiations (see also the discussion in Balbuzanov and Kotowski, 2019).
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Our framework highlights the key trade-offs involved in the design of property rights by

recasting this problem as a dynamic contracting problem between a designer, a principal

and an agent. The designer first determines the agent’s property rights: a flexible menu

of outside options relating to the control of an economic resource available to the agent

in subsequent interactions. The agent then makes an investment decision that affects her

valuation for the resource. We model investment as a binary choice for the agent: If she

pays a cost, her value is drawn from a distribution that first-order stochastically dominates

the default distribution. Following the agent’s investment decision, a public state that pins

down the principal’s opportunity cost for allocating the resource to the agent is realized.

The principal then chooses a trading mechanism (with transfers) that screens the agent’s

private information and determines the final allocation. The mechanism chosen by the

principal must respect the agent’s rights (i.e., it must ensure the agent’s participation given

the outside options created by the agent’s property rights).

The key assumption in our framework is that the designer does not directly control the

trading mechanism. Conditional on the realization of the state, the mechanism is chosen in a

sequentially rational way by the principal who maximizes an objective function that need not

represent the designer’s ex-ante preferences. We refer to this friction as ex-post inefficiency.

(In some applications, the principal could represent the “future self” of the designer, in which

case ex-post inefficiency can be understood as a form of time inconsistency for the designer.)

Lack of commitment also results in a hold-up problem: The agent may fail to undertake

efficient investments if the subsequent trading mechanism extracts the resulting surplus.

The design of property rights can alleviate these frictions. For example, a conventional

property right cedes full control over the resource to the agent, thereby guaranteeing the

agent the option to keep the resource regardless of the principal’s objective and the realized

state. Other designs might give the agent conditional rights, such as an option to demand a

monetary payment from the designer in exchange for relinquishing control over the resource,

or an option to acquire control over the resource conditional on paying a pre-specified price.

By strengthening the agent’s rights, the designer affects the agent’s investment incentives as

well as the principal’s flexibility at the stage of choosing a trading mechanism.

Before giving an overview of our results, we emphasize two (implicit) simplifying as-

sumptions made within our framework. First, by studying a setting with a single agent, we

abstract away from the problem of how to select the agent who should have property rights

to the resource. In the language of mechanism design, we depart from the traditional focus

on how to allocate a given good to agents differing in their values, and instead focus on the

problem of designing the good itself —here, understood as designing the set of rights to the

underlying economic resource. Second, we abstract away from the potential impact of prop-
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erty rights on the distribution of bargaining power. That is, we assume that it is always the

principal who chooses the trading mechanism, even if the agent holds full property rights.

This is in line with our focus on modeling property rights as determining outside options

of the holder. The assumption narrows down the set of applications of our framework but

holds in environments in which the principal represents a government or a market regulator.

Our main finding is that the optimal property right is relatively simple but more flexible

than a full property right. Specifically, in our framework, regardless of the designer’s prefer-

ences, optimality can be achieved by endowing the agent with a menu of at most two types

of rights. One of the rights takes the form of an option-to-own. An option-to-own gives the

agent the right to retain control over the resource conditional on paying a pre-specified price.

The designer can vary the strength of the option-to-own by adjusting the price. For example,

setting the price to zero is equivalent to a full property right, while setting a sufficiently high

price is equivalent to giving no right to the agent. The second type of right in the optimal

menu is only required if the agent’s cost of investing is sufficiently high and its form depends

on whether the designer can make the agent’s rights contingent on investment. If investment

is observable (and contractible), then the second right takes the form of a cash payment for

undertaking the investment. If investment is not observable (and hence non-contractible),

then the second right takes the form of a partial property right that awards the agent control

over a fraction of the resource (or, equivalently, gives the resource to the agent with some

probability).

From a methodological perspective, property rights in our framework give rise to a flexible

set of outside options available to the agent in the interaction with the principal. Thus, the

principal solves an instance of a mechanism-design problem with type-dependent outside

options, as in the work of Lewis and Sappington (1989) and Jullien (2000). We derive a

novel solution technique for such problems based on an extension of the classical ironing

technique due to Myerson (1981). The designer’s problem is then to choose the optimal

type-dependent reservation utility function for an agent who subsequently participates in

a screening mechanism. We characterize solutions to this problem by exploiting the linear

dependence of the principal’s optimal mechanism on the agent’s outside option function that

our ironing procedure uncovers. These techniques are portable to other settings involving

type-dependent outside options and may thereby be useful beyond the analysis of optimal

property rights.

We illustrate the usefulness and flexibility of our framework by considering five examples.

First, motivated by applications such as the allocation of electromagnetic spectrum and

mining rights, we study a dynamic resource allocation problem in which a regulator cannot

commit to future trading mechanisms (e.g., spectrum auctions) but can design the resource
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use license. When designing the license, the regulator trades off incentives for the license

holder to undertake value-increasing investments against the ease with which control over

the resource can be reassigned in the future if new efficient uses of the resource emerge. We

find that the optimal license typically takes the form of a renewable lease that gives the

license holder the opportunity to retain control conditional on paying a pre-specified price.

Second, we consider the problem of how to optimally regulate a private rental market. In

this application, we interpret the designer and the principal as separate economic agents:

The designer is a market regulator concerned with efficiency, while the principal is a private

rental company maximizing profits. We provide conditions under which optimal market

regulation provides tenants with a right to renew their lease at a price tied to the market

rental rate—a form of regulation that is frequently seen in practice. Third, inspired by

a classic problem in economics, we discuss how a regulator might reward and incentivize

innovation by committing to an appropriate patent policy. Specifically, we use a stylized

model to illustrate why it may be optimal for the regulator to commit its patent office to a

certain “review standard” that is independent of product profitability. We also discuss cases

in which direct cash prizes or charging fees for granting patents may emerge as optimal tools.

Our fourth example casts light on the optimal design of a contract between the government

and a private producer. Inspired by applications such as vaccine development, we provide an

optimality foundation for the practice of offering advanced market commitments. Finally,

we investigate the classical ratchet effect by studying the optimal form of contractual rights

between a large firm and a small supplier. In this context, the optimal menu of rights involves

the large firm committing to a two-price purchase scheme.

The remainder of this paper is organized as follows. We provide an overview of the

related literature in Section 1.1. Section 2 introduces and discusses the model. In Section 3

we state and prove our main result (Theorem 1), which characterizes the optimal menu of

rights. The proofs of all auxiliary results can be found in Appendix A. Section 4 introduces

and analyzes each of our five examples. We conclude with a discussion of future research

directions in Section 5.

1.1 Related literature

Building on the seminal contribution of Coase (1960) and Williamson (1979), the economic

literature concerning property rights has largely focused on two forms of transaction costs:

private information and hold-up problems. Options-to-own have been proposed as potential

solutions to both frictions. However, to the best of our knowledge, we are the first to

demonstrate that options-to-own are part of an optimal solution when property rights can
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be chosen from a large non-parametric class. The flexible approach to modeling property

rights resonates with the legal literature, which considers other forms of property rights

beyond the simple, unconditional property rights most commonly studied in the economics

literature.3

In the context of private information as a type of transaction cost, Myerson and Sat-

terthwaite (1983) first pointed out that there may be no bargaining procedure that results in

efficient outcomes when contracting parties possess private information but property rights

are assigned exclusively to one of the parties. Cramton, Gibbons, and Klemperer (1987) fur-

ther clarified the importance of the initial allocation of property rights by showing that effi-

ciency may be attainable if the involved parties have sufficiently balanced ownership shares.

Most closely related to our work are papers analyzing the second-best design of property

rights in this context. In particular, Che (2006) showed that using an option-to-own allows

the designer to decrease the subsidy needed to implement the first-best outcome. Segal

and Whinston (2016) unified much of this literature by studying the subsidy-minimizing

choice of property rights from a relatively large parametric class; they also characterized the

option-to-own that maximizes surplus subject to maintaining budget balance in the mech-

anism. Even without the hold-up problem, our framework and results would be different:

The designer-preferred outcome in our setting (which need not be allocative efficiency) is

prevented not by multi-sided private information but by the fact that the designer does not

directly control the trading mechanism. This simplifies the analysis, and in particular allows

us to characterize the optimal property right. Without the investment stage, the optimal

right always takes the form of an option-to-own in our setting.

The incomplete-contracts literature—initiated by the seminal work of Grossman and

Hart (1986) and Hart and Moore (1990)—focused instead on frictions due to relationship-

specific investments that must be taken prior to trading, without the possibility of signing

complete contracts. Several solutions to the resulting hold-up problem have been proposed

in the literature. Aghion et al. (1994) argued that investment efficiency can be recovered

by allowing for contracts that make appropriate provisions regarding renegotiation. The

beneficial role of options-to-own have also been investigated. Hart (1995) showed that a price

contract can improve upon a simple ownership structure, and Nöldeke and Schmidt (1995,

1998) identified settings in which options-to-own can restore first-best levels of investment.

By studying a setting with a single agent, we shift focus away from the problem of optimal

reallocation of residual rights of control among multiple parties, and towards the problem of

the optimal design of these rights. This perspective allows us to characterize optimal rights

even though the first best is typically not implementable in our setting, which features private

3See Calabresi and Melamed (1972) and the related discussion in Segal and Whinston (2016).
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information at the trading stage.4 Despite these difference, we find that options-to-own play

an important role even if the designer can choose from a non-parametric set of property

rights. The optimal property right for addressing the hold-up problem may sometimes be

more complicated: Depending on the observability (and contractibility) of investment, it may

be necessary to complement an option-to-own with either a monetary transfer or a partial

property right that grants control over a fraction of the resource (or the entire resource with

some probability). In some of our applications, the property right chosen by the designer

imposes restrictions on the private parties’ contracting space—this perspective was explored

by Hermalin and Katz (1993) who asked whether courts could improve private contracting

in this way; they find a mostly negative answer due to private contracting being efficient in

their framework in most cases.5

The problem of efficient investment has also been studied within the more traditional

mechanism-design literature. In particular, Rogerson (1992) showed that the Vickrey-Clarke-

Groves (VCG) mechanism ensures efficient pre-mechanism investments because it makes

participants internalize the social gains from changes in their valuations.6 In contrast to these

papers, our designer cannot directly control the mechanism—the mechanism is chosen by

the principal (whose preferences may differ from those of designer) in a sequentially rational

way. Instead, the designer in our model affects investment incentives indirectly by endowing

the agent with property rights. That being said, we recover a version of Rogerson’s insight

by showing that if both the principal and the designer are interested in maximizing efficiency

(and investment only affects the private value of the resource), then it is optimal to allocate

no rights to the agent. Moreover, in the special case of our model with no uncertainty about

the public state, the designer may sometimes be able to “force” the principal to implement

a VCG mechanism by using an option-to-own with a price equal to the (social) opportunity

cost of the resource.

A VCG mechanism may fail to induce efficient investments in the common value of the

resource. Weyl and Zhang (2022) consider the trade-off between common-value investment

incentives and allocative efficiency; they propose a new form of a partial property right—

a depreciating license—that outperforms both a full property right and a short-term lease

4Matouschek (2004) and Baliga and Sjöström (2018) allow for private information at the contracting stage
but do not consider the investment problem. As in our model, the property rights in Baliga and Sjöström
(2018) lead to type-dependent outside options; however, Baliga and Sjöström (2018) focus on parameters for
which the first best is implementable.

5Recently, Hitzig and Niswonger (2023) study a similar question in a different setting, with application
to regulation of platform labor contracts.

6Several extensions of this result have been examined in the literature: Bergemann and Välimäki (2002)
analyzed efficient information acquisition, Hatfield et al. (2019) clarified the link between ex-ante efficient
investment, ex-post efficiency and strategy-proofness, and Akbarpour et al. (2023) studied investment incen-
tives in a setting where the mechanism must be computationally tractable.
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contract. Our model of investment is simpler but it can capture a common-value component

in a reduced form way. Despite differences in modeling assumptions and our focus on optimal

rights, we similarly find that a conditional property right—in particular one that involves

a notion of a price—may be preferred to classical property rights. In Section 4, we review

applications of our framework and comment on how the policy prescriptions we derive agree

or differ from those formulated in more applied literatures on license design and optimal

patent protection.

2 Model

Overview. We consider a model involving three time periods and three players: a designer, a

principal, and an agent. At time t = 0, the designer chooses a menu of rights that determines

the agent’s outside options (pertaining to the control of an economic resource being traded

at t = 2). At time t = 1, the agent decides whether to undertake a costly investment. This

investment decision determines the joint distribution of the agent’s type and a public state.

At time t = 2, the agent’s private type and the state are realized, and the principal chooses a

trading mechanism in a sequentially rational manner, respecting the rights that the designer

endowed the agent with at time t = 0. An overview of the model is presented in Figure 1.

Figure 1: Model overview and timeline.

Menu of rights. At time t = 0, the designer chooses a menu of rights M held by the agent
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in subsequent periods. Specifically, we allow for any menu of the form

M = {(xi, ti)}i∈I ,

where xi ∈ [0, 1] denotes an allocation, ti ∈ R denotes a payment made by the agent to the

principal in period t = 2, and the set I is arbitrary. We assume that M is a compact subset

of [0, 1]× R. Any right in the menu M can be executed by the agent at t = 2, in the sense

that any (xi, ti) ∈ M constitutes an outside option available to the agent when contracting

with the principal.

Investment. At time t = 1, the agent takes a binary investment decision. Investing is

associated with a (sunk) cost c > 0. The investment decision determines the joint distribution

of the agent’s type θ ∈ Θ := [θ, θ] ⊂ R and the public state ω ∈ Ω ⊂ R. If the agent invests,

the public state is drawn from a distribution G, and the agent’s type is drawn from a

conditional distribution Fω.7 If the agent does not invest, the respective distributions are

denoted G and F ω. We assume that, for every ω, Fω and F ω admit absolutely continuous

densities on Θ (denoted fω and f
ω
, respectively). For every ω, Fω first-order stochastically

dominates F ω, so that the primary role of investment is that it increases the agent’s type.

Trading Mechanisms. At time t = 2, the agent’s private type θ and the public state ω

are realized (the state ω is observed by both the agent and the principal). The principal

then chooses a trading mechanism, which—by the revelation principle—we can take to be

a direct revelation mechanism satisfying appropriate incentive-compatibility and individual-

rationality constraints. Formally, for every realized ω, the principal chooses a mechanism

〈xω(θ), tω(θ)〉, where xω : Θ→ [0, 1] denotes the allocation rule and tω : Θ→ R denotes the

transfer rule.

