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Abstract

Membership design involves allocating an economic good whose value to any
individual depends on who else receives it. We introduce a framework for optimal
membership design by combining an otherwise standard mechanism-design model
with allocative externalities that depend flexibly on agents’ observable and unob-
servable characteristics. Our main technical result characterizes how the optimal
mechanism depends on the pattern of externalities. Specifically, we show how the
number of distinct membership tiers—differing in prices and potentially involving
rationing—is increasing in the complexity of the externalities. This insight may
help explain a number of mechanisms used in practice to sell membership goods,
including musical artists charging below-market-clearing prices for concert tickets,
heterogeneous pricing tiers for access to digital communities, the use of vesting
and free allocation in the distribution of network tokens, and certain admission
procedures used by colleges concerned about the diversity of the student body.
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1 Introduction

Many allocation problems can be recast as designing membership. The defining feature
of membership as an economic good is that its value for any agent depends on who else
is a member. For example, a ticket to a concert gives the owner the right to attend it;
but the value of attending may depend on the concert atmosphere, which is influenced
by the composition of the audience. Non-fungible token (NFT) projects allocate digital
assets to consumers; but it is often the community of other owners of a given NFT
collection that creates demand for the asset in the first place.1 Finally, designing rules
for admission to a school or an academic program such as executive education requires
understanding how prospective students’ values for enrolling depend on peer effects and
opportunities for networking.

In short, membership goods differ from conventional goods in that they feature po-
tentially complex externalities between the owners. In this paper, we provide a simple
framework for studying optimal design of membership that allows for a rich pattern of
externalities that can depend on both observable and unobservable agent characteristics.
We show how viewing a diverse set of allocation problems as membership design leads
to a unifying explanation for a number of real-life selling practices such as lotteries and
group-specific price discounts. Finally, our framework can be used to guide the design of
a platform or project that must account for the interactions between various members
to correctly price access.

Our model combines a standard mechanism-design framework—featuring a large
population of agents, one-dimensional private information, quasi-linear utilities, and
labels capturing observable information—with allocative externalities. We introduce
allocative externalities by assuming that the value of membership for an agent is obtained
as a product of her type with a term determined by the distribution of other members’
characteristics. The main simplifying assumption is that—conditional on observables—
agents care about the average characteristics of other members. The designer is assumed
to know the distribution of agent characteristics and chooses an individually-rational and
incentive-compatible mechanism to maximize an objective such as revenue or welfare.

We show that optimal membership in our setting can be implemented by a mechanism
with label-dependent tiered pricing. Dependence on labels means that different groups—
sets of agents sharing the same observable characteristics—could face different price
schedules, allowing incentives to join to vary with group identity and the associated
externalities. Tiered pricing means that agents within a group are offered a menu of
different levels of access at different prices. Level of access could simply be the probability
of becoming a member but—depending on the application—it could also capture factors
such as a higher quality of service or additional membership privileges. The key idea
behind tiered pricing in our framework is that it allows the designer to achieve a more
valuable composition of members by relying on self-selection to screen for unobserved

1Examples include NFT projects such as Bored Ape Yacht Club, Pudgy Penguins, SupDucks, Tycoon
Tigers, and 1337 Skulls, all of which have actively fostered community engagement and co-creation
around their tokens (see Kaczynski and Kominers (2024)).
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characteristics associated with membership externalities.
Our main technical result connects the number of distinct membership tiers offered by

the optimal mechanism to the complexity of the structure of externalities. We measure
the complexity of externalities exerted by a group as the dimension of the image of an
operator relating an allocation rule for that group to the value generated for each of the
other groups. In particular, a single price is optimal for a group that does not exert any
allocative externalities. When a group exerts a uniform externality (i.e., its magnitude
is the same for all agents), two prices may be needed for that group: a high price with
the highest level of access, and a discounted price with lower level of access. Finally,
when agents’ externalities within a given group vary arbitrarily with their types and
have heterogeneous effects on other groups, the number of membership tiers required for
optimality may be as high as the number of groups plus one.

The main contribution of our paper is to argue that membership design provides a
unifying lens through which a diverse set of allocation problems can be analyzed. First,
we explore the problem faced by an artist or sports club selling tickets to their events.
Without concerns about the composition of the audience, it is optimal to charge a single
monopoly price. However, if the atmosphere at the event depends on the presence of
the most dedicated enthusiasts (e.g., screaming teenagers at a Taylor Swift concert, or
diehard fans cheering for their team at a football game), then our framework indicates
that it may become optimal to sell at a below-market-clearing price with rationing. We
show that using lotteries is optimal when the fans that contribute the most to the atmo-
sphere cannot be easily identified based on observables and have relatively low ability
to pay. This may help explain why pop stars like Taylor Swift and sports associa-
tions like UEFA sometimes sell tickets to their events at below-market-clearing prices
via lotteries—appearing to leave money on the table. Our explanation suggests that
such sales mechanisms may actually be revenue-maximizing, even absent any dynamic
or reputational considerations.