We assume the agent’s utility is linear in the allocation x (interpreted as either a probabil-

ity or quantity) and the transfer t, with the type θ normalized to equal the agent’s marginal

value for the allocation. An agent with type θ who receives an allocation x ∈ [0, 1] and

makes a payment t ∈ R then obtains utility θx− t. Given a direct mechanism 〈xω(θ), tω(θ)〉,
incentive-compatibility requires that, for all θ, θ′ ∈ Θ, and ω ∈ Ω,

Uω(θ) := θxω(θ)− tω(θ) ≥ θxω(θ′)− tω(θ′). (IC)

The agent’s outside option in the absence of any rights is normalized to 0. However, the

menu M chosen by the designer gives rise to an endogenous type-dependent outside option

7For all variables in our model that depend on ω, we assume that they are measurable functions of ω.
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determined by the agent’s optimal choice of a right from M at time t = 2. The principal

is able to replicate all outcomes in which the agent executes some outside option from the

menu M within her mechanism. Consequently, it is without loss of generality to assume

that the mechanism chosen by the principal ensures participation; hence, for every θ ∈ Θ

and ω ∈ Ω, we require

Uω(θ) ≥ max{0, max
i∈I
{θxi − ti}}. (IR)

Principal’s problem. Given a realized state ω, the principal solves the problem

max
〈xω , tω〉

∫
Θ

[Vω(θ)xω(θ) + αtω(θ)] dFω(θ) (P)

s.t. (IC), (IR),

where Vω : Θ → R is upper semi-continuous in θ, and α > 0 is the weight that the prin-

cipal places on revenue. We denote by 〈x?ω(θ ; M), t?ω(θ ; M)〉 the optimal mechanism for

the principal when the participation constraint (IR) is induced by menu M . The optimal

mechanism is generically unique; in case of indifference by the principal our proofs utilize

a particular tie-breaking rule that simplifies the exposition. Our results continue to hold

under a large class of tie-breaking rules, including designer-preferred selection, as explained

in Appendix A.6.

Agent’s problem. We can now formally state the agent’s problem; the agent will invest if

and only if ∫
Ω

∫
Θ

(θx?ω(θ; M)− t?ω(θ; M)) dFω(θ)dG(ω)− c ≥ U, (I-OB)

where U ≥ 0 captures the agent’s expected payoff from not investing. We will consider two

cases of our model depending on whether the investment decision of the agent is observable

(and contractible). In the non-contractible case, we set

U =

∫
Ω

∫
Θ

(θx?ω(θ; M)− t?ω(θ; M)) dF ω(θ; M)dG(ω),

capturing the idea that the agent enjoys her rights M and faces the same mechanism whether
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or not she invested. In the contractible case, we set

U =

∫
Ω

∫
Θ

(θx?ω(θ; ∅)− t?ω(θ; ∅)) dF ω(θ)dG(ω),

where 〈x?ω(θ ; ∅), t?ω(θ ; ∅)〉 is the principal’s optimal mechanism assuming that M = ∅ and

the agent’s type θ is drawn from F ω given the realized ω. That is, if the agent does not

invest, she does not enjoy the rights assigned by the designer; moreover, the principal knows

that the agent’s type is drawn from a lower distribution.

Designer’s problem. The designer’s problem is then

max
M

∫
Ω

∫
Θ

[V ?
ω (θ)x?ω(θ; M) + α?t?ω(θ; M)] dFω(θ)dG(ω) (D)

s.t. (I-OB),

where V ?
ω : Θ → R is continuous in θ, and α? ≥ 0 is the weight that the designer places

on transferring a unit of money from the agent to the principal. Unless stated otherwise,

we assume: (i) the designer prefers to induce investment (which is why we included the

investment-obedience constraint in the designer’s problem), (ii) there exists some menu M

that satisfies (I-OB), but (iii) the agent does not invest if M = ∅.

2.1 Discussion

While somewhat abstract, our setting has the advantage of capturing a wide range of appli-

cations. We discuss some of our modeling assumptions and their interpretations below.

Property rights. Modeling the rights held by the agent in terms of a menu M = {(xi, ti)}i∈I
yields a flexible framework that includes a rich set of possibilities:

• M = {(1, 0)} captures a conventional (unconditional) property right: The agent holds

residual rights of control over the resource and can select the x = 1 allocation at no

cost (while being free to relinquish control if offered sufficient monetary compensation).

• M = {(0,−p)} captures a right whereby the agent can demand a monetary transfer p

from the principal (who then has full control over the period t = 2 allocation);

• M = {(1, 0), (0,−p)} captures a standard property right for the agent along with a

resale option that allows the agent to sell the resource back to the principal at a price p;
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• M = {(1, p)} represents a renewable lease or an option-to-own, giving the agent the

right to acquire control over the resource conditional on paying the principal a fixed

price p;

• M = {(y, 0)} with y ∈ (0, 1) captures a “partial property right.” The interpretation

of partial property rights will vary depending on the application. If y represents a

probability, then the right can be implemented by conditioning ownership on some

exogenous future event such as a court decision; the designer can adjust y by varying

how difficult it is to contest the right in front of a court.8 If y represents a quantity

traded, then a partial right applies only to some fraction of the total available volume.

Finally, in a reduced-form way, y can capture geographic or temporal restrictions on

the property right.

• M = {(s, p(s)}s∈[0,1], for some function p : (0, 1)→ R+, is a flexible menu then allows

the agent to purchase their preferred partial property right s ∈ [0, 1] at a price p(s).

The investment stage. Our model is agnostic about the interpretation of the allocation, and

whether or not the agent controls the underlying economic resource when making the in-

vestment decision. One possibility is that the agent makes a relationship-specific investment

prior to trading with the principal at t = 2 and the property rights assignment represents an

underlying legal framework; another is that the agent is allocated a good at t = 0 along with

a legal contract specifying what rights the agents has with regard to extending her control

over the good to the second period. Our applications explore both possibilities.

We modeled investment as a binary decision to highlight the key forces in our framework

in the simplest possible way. However, our results extend—in an appropriate sense that we

explain later—to richer environments in which the agent decides how much to invest.

The trading stage. Our modeling of the trading stage is different from the typical incomplete-

contracts framework: We assume that the agent has private information and that there is a

principal who chooses an incentive-compatible mechanism with transfers. This has several

implications. First, there exists an ex-post efficient mechanism but it need not be selected

by the principal. The key assumption is that the principal selects the mechanism at time

t = 2 in a sequentially rational way to maximize her payoff, which may in general differ

from the social optimum, as represented by the designer’s preferences. The principal may

8For example, there is variation across jurisdictions in the degree of protection of intellectual property
rights that determines the ex-ante probability of retaining de facto ownership.
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also represent a third party or a “future self” of the designer (exhibiting a form of time-

inconsistency). Second, our framework assumes a separation between the notion of property

rights and bargaining power: The principal enjoys full bargaining power—in the sense that

she chooses the trading mechanism—regardless of the rights M held by the agent. However,

as long as the principal attaches a positive weight α to revenue (which we have assumed),

the choice of M does affect the eventual split of surplus between the agent and the principal.

Property rights would be economically ineffective if α = 0, as the principal would then simply

“buy out” any rights in M with a sufficiently large cash payment.

Model Frictions. Our framework features two fundamental frictions. The first one is a hold-

up problem created by the assumption that the principal cannot commit to her mechanism

in order to incentivize the agent’s investment. The second one, which we refer to as ex-

post inefficiency, is the possible divergence between the preferences of the designer and

the principal, resulting in socially suboptimal allocation in the second-period mechanism.9

Property rights are a tool used by the designer to address both of these frictions, by shifting

rents to the agent and affecting the mechanism selected by the principal. We will occasionally

“turn off” one of the frictions (by either removing the investment stage from the game, or

by aligning the designer’s and the principal’s preferences) to obtain sharper predictions.

Aside from some special cases, the effectiveness of property rights in our framework is

limited. This is in part due to the fact that we have built in an incomplete-contracts friction

by assuming that property rights cannot be conditioned on the realization of the state ω, even

though the state is publicly observed. This assumption seems realistic for most applications

and captures the idea that property rights endow the holder with robust guarantees that

are not contingent on circumstances that would be difficult to verify in front of a court.

That being said, our methods and results extend to the case of state-contingent rights, as

we explain in Section 5.

3 Analysis and results

We begin by stating the main result of the paper that characterizes the structure of the

optimal menu of rights M? chosen by the designer.

Theorem 1. There exists an optimal menu that takes the form M? = {(1, p), (y, p′)} for

some p, p′ ∈ R and y ∈ [0, 1).

9Here, we use the word “efficiency” broadly to refer to the designer’s objective, representing a socially
desirable outcome. We are not assuming that the designer maximizes allocative efficiency in the narrow
sense, even though we will often study this case in applications.
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As Theorem 1 shows, the optimal menu M takes a simple and economically interpretable

form. The menu consists of at most two types of rights, including an option-to-own (1, p)

which gives the agent the right to control the resource by paying a pre-specified price p. The

second item in the menu takes the form of either a partial property right—giving the agent

partial control over the resource at a lower price, possibly for free—or a cash payment to

the agent (when y = 0 and p′ < 0). We later show that the form of the second item in the

menu depends crucially on whether investment is observable or not.

Note that Theorem 1 does not preclude the possibility that the optimal menu gives the

agent no choice over which right to execute (or even no rights whatsoever)—this is because

one (or both) of the options in the menu could have a sufficiently high price that the agent

never wants to execute it. We will show that a number of configurations can emerge as

optimal in applications—the optimal menu could be a singleton containing an option-to-own

(1, p), a cash transfer (0, −p), or a partial right allocated for free (y, 0).

In the remainder of this section, we sketch the proof of Theorem 1 (proofs of several

technical steps are relegated to Appendix A). The proof overview casts some light on how

the parameters p, p′, y characterizing the optimal menu are pinned down by the primitives

of the model. We will further explore the economic implications of our characterization in

Subsection 3.3, where we derive tighter predictions under additional regularity conditions,

and in Section 4, where we study applications.

3.1 Proof of Theorem 1

We proceed backwards, by first solving the principal’s problem in period t = 2, then con-

sidering the agent’s investment problem in period t = 1, and finally solving the designer’s

problem in period t = 0.

Step 1: Formulating the principal’s problem

We first focus on solving the principal’s problem, given an arbitrary menu of rights M and a

realization ω ∈ Ω of the public state. For ease of exposition, we drop any explicit dependence

of the principal’s objective function and the choice of mechanism on these variables. We

reformulate the principal’s problem by expressing the consequences of any menu of rights M

that the agent may hold as a type-dependent outside option.

Lemma 1. A choice of menu M by the designer is equivalent to choosing an outside option

function R : Θ→ R for the agent in the second-period mechanism, where R is non-negative,

non-decreasing and convex, with a right derivative that is bounded above by 1.
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Lemma 1 shows that the principal’s problem reduces to maximizing over the set of type-

dependent outside option functions R. The proof follows from the observation that given a

menu M = {(xi, ti)}i∈I , we can set

R(θ) = max{0,max
i∈I
{xiθ − ti}}.

Applying the envelope theorem shows that a direct mechanism 〈x(θ), t(θ)〉 chosen by the

principal is incentive-compatible if and only if x is a non-decreasing function and, for any

θ ∈ Θ, the agent’s utility under truthful reporting is given by

U(θ) = u+

∫ θ

θ

x(τ) dτ, (1)

where u ∈ R denotes the utility of the lowest type θ. This implies that U is a convex function

with U ′(θ) = x(θ) almost everywhere. Moreover, for all θ ∈ Θ, we have

t(θ) = θx(θ)−
∫ θ

θ

x(τ) dτ − u.

After standard transformations, this yields∫
Θ

[V (θ)x(θ) + αt(θ)] dF (θ) =

∫
Θ

[V (θ) + αB(θ)]x(θ)dF (θ)− αu,

where B(θ) := θ−(1−F (θ))/f(θ) is the virtual value function. Combining this with Lemma

1, the principal’s problem (P) can be rewritten as

max
x:Θ→[0,1], u≥0

∫ θ

θ

W (θ)x(θ)dθ − αu (P′)

s.t. x is non-decreasing, and U(θ) = u+

∫ θ

θ

x(τ) dτ ≥ R(θ), ∀θ ∈ Θ,

where W (θ) := (V (θ) + αB(θ)) f(θ). We will refer to the constraint U(θ) ≥ R(θ) as the

outside option constraint.

Step 2: Solving the principal’s problem

Problems of the form (P′) have been analyzed in the literature, most notably by Jullien

(2000), who uses weak duality to derive a solution under additional monotonicity assump-

tions. We develop a new method to solve problem (P′) that is based on an appropriate

generalization of the ironing procedure of Myerson (1981). For the case of linear utilities
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that we study, our method is simpler, in that it does not require “guessing” the correct

Lagrange multiplier, and more powerful, in that it does not require additional regularity

assumptions. To emphasize the portability of the method to other applications involving

type-dependent outside options, we solve problem (P′) for a generic upper semi-continuous

objective W (θ), and an outside option function R such that R(θ) = u0 +
∫ θ
θ
x0(τ)dτ for some

u0 ≥ 0 and non-decreasing allocation rule x0 : Θ→ [0, 1].10

The following “ironing procedure” allows us to construct a solution to problem (P′).

First, for all θ ∈ Θ, we define

W(θ) :=

∫ θ

θ

W (τ) dτ and W := co(W),

where co is an operator that returns the concave closure of a given function. Next, we define

θ? := sup{{θ ∈ Θ :W ′(θ) ≥ α} ∪ {θ}},

θ
?

:= inf{{θ ∈ Θ :W ′(θ) ≤ 0} ∪ {θ}}.

These definitions are illustrated in Figure 2. Informally, θ? is the type at which the slope

of W is equal to α (or the lowest type θ if the slope is always below α). Similarly, θ
?

is the type at which the slope of W is equal to 0 (or the highest type θ if the slope is

always above 0). Equivalently, θ
?

is a global maximizer ofW . The formal definitions handle

the possibility that multiple types may satisfy these conditions and the fact that W may be

non-differentiable at some (countably many) points. BecauseW is concave, we have θ? ≤ θ
?
.

Let I be the (at most countable) collection of maximal open intervals (a, b) within (θ?, θ
?
)

with the property that W lies strictly below W on (a, b).11 (In Figure 2, there is a single

such interval.) Let Ic be the complement collection of maximal (relatively) closed intervals

[a, b] within (θ?, θ
?
) with the property that W coincides with W on [a, b]. Intuitively, the

allocation rule must be “ironed” on each (a, b) ∈ I. Formally, we define

u? = R(θ?) and x?(θ) =



0 θ ≤ θ?,∫ b
a R
′(τ)dτ

b−a θ ∈ (a, b) for some (a, b) ∈ I,

R′(θ) θ ∈ [a, b] for some [a, b] ∈ Ic,

1 θ ≥ θ
?
.

(2)

10This last assumption is called homogeneity by Jullien (2000) and is crucial for our method to work.
Lemma 1 guarantees that we can write the function R this way for any choice of M .

11By maximality we mean that such an interval (a, b) cannot be strictly contained in another interval
(a′, b′) with the same property.
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Figure 2: An illustration of the ironing procedure (top panel) and the mapping from the
ironing procedure to the optimal indirect utility function U∗ (bottom panel).

The allocation rule x? is equal to 0 below θ? and 1 above θ
?
. By the choice of the payment u?,

the outside option constraint binds at θ = θ?. Then, within the interval [θ?, θ
?
], x? coincides

with R′(θ) on “non-ironing intervals” (the outside option constraint binds everywhere in

such intervals), and is constant on “ironing intervals” (the outside option constraint binds

only at the endpoints of such intervals). Figure 2 illustrates with an example.

The following lemma states that the ironing procedure defined above characterizes the

solution to the principal’s problem.