Second, we consider the primary sales process of membership in a digital community,
such as a non-fungible token (NFT) collection. NFTs are digital ownership records that
are often associated to imagery or other media; they are often intentionally sold at low
prices or given away for free, while later reaching resale prices in the hundreds or even
thousands of dollars. We provide an explanation for this phenomenon by recognizing
that NFTs often serve as gateways to communities whose value is determined by who
is a member. The resulting externality implies that different groups of agents should
be charged different prices, depending on their desirability as potential members. We
show how the pattern of across-group externalities determines whether particular groups
behave as substitutes or complements when determining optimal participation. Addi-
tionally, this analysis lets us recover some of the classical insights about pricing access
to traditional buyer–seller platforms.

Third, we analyze the optimal design of a token-based network, focusing on what
determines the value of the network. We examine the tension between securing participa-
tion by developers who improve the network’s functionalities and limiting the congestion
externality generated by other users. We show that when the tokens can be eventually
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traded in a secondary market, getting the network off the ground may require allocating
tokens at prices significantly below the expected resale price—sometimes, taking the
form of what are called “free mints”—but with vesting.

Finally, we consider the problem faced by a college designing its admissions procedure
in the face of diversity considerations. We show that affirmative action (conditioning on
the applicants’ background characteristics) allows the college to implement the optimal
student body composition via a system of merit and diversity scholarships. However, if
affirmative action is not allowed, it may become optimal to bundle admission and funding
decisions by forcing students to choose between non-funded traditional admission versus
admission that is partially- or fully-funded but rationed. In this way, the college relies
on correlations between willingness to pay and background characteristics to implement
the desired student body composition through self-selection.

Beyond the ability to explain certain real-life phenomena, our model provides a
simple but flexible conceptual framework for thinking about optimal design and policy
in contexts in which externalities due to membership structure play an important role.

1.1 Related literature

Our paper is most closely related to a sizable literature within mechanism design study-
ing allocative externalities. Broadly, two classes of models have been considered. The
first class of models, introduced by Jehiel, Moldovanu, and Stacchetti (1996, 1999),
studies allocation to a finite number of agents exerting fully flexible individual-specific
externalities that are typically assumed to be unobserved.2 Such a model is challenging
to analyze and often leads to negative results (see, e.g., Jehiel and Moldovanu (2001)).
A more recent class of models—studied by Kang (2020), Pai and Strack (2022), Ostrizek
and Sartori (2023), and Akbarpour r○ Budish r○ Dworczak r○ Kominers (2024)—focuses
instead on a large population of agents contributing (in a potentially heterogeneous
way) to a single aggregate externality (which often enters the designer’s objective func-
tion additively). Our framework sits in between these two approaches: Relative to the
first class of models, we impose the simplifying assumption that externalities depend
only on compositional effects (in a model with a continuum of agents). Relative to the
second class of models, we allow for a much richer pattern of externalities that depend
on group identity and interact with individuals’ willingness to pay. The resulting set of
applications also differs: the first class of models is ideal for studying a small number of
strategically interacting agents (e.g., the problem of selling nuclear weapons discussed
by Jehiel et al. (1996)); the second class of models is ideal for studying problems such as
regulating the sale of goods that generate externalities affecting all agents (e.g., goods
whose consumption contributes to climate change, as the settings of Kang (2020), and
Pai and Strack (2022)); and our framework is geared towards settings in which agents
care about the characteristics of other agents receiving the allocation, such as in the

2See also Segal (1999) who introduced a general model of contracting with externalities without
asymmetric information, and Bernstein and Winter (2012) for an application of this framework to a
problem similar to membership design.
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context of selling tickets to events, determining access to digital communities, building
multi-sided platforms, or designing policies with compositional effects such as school
admission.

Allocative externalities similar to the ones we study appear in the classical literature
on two-sided buyer–seller platforms (see Jullien, Pavan, and Rysman (2021) for a com-
prehensive survey). Most papers in that literature do not adopt a mechanism-design
approach,3 and hence do not study the use of rationing (or lotteries) that play a key role
in our results.

We comment further on connections to various applied literatures (including the lit-
eratures on ticket pricing, fungible and non-fungible tokens, and matching with diversity
considerations) in the context of our applications in Section 4.

2 Model

A designer allocates access to a platform or community to a unit mass of agents (poten-
tial members). Each agent is characterized by a private type θ and a publicly observable
label i. An agent’s level of access to the platform is described by a variable x ∈ [0, 1],
and the agent can be charged a transfer t ∈ R. Our baseline interpretation of x is that it
represents the probability of becoming a member but it could also reflect the quality of
access to the platform (e.g., which features are available to the agent). To focus on the
novel aspects of our framework, we assume that the designer does not incur marginal
costs for allowing agents’ access and does not face an explicit capacity constraint—an
assumption that is most appropriate for the design of digital communities.4

Conditional on label i, agents’ types have a distribution with a cumulative distribu-
tion function Fi and a continuous density fi fully supported on an interval [θi, θ̄i]. There
are finitely many labels i ∈ I, and each group i has mass µi > 0, with

∑
i∈I µi = 1.

The utility an agent receives from access depends on that agent’s type and the
composition of other agents using the platform. Specifically, an agent with label i and
type θ has willingness to pay for membership equal to

θvi,

where vi is common to all agents in group i. The simplifying assumption here is that het-
erogeneity in willingness to pay can be decomposed into a vertical component captured
by the type θ and a horizontal component that only depends on the label i. The value
vi is determined by the expected externalities exerted by all members of the community.
Conceptually, each member has some unobserved “true” externality on agents in group i.
Because an externality an agent exerts on others does not affect that agent’s payoff, it
cannot be elicited by any incentive-compatible mechanism.5 However, the designer can

3Some notable exceptions include (but are not limited to) the work of Damiano and Li (2007) and
Gomes and Pavan (2021); however, these papers focus on the optimal matching between the two sides
of the market.

4These features could be added to the model without changing our results in any substantial way.
5Jehiel et al. (1996) provide a formal statement and proof of this observation.
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form the best possible “forecast” of the true externality based on characteristics that are
observable (the label i) or elicitable by a mechanism with transfers (the type θ). Thus,
we let

ej→i(θ)

denote the expected externality exerted by an agent with label j and type θ onto any
agent in group i. The function ej→i(θ) is assumed to be continuous and bounded in θ
for all i, j ∈ I. Finally, if xj(θ) denotes the probability of access for an agent (j, θ), we
assume that

vi ≡ νi

(∑
j∈I

∫
ej→i(θ)xj(θ)µjdFj(θ)

)
,

where, for all i ∈ I, νi : R → R is upper semi-continuous, non-negative, and non-
decreasing.6 We put no sign restrictions on ej→i(θ), i.e., agents can exert both positive
and negative externalities on one another, depending on group identity and type. We
assume utilities are quasi-linear in the monetary transfer and linear in probability of
access: Allocation (x, t) gives an (i, θ) agent utility

θvix− t.

We assume that the designer maximizes an objective function—such as revenue or
agents’ welfare—over all direct-revelation mechanisms, subject to individual-rationality
and incentive-compatibility constraints.7 Following the standard approach in the mecha-
nism design literature (Myerson (1981)), we can characterize feasible mechanisms through
the envelope formula for transfers and monotonicity conditions on the allocation rules,
giving rise to the following optimization problem for the designer:

max
x1,..., x|I|

{∑
i∈I

∫
νi

(∑
j∈I

∫
ej→i(θ)xj(θ)µjdFj(θ)

)
Wi(θ)xi(θ)µidFi(θ)

}
(1)

s.t. xi(θ) is non-decreasing in θ, for all i ∈ I,

where Wi : [θi, θ̄i] → R is a continuous function capturing the designer’s objective.8 For
example, setting Wi(θ) = Ji(θ) := θ − (1 − Fi(θ))/fi(θ) (the virtual surplus function)
corresponds to maximizing revenue; while setting Wi(θ) = hi(θ) := (1−Fi(θ))/fi(θ) (the
inverse hazard rate) corresponds to maximizing agents’ total surplus (assuming that the
lowest type within each group receives zero utility).

6Our results extend with minimal modifications to the case when values can become negative, as
long as the designer can pay the agents for joining the platform; however, covering this more general
case is notationally cumbersome, so we restrict attention to non-negative values.

7Restricting attention to direct-revelation mechanisms in our framework is without loss of generality
because the revelation principle applies.

8Strictly speaking, incentive compatibility does not impose any restrictions on the allocation rule xi

in the degenerate case vi = 0; we nevertheless assume that allocation rules are always non-decreasing
so that the problem is economically and mathematically well-behaved.
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The presence of externalities significantly complicates the designer’s problem. As-
signing access xi(θ) to an agent allows the designer to realize the payoff Wi(θ) from
allocating to that agent. At the same time, however, it affects the composition of agents
on the platform and thus potentially changes the values that all other agents have for
joining. Mathematically, the problem is non-linear in the allocation rule. We purpose-
fully constructed our framework to have a very simple optimal mechanisms when there
are no externalities. Indeed, if νi(·) is constant for all i ∈ I, it is well-known that, regard-
less of the properties of the function Wi(θ), the designer can achieve full optimality by
simply posting a price pi for allocation x = 1 to each group i. Thus, tiered membership
and lotteries can only arise in our setting due to allocative externalities.9

3 Results

Define a linear operator Ei from the set of (non-decreasing) allocation rules on supp(Fi)
to R|I| by

Ei
j(xi) :=

∫
ei→j(θ)xi(θ)dFi(θ), j = 1, . . . , |I|.

Next, let the dimension of the operator Ei be

dim(Ei) := dim(Im(Ei)).

That is, the dimension of the operator Ei is the dimension of its image as a set in the
Euclidean space R|I|.10 For a simple example, suppose that agents in group i do not
exert any externalities on agents in any group j: ei→j(θ) = 0 for all j and θ. Then, Ei

has dimension 0. Next, suppose that externalities do not depend on an agent’s type:
ei→j(θ) = ej, for all j and θ. Then, Ei has dimension 1. When ei→j(θ) = e1j θ + e0j , for
all j and θ, Ei has dimension 2. The dimension of Ei is bounded above by the number
of groups |I|.