Lemma 2. The pair (x?, u?) as defined in (2) solves problem (P′).

For illustration and intuition, consider first the simplest case in which the objective

function W is non-decreasing. In this case, W is concave, and hence W = W . Thus,

I = ∅, and ironing is not needed. Furthermore, θ? is defined by W (θ?) = −α, and θ
?

is

defined by W (θ
?
) = 0 (assuming such solutions exist). For θ ≥ θ

?
, the principal’s objective

is positive, so she chooses the maximal allocation 1, and the outside option constraint is

slack. For θ ≤ θ
?
, the principal’s objective is negative, so she would like to choose the
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minimal allocation 0; however, that could be in conflict with the outside option constraint.

The optimal solution in this region is thus the “cheapest” way for the principal to satisfy

the constraint. Recall that α is the principal’s value for money; if W (θ) < −α, it becomes

“cheaper” for the principal to satisfy the outside option constraint with a monetary transfer

than with the allocation. Thus, the principal optimally sets x?(θ) = 0 for types below θ?,

and she uses the lump-sum payment u? = R(θ?) to satisfy the outside option constraint for

all these types. For the remaining types θ ∈ [θ?, θ
?
], the principal uses the outside option

allocation x0 ≡ R′ to satisfy the constraint; she sets x?(θ) = R′(θ) which makes the outside

option constraint hold with equality everywhere in that interval. The corresponding indirect

utility function U of the agent is constant (equal to u?) below θ?, coincides with R(θ) on

[θ?, θ
?
], and has slope 1 above θ

?
.

The case of a non-monotone W is analogous, except that we must first “iron” W (θ) into

its monotone version −W ′(θ). Ironing is accomplished by first concavifying the integral of

W , and then differentiating it to identify the intervals I on which the ironed objective is

constant. Intuitively, suppose that U(θ) is set to its lowest feasible level R(θ) in the interval

[θ?, θ
?
] (i.e., the outside option constraint holds with equality everywhere). This makes the

corresponding allocation rule x strictly increasing as long as the outside option is strictly

increasing. If the principal’s objective function W is decreasing around some type within

[θ?, θ
?
], the principal can do better by making the allocation flat around that type. The new

allocation should still be as low as possible, and thus the endpoints of the ironing interval

will satisfy the outside option constraint with equality (while the constraint may be slack in

the interior).

Mathematically, we rely on the observation that—if we view allocation rules as CDFs—

the outside option constraint takes a form similar to second-order stochastic dominance of

the candidate distribution x by the fixed distribution x0 defining the outside option.12 The

ironing procedure makes the allocation rule x flat on “ironing intervals”—this operation

corresponds to taking a mean-preserving spread of the distribution x0, and thus preserves

the constraint that x is second-order stochastically dominated by x0.

Remark 1. The objective function W in problem (P′) incorporates the density of types f .

This implies that the properties of the solution—in particular the structure of the ironing

intervals—depends on the monotonicity of the original objective multiplied by the density.

This is a consequence of the fact that the outside option constraint does not depend on the

distribution of types (unlike, for example, a supply constraint).

12Our constraint differs from a standard second-order stochastic dominance constraint by the presence of
the constants u0 and u—this complicates our proof but does not pose a substantial challenge. See Kleiner
et al. (2021) for a general theory of optimization subject to second-order stochastic dominance constraints.
Our approach to the ironing procedure resembles most closely the one described in Akbarpour r© al. (2023).
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While the solution to problem (P′) is of independent interest, the key observation that

we will need to prove Theorem 1 is as follows.

Corollary 1. The optimal solution (x?, u?) to problem (P′) defined in (2) depends linearly

on the outside option R.13

Corollary 1 is a consequence of the ironing procedure: The collection of ironing intervals

I, and the cutoff types θ? and θ
?

depend only on the principal’s objective function and the

distribution of types; they do not depend on R. Intuitively, the principal can determine the

set of types at which the outside option constraint binds before she knows what the outside

option of each type is. Of course, the optimal mechanism (x?, u?) ultimately depends on R

but only through a linear transformation applied within each of the intervals identified by

the ironing procedure.

Step 3: Solving the designer’s problem

Given the solution to the principal’s problem derived in the previous step, we can simplify

the formulation of the designer’s problem. Instead of optimizing over feasible functions R,

the designer can optimize over u ≥ 0 and a non-decreasing allocation rule x that together

define R(θ) ≡ u+
∫ θ
θ
x(τ)dτ—this reparameterization preserves all conditions that a feasible

function R must satisfy by Lemma 1. A consequence of Corollary 1 is that the designer’s

problem is linear in u and x:

Lemma 3. The designer’s problem of choosing the optimal menu M is equivalent to solving

the problem

max
x non-decreasing,

u≥0

∫ θ̄

θ

Φ(θ)dx(θ)− α?u subject to

∫ θ̄

θ

Ψ(θ)dx(θ) + 1cont · u ≥ c̃, (3)

for some constant c̃ ≥ 0 and functions Φ, Ψ : Θ → R, where 1cont is an indicator function

that is 1 in the contractible case, and 0 in the non-contractible case.

By Corollary 1, the allocation rule selected by the principal is linear in the outside op-

tion R. Because both the designer’s and the agent’s payoffs are linear in the final allocation,

it follows that the designer’s problem is also linear in R (with a linear constraint correspond-

ing to the agent’s investment-obedience constraint). Given this observation and the change

of variables described previously, Lemma 3 is a matter of bookkeeping: The functions Φ and

13Formally, if (x?i , u
?
i ) is the solution to problem (P′) under outside option Ri, for i ∈ {1, 2}, then

(x?, u?) = λ(x?1, u
?
1)+(1−λ)(x?2, u

?
2) is a solution to problem (P′) under outside option R = λR1 +(1−λR2),

for any λ ∈ (0, 1).
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Ψ are derived by taking expectations over ω and integrating by parts so that the allocation

x enters the designer’s objective as a measure against which Φ and Ψ are integrated.

Problem (3) consists of maximizing a linear functional subject to a single linear constraint

over a non-negative number and a non-decreasing function. It follows that there exists an

optimal allocation rule that is a convex combination of at most two extreme points of the

set of non-decreasing functions.14

Lemma 4. Problem (3) admits a solution (x?, u?) such that either (i) u? = 0 and x? takes

on at most one value other than 0 or 1, or (ii) u? > 0 and x?(θ) ∈ {0, 1} for all θ ∈ Θ.

Lemma 4 implies Theorem 1: In each case described in the lemma, the optimal outside

option function R is spanned by a menu containing at most two elements. Whenever u? > 0,

one of the elements is a cash payment, (0, −u?). In remaining cases, the non-zero values taken

by x? and the cutoff types at which x? jumps determine the options of the form (y, p′). In

particular, one of the two elements in the optimal menu can be taken to be an option-to-own

(1, p) (possibly with a price p that makes it redundant).

3.2 Discussion

Theorem 1 predicts that the optimal menu for the designer takes a relatively simple form: It

suffices to offer the agent two types of rights in the optimal menu, and one of these rights is

an option-to-own. Economically, an option-to-own is attractive because it allows the designer

to incentivize investment in a flexible way. If the price is set to be low, an option-to-own

behaves almost like a full property right and provides high incentives to invest; it also forces

the principal to either allocate the good to the agent with high probability or compensate

her with monetary transfers. Thus, a low price will be used when the cost of investment

is high, or when the designer has a stronger preference than the principal to allocate the

good to the agent. If, instead, the price is set to be high, an option-to-own does not alter

the allocation in the principal’s mechanism too much, and provides only a small “nudge” to

invest. Thus, a high price might be used when investment is relatively easy to induce.

Mathematically, an option-to-own is special because it is an extreme point of the set

of feasible outside option functions R that the designer can induce by assigning rights to

the agent. As the proof of Theorem 1 demonstrates, the designer’s problem is linear in the

outside option R. Because the problem features a single (linear) constraint, there exists an

14This result follows from an infinite-dimensional extension of Carathéodory’s theorem found in Kang
(2023) and has many analogs in recent papers in mechanism design (see, for example, Fuchs and Skrzypacz,
2015; Bergemann et al., 2018; Loertscher and Muir, 2023) and information design (see, for example, Le
Treust and Tomala, 2019; Doval and Skreta, 2022).
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optimal solution that is a convex combination of at most two extreme points. A simple

corollary of the proof of Theorem 1 is that a single option-to-own would be optimal absent

the investment-obedience constraint:

Corollary 2. If the investment-obedience constraint is slack at the optimal solution, then

there exists an optimal solution to the designer’s problem that takes the form of an option-

to-own: M? = {(1, p)} for some p ∈ R.

In a version of our model without an investment-obedience constraint, the designer sets

the price p in the option-to-own in a way that maximally aligns the principal’s mechanism

with the designer’s preferences. Even if the investment-obedience constraint is present, it

may be slack at the optimal solution if the misalignment of the designer’s and principal’s

preferences is sufficiently large. For example, if the principal maximizes revenue while the

designer puts sufficient weight on the agent’s welfare, she may choose to offer an option-to-

own with a low price to shift more rents to the agent. As a by-product, the agent may have

a strict incentive to invest.

In light of Corollary 2, it is the presence of a binding investment-obedience constraint that

can lead to the necessity of including a second option in the optimal menu. Unsurprisingly

then, the form of the second option in the optimal menu depends on the whether investment

is observable.

Corollary 3. Suppose that the investment cost c is sufficiently high. In the non-contractible

case, there exists an optimal menu M? = {(1, p), (y, p′)} with y > 0 and p′/y ∈ [θ, θ̄]. In

the contractible case, there exists an optimal menu M? = {(1, p), (0, −T )} with T > 0.

Corollary 3 reveals a key difference between the cases when investment is observable (and

contractible) and when it is not. In the contractible case, the optimal menu consists of an

option-to-own and an option-to-sell—the agent either keeps the good by paying a price p

or relinquishes control in exchange for a monetary payment T . For intuition, it is useful

to observe that offering the menu {(1, p), (0, −T )} (from which the agent selects a single

option) is equivalent to paying the agent a lump-sum payment T and offering an option-to-

own with price p + T , conditional on investment. (In the remainder of the paper, we will

use the term “lump-sum payment” to refer to this alternative interpretation under which

the cash payment is always given to the agent, regardless of other options selected from the

menu.) Thus, in the contractible case, the designer can incentivize investment with cash.

In contrast, when investment is not observable (or not contractible), offering a lump-sum

payment to the agent is ineffective for incentivizing investment because the agent collects the

lump-sum payment regardless of the investment decision. Instead, the designer incentivizes
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investment by leveraging the fact that investment increases the agent’s value—the optimal

menu increases the rents of higher types relative to lower types by only including options in

which the agent obtains the good with strictly positive probability.

The simplicity of the optimal menu relies on our simplifying assumption that the agent

takes a binary investment decision. However, the proof of Theorem 1 easily extends to the

case when more (linear) constraints are added. If there are K constraints—for example

because the agent has K alternative levels of investment to which she can deviate—at most

K+1 options are needed in the optimal menu offered by the designer (and an option-to-own

is one of them). However, such a bound will typically not be tight. What matters is the

number of binding constraints. For example, if investment is modeled as a continuous choice

and the socially-efficient level of investment is pinned down by a first-order condition, then

a single linear equation may be sufficient to capture the agent’s obedience constraint, and

Theorem 1 applies verbatim.15

Our methods did not rely on the fact that the linear constraint captured investment

incentives. Any constraint that is linear in the allocation of the period-2 mechanism leads

to the same mathematical conclusions. The constraint could capture other frictions, like

the ones resulting from the agent’s information acquisition as in Bergemann and Välimäki

(2002).

3.3 The monotone case

In this subsection, we analyze the structure of the optimal property right under additional

regularity conditions. Suppose that, for any ω ∈ Ω, the principal’s objective function Vω(θ)

is non-decreasing in θ. Furthermore, suppose that the virtual surplus functions Bω(θ) :=

−(1−Fω(θ))/fω(θ) and Sω(θ) := θ+Fω(θ)/fω(θ) (which are usually associated with buyers

and sellers, respectively, in mechanism design problems) are strictly increasing, and that the

density fω(θ) is continuously differentiable.

Proposition 1. In the monotone case, for any outside option R, and conditional on any

ω ∈ Ω, the principal chooses an optimal mechanism that induces an indirect utility

Uω(θ) =


R(θ?ω) θ < θ?ω,

R(θ) θ ∈ [θ?ω, θ
?

ω],

R(θ
?

ω) + θ − θ?ω θ > θ
?

ω,

15For a concrete example, suppose that the agent makes a continuous choice of effort e ∈ [0, 1] subject to a
strictly convex cost c(e); the agent’s type θ is drawn from Fω with probability e, and from Fω with probability
1− e. Then, the first-order condition for some target level of investment e? is sufficient to guarantee that e?

is chosen by the agent, and the optimal menu has at most two items.
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where θ?ω ≤ θ
?

ω are defined by

Vω(θ?ω) + αSω(θ?ω) = 0 and Vω(θ
?

ω) + αBω(θ
?

ω) = 0,

whenever an interior solution [θ?ω, θ
?

ω] ⊂ Θ exists.

In the monotone case, the principal’s problem admits a simple and intuitive solution: The

outside option constraint binds at an “intermediate” interval of types [θ?ω, θ
?

ω]; the principal

buys out rights using a cash payment for types θ ≤ θ?ω, and she allocates with probability

one to types θ ≥ θ
?

ω. This is a direct consequence of the “ironing procedure” that we

developed in Section 3.1.16 Intuitively, the principal wants to maximize the allocation for

types higher than θ
?

ω and minimize the allocation for types lower than θ
?

ω. Thus, the outside

option constraint is slack for θ ≥ θ
?

ω. On the remainder of the type space, the principal

uses the allocation rule to satisfy the outside option constraint for types above θ?ω, and the

monetary payment to satisfy the outside option constraint for types below θ?ω. This intuition

is embedded in the definitions of θ?ω and θ
?

ω from Proposition 1: The upper threshold θ
?

ω is

the cutoff type above which the principal would like to sell the resource to the agent, taking

into account both the allocative effect and the revenue; the lower threshold θ?ω is the cutoff

type below which the principal would prefer to buy the resource from the agent.

Studying the monotone case allows us to provide more intuitions regarding the price

used in the option-to-own included in the optimal menu (see Appendix A.8 for supporting

calculations). For the rest of this section, we assume that the distribution of the public state

ω does not depend on the agent’s investment decision (G = G).

The contractible case. In case investment is observable, as long as the hold-up problem is

sufficiently severe, we know from Corollary 3 that the optimal menu can be implemented by

awarding the agent a lump-sum payment T conditional on investment and letting her execute

an option-to-own with some price p. Under standard regularity conditions guaranteeing the

validity of first-order conditions, the price p must satisfy

Eω∼G
[

(V ?
ω (p) + α?p)fω(p) | p ∈ [θ?ω, θ

?

ω]
]

= 0, (4)

as long as p is interior; p = θ is optimal if the left-hand side of equation (4) is always positive,

and p = θ̄ is optimal if the left-hand side of equation (4) is always negative. The expectation

in expression (4) is taken conditional on the event that p lies between θ?ω and θ
?