Returning to our interpretation of ei→j(θ) as the expected externality that an agent
with type θ in group i exerts on agents in group j, we can intuitively relate the dimension
of Ei to the sophistication of the econometric model that the designer could be using
in practice to estimate the dependence of the externalities on labels and types (e.g.,
after observing true externalities for a sample). For example, a linear regression of
externalities on type θ within each group would result in the estimated operator Ei

having dimension 2 (unless the regression coefficient would turn out to be zero, in which
case the dimension would be 1). Fitting a k−degree polynomial would make Ei have
dimension k + 1, while a fully non-parametric regression would most likely result in an
|I|−dimensional Ei.

9Of course, tiered pricing also arises if agent’s values or seller’s costs are non-linear in the allocation x,
as in the celebrated product-quality model of Mussa and Rosen (1978). We turned off these forces in
order to focus on the role of externalities.

10The dimension of a set in a Euclidean space is the number of basis vectors generating the smallest
affine subspace containing that set.
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We will show that the dimension of Ei is closely connected to how many prices the
optimal mechanism may be required to use. To that end, we define a class of mechanisms
that we refer to as k-tiered pricing mechanisms:

Definition 1. An allocation rule xi(θ) for group i is a k-tiered pricing mechanism if
xi(θ) takes on at most k non-zero values on supp(Fi).

A k-tiered pricing mechanism can be implemented by offering agents in a given group
at most k different prices for k different levels of access. For example, a 1-tiered pricing
mechanism could be a posted-price mechanism, which we define as offering a single price
for full access (x = 1). But a 1-tiered pricing mechanism could also allow agents to access
the platform for free (or at a positive price) with some interior probability. Similarly, a
2-tiered pricing mechanism could allow agents to choose between a low price that offers
a low level of access and a higher price that offers full access.

Our main technical result establishes that the optimal mechanism is a k-tiered pricing
mechanism for every group, where k can be related to the complexity of the externalities
as measured by the dimension of the operator Ei.

Theorem 1. It is optimal to use a ki-tiered pricing mechanism for each group i, where
ki = dim(Ei) + 1, and the top tier provides full access (x = 1). Moreover, the optimal
mechanism uses at most |I|+K prices in total, where K = dim(

∑
i∈I µiE

i) + 1.

The proof of Theorem 1 can be found in Appendix A. The intuition for the theorem
is simple: While problem (1) faced by the designer is non-linear in the allocation rule
xi for group i, it would become linear if we fixed (and treated as exogenous) the values
vj for all groups. Moreover, fixing the value vj while letting xi(θ) vary corresponds
to imposing a single linear constraint on xi(θ) since, by assumption, the value vj only
depends on the average externality exerted by members from group i. As a result,
the auxiliary problem in which we only optimize over the allocation rule xi(θ) for a
single group subject to inducing the same target values vj for all groups j is a linear
problem with |I| linear constraints. Furthermore, the dimension of the operator Ei

determines whether some of these constraints are co-linear and hence can be dropped.
Once we represent the auxiliary problem as a linear program with dim(Ei) active linear
constraints, an application of an extension of the Carathéodory’s theorem yields that
the optimal mechanism is a ki-tiered pricing mechanism with ki = dim(Ei) + 1 prices.
Moreover, the top price can always be assumed to be associated with full access.11

The second part of Theorem 1 imposes an upper bound on the total number of prices
used by an optimal mechanism. The reason why the total bound is typically much lower
than the sum of bounds for all groups i is that our proof strategy of looking at a
single group at a time leads to “multiple counting” of the constraints in the auxiliary
problem. When all allocation rules can be flexibly chosen, achieving a target value
vj for group j does not require fixing separately the average contributions from each

11Except for the case ki = 1, the formulation of Theorem 1 does not preclude the possibility that all
agents choose an interior level of access; this is because the price of full access can be set to be so high
that no one chooses it. In Subsection 4.1, we show that this possibility may indeed arise at optimum.
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group i; rather, it requires fixing the average contribution across all groups, which is a
single linear constraint. Thus, we can find an optimal mechanism that charges at most
K = dim(

∑
i∈I µiE

i) + 1 additional prices (on top of charging a price to each group).
Theorem 1 establishes our main general result which is that the number of prices

offered by an optimal mechanism depends on the complexity of externalities. In the
remainder of this section, we explore a few special cases of that insight.

First, we confirm an earlier statement that a posted price would be optimal in the
absence of externalities.

Corollary 1. It is optimal to sell to group i at a posted price if group i does not exert
externalities on any other group j, i.e., ei→j(θ) = 0 for all j ∈ I and θ.

The absence of externalities exerted by agents from a certain group can be seen as
an extreme case; next, we offer a more permissive condition under which the optimal
mechanism still sells access at a posted price.