ω given the

realization of ω, which guarantees that the option-to-own affects the final allocation of the

16While Proposition 1 follows immediately from our ironing procedure, we could also derive it using weak
duality based on Jullien (2000) because the dual variable takes a simple form in the monotone case.
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resource: If p is below θ?ω, the principal buys out the agent’s option-to-own, and if p is above

θ
?

ω, the principal offers a better price to the agent within the mechanism.

Intuitively, recall that in the contractible case, the designer incentivizes investment with

a combination of a lump-sum payment and an option-to-own (that is offered conditional on

investing). If the designer uses both tools, optimality requires that she cannot benefit by

slightly lowering the price p in the option-to-own—thus relaxing the investment-obedience

constraint—and then slightly lowering the lump-sum payment to make it bind again. Low-

ering the price p in the option-to-own increases the allocation in the mechanism for nearby

types—the designer values this change at V ?
ω (p)—but it also affects the revenue. Normally,

the effect on revenue would be captured by the virtual surplus term, Bω(p). However, the

binding investment-obedience constraint pins down the agent’s expected information rents

conditional on investment, and hence the incremental net revenue—after adjusting the lump-

sum payment—excludes the information rent term: The net revenue from selling to type p is

simply p. Because the designer values revenue at α?, the net effect is given by V ?
ω (p) + α?p.

The optimal price p in the option-to-own makes the net effect zero in expectation. An inter-

esting corollary is that the optimal price in formula (4) does not depend on the parameters of

the agent’s investment problem (such as the cost c). In a sense, the designer uses the option-

to-own to achieve the desired physical allocation in the second stage, and then adjusts the

lump-sum payment to make sure that the agent undertakes investment.

The non-contractible case. In the non-contractible case, by Corollary 3, the optimal

menu may include two options, M? = {(1, p), (y, p′)}, with two different prices p and p′.

Unlike in the case of observable investment, it is difficult to separate the effects of the two

options on the investment incentives. However, we can provide some intuition if we explicitly

introduce a Lagrange multiplier γ ≥ 0 on the investment-obedience constraint in problem

(3). While the multiplier γ is endogenous, it must be non-decreasing in the cost of investment

c, and is hence intuitively related to the severity of the hold-up problem.

Suppose fist that it is optimal to offer a singleton menu with an option-to-own (1, p).

Then, p must satisfy the following first-order condition (assuming an interior solution):

α?
Pω∼G(p < θ?ω)

Pω∼G(p ∈ [θ?ω, θ
?

ω])
− Eω∼G

[
(V ?

ω (p) + α?Bω(p)) fω(p) | p ∈ [θ?ω, θ
?

ω]
]

−γEω∼G
[
F ω(p)− Fω(p) | p ∈ [θ?ω, θ

?

ω]
]

= 0. (5)

To understand the expression, consider first the case when the designer does not care about

revenue, α? = 0, and there is no hold-up problem, γ = 0. In this case, the designer’s
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first-best allocation in the second stage, assuming monotonicity of V ?
ω (θ), is to allocate to

all agent’s types above the threshold θ?ω such that Vω(θ?ω) = 0. Thus, the designer sets

the price p to achieve her optimal allocation on average across ω, conditional on ω falling

within the range in which the option-to-own has bite. Suppose now that α? > 0. In this

case, the designer would like to allocate to types for which V ?
ω (θ) + α?Bω(θ) is positive.

However, there is a second, more subtle, effect captured by the first term in equation (5).

Whenever ω is such that p < θ?ω, the principal will buy out the agent’s right with a monetary

payment that is decreasing in p (the more attractive the option-to-own, the higher the

compensation the principal must offer to the agent). Thus, in this region, a lower price p has

no effect on the allocation but it decreases the principal’s revenue, which the designer values

at α?. This effect will push the designer to choose a higher price p in the optimal menu, in

particular implying that a full property right will be suboptimal if θ?ω is bounded away from

θ (across ω). Finally, suppose that γ > 0, implying that the investment-obedience constraint

binds. By assumption, the distribution of agent’s values increases in the first-order stochastic

dominance order after investing: F ω(p) ≥ Fω(p). Thus, the last term in expression (5) will

tend to make the optimal price p lower: The designer increases the incentives to invest by

expanding the region in which the agent is the residual claimant. Once again, however,

providing incentives to invest through an option-to-own is only effective when the price p

falls in the region [θ?ω, θ
?

ω] where it affects the final allocation of the resource.

In Appendix A.8, we show that equation (5) captures the relevant trade-offs also when

it is optimal to offer two options in the menu. Mathematically, two options are offered when

the Lagrangian is non-monotone and has more than one global maximum, implying multiple

solutions to the first-order condition (5). In that case, the solutions to equation (5) pin down

the optimal cutoff types at which the agent switches between executing different outside

options—prices p and p′ can then be calculated from these cutoff types. Economically, non-

monotonicity of the Lagrangian can arise due to the conflict between incentivizing investment

(which pushes prices p and p′ to be lower) and giving the principal more flexibility at the

trading stage (which pushes prices p and p′ to be higher).

4 Applications

In this section, we discuss several application of our framework, and illustrate the results

with simple numeral examples.17 Our goal is to provide an overview of how our framework

could be mapped into various economic environments and how our results relate to previous

analyses of these environments; a detailed analysis of policy implications in each environment

17Supporting calculations for these applications can be found in Appendix B.
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is beyond the scope of this paper.

4.1 Dynamic resource allocation

A regulator (who is both the designer and the principal) allocates a scarce resource (e.g.,

electromagnetic spectrum or access to an oil tract) in a dynamic environment. The agent is

assumed to control the resource initially. (In Section 5, we comment on how our framework

could be extended to model the problem of the initial allocation of the optimally-designed

property rights.) The agent decides in t = 1 whether to invest in infrastructure that deter-

mines her value θ for keeping the resource in t = 2. The state ω is the value for the regulator

of allocating the resource to some alternative use in t = 2. The regulator is concerned with

allocative efficiency, in that V ?
ω (θ) = Vω(θ) = θ − ω. Additionally, the regulator cares about

revenue, and may attach a higher weight to revenue at t = 2, that is, α ≥ α? ≥ 0.

In this application, the agent is subject to a hold-up problem; additionally, the regulator

suffers from time-inconsistency (if α > α?). Time inconsistency could be, for example, the

result of political pressure to raise a certain amount of revenue when reallocating scarce

public resources.18 The menu of rights selected by the regulator corresponds to the design

of a license determining the agent’s future rights to the resource.

Assuming regular distributions of types and a relatively high cost of investment, we can

apply the analysis from Section 3.3. We first assume that investment is contractible; resource

use licenses sometimes include explicit clauses requiring proper maintenance or investment,

such as “prudent operator standards” in oil and gas leases, or minimal coverage requirements

in spectrum licenses. In this case, the optimal property right takes the form of an option-to-

own combined with an option-to-sell. The option-to-own can be implemented as a renewable

lease: As the lease termination date approaches, the current lessee may choose to pay the

renewal fee p to keep the license for another term. The option-to-sell additionally gives the

lessee the right to require monetary compensation for relinquishing control. Both rights are

conditional on meeting the required investment level.

There is a high-level similarity between our optimal license and the “self-assessment

mechanism” (and its variants) analyzed by Posner and Weyl (2017), Milgrom et al. (2017),

and Weyl and Zhang (2022).19 Both designs replace a rigid property right with a type

of price mechanism that attempts to provide investment incentives for the current license

holder conditional on a high value for keeping the resource. The right is less valuable to

18For example, the design goals for the “Incentive Auction” reallocating spectrum from TV broadcasters
to mobile broadband operators included an explicit revenue target to cover FCC’s costs and subsidize the
federal budget; see Milgrom et al. (2012).

19Early proponents of the self-assessment mechanism include Harberger (1965) and Tideman (1969).
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the license holder conditional on having a low value for the resource, which permits more

efficient reallocation. The details of these designs, however, are different. In the case of

the self-assessment mechanism, it is the license holder that names a price P ; she then pays

a fraction β of the price P to the regulator while committing to sell the license to anyone

willing to offer P for it.20 In our case, a price p is pre-specified, and it is the agent deciding

whether to keep the license by paying p to the regulator (if she doesn’t pay the price p, she

may still keep the license but only if the state ω is low enough). In essence, our property

right gives the agent an option to guarantee control over the resource but sacrifices some

aspect of price discovery since the price p is fixed; in contrast, the self-assessment mechanism

always exposes the current holder to some risk of losing control over the resource and uses

that threat to extract more revenue from the holder conditional on having a high value.

While our paper is the first to derive the optimal license design, the framework we propose

does not include the self-assessment mechanism as a special case—leaving open the question

of comparing the two designs more formally.21

In practice, it could be difficult to assess the extent to which an efficient level of investment

is undertaken. Thus, we next turn to the case when investment is not contractible. The

optimal property right may become more complicated. By Corollary 3, the license may give

two types of rights to the agent: an option-to-own with some price p, and a partial right that

results in a full property right with probability y. In this case, as the lease termination date

approaches, the current lessee either pays the renewal fee p to keep the license or submits a

request for renewal at a lower fee p′; the request is then approved with probability y. While

the regulator most likely could not commit to explicit randomization, she could instead

commit to a review standard determining the average likelihood of a favorable decision.

It turns out, however, that under additional assumptions the optimal license may be

simpler—we illustrate this with a numerical example that further sheds light on the trade-

offs involved in the optimal license design.

Numerical example. Assume that both the state ω and the agent’s type θ (conditional on

investment) are independent random variables that are distributed uniformly on [0, 1], and

that the resource is useless to the agent (θ = 0) absent investment.

By Proposition 1, at time t = 2, the regulator allocates the resource to all agent types

above ω+α
1+2α

, buys back any rights from agent types below ω
1+2α

by offering them a cash

20Weyl and Zhang (2022) propose a version of the self-assessment mechanism in which the price P is
instead determined in a second price auction held between the incumbent and the entrants.

21Implementing the self-assessment mechanism requires a certain level of commitment to future trading
mechanisms that we have ruled out by assumption. However, it is not clear how to formalize such partial
commitment (full commitment makes any property right obsolete). We return to this issue in Section 5.
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payment, and lets the remaining types execute their optimal right.

There exist cutoffs c and c satisfying 0 < c < c̄ such that: If c ≤ c, then investment

takes place even when the agent has no rights; and if c = c̄, then only a full property right

incentivizes investment. We assume that c ∈ (c, c̄) and analyze the optimal property rights

in three cases.

Case α = α? = 1: When the regulator maximizes the sum of allocative efficiency and

revenue in both periods, the optimal license is simply a renewable lease with a price p. The

optimal price p makes the agent indifferent between investing or not.

Case α = 1, α? = 0: When the regulator is concerned with efficiency ex-ante but attaches

a positive weight to t = 2 revenue, the optimal license takes the form of a partial property

right {(y, 0)}, where the probability y makes the agent indifferent between investing or not.

Case α = α? = 0: In this case, the regulator maximizes efficiency in both periods.22

The optimal mechanism at t = 2 takes the form of allocating the good to agent types above

ω and buying out any rights for the remaining types—which reduces to a standard VCG

mechanism when the agent has no rights. Thus, by Rogerson (1992), it is optimal for the

regulator to assign no rights to the agent in this case.

The numerical example illustrates how the form of the optimal property right varies with

the regulator’s ex-ante and ex-post preferences over revenue. If there’s no time inconsistency

and the regulator is only concerned with efficiency, it is optimal to allocate no rights to the

agent because the VCG mechanism employed to reallocate resources at t = 2 ensures efficient

investment incentives.23 When the regulator cares about revenue at the ex-post stage but not

at the ex-ante stage, it is optimal to provide investment incentives through a partial property

right. Intuitively, a full property right is the most effective way of inducing investment when

investment is not observable, as it makes the agent fully internalize its benefits. However,

a full property right would typically make the investment-obedience constraint slack while

distorting the efficient ex-post reallocation of the resource. Indeed, when the agent holds a

full property right, the regulator chooses to sacrifice allocative efficiency at the reallocation

stage for some realizations of ω in order to decrease the monetary compensation paid to

the agent. Thus, at the ex-ante stage, the regulator specifies a contract that awards the

agent a full property right with just enough probability to make the investment-obedience

22Formally, since we assumed α > 0, we consider the limit of solutions as α→ 0.
23This case does not arise in the analysis of Weyl and Zhang (2022) because investment in their model

creates a common value. We can capture investments in the common value of the resource by assuming that
the distribution G of the regulator’s opportunity cost first-order stochastically dominates the corresponding
distribution G conditional on no investment. Under that assumption, there exists a region in the parameter
space in which the VCG mechanism would not lead to the efficient investment level, and the agent would be
optimally assigned a non-trivial property right.
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constraint bind. Finally, when the regulator cares about revenue at the ex-ante stage as

well, she wants to design property rights so as to increase the revenue from the reallocation

mechanism. She thus optimally switches from incentivizing investment via a partial property

right (that yields no revenue at t = 2) to a renewable lease which generates revenue through

the renewal fee p. The renewable lease is still effective at inducing investment (provided

that p is sufficiently low) because it makes the agent internalize the benefits from investment

conditional on realizing a high value for the resource.

4.2 Regulating a rental market

Next, we introduce an application in which the designer and the principal are two separate

entities with conflicting objectives. The designer is a policymaker and the principal is a

company leasing a rental unit to an agent (who could be a residential tenant or a business

owner). The agent occupies the unit at time t = 0, and decides whether to invest in it (e.g.,

whether to take good care of the apartment or install specialized equipment in the office

space). We assume that investment results in a higher value θ for staying in the unit for

another lease term t = 2, but is not observable. The state ω is the price the rental company

could receive by leasing to a new tenant (the market rental price). The rental company

maximizes revenue: Vω(θ) = −ω and α = 1. The designer, on the other hand, is concerned

with efficiency: V ?
ω (θ) = θ − ω and α? = 0.

In this application, the menu of rights chosen by the policymaker captures regulation of

a private rental market. The rental company has monopoly power over the tenant, since the

tenant makes a sunk investment (and moving is implicitly assumed to be costly). This intro-

duces a potential inefficiency, as the rental company might dictate prices above the market

rate, which could further disincentivize investment. A full property right is interpreted in

this context as mandating a long-term lease; other feasible regulations take the form of rent

control or giving the tenant the right to stay by paying a pre-specified rent to the rental

company.

Theorem 1 and Proposition 1 predict an important role for the renewable lease contract.

To derive tighter predictions, let us further assume that, absent investment, the agent’s value

for staying in the rental unit is drawn from uniform distribution on [0, 1], investing increases

the value by a constant ∆ > 0, and that supp(G) ⊆ [∆, 1−∆].

As a benchmark, consider first the case when ω is known ex-ante. Then, the optimal

regulation takes the form of a renewable lease at a price p = ω − γ∆, where γ is the

Lagrange multiplier on the agent’s investment-obedience constraint. This means that the

agent is allowed to renew the lease at a price that is (potentially) discounted relative to the
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market price, and that the discount is larger when investment is more difficult to incentivize.

If we restrict attention to parameters for which the agent’s investment is socially efficient,

then γ = 0—the renewable-lease price is in fact equal to the market price which allows the

designer to induce the VCG mechanism. The regulation has bite because the rental company

would charge a higher price to the agent, exploiting its monopoly position.