Proposition 1. Suppose that the designer’s objective function Wi(θ) is strictly increas-

ing in θ, and that
∫ θ̄j
θ

Wj(τ)dFj(τ) ≥ 0, for all θ and j ∈ I.12 Then, it is optimal to sell
to group i at a posted price if the externality that group i exerts on any group j, i.e.,
ei→j(θ), is non-decreasing in θ.

Under the conditions of Proposition 1, there is an alignment between the designer’s
objective (for a fixed profile of values vj) and how the values vj vary with the allocation—
both considerations point towards optimality of a threshold allocation rule that grants
access to all agents with a sufficiently high type. Proposition 1 thus implies that the
additional prices predicted by Theorem 1 will only be needed when there is a conflict
between the designer’s objective for fixed vj’s and the desire to maximize vj’s over the
composition of members.

Finally, we state a simple corollary of Theorem 1 identifying two cases in which two
prices—a high price with full access and a low price with lower level of access—are
sufficient for achieving optimality.

Corollary 2. It is optimal to use a 2-tiered pricing mechanism in group i (with the
higher price providing full access) if either (1) there is only one group, or (2) group i
exerts a uniform externality: ei→j(θ) = ei(θ) for all j ∈ I.

12The last assumption always holds for revenue and surplus maximization when types are non-
negative, and could be weakened to requiring that the inequality holds at the optimal mechanism.
Even that weaker assumption could fail if the designer wanted to allocate membership to some group
j to generate positive externalities for other groups at the cost of achieving a negative payoff from
group j; in such a case, the designer’s objective would become decreasing in the value vj .
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4 Applications

4.1 Ticket Sales

We apply our framework to the problem of an artist selling concert tickets or a sports
team selling tickets to the game, aiming to maximize revenue. At such events, the at-
mosphere is often a crucial part of the experience. For example, screaming teenagers are
somewhat essential for the atmosphere at a Taylor Swift concert, while the atmosphere
at a football match depends on the most dedicated fans cheering for their teams.

We assume that there is a single group of agents (and hence drop the subscript i
throughout), reflecting an assumption that the seller cannot easily identify the most
enthusiastic fans based on observables.13 It is then natural to assume that the lower
bound of the support of types θ is zero. To model how the atmosphere at an event is
generated, we use the externalities that agents exert on others. We assume that the
value of externalities is captured by

v = v0 +

∫ θ

θ

e(θ)x(θ)dF (θ).

We do not explicitly model capacity constraints, such as limited seating availability, but
assume that e(θ) contains a congestion externality that serves as a proxy for capacity
considerations. Even though our analysis is valid for a general function e(θ), we provide
the following simple way of deriving e(θ) from more primitive elements. Suppose that
agents are either high-value or low-value audience members (e.g., high-value members
cheer for teams at a football game while low-value members sit quietly), and this is not
observed. All members generate a congestion externality of −1. However, high-value
members additionally generate a positive externality ∆ > 0. The high-value members’
type is drawn from FH(θ), while the low-value members’ type is drawn from FL(θ), with
respective densities fH(θ) and fL(θ). A fraction µ of all agents are high-value. Then,
by a simple application of Bayes’ rule, we have

v = v0 +

∫ θ

θ

(
µfH(θ)

µfH(θ) + (1− µ)fL(θ)
∆− 1

)
︸ ︷︷ ︸

e(θ)

x(θ)dF (θ).

Intuitively, the seller is trying to infer the unobserved value of a fan by conditioning on
her type. As a result, the shape of the externality e(θ) depends on the joint distribution
of the unobserved value and willingness to pay.

To simplify exposition, we assume that the virtual surplus function J (θ) is strictly
increasing, and that e(θ) < 0, that is, the negative congestion externality dominates the
positive externality even for the most dedicated fans (corresponding to ∆ < 1 in the

13Our results go through qualitatively if the seller can observe an imperfect signal, as long as that
signal is not very precise. Ticketmaster uses the “Verified Fan” program to sell some concert tickets but
the “verification” part is mostly making sure that the potential buyer is a human being (not a bot).
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above example). The case when some members have a positive net contribution would
make our key insights easier to obtain (we comment on this further at the end of the
section).

First, relying on Proposition 1, we show the following result:14

Result 1. A posted price is optimal when e(θ) is non-decreasing.

When the externality e(θ) is increasing, selecting the most valuable audience mem-
bers is aligned with the direct revenue motive of the seller. In our example, the external-
ity is increasing if high-value members have a higher willingness to pay than low-value
members (in the monotone likelihood ratio order). This scenario is empirically plausible
for cases such as selling tickets to a networking event, where it is natural to expect that
higher willingness-to-pay individuals are also more likely to hold professional positions
that make them attractive to connect with.

In general, applying Corollary 2 allows us to restrict attention to 2-tiered pricing
mechanisms. The seller is thus maximizing(

v0 + x0

∫ θ1

θ0

e(θ)dF (θ) +

∫ θ̄

θ1

e(θ)dF (θ)

)
︸ ︷︷ ︸

V

(
x0

∫ θ1

θ0

J (θ)dF (θ) +

∫ θ̄

θ1

J (θ)dF (θ)

)
︸ ︷︷ ︸

R

(2)

over x0 ∈ [0, 1] and θ0, θ1 ∈ [θ, θ̄], where V represents the base value of the event given
the audience composition, and R represents the normalized revenue from selling tickets.
Because we assumed that externalities e(θ) are negative, the term V is decreasing in the
allocation, while the term R is increasing in the allocation (for types for whom virtual
surplus is positive)—leading to a trade-off. Our next observation is that a single tier is
sufficient if that trade-off admits a certain monotone structure.

Result 2. If J (θ)/(−e(θ)) is strictly increasing, then it is optimal to offer a 1-tiered
pricing mechanism that allocates level of access x⋆

0 to all types above θ⋆0, where (x⋆
0, θ

⋆
0)

satisfy

J (θ⋆0)

−e(θ⋆0)
=

R

V
and x⋆

0 = min

1,
v0

2
∫ θ̄

θ⋆0
(−e(θ))dF (θ)

 ,

where R and V are functions of θ⋆0 and x⋆
0 as defined in (2) (with θ⋆1 = θ̄).

The ratio of virtual surplus to (the negative of) the externality, J (θ)/(−e(θ)), can
be seen as measuring the trade-off between extracting revenue and preserving the value
of the event: Ideally, the seller wants to target agents with high virtual surplus J (θ)
and low (in magnitude) negative externality e(θ). Under the monotoniticy assumption
made in Result 2, the trade-off is always resolved in favor of allocating to all agents
with a type above a certain threshold θ⋆0, pinned down by the first-order condition.
Unlike in Result 1, however, it may be optimal to ration access to the event, especially

14The calculations underlying the results presented in this section can be found in Appendix A.3.
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when the negative externalities are substantial.15 Intuitively, a reduction in congestion
can be achieved either through random rationing or through a price increase. These
two tools, however, are not perfect substitutes: While an increase in price excludes
the marginal attendee, rationing excludes the average attendee. Therefore, the optimal
combination of price and rationing balances out the ratio of revenue to externalities of
the marginal attendee (excluded by the price) against the ratio of revenue to externalities
of the average attendee (excluded by the lottery). Regulating access via lotteries is thus
useful precisely when average and marginal characteristics of potential attendees are not
aligned: for example, when some lower-willingness-to-pay individuals exert a smaller
negative externality than some higher-willingness-to-pay individuals.

The most interesting case arises when the ratio J (θ)/(−e(θ)) is non-monotone. This
can happen when—in the language of our example—the probability of being a high-value
member is strongly negatively correlated with willingness to pay in some range of the
distribution. For example, blue collar workers who often make for the most dedicated
fans of local soccer clubs may have lower ability to pay than wealthy tourists but they
are essential to creating the atmosphere at the game. Mathematically, if a majority of
high-value members have willingness to pay bounded above by a relatively low number,
there might be a sharp drop in e(θ) around that threshold. This could in turn introduce
a non-monotonicity in J (θ)/(−e(θ)): The ratio could be large for small θ due to low
(−e(θ)) and large for high θ due to high J (θ), but relatively low for intermediate θ. The
following result describes the optimal mechanism in this case:

Result 3. Suppose that θ⋆1 maximizes (2) when x0 is constrained to be zero. It is then
profitable to introduce a second tier with rationing if there exits θ0 < θ⋆1 such that

J (θ⋆1)

−e(θ⋆1)
<

∫ θ⋆1
θ0

J (θ)dF (θ)∫ θ⋆1
θ0
(−e(θ))dF (θ)

. (3)

If such θ0 exists, then, in the optimal mechanism, assuming an interior solution,

J (θ⋆0)

−e(θ⋆0)
=

J (θ⋆1)

−e(θ⋆1)
=

R

V
,

where R and V are functions of θ⋆0, θ
⋆
1, and x⋆

0 as defined in (2).

Result 3 predicts that it may be optimal to offer two prices: a low price with rationing
and a high price with full access. Intuitively, the low-price option is designed to attract
agents who contribute to the atmosphere of the event but do not have a very high
willingness to pay.

To understand condition (3), recall that the seller is trying to target agents with a
high ratio of virtual surplus to (the negative of) the externality. If the seller is con-
strained to choosing a single price, she will choose a cutoff type θ⋆1 at which the ratio

15Note that a 1-tiered pricing mechanism with rationing is payoff-equivalent to a 2-tiered pricing
mechanism in which the top tier has full access but is degenerate (the price is equal to the willingness
to pay of the highest type θ̄)—this is why Result 2 is consistent with Theorem 1.

12



J (θ⋆1)/(−e(θ⋆1)) equates R/V , as in Result 2. Moreover, the second-order condition im-
plies that the ratio must be locally increasing around θ⋆1. However, if J (θ)/(−e(θ)) is
non-monotone, there may exist θ0 such that agents with types between θ0 and θ⋆1 achieve
an even higher ratio on average, on the margin (i.e., when they enter with small proba-
bility). Thus, the seller finds it optimal to let these types in—with appropriate rationing
to limit the congestion externality. At the optimal θ⋆0, the ratio of virtual surplus to (the
negative of) the externality must be the same at θ⋆0 and θ⋆1, implying that the seller does
not want to further adjust the composition of the rationed and full-access groups.