If ω is initially unknown (and possibly correlated with θ), then the first-order condition

determining the optimal price in the renewable-lease contract is

p = E[ω | p ∈ [θ?ω, θ
?

ω]]− γ∆.

Thus, the designer is trying to achieve a similar outcome but this time targeting the expected

market rental rate, where the expectation is conditional on the market price ω being in a

certain range that is endogenous to the choice of p. In particular, if the market rental rate

ω is high, then p < θ?ω holds and the rental company will prefer to pay the agent to leave,

rather than forgoing the market rental rate. Similarly, if ω is low, then p > θ
?

ω holds and the

company will offer to renew the agent’s lease at a price strictly below p. Thus, the price p

set by the designer only has bite when the market rental rate is in the intermediate region.

In general, it is no longer the case that γ = 0, even when investment is socially efficient.

It is worth noting that regulation similar to the one described here is often used in

practice. For example, in the United Kingdom, the Landlord and Tenant Act 1954 provides

commercial tenants with the right to renew any lease pertaining to a premises that it occupies

for business purposes. In terms of residential leases, rent-control policies that are common in

large cities around the world impose bounds on how much rent can increase from period to

period, although they do not typically give the tenant the right to stay. However, in many

countries rent control is combined with some degree of protection against eviction, which to

some extent approximates a renewable-lease contract.

4.3 Patent policy

A classical economic question is how to reward and incentivize innovation and scientific dis-

coveries. For example, Wright (1983) analyzed the choice between patents, prizes, and direct

contracting, and showed that each of these alternatives can be an effective intervention de-

pending on information available to a regulator. Other papers (see, for example, Klemperer,

1990; Gilbert and Shapiro, 1990; Gallini, 1992) studied the trade-off between the length and

breadth of patents. While our baseline model cannot capture the notion of patent length,

we can ask how the designer can optimally use patent breadth (allocation x in our model)

and monetary payments (transfer t in our model) to induce socially efficient investment.
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In this application, the agent is a firm making a costly investment at t = 1 in a new

technology. The principal is a patent office deciding whether the agent should have monopoly

rights to the invention. The designer corresponds to a regulator designing patent policy.

Let k be the marginal cost of production for the firm conditional on investment, and—for

simplicity—suppose that market demand for the product is given by D(p) = 1 − p. If the

firm is a monopolist, it chooses to produce (1 − k)/2, the price is (1 + k)/2, and the profit

is (1− k)2/4. If the firm is not granted a monopoly, we assume there is perfect competition

at the marginal cost k; the firm will not make profits, total production will be 1 − k, and

the price will be k. Thus, the utility of the agent from obtaining a monopoly at t = 2

is θ ≡ (1 − k)2/4. The designer attempts to maximize total surplus given by the sum of

consumer surplus and firm profits, while the principal places a potentially higher weight

ω ≥ 1 on consumer surplus.24 A simple calculation shows that this scenario corresponds to

Vω(θ) ≡ θ(1− (3/2)ω) and V ?
ω (θ) ≡ V1(θ), for all ω ∈ Ω.

A property right in this application gives the innovator full monopoly power in the market

for the invention. However, this hurts consumer surplus. In particular, the principal’s

objective Vω(θ) is decreasing in θ. This is because granting a monopoly right to the firm is

particularly inefficient when the costs of production are low (θ is high). Our question in this

context is whether investment can be incentivized by giving the innovator a partial right;

an intermediate x ∈ (0, 1) can be interpreted either as awarding the monopoly right with

some probability (e.g., the regulator sets a review standard for patent applications) or as the

patent breadth (e.g., the degree of protection against substitute products).25 Additionally, if

investment is observable, then the regulator can offer a direct cash prize for the innovation.

To simplify our analysis, we assume that the distribution of costs is uncorrelated with ω,

and that the density of θ is differentiable and non-decreasing.26

First, we suppose that the patent office has access to a transparent and credible way of

assessing the usefulness of the invention—corresponding to our assumption that investment

is observable and contractible. Then—as long as the weight on revenue is not too high—the

optimal property right will include a cash prize for the discovery. Furthermore, if the support

of ω is lower bounded by (4/3)α+(2/3)—that is, if the principal puts sufficiently more weight

on consumer surplus than on revenue—she will always prefer to buy out any rights of the

24For example, the principal could have redistributive preferences as in Dworczak r© al. (2021).
25This also resonates with previous work demonstrating how the flexible allocation of market power and

monopoly rights can improve innovation policy relative to simply awarding innovators full monopoly rights
in the form of a patent (see, in particular, Hopenhayn et al., 2006 and Weyl and Tirole, 2012).

26For large enough ω, Vω(θ) is negative and decreasing; in light of Remark 1, we need the assumption of
non-decreasing density to ensure that Vω(θ)f(θ) preserves that property. Economically, this means that the
principal is mostly concerned about granting monopoly rights to a firm with low costs (which would not be
the case if having low costs is statistically unlikely).
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innovator with cash.27 In that case, the optimal property right is a cash payment conditional

on investment.

While cash prizes have been historically used to incentivize major discoveries,28 in many

cases regulators cannot verify whether an innovation is socially useful. Moreover, paying for

discoveries could induce moral-hazard problems.29 From now on we suppose that investment

is not observable and that the patent office cannot pay the firm.

Under the same assumption that the support of ω is lower bounded by (4/3)α + (2/3),

the optimal contract takes the form of allocating a monopoly right free of charge with some

fixed probability y (or with breadth y) that makes the investment-obedience constraint bind.

Intuitively, when ω is high, conditional on the new technology being already developed, the

patent office would prefer not to grant a monopoly right, and she is particularly reluctant

to grant it when costs of production are low (because consumer surplus under perfect com-

petition is particularly high in this case). However, it is firms with low production costs

that have a higher willingness to pay for obtaining the monopoly right; hence, the best the

patent office can do is allocate the monopoly right with a probability that does not depend

on production costs.

When the principal puts a sufficiently high weight on revenue (relative to the realized ω),

or when the density of θ is decreasing, it might become optimal to “sell” the monopoly rights

to firms with low costs. In that case, the optimal regulation may take a more complicated

form, potentially specifying a fee that a firm applying for a patent may choose to pay to

increase the probability of obtaining the patent (a type of “fast track” procedure). Allowing

the firm to purchase a patent may be the cheapest way to incentivize investment because

it promises the innovator a higher probability of obtaining monopoly rights precisely when

these monopoly rights are most valuable (costs are low).

4.4 Vaccine development

Next, we consider an application in which investment is observed and commissioned by a

regulator who acts as both the designer and the principal. The agent is a pharmaceutical

company developing a vaccine at t = 1, during a pandemic. There is a unit mass of patients,

and x represents the number of units purchased by the government at t = 2. Suppose that

27See Kremer (1998) for historical cases of patent buyouts and a detailed analysis of how governments can
determine the buyout price.

28For example, The Longitude Act 1714 passed by the British Government offered a prize of 20,000 pounds
(several million in purchasing power parity today) for invention of a clock that could operate with accuracy
at sea. The Millennium Prize Problems selected by the Clay Institute serve as a modern-day example.

29Kremer (1998) describes the possibility of bribery and rent-seeking, while Cohen et al. (2019) document
the problem of “patent trolls” that would be exacerbated by offering an additional financial incentives for
“fake” discoveries.
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k is the marginal cost of production conditional on successful discovery of the vaccine. Let

ω be the social value of vaccinating a single patient (which we assume is independent of

k) that may depend, for example, on the severity of the pandemic. We set θ ≡ −k. If the

regulator cares exclusively about patient welfare, then V ?
ω (θ) = Vω(θ) = ω. Additionally, we

let 1 = α ≥ α?.

In this application, our framework casts light on the optimal design of a contract between

the government and a private producer. The friction is that—in the absence of a contract—

the government may not be interested in purchasing the product after the investment costs

have been sunk by the firm. However, the government can reward the investment with a

cash transfer or a guaranteed sale price for all or some of the developed products. Note

that it is natural to assume that these quantities should not depend on the state ω—while

the severity of the pandemic may be publicly observed, it would be difficult to enforce such

dependence in a legal contract. In this case, the optimal contract can essentially be thought

of as an advanced market commitment.30

We assume that investment is observable (the government can verify that the vaccine is

effective). By the analysis in Section 3.3 (and under the same regularity assumptions), as

long as the cost of investment is sufficiently high, the optimal contract can be implemented

as a lump-sum payment (for developing the vaccine) plus a guaranteed unit purchase price

p =
E[ω | ω ∈ [ωp, ωp]]

α?
,

for some functions ωp, ωp, assuming that p belongs to the support of the costs (otherwise,

it coincides with one of the bounds). Intuitively, when ω < ωp (the pandemic is not severe),

the principal prefers to compensate the producer in cash, rather than buying the vaccines

at the price p. When ω > ωp (the pandemic is severe), the principal will offer a higher price

than p to the producer to increase the production of vaccines. Thus, only in the intermediate

range of ω can the price p set by the contract affect the t = 2 allocation.

Consistent with our discussion of the contractible case in Section 3.3, the optimal price

does not depend on the exact cost of investment and the distribution of marginal costs; these

factors only influence the size of the lump-sum payment. When α? = 0, that is, when the

government is not concerned about revenue at the stage of signing the contact, p will be

equal to the upper bound of the distribution of costs; it is optimal to commit to purchasing

all vaccines. When α? = 1, so that the government has time-consistent preferences, the

optimal price is the same as the regulator would choose if she wanted to implement the

30There has been a recent upsurge of interest in advanced market commitments among economists, par-
ticularly in relation to the use of these contracts as means to incentivize the production of vaccines (see, for
example, Kremer et al., 2020a,b; Athey et al., 2020).
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VCG mechanism. This is surprising, because the government was not assumed to maximize

total surplus. The reason is related to the discussion of the optimal price in the contractible

case given in Section 3.3: In the optimal contract, on the margin, the government must be

indifferent between incentivizing investment using a slightly higher lump-sum payment or a

slightly higher guaranteed purchase price—it thus behaves as if it was fully internalizing the

producer’s marginal costs (i.e., as if it was maximizing total surplus).

4.5 Supply chain contracting

Finally, we exploit the possible correlation between θ and ω to capture an application with

the classical ratchet effect. There is a large firm (playing both the role of the designer and

the principal) buying some amount x of customized inputs from a small supplier (the agent).

The supplier can invest at time t = 1 in relationship-specific technology to produce the

inputs at marginal cost k ≡ −θ. The firm maximizes profits and has a constant marginal

value of 1 for each unit of the input. That is, we have Vω(θ) = 1 and α = 1. Through the

close interaction with the supplier, the firm can learn the supplier’s costs; the state ω is a

noisy signal of θ. Setting V ?
ω (θ) = 1 and α? = 1 corresponds to the firm proposing a contract

to the supplier.

In this application, we can investigate the optimal form of contractual rights between two

firms, similar to the problem considered by the incomplete-contracts literature. Firms can

freely bargain given the realized information in the future, or effectively merge by having the

large firm purchase the entire future production of the supplier. Intermediate arrangements

are also possible, such as the commitment by the large firm to buy a certain number of

inputs at a pre-specified price.

Theorem 1 predicts the form of the optimal contract for the large firm. If investment

by the small supplier is not observable (e.g., the large firm cannot verify the quality of the

inputs prior to assembling the final product), the large firm will in general commit to a

two-price scheme, committing to buy up to y units at some price p′, and any number of

units at some lower price p. If investment by the small supplier is observable, assuming the

cost of investment is high enough, the large firm will offer an upfront payment for setting up

production and then a guaranteed purchase price for any number of units.

The presence of private information at the trading stage (as well as the ratchet effect)

make this application distinct from the typical setting in the incomplete-contracts literature.

Without private information, Nöldeke and Schmidt (1995) find that the first-best outcome

can be implemented (without relying on renegotiation, as in Aghion et al., 1994) by using

an option contract that guarantees the seller a base price (lump-sum cash payment) plus
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an option price for delivery. Interestingly, if investment is observable and the conditions

imposed in Section 3.3 hold, we arrive at the same conclusion, despite differences in the

model and the fact that our optimal contract does not achieve the first best.31 However, the

role of prices is different across these two results. In Nöldeke and Schmidt (1995), the option

price is pinned down by a condition ensuring efficient investment by the seller, while the base

price can be freely adjusted to affect the split of surplus between the two parties. In our

framework, with observable investment, both the cash payment and the option price affect

the seller’s incentive to invest—the option price is used to lower the cost of incentivizing

investment by making sure that the seller captures some of the benefits from increasing

her type (lowering her costs). With unobservable investment (which is in fact closer to the

setting of Nöldeke and Schmidt, 1995), our optimal contract is potentially more complicated

and features an additional price for delivering a fraction of the seller’s production capacity.

5 Concluding remarks

In this paper, we studied the design of property rights in an environment in which the

designer cannot commit to future trading mechanisms, giving rise to ex-post inefficiency and

a hold-up problem. We modeled property rights as a set of outside options available to the

agent. This perspective allowed us to employ a mechanism-design approach to characterize

the optimal property right. The optimal right is more flexible than a full property right, and

often allows the agent to retain control over the economic resource conditional on paying a

pre-specified price. We investigated several applications of our results, including the design

of spectrum licenses, the regulation of private rental markets, patent policy and procurement

contracting by governments and large firms. In this section, we briefly review extensions of

our framework, and comment on future research directions.

Property rights as a form of partial commitment. The frictions in our framework result

from the inability of the designer to commit to future trading mechanisms. From this

perspective, property rights are partly restoring the designer’s control over future allocations

by specifying outside options that must be made available to the agent. There are other

natural assumptions one could make about the degree of commitment. For example, we

could allow agent’s rights to be state-contingent—this would not affect our theoretical results

significantly but would make property rights a more powerful tool for the designer, and

could lead to new insights in applications. Another possibility, commonly encountered in

31The comparison would not be affected if we assumed that the seller maximizes total surplus—rather
than her own profit—when choosing the initial contract.
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practice, is that the designer might be able to ban certain outcomes (for example, rent

control restricts the set of prices a landlord can charge to a tenant). In the model, this

would correspond to specifying a set of outcomes that cannot be offered in the mechanism

run by the principal. If the designer can flexibly ban certain outcome, mandate others,

and condition these restrictions on the state, then she can effectively commit to the future

mechanism. It is an interesting direction for future research to investigate how the strength

of the designer’s commitment power affects the form of optimal property rights.

State-contingent property rights. We assumed throughout that the state ω is publicly ob-

servable but not contractible. As discussed in the preceding paragraph, a model in which

rights can be made contingent on ω would give more power to the designer. Even when ω is

not contractible, the designer may be able to condition rights on ω indirectly by delegating

the choice of the menu of rights to the principal. That is, the designer could design a menu

of (sub)menus : At time t = 2, the principal first chooses a submenu from the menu, and

then the agent can execute an outside option from the submenu. As long as the menu is

constructed in such a way that the principal’s relative preferences between submenus depend

on the realized state ω, the designer can implement the dependence of the agent’s outside

option function on the state. Formally, the design problem is then one of choosing a state-

contingent outside option for the agent but subject to an additional incentive-compatibility

constraint for the principal.32 It is easy to show, by means of examples, that this extra flex-

ibility may benefit the designer. Beyond theoretical curiosity, we find this research direction

interesting because it could provide an optimality foundation for state-contingent property

rights such as eminent domain.