Because we assumed that externalities are always negative, both cutoffs θ⋆0 and θ⋆1
must belong to the region in which virtual surplus is positive. Suppose, instead, that
some low-willingness-to-pay agents have a positive net externality—in the context of
our example, this corresponds to assuming that ∆ > 1 and there is negative correlation
between being a high-value member and willingness to pay. Then, condition (3) could
be satisfied at θ0 with J (θ0) < 0 and e(θ0) > 0. That is, the seller could decide to
use a lottery to allocate to agents who contribute negatively to profits as long as they
contribute positively to the willingness to pay of agents selecting the full-access option.

Overall, Results 2 and 3 predict that performers selling tickets to their events may
find it optimal to charge below-market-clearing prices and use lotteries to ration. The
revenue-maximizing mechanism may take the form of a single lottery, or a combination
of a lottery with a high-price full-access option. In the latter case, the lottery allows
the seller to strike a better balance between improving the atmosphere at the event (by
securing participation of high-value members) and extracting more revenue from agents
with high willingness to pay.

The puzzle of why performers often sell tickets to their events at below-market-
clearing prices has attracted considerable attention in economics.16 Becker (1991) put
forward an explanation by arguing that willingness to pay for goods consumed in public
(such as going to a concert) may directly depend on demand of others (e.g., via image
concerns); Mortimer, Nosko, and Sorensen (2012) observed that artists may be motivated
by generating demand for complementary products (e.g., recorded music); Che, Gale,
and Kim (2013) showed that rationing arises when agents are budget-constrained and
the seller cares about their utility;17 and Loertscher and Muir (2022) demonstrated
that lotteries may arise in a standard monopolist’s problem with capacity constraints
whenever ironing would be used in the canonical Myerson (1981) model. To the best
of our knowledge, our explanation in terms of allocative externalities and associated
concerns related to the composition of the audience is new to this literature.18

16Budish and Bhave (2023) provide a discussion and an empirical application (see also, e.g., Baliga
and Ely (May 8, 2013); Arslan, Tereyağoğlu, and Yılmaz (2023)).

17Rationing may also emerge if agents are not budget-constrained but the seller puts different welfare
weights on different agents, as in the frameworks of Dworczak r○ Kominers r○ Akbarpour (2021) and
Akbarpour r○ Dworczak r○ Kominers (forthcoming).

18That said, the idea that ticket pricing impacts the composition of attendees is well recognized in
the industry; for example, a US Government Accountability Office (2018, p. 8) report on ticket pricing
and resale listed the following among the reasons for ticket underpricing (emphasis in original):

“Audience mix. Some artists prefer to have the most enthusiastic fans at their shows,
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4.2 Digital Communities

Next, we apply our model to the problem of designing digital communities where mem-
bership is gated by non-fungible tokens (NFTs). We assume that there is a set I of
groups of potential members, which one might think of as content creators, advertisers,
marquee members (e.g., celebrities), the general public, and so forth. We assume that,
for each group, types θ are distributed according to a cumulative distribution function
Fi(θ) = 1 − (1 − θ)(1−βi)/βi on the interval [0, 1], for βi ∈ (0, 1). This family of distri-
butions is conveniently parameterized so that βi is the optimal monopoly price in the
model without externalities (i.e., when vi ≡ 1). To focus on across-group interactions,
we assume that externalities are constant in agent’s type: ei→j(θ) = ei→j, for all i, j ∈ I.
Furthermore, we assume that the designer maximizes revenue, and that

vi = max

{
0, v0i +

∑
j∈I

∫ θ̄j

θj

ej→i xj(θ)µjdFj(θ)

}
,

where v0i ∈ R is the base value of access (which could be zero).
By Proposition 1, the optimal mechanism within each group is a posted price. As-

suming an interior solution, so that first-order conditions are valid, we can derive the
following formula for the optimal posted prices pi:

pi = βivi − (1− βi)
∑
j∈I

ei→jµjRj, (4)

where Rj :=
pj
vj

(
1− Fj(

pj
vj
)
)
is the normalized revenue generated from selling to group j.

That is, holding fixed the cutoff type θj := pj/vj buying at price pj, Rj would be the
revenue raised by selling to types above θj if vj ≡ 1. The pricing formula (4) quantifies the
trade-off between two motives of the designer setting the optimal price pi for group i:
revenue-extraction and value-creation. On the one hand, fixing vi, the designer can
extract the most revenue from group i by posting the monopoly price βivi; on the
other hand, the price pi influences the values vj created for all groups j in proportion
to the externality ei→j. For further intuition, note that—in line with Corollary 1—if
group i does not exert any externalities, it is charged the monopoly price βivi. On the
other extreme, suppose group i exerts a positive externality on all other groups, i.e.,
ei→j > 0 for all j ∈ I, and either there is a group j that generates large revenue µjRj, or
willingness to pay in group i is low (i.e., βi is close to zero). Then, the optimal price pi
charged to group i can become zero (corresponding to a corner solution)—it is optimal
to allow group i to join the community for free.