Property rights versus bargaining power. One of the key assumptions of our framework was

that property rights affect outside options but not bargaining power. It is then natural to

model the trading stage as the problem of optimal mechanism design by a principal. However,

in the classical incomplete-contracts literature (Grossman and Hart, 1986; Hart and Moore,

1990), property rights were often associated with bargaining power. A natural extension of

our “one-sided” framework is to symmetrize the positions of the principal and the agent by

endowing both of them with private information and endogenizing the bargaining power. The

trading stage could be modeled as a third party running an incentive-compatible mechanism

á la Loertscher and Marx (2022) with type-dependent outside options and welfare weights

reflecting the agents’ relative bargaining power. The designer would then choose a menu

32This extension of our model would bear some similarity to the critique of the incomplete-contracts model
offered by Maskin and Tirole (1999).
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of rights for both agents together with the bargaining weights. Our techniques, including

the ironing approach to type-dependent outside options, could be helpful in analyzing this

more general problem. On a conceptual level, this extension would allow a richer analysis

of property rights, including the question of whose rights take precedence in case of conflict,

as well as the role of abatement and easement.

Optimal allocation of optimal property rights. In this paper, we abstracted away from the

problem of how to allocate optimally-designed rights by focusing on a single-agent setting and

assuming that the agent simply holds the rights from the outset. This approach highlights the

role of property rights in affecting future economic interactions. For example, it makes sense

to think about the problem of designing a spectrum license separately from the problem

of designing a spectrum auction. This is in part because—once the license is designed—

allocating it to one of several agents is a standard mechanism design problem.

A direct extension of our framework would feature N agents with private signals, realized

at t = 0, about their values conditional on having control over the resource in the future and

undertaking investment. The designer would then have to take into account how the design

of property rights affects the outcomes of the mechanism run at time t = 0 to allocate these

right to one of the agents. If the designer were only concerned with the efficiency of the

allocation, we conjecture that under appropriate single-crossing assumptions (higher signal

realization are associated with a higher distribution of future values), our characterization

of optimal property rights would apply with minimal modifications. The reason is that

a standard second price auction would allocate the rights to the agent with the highest

signal realization regardless of the exact design of these rights. However, if the designer were

additionally concerned with the revenue raised at t = 0, the optimal design of property rights

would interact non-trivially with the optimal design of the mechanism to allocate them.33

The primary link would be willingness to pay; for example, by designing stronger spectrum

licenses, the designer could increase the bidders’ values in the auction allocating them, but

at the cost of lowering the revenue from future auctions. We leave this direction for future

research.
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A Proofs

A.1 Proof of Lemma 1

Given a menu of rights M = {(xi, ti)}i∈I , let R(θ) = max{0,maxi∈I{θxi − ti}}. Since R is

constructed by maximizing over a family of affine functions, this implies that R is convex

and admits a right derivative. Moreover, since each affine function θxi−ti has a non-negative

gradient xi ∈ [0, 1], this implies thatR is non-decreasing in θ and that |∂+R(θ)| ∈ [0, 1], where

∂+R denotes the right derivative of R. Conversely, suppose that we have a type-dependent

outside option function R that is non-negative, non-decreasing and convex, and admits a

right derivative that is bounded above by 1. Then, for all θ ∈ Θ, we can set y(θ) = ∂+R(θ)

and s(θ) = θ∂+R(θ) − R(θ). Since R is convex, the allocation rule y is non-decreasing.

The envelope theorem then implies that the menu M = {(y(θ), s(θ))}θ∈Θ implements the

reservation utility function R and is such that R(θ) = max{0,maxθ′∈Θ{θy(θ′) − s(θ′)}} as

required.

A.2 Proof of Lemma 2

Consider first an auxiliary problem in which we fix u at some level weakly above u0. Note

that our assumption that the principal’s objective function W is upper semi-continuous

in θ implies that it is without loss of generality to restrict attention to right-continuous

allocation rules. We will treat the allocation rule x as a CDF by extending it to the real line

and assuming that x(θ) = 0 for all θ < θ, and x(θ) = 1 for all θ ≥ θ̄.34 Applying Leibniz’s

rule, integrating by parts, and using W(θ) = 0 and limθ↗θ x(θ) = 0:

∫ θ̄

θ

W (θ)x(θ)dθ = −
∫ θ̄

θ

x(θ)d

(∫ θ̄

θ

W (τ)dτ

)
=

∫ θ̄

θ

W(θ)dx(θ).

The problem is now to choose a CDF x to maximize∫ θ̄

θ

W(θ)dx(θ) subject to

∫ θ

θ

x(τ)dτ ≥ (u0 − u) +

∫ θ

θ

x0(τ)dτ, ∀θ.

Up to the constant term u0−u, the constraint states that x must be second-order stochasti-

cally dominated by x0. In particular, if W is non-decreasing and concave, then the optimal

34While the optimal mechanism might have x(θ̄) < 1, imposing x(θ̄) = 1 is without loss of generality since
it is not affecting the principal’s expected payoff and preserves all the constraints.
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x must satisfy the inequality as an equality (whenever this is feasible). Formally, define

x̄(θ) := x0(θ)1θ≥θ0 ,

where θ0 is defined by

u0 − u+

∫ θ0

θ

x0(τ)dτ = 0 (and θ0 = θ if there is no solution). (6)

The allocation x̄ is feasible by construction. If W is non-decreasing and concave, then any

feasible x yields a lower objective than x̄ because x̄ second-order stochastically dominates

any feasible x. Moreover, if a monotone x is second-order stochastically dominated by x̄,

then x is feasible.

The key idea of the proof (mimicking the logic behind classical “ironing”) is to define a

relaxed problem in which the objective is concave non-decreasing, and then show that the

value of the relaxed problem can be achieved in the original problem.

Let W be the concave closure of W , and let W+ be the non-decreasing concave closure

of W . Note that W+ differs from W only in that W+(θ) is constant—equal to the global

maximum W(θ
?
)—for all θ ≥ θ

?
, where θ

?
is defined as in the main text. Clearly, W ≤W+

and W+ is non-decreasing and concave. By our previous argument, we have obtained an

upper bound on the value of the problem equal to∫ θ̄

θ

W+(θ)dx̄(θ).

We will now construct an allocation rule x? that is feasible in the original problem and

achieves this upper bound. Define I ′ to be the (at most countable) collection of maximal

open intervals (a, b) within (θ, θ
?
) with the property that W lies strictly below W on (a, b).

Note that the definition of I ′ differs from the definition of I in the main text only in that

the former is defined on (θ, θ
?
), and the latter on (θ?, θ

?
). Define

x?(θ) =


∫ b
a x̄(τ)dθ

b−a θ ∈ (a, b) for some (a, b) ∈ I ′,

x̄(θ) θ ∈ (θ, θ
?
) \
⋃
I ′,

1 θ ≥ θ
?
.

Intuitively, x? (viewed as a CDF) only attaches probability mass to types θ at which the

objectiveW coincides with the concavified objectiveW+. Note that x? is feasible. It is non-

decreasing because x̄ is non-decreasing. Moreover, it is second-order stochastically dominated
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by x̄ because it is obtained from x̄ by a series of mean-preserving spreads within (θ, θ
?
), and

by a single first-order stochastic dominance shift above θ
?
—this suffices for feasibility, as

noted previously.

We now argue that x? achieves the upper bound of the value function. Let x?−(θ
?

ω) denote

the left limit of x? at θ
?

ω. Then,∫ θ̄

θ

W(θ)dx?(θ) =

∫
(θ, θ

?
)\
⋃
I′
W(θ)dx?(θ) +W(θ

?
)(1− x?−(θ

?
))

=

∫
(θ, θ

?
)\
⋃
I′
W(θ)dx?(θ) +W(θ

?
)(1− x?−(θ

?
)) =

∫ θ̄

θ

W+(θ)dx̄(θ), (7)

where the first equality follows from the fact that x? puts no mass on types in the set
⋃
I ′

and types above θ
?
; the second equality follows from the fact that, by construction, W =W

on the support of x? within (θ, θ
?
), while the equality at θ

?
follows because W and W must

coincide at the global maximum; and the third equality follows by linearity ofW+ in intervals

(a, b) belonging to I ′ and the fact that in such intervals x? is a mean-preserving spread of

x̄, as well as from the fact that W+ is constant above θ
?
. This proves that x? is optimal.

In the last step of the proof, we maximize over u. Note that—given the above derivation—

the problem of choosing the optimal u can be written as

max
u≥u0

{
W+(θ0(u))x0(θ0(u)) +

∫
(θ0(u), θ̄]

W+(θ)dx0(θ)− αu
}
,

where θ0(u) is defined as in (6), now with the dependence on u made explicit in the notation.

Given that α > 0, it is never optimal to choose u such that the equation u0−u+
∫ θ0
θ
x0(τ)dτ =

0 defining θ0(u) does not have a solution, since this would make the outside option constraint

slack everywhere. Given that u0 − u +
∫ θ0(u)

θ
x0(τ)dτ = 0 must hold, we can maximize over

the cutoff type θ0 directly:

max
θ0

{
W+(θ0)x0(θ0) +

∫
(θ0, θ̄]

W+(θ)dx0(θ)− α
∫ θ0

θ

x0(τ)dτ − αu0

}
.

Integration by parts yields∫ θ0

θ

x0(τ)dτ = θ0x0(θ0)−
∫ θ0

θ

τdx0(τ).
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Additionally, we have∫
(θ0, θ̄]

W+(θ)dx0(θ) =

∫
[θ, θ̄]

W+(θ)dx0(θ)−
∫

[θ, θ0]

W+(θ)dx0(θ).

Omitting terms that do not depend on θ0 and rearranging, we obtain an equivalent repre-

sentation of the problem:

max
θ0≥θ

{
(W+(θ0)− αθ0)x0(θ0)−

∫
[θ, θ0]

(W+(θ)− αθ)dx0(θ)

}
.

Integrating the second term by parts yields another equivalent representation:

max
θ0≥θ

{∫
[θ, θ0]

(W ′+(θ)− α)x0(θ)dθ

}
. (8)

The function W+(θ) is concave, and hence differentiable almost everywhere, with a decreas-

ing derivative. Thus, the optimal θ0 is the supremum over types θ such that W ′+(θ) ≥ α

(with θ0 = θ if the derivative is always below α). Note that W(θ) = W+(θ) for all θ such

that W ′+(θ) ≥ α, and hence the optimal θ0 coincides with the definition of θ? given in the

main text.

Finally, we can plug the optimal θ0 = θ? into the definition of x̄ to obtain

x?(θ) =


∫ b
a x0(τ)1τ≥θ?dτ

b−a θ ∈ (a, b) for some (a, b) ∈ I ′,

x0(θ)1θ≥θ? θ ∈ (θ, θ
?
) \
⋃
I ′,

1 θ ≥ θ
?
.

Notice that θ? cannot belong to the interior of any interval (a, b) ∈ I ′ because, by definition,

W is linear on any such (a, b). Thus, x?(θ) must be 0 for any θ ≤ θ?, and we can define

I to be the intersection of I ′ with (θ?, θ
?
)—this gives us the definition of I from the main

text. Finally, by noting that x0(θ) = R′(θ) almost everywhere, and that u? = R(θ?), we can

verify that the optimal (x?, u?) defined above coincide with those defined by equation (2).

A.3 Proof of Lemma 3

In the proof, we separately address the contractible and the non-contractible case (with

respect to the investment decision of the agent). To streamline exposition, we first cover the

non-contractible case, and then explain how to modify the proof to cover the contractible

case.
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When analyzing the designer’s problem, we must take into account that the solution to

the principal’s problem depends both on the induced outside option function R and on the

public state ω—we will make that dependence explicit in our notation. In particular, let

u?ω(R) := R(θ?ω), and let 〈x?ω(θ; R), t?ω(θ; R)〉 denote the mechanism chosen by the principal

conditional on ω and R.

We begin with the agent’s obedience constraint (I-OB). Using the envelope formula to

pin down transfers used by the principal, we can write the agent’s expected payoff from

participating in the stage t = 2 mechanism as

∫
Ω

(
u?ω(R) +

∫ θ
?
ω

θ?ω

x?ω(θ; R)(1− F̃ω(θ))dθ +

∫ θ̄

θ
?
ω

(θ − θ?ω)dF̃ω(θ)

)
G̃(ω),

where F̃ω = Fω and G̃ = G if the agent invested, and F̃ω = F ω and G̃ = G otherwise.

In particular, when the agent has no rights (R ≡ 0), the principal allocates the good with

probability one to types θ ≥ θ
?

ω (and with probability zero otherwise). Define

c̃ := c−

(∫
Ω

∫ θ̄

θ
?
ω

(θ − θ?ω)dFω(θ)dG(ω)−
∫

Ω

∫ θ̄

θ
?
ω

(θ − θ?ω)dF ω(θ)dG(ω)

)

as the cost of investment net of the agent’s benefit from investing in the absence of any

rights. By the assumption that the agent does not invest if she is not allocated any rights,

c̃ > 0. We can now write the agent’s obedience constraint as

∫
Ω

R(θ?ω) +
∑

(a, b)∈Iω

∫ b
a R
′(τ)dτ

b−a

∫ b

a

(1− Fω(θ))dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

R′(θ)(1− Fω(θ))dθ

 dG(ω)− c̃

≥
∫

Ω

R(θ?ω) +
∑

(a, b)∈Iω

∫ b
a R
′(τ)dτ

b−a

∫ b

a

(1− F ω(θ))dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

R′(θ)(1− F ω(θ))dθ

 dG(ω).

Next, denoting by W ?
ω(θ) := (V ?

ω (θ) + α?Bω(θ))fω(θ) the designer’s objective multiplied by

the density of types, we can write her expected payoff conditional on choosing an outside

option function R (and conditional on the agent investing) as

∫
Ω

−α?R(θ?ω) +
∑

(a, b)∈Iω

∫ b
a
R′(τ)dτ

b− a

∫ b

a

W ?
ω(θ)dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

R′(θ)W ?
ω(θ)dθ

 dG(ω),

where we have omitted the term
∫

Ω
(
∫ θ̄
θ
?
ω
W ?
ω(θ)dθ)dG(ω) that does not depend on the chosen

R.
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We can now change variables by letting R(θ) = u +
∫ θ
θ
x(τ)dτ, for some u ≥ 0, and

non-decreasing allocation rule x. This gives rise to the following optimization problem for

the designer: maximize over x and u ≥ 0

−α?u+

∫
Ω

−α? ∫ θ?ω

θ
x(θ) dθ +

∑
(a, b)∈Iω

∫ b
a x(τ) dτ

b− a

∫ b

a
W ?
ω(θ) dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

x(θ)W ?
ω(θ) dθ

 dG(ω)

subject to

∫
Ω

∫ θ?ω

θ
x(θ)dθ +

∑
(a, b)∈Iω

∫ b
a x(τ)dτ

b− a

∫ b

a
(1− Fω(θ))dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

x(θ)(1− Fω(θ))dθ

 dG(ω)− c̃

≥
∫

Ω

∫ θ?ω

θ
x(θ)dθ +

∑
(a, b)∈Iω

∫ b
a x(τ)dτ

b− a

∫ b

a
(1− Fω(θ))dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

x(θ)(1− Fω(θ))dθ

 dG(ω).

Since both the objective and the constraints are linear in x(θ), using integration by parts,35

we can rewrite the problem as

max
x(θ), u≥0

∫ θ̄

θ

Φ(θ)dx(θ)− α?u subject to

∫ θ̄

θ

Ψ(θ)dx(θ) ≥ c̃, (9)

where

Φ(θ) =

∫
Ω

−α? (θ?ω − θ)+ +
∑

(a, b)∈Iω

(b−max{a, θ})+

∫ b
a
W ?
ω(θ)dθ

b− a

+
∑

[a, b]∈Icω

1{θ≤b}

(∫ b

max{a, θ}
W ?
ω(τ)dτ

) dG(ω),

35In particular, we use the fact that
∫ b
a
g(θ)x(θ)dθ =

∫ θ̄
θ
1{θ≤b}

(∫ b
max{a, θ} g(τ)dτ

)
dx(θ).

47



and

Ψ(θ) =

∫
Ω

(θ?ω − θ)+ +
∑

(a, b)∈Iω

(b−max{a, θ})+

∫ b
a
(1− Fω(θ))dθ

b− a

+
∑

[a, b]∈Icω

1{θ≤b}

(∫ b

max{a, θ}
(1− Fω(τ))dτ

) dG(ω)

−
∫

Ω

(θ?ω − θ)+ +
∑

(a, b)∈Iω

(b−max{a, θ})+

∫ b
a
(1− F ω(θ))dθ

b− a

+
∑

[a, b]∈Icω

1{θ≤b}

(∫ b

max{a, θ}
(1− F ω(τ))dτ

) dG(ω).

Thus, we have represented the designer’s problem as maximizing a linear functional subject

to a single linear constraint.

The contractible case. In the contractible case, the transformations are analogous but no-

tation is further complicated by the fact that, conditional on no investment, the principal’s

mechanism is designed optimally for the distribution F ω of the agent’s type. We define the

cost of investment net of the agent’s benefit from investing in the absence of any rights as

c̃ := c−

(∫
Ω

∫ θ̄

θ
?
ω

(θ − θ?ω)dFω(θ)dG(ω)−
∫

Ω

∫ θ̄

θ
?
ω

(θ − θ?ω)dF ω(θ)dG(ω)

)
,

where θ
?

ω denotes the analog of θ
?

ω obtained by replacing Fω with F ω in its definition. The

agent’s obedience constraint in the designer’s problem becomes

∫
Ω

u+

∫ θ?ω

θ
x(θ)dθ +

∑
(a, b)∈Iω

∫ b
a x(τ)dτ

b−a

∫ b

a
(1− Fω(θ))dθ +

∫
(θ?ω , θ

?
ω)

\
⋃
Iω

x(θ)(1− Fω(θ))dθ

 dG(ω) ≥ c̃.

Finally, we can write the designer’s problem as

max
x(θ), u≥0

∫ θ̄

θ

Φ(θ)dx(θ)− α?u subject to

∫ θ̄

θ

Ψ(θ)dx(θ) + u ≥ c̃, (10)
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where Φ(θ) is defined as in the non-contractible case, and

Ψ(θ) =

∫
Ω

(θ?ω − θ)+ +
∑

(a, b)∈Iω

(b−max{a, θ})+

∫ b
a
(1− Fω(θ))dθ

b− a

+
∑

[a, b]∈Icω

1{θ≤b}

(∫ b

max{a, θ}
(1− Fω(τ))dτ

) dG(ω).

By using the indicator function 1cont, we obtain the unified statement of Lemma 3 covering

both the contractible and non-contractible case.

A.4 Proof of Lemma 4

By Lemma 3, the designer’s problem is to maximize a linear functional subject to a single

linear constraint. Thus, there exists a solution that is a convex combination of at most two

extreme points.36 Extreme points in the space of (non-decreasing) allocation rules are cutoff

functions of the form 1θ≥θ? . Thus, the optimal x can be written as a two-step function, and

in particular its image may contain at most one value other than 0 or 1.

In the non-contractible case, it is clear that it is optimal to set u = 0. This corresponds

to case (i) in Lemma 4. The same conclusion is true in the contractible case when u = 0 in

the optimal solution.

Suppose that u > 0 in the optimal solution in the contractible case. Observe that the

optimal solution must maximize the Lagrangian, with Lagrange multiplier γ,37

∫ θ̄

θ

(Φ(θ) + γΨ(θ)) dx(θ) + (γ − α)u,

and that in case u > 0 is optimal, we must have γ = α?. Indeed, α? ≤ γ as otherwise the

unique optimal choice would be u = 0, and α? ≥ γ as otherwise the Lagrangian would not

have a maximum. But if γ = α?, then any u ≥ 0 maximizes the Lagrangian. Thus, we can

pick a cutoff allocation rule x(θ) maximizing
∫ θ̄
θ

(Φ(θ) + α?Ψ(θ)) dx(θ) that does not satisfy

the obedience constraint when paired with u = 0,38 and then satisfy the obedience constraint

by picking u ≥ 0, so that
∫ θ̄
θ

Ψ(θ)dx(θ) + u = c̃. This corresponds to case (ii) in Lemma 4.

36Formally, this follows from the results of Bauer (1958) and Szapiel (1975), as summarized by Kang
(2023), which can be seen as a version of Carathéodory’s theorem for an infinite-dimensional linear space.

37Existence of a Lagrange multiplier follows from Theorem 2.165 in Bonnans and Shapiro (2000).
38Such an x must exist, as otherwise we could not have a solution with u > 0.
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A.5 Proofs of Corollaries 1, 2, and 3

Corollary 1 follows by direct inspection of the solution derived in Lemma 2. Corollary 2

follows from the proof of Lemma 4 by observing that if the investment-obedience constraint

is dropped from the designer’s optimization problem, then the optimum is attained by an

extreme point x(θ) = 1θ≥θ? and u = 0. This corresponds to offering the agent an option-

to-own. Finally, Corollary 3 follows from the proof of Lemma 4 and two observations. In

the non-contractible case, the conclusion that u = 0 implies that y > 0 in the corresponding

optimal menu M?. Moreover, if p′/y did not belong to [θ, θ̄], it would never be chosen by

any type of the agent (hence, it could be replaced by (y, yθ̄) without affecting the designer’s

payoff). In the contractible case, if c is high enough, no R with R(θ) = 0 satisfies the

investment-obedience constraint. Thus, it must be that u > 0 in the solution to the designer’s

problem, which corresponds to including the option (0, −T ), with T > 0, in the optimal

menu.

A.6 Remark about tie-breaking rules

In the proof of Theorem 1, we have assumed a particular tie-breaking rule in case of princi-

pal’s indifference, implicit in how we defined the cutoffs θ?, θ
?

as well as the ironing intervals

I in the proof of Lemma 2. However, the proof of Lemma 2 allows us to characterize all solu-

tions to the principal’s problem. Indeed, any solution x? must satisfy the string of equalities

(A.2), and any optimal θ? must solve problem (8). It follows that all solutions to problem

(P′) can be obtained by modifying our baseline solution (x?, u?) in the following ways:

1. θ
?

can be taken to be any global maximum of W (not necessarily the smallest one);

2. If W = W is affine on some interval [a, b], then we can take any mean-preserving

spread of x? in that interval (in the baseline solution, x?(θ) = R′(θ) on [a, b]);

3. θ? can be taken to be any type θ with the property α = W ′(θ) if there are multiple

such θ (not necessarily the largest one).

We will call a tie-breaking rule consistent if it breaks the principal’s indifference by maxi-

mizing an auxiliary objective function
∫ θ
θ
φ(θ)x?(θ)dθ−βu?, where φ : Θ→ R is continuous.

Clearly, maximizing or minimizing the designer’s payoffs are both consistent tie-breaking

rules.

We claim that the solution picked by a consistent tie-breaking rule is linear in R, as

in Corollary 1. The reason is that the optimal choice of θ
?

and θ? will be invariant to R;

moreover, maximizing
∫ θ
θ
φ(θ)x?(θ)dθ over mean-preserving spreads of R′(θ) in some interval
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[a, b] can be solved by applying an ironing procedure analogous to the one that we used to

solve the principal’s problem. As we have shown, this procedure results in an R−invariant

partition of [a, b] into (at most countably many) subintervals on which either (i) the optimal

x?(θ) is equal to R′(θ), in which case the subinterval can be included in the collection Ic,
or (ii) the optimal x?(θ) is constant, in which case the subinterval can be included in the

collection I. Overall, a consistent tie-breaking rule results in a solution whose structure is

the same as in the proof of Lemma 2, except that the R-invariant cutoff types θ? and θ
?
, as

well as the R-invariant collection of ironing intervals, may be different. Thus, the solution

is still linear in R.

A.7 Proof of Proposition 1

We begin with a technical lemma.

Lemma A.1. Under the assumptions of Proposition 1, (i) Wω = Wω on [θ?ω, θ
?

ω], (ii)

W ′ω(θ) ≤ α for all θ ≤ θ?ω, with equality at θ = θ?ω, and (iii) θ
?

ω is the global maximum of

Wω.

Proof of Lemma A.1. We drop the subscript ω to simplify the exposition. We first prove

that W (θ) = (V (θ) + αB(θ))f(θ) is non-decreasing on [θ?, θ
?
]. It suffices to show that, for

all θ ∈ [θ?, θ
?
],

V ′(θ) + 2α

α
f(θ) +

V (θ) + αθ

α
f ′(θ) ≥ 0.

Using the definition of θ? and θ
?

given in Proposition 1, for all θ ∈ [θ?, θ
?
], we have

1− F (θ)

f(θ)
≥ V (θ) + αθ

α
≥ −F (θ)

f(θ)
.

If f ′(θ) is negative, we have

V ′(θ) + 2α

α
f(θ) +

V (θ) + αθ

α
f ′(θ) ≥ 2f(θ)− F (θ)

f(θ)
f ′(θ) ≥ 0,

where the second inequality follows from the monotonicity of the seller virtual surplus. When

f ′(θ) is positive, we have

V ′(θ) + 2α

α
f(θ) +

V (θ) + αθ

α
f ′(θ) ≥ 2f(θ) +

1− F (θ)

f(θ)
f ′(θ) ≥ 0,

where the second inequality follows from the monotonicity of the buyer virtual surplus.
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Next, we prove that W (θ) ≤ −α for θ ≤ θ?, that is,[
V (θ) + α

(
θ − 1− F (θ)

f(θ)

)]
f(θ) ≤ −α.

Indeed, we have[
V (θ) + α

(
θ − 1− F (θ)

f(θ)

)]
f(θ) =

[
V (θ) + α

(
θ +

F (θ)

f(θ)

)]
︸ ︷︷ ︸

≤0

f(θ)− α ≤ −α.

The same calculation shows that W (θ?) = −α, and W (θ) ≥ −α for θ ≥ θ?.

Overall, we have shown that W(θ) =
∫ θ̄
θ
W (τ)dτ has a slope higher than α for θ ≤ θ?

and lower than α for θ ≥ θ?, is concave on [θ?, θ
?
], and has a global maximum at θ

?
(since

W (θ) crosses zero once from below at θ
?
). It follows that W is equal to its concave closure

on [θ?, θ
?
]. Moreover, W ′(θ) ≤ α for θ ≤ θ?, with equality at θ = θ?. Finally, θ? and θ

?
, as

defined in Proposition 1, correspond to the θ? and θ
?

defined in Section 3.1.

Given Lemma A.1, Proposition 1 follows directly from Lemma 2. The collection Iω is

empty, so there are no ironing intervals: Uω(θ) coincides with R(θ) on [θ?ω, θ
?

ω]; below θ?ω,

x?ω = 0, so Uω is constant, equal to R(θ?ω); and above θ
?

ω, x?ω = 1, giving the expression for

Uω from Proposition 1. Finally, the formulas for θ?ω and θ
?

ω are special cases of the general

definitions, simplified under the observations made in Lemma A.1.

A.8 Supplementary material for Section 3.3

Following the proof of Theorem 1, and relying on Proposition 1 to simplify the designer’s

problem, we obtain

max
x(θ), u

∫ θ̄

θ

Φ(θ)dx(θ)− α?u subject to

∫ θ̄

θ

Ψ(θ)dx(θ) + 1cont · u ≥ c̃,

where

Φ(θ) :=

∫
Ω

(
−α? (θ?ω − θ)+ + 1{θ≤θ?ω}

∫ θ
?
ω

max{θ?ω , θ}
[V ?
ω (τ) + α?Bω(τ)]dFω(τ)

)
dG(ω) ≡ Eω∼G[Φω(θ)],

and, given the assumption G = G,

Ψ(θ) :=

∫
Ω

(
1{θ≤θ?ω}

(∫ θ
?
ω

max{θ?ω , θ}
(F ω(τ)− Fω(τ))dτ

))
dG(ω) ≡ Eω∼G[Ψω(θ)]
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in the non-contractible case, while

Ψ(θ) :=

∫
Ω

(
(θ?ω − θ)+ + 1{θ≤θ?ω}

∫ θ
?
ω

max{θ?ω , θ}
(1− Fω(τ))dτ

)
dG(ω) ≡ Eω∼G[Ψω(θ)]

in the contractible case.

As in the proof of Theorem 1, we can study the behavior of the Lagrangian∫ θ̄

θ

(Φ(θ) + γΨ(θ)) dx(θ) + (1cont · γ − α)u,

where γ is the Lagrange multiplier on the investment-obedience constraint.

In the contractible case, we know from the proof of Theorem 1 that when u > 0 (which

is necessarily true in the optimal mechanism when the cost of investment is high enough),

we must have γ = α?. We also know that x(θ) = 1θ≥θ? , and since the optimal x maximizes

the Lagrangian that has one-sided derivatives everywhere, the optimal θ? must satisfy the

generalized first-order condition

Φ′(θ?) + α?Ψ′(θ?)
(FOC)

= 0, (11)

where
(FOC)

= is short-hand notation for equality at interior points at which the left-hand side

is differentiable, and for the appropriate weak inequalities at boundary points θ and θ̄; at

points of non-differentiability, with slight abuse of notation, we can interpret the condition

as saying that the left derivative of the left-hand side must be non-negative while the right

derivative of the left-hand side must be non-positive. Since we have

Φ′ω(θ) + α?Ψ′ω(θ) =


0 θ < θ?ω,

− [V ?
ω (θ, ω) + α?θ] fω(θ) θ ∈ (θ?ω, θ

?

ω),

0 θ > θ
?

ω.

the first-order condition becomes

−Eω∼G
[
1{θ?∈[θ?ω , θ

?
ω ]} (V ?

ω (θ?) + α?θ?) fω(θ?)
]

(FOC)
= 0.

It is without loss of generality to restrict the set of candidate θ? to the closure of the set

{θ? ∈ Θ : Pω∼G(θ? ∈ [θ?ω, θ
?