For the remainder of this subsection, our goal is to understand the economic conse-
quences of formula (4) for the level of participation of various groups under the optimal

rather than just those able to pay the most, especially in the front rows, where tickets are
generally the most expensive.”
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mechanism. The level of participation by group i can be identified with the threshold
type θi that joins the community given the optimal price pi, as defined in the preceding
paragraph. We refer to participation of all types above βi as the level of participation
absent externalities. It is a classical insight of the two-sided platform literature (see,
e.g., Caillaud and Jullien (2001); Rochet and Tirole (2002); Eisenmann, Parker, and
Van Alstyne (2006)) that groups exerting a positive externality should be incentivized
to join via reduced prices or fees. However, it is not clear what the correct measure of the
externality is in a setting with multiple groups that potentially interact in complicated
ways. The following result identifies the key statistic in our framework.

Result 4. Let
ei→R :=

∑
j∈I

ei→jµjRj

denote the aggregate revenue externality exerted by group i. If group i exerts a positive
(negative) aggregate revenue externality, then its optimal level of participation is higher
(lower) than the optimal level of participation absent exernalities.

Therefore, whether group i should be subsidized or “taxed” relative to the optimal
monopoly price βivi depends exclusively on the weighted sum of normalized profits from
all groups, weighted by the externalities ei→j that group i exerts on each group j ∈ I.
Note that profits Rj are normalized, that is, they are not scaled by the value vj that
group j has for joining the community. Intuitively, what matters is how participation
by group i affects the value vj on the margin (which is captured by the term ei→j), not
the absolute value of vj.

In practice, there are groups that are particularly important for the success of a
digital community. For example, creators contribute to the community by providing
content for members to consume; celebrities may generate value to other members who
are interested in interacting with them; and particularly enthusiastic consumers (as
identified, e.g., through their prior engagement in similar communities) may serve as
brand evangelists who drive up the visibility and value of membership. As a result,
participation of certain groups may be incentivized through low or even zero prices. On
the other hand, groups like advertisers may be charged higher prices to reduce their level
of participation as a result of the negative externality that their presence exerts.

Result 4 shows that the optimal participation of group i is particularly sensitive to
externalities exerted on groups j with high normalized profits µjRj. However, because
equation (4) determines optimal participation via a complicated fixed-point problem, it is
unclear precisely how changes in participation by group j affect the optimal participation
by group i. To cast light on this question, we can perturb the threshold type θj that
joins the community from group j and ask how it affects the optimal threshold type θi
in group i, holding fixed the level of participation of all other groups. We say that the
participation of group i is a substitute for the participation of group j if a small upward
perturbation in the level of participation for group j leads to decreased participation
of group i; participation of group i is a complement to the participation of group j if
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a small upward perturbation of the level of participation for group j leads to increased
participation of group i.19

Result 5. The participation of group i is a substitute for the participation of group j if

ei→j · Jj(θj)−
1

vi
· ej→i · ei→R < 0, (5)

where the virtual surplus Jj(θj) := θj − (1− F (θj))/f(θj) has the opposite sign to ej→R.
The participation of group i is a complement to the participation of group j if the in-
equality sign in inequality (5) is reversed.

Intuitively, an exogenous increase in the participation of group j impacts the relative
importance of the revenue-extraction and value-creation channels for group i. There are
two effects of adding a new member from group j. The first effect—corresponding to the
first term in inequality (5)—is that an increase in participation of group j changes the
normalized revenue Rj that is raised from group j. Revenue raised from group j increases
if and only if the virtual surplus Jj(θj) at the initial threshold type θj is positive—that is,
when participation by group j is lower than it would be absent externalities. (In light of
Result 4, this is the case when group j exerts a negative aggregate revenue externality.)
If the normalized revenue Rj goes up, the designer cares more about the value-creation
motive through the externality that group i exerts on group j—thus, she wants to add
more members from group i if ei→j is positive (and vice versa if ei→j is negative). If
the normalized revenue Rj goes down (i.e., group j exerts a positive aggregate revenue
externality), these incentives are reversed. The second effect—corresponding to the
second term in inequality (5)—is that an increase in participation of group j changes
the value vi of group i from joining the community. The value is higher if and only if
group j exerts a positive externality, ej→i > 0. Suppose that vi indeed goes up. Then,
the designer cares more about the revenue-extraction motive when pricing access for
group i. Thus, she wants to add more members from group i if and only if membership
was restricted compared to the optimal level absent externalities (i.e., if group i exerts
a negative aggregate revenue externality); she wants to remove members if membership
was higher than the optimal level absent externalities. These incentives are reversed if
the value vi goes down when an additional agent in group j enters.

Suppose that both groups i and j exert a positive aggregate revenue externality and
positive externalities