ω]) > 0} since the Lagrangian is constant in θ? outside this range.

If u > 0 is interpreted as a lump-sum payment, then setting the price p = θ? in the option-

to-own implements the outside option function R(θ) = u +
∫ θ
θ
x(τ)dτ . A straightforward
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transformation of the first-order condition yields formula (4).

In the non-contractible case, we know that u = 0 and the optimal x takes the form

x(θ) =


0 θ < θ?1,

y θ?1 ≤ θ < θ?2,

1 θ ≥ θ?2.

Since the optimal x must maximize the Lagrangian, both θ?1 and θ?2 must satisfy the first-

order condition (11), with α? replaced by a generic Lagrange multiplier γ. Since we have

Φ′ω(θ) + γΨ′ω(θ) =


α? θ < θ?ω,

−
[
V ?
ω (θ) + α?Bω(θ) + γ

Fω(θ)−Fω(θ)

fω(θ)

]
fω(θ) θ ∈ (θ?ω, θ

?

ω),

0 θ > θ
?

ω,

the first-order condition is

α?Pω∼G(θ? < θ?ω)− Eω∼G
[(
V ?
ω (θ?) + α?Bω(θ?) + γ

Fω(θ?)−Fω(θ?)

fω(θ?)

)
fω(θ)1θ?∈[θ?ω , θ

?
ω ]

]
(FOC)

= 0.

It is again without loss of generality to restrict the set of candidate θ? to the closure of the

set {θ? ∈ Θ : Pω∼G(θ? ∈ [θ?ω, θ
?

ω]) > 0}; in particular, if Pω∼G(θ? ≥ θ?ω) = 0 for θ? below

some threshold, then θ? below that threshold cannot be optimal (since the Lagrangian is

increasing in that region). Thus, we can rewrite the condition as

α?
Pω∼G(θ?<θ?ω)

Pω∼G(θ?∈[θ?ω , θ
?
ω ])
− Eω∼G

[
(V ?

ω (θ?) + α?Bω(θ?)) fω(θ?) | θ? ∈ [θ?ω, θ
?

ω]
]

−γEω∼G
[
F ω(θ?)− Fω(θ?) | θ? ∈ [θ?ω, θ

?

ω]
]

(FOC)
= 0.

If there is only a single point θ? satisfying the first-order condition, then offering a singleton

menu with option-to-own with price p = θ? is optimal. This gives us condition (5). If

instead the optimal menu contains two options, then θ?1 < θ?2 must both satisfy the first-

order condition, while prices in the optimal menu M? = {(1, p), (y, p′)} are given by p′ = yθ?1

and p = θ?2 − y(θ?2 − θ?1).
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B Supporting calculations for Section 4

B.1 Calculations for Subsection 4.1

Using the result derived in Proposition 1, we can explicitly calculate the interval [θ?ω, θ
?

ω] on

which the outside option constraint binds:

θ?ω =
ω

1 + 2α
and θ

?

ω =
ω + α

1 + 2α
.

Let us determine the bounds c̄ and c. When no rights are assigned to the agent, investment

is taken when ∫ 1

0

(∫ 1

ω+α
1+2α

(
θ − ω + α

1 + 2α

)
dθ

)
dω ≥ c,

or, equivalently,

c :=
1

6
(1 + 2α)

[(
1 + α

1 + 2α

)3

−
(

α

1 + 2α

)3
]
≥ c.

Under a full property right, investment is taken when

∫ 1

0

(∫ 1

ω
1+2α

(
θ − ω

1 + 2α

)
dθ

)
dω ≥ c,

or, equivalently,

c̄ :=
1

6
(1 + 2α)

[
1−

(
2α

1 + 2α

)3
]
≥ c.

Notice that in the case α = 0, the principal uses a VCG mechanism (since θ?ω = θ
?

ω = ω),

which proves the claim for the case α = α? = 0. From now on, we assume that α = 1.

Using the notation from Appendix A.8, we have

Φ′ω(θ) + γΨ′ω(θ) =


α? θ < ω

3
,

(γ − 1− 2α?) θ + ω + α? − γ θ ∈
(
ω
3
, ω+1

3

)
,

0 θ > ω+1
3
.

Therefore, using the assumption that G is uniform on [0, 1],

∫ 1

0

[Φ′ω(θ) + γΨ′ω(θ)] dG(ω) =


∫ 3θ

0
[(γ − 1− 2α?) θ + ω + α? − γ] dω + α?(1− 3θ) θ < 1/3,∫ 1

3θ−1
[(γ − 1− 2α?) θ + ω + α? − γ] dω θ ∈ (1/3, 2/3),

0 θ > 2/3,
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and

∫ 1

0

[Φ′′ω(θ) + γΨ′′ω(θ)] dG(ω) =


θ (6γ − 12α? + 3)− 3γ θ < 1/3,

−θ (6γ − 12α? + 3) + 1− 7α? + 5γ θ ∈ (1/3, 2/3),

0 θ > 2/3.

From now on, we will take a look at the two cases, α? = 1 and α? = 0, separately.

Case α? = 1. In this case, we have

∫ 1

0

[Φ′ω(θ) + γΨ′ω(θ)] dG(ω) =


∫ 3θ

0
[(γ − 3) θ + ω + 1− γ] dω + 1− 3θ θ < 1/3,∫ 1

3θ−1
[(γ − 3) θ + ω + 1− γ] dω θ ∈ (1/3, 2/3),

0 θ > 2/3,

and ∫ 1

0

[Φ′′ω(θ) + γΨ′′ω(θ)] dG(ω) =


θ (6γ − 9)− 3γ θ < 1/3,

−θ (6γ − 9)− 6 + 5γ θ ∈ (1/3, 2/3),

0 θ > 2/3.

In the interval [0, 1/3], the function is concave and its derivative is strictly positive at 0. The

derivative at θ = 1/3 is 1/2 − (2/3)γ. Then, on [1/3, 2/3], the second derivative changes

from 3γ − 3 to γ. The first derivative at 2/3 is 0. If γ is above 3/4, then the derivative at

1/3 is negative, and it must remain negative for all θ ≥ 1/3 because it must be 0 at 2/3.

Thus, in this case, we have a global maximum that lies in (0, 1/3]. If γ is below 3/4, then

since the function is concave in [0, 1/3], the first derivative must be positive on that interval.

And since the derivative is positive at 1/3 but zero at 2/3, while the function changes from

concave to convex, we must have now a unique global maximum that lies in [1/3, 2/3]. Thus,

we have shown that, in all cases, an option-to-own is optimal. As γ changes from 0 to ∞,
the optimal price takes all values between 0 and 2/3 (note also that if a price 2/3 is optimal,

then any price between 2/3 and 1 is also optimal). Of course, the optimal price p must then

satisfy the investment-obedience constraint with equality, that is,

(1−G(3p)) c̄+

∫ 3p

3p−1

∫ 1

p

(θ − p)+ dθ dG(ω) +G(3p− 1) c = c.

As p varies from 0 to 2/3, the left-hand side takes on any value between c and c̄.
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Case α? = 0. In this case, the derivatives are given by

∫ 1

0

[Φ′ω(θ) + γΨ′ω(θ)] dG(ω) =


(
3γ + 3

2

)
θ2 − 3θγ θ < 1/3,

−
(
3γ + 3

2

)
θ2 + (5γ + 1) θ − 2γ θ ∈ (1/3, 2/3),

0 θ > 2/3,

∫ 1

0

[Φ′′ω(θ) + γΨ′′ω(θ)] dG(ω) =


θ (6γ + 3)− 3γ θ < 1/3,

−θ (6γ + 3) + 1 + 5γ θ ∈ (1/3, 2/3),

0 θ > 2/3.

If γ ≥ 1, then on [0, 1/3] the function is concave, and thus decreasing. On [1/3, 2/3],

the function is convex, and the first derivative is negative. Thus, the function is globally

decreasing. It is thus optimal to give a full property right. However, except for the case

c = c̄, this would make the investment-obedience constraint slack, requiring γ to be 0.

If γ ∈ [1/4, 1), then the first derivative at 1/3 is still negative. On [0, 1/3], the function

is first concave and then convex, starting with a zero derivative, and ending with a negative

derivative. Thus, the function is decreasing in this region. On [1/3, 2/3], the function is

first convex and then concave, starting with a negative derivative, and ending with a zero

derivative. We conclude that there are two local maxima: one at 0 and one at 2/3.

Finally, suppose that γ < 1/4, so that the first derivative at 1/3 is positive. Now, on

[0, 1/3], the function is first concave and then convex, starting with a zero derivative, and

ending with a positive derivative. Thus, the function is first decreasing and then increasing

in this region. On [1/3, 2/3], the function is first convex and then concave, starting with a

positive derivative, and ending with a zero derivative. Thus, we conclude again that there

are two local maxima: one at 0 and one at 2/3.

Because the function is constant on [2/3, 1], whenever 2/3 is optimal, so is 1. We conclude

that, regardless of the value of γ, the function is maximized either at 0 or at 1; however, this

will not allow us to satisfy the investment-obedience constraint except for the boundary cases

c = c and c = c̄. Thus, in all other cases, it must be that γ takes a value that makes both

0 and 1 global maxima, in which case the designer can satisfy the investment-obedience

constraint with equality by randomizing over full right and no property right with some

probability y :

yc̄+ (1− y)c = c.

This concludes the proof for this case.
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B.2 Calculations for Subsection 4.2

Using Proposition 1, we can pin down the interval [θ?ω, θ
?

ω] on which the outside option

constraint binds:

ω = θ?ω +
F (θ?ω)

f(θ?ω)
and ω = θ

?

ω −
1− F (θ

?

ω)

f(θ
?

ω)
.

Due to our assumption that supp(G) ⊆ [∆, 1−∆], we have that ∆ ≤ θ?ω ≤ θ
?

ω ≤ 1. This in

turn implies that F (θ)− F (θ) = ∆ for all θ ∈ [θ?ω, θ
?

ω].

Suppose first that ω is known. Then,

Φ′ω(θ) + γΨ′ω(θ) =


0 θ < θ?ω,

− [θ − ω + γ∆] θ ∈ (θ?ω, θ
?

ω),

0 θ > θ
?

ω.

We thus have a unique maximum at

θ? = ω − γ∆.

By Rogerson (1992), if investment is socially efficient, then setting γ = 0 will incentivize the

agent to invest, and hence an option-to-own with price ω must be optimal.

Now let us suppose that ω ∼ G. Then,

Φ′ω(θ) + γΨ′ω(θ) = −1{θ?ω≤θ≤θ?ω} [θ − ω + γ∆] .

Thus, the optimal p must satisfy the first-order condition:

p = Eω
[
ω | p ∈ [θ?ω, θ

?

ω]
]
− γ∆.

B.3 Calculations for Subsection 4.3

First, we make a general observation. Dropping the dependence on ω in the notation, suppose

that

W(θ) ≤ θ̄ − θ
θ̄ − θ

W(0).

That is, suppose that W lies everywhere below its concave closure. Following the proof of

Lemma 2, we can then conclude that there are three cases:

1. If W(0) =
∫ θ̄
θ
W (τ)dτ < −α, then x?(θ) ≡ 0, and u? = R(θ̄), that is, the principal

buys out all rights with money.
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2. If W(0) ∈ [−α, 0], then x?(θ) = R(θ̄)−R(θ)

θ̄−θ , and u? = R(θ), that is, the allocation rule

is constant.

3. If W(0) > 0, then x?(θ) ≡ 1, and u? = R(θ), that is, the agent always gets the good.

Note also that it is easy to modify our methods to handle the case in which the principal

is not allowed to pay the agent (assuming that the designer is then constrained to choose

R(θ) = 0). We simply set u to 0 in the proof of Theorem 1, which means that θ?ω = θ, for

any ω. Then, case 1 above becomes case 2.

Let us now apply this observation to the application from Section 4.3. We have Vω(θ) =

θ(1 − 3
2
ω), V ?

ω (θ) = −1
2
θ. To simplify notation, let βω := −(1 − 3

2
ω). Recall also that θ ≡

1
4
(1−k)2 so we can assume that θ is distributed on [0, 1/4]. To verify thatW(θ) ≤ θ̄−θ

θ̄−θW(0),

as in the observation we made above, we have to check that, for all θ ∈ [0, 1/4],

∫ 1
4

θ

[−βωτ + αB(τ)] dF (τ) ≤ −(1− 4θ)βωE[θ].

Rewriting, we obtain,

βω

∫ 1
4

θ
τdF (τ)− (1− 4θ)E[θ]

θ(1− F (θ))
≥ α.

The bound ω̄ can be defined by solving

βω̄ inf
θ∈[0,1/4]

{∫ 1
4

θ
τdF (τ)− (1− 4θ)E[θ]

θ(1− F (θ))

}
= α.

To obtain an explicit upper bound on ω̄, we observe that a sufficient condition is that

W (θ) ≡ −βωθf(θ) + αB(θ)f(θ)

is decreasing. The derivative of this expression is

(2α− βω)f(θ) + (α− βω)θf ′(θ) ≤ (2α− βω)f(θ),

which is negative if βω ≥ 2α (where we used the fact that f ′ ≥ 0). This means that

ω̄ ≤ (4/3)α + (2/3).

Summarizing, if the lower bound of the support of ω lies above (4/3)α+ (2/3), whatever

the outside option is, the principal will either offer a cash payment to buy out the rights

(when this is allowed), or offer a constant probability y of allocating the monopoly right

for free. In both cases, the principal will make sure that the highest type is getting exactly
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her outside option. This implies that the designer’s problem reduces to choosing an outside

option for the highest type that is just high enough to induce investment. In case monetary

payments are allowed and investment is observable, the designer can achieve that via a cash

payment; in case monetary payments are not allowed and the investment is not observable,

the designer can achieve that by choosing a probability y of granting the monopoly right.

B.4 Calculations for Subsection 4.4

In this application, we have negative types: θ ≡ −k. Moreover, Vω(θ) = ω, V ?
ω (θ) = ω,

α = 1, and α? ≤ 1.

By Proposition 1, we have the thresholds

ω + θ?ω +
F (θ?ω)

f(θ?ω)
= 0 and ω + θ

?

ω −
1− F (θ

?

ω)

f(θ
?

ω)
= 0,

assuming they fall within [θ, θ̄] (otherwise, they are equal to one of the bounds). Following

the derivation in Appendix A.8, we have

Φ′ω(θ) + α?Ψ′ω(θ) =


0 θ < θ?ω,

− [ω + α?θ] f(θ) θ ∈ (θ?ω, θ
?

ω),

0 θ > θ
?

ω.

Rewriting the first-order condition from Appendix A.8 yields that a necessary condition for

optimality is

θ? =
E [ω|ω ∈ [ωθ? , ω̄θ? ]]

α?
,

with θ? = θ̄ if the right-hand side expression is above θ̄, and θ? = θ if the right-hand side

expression is below θ, where the bounds in the condition ω ∈ [ωθ? , ω̄θ? ] are defined implicitly

by θ? ∈ [θ?ω, θ
?

ω].

B.5 Calculations for Subsection 4.5

The conclusions follow directly from Theorem 1.
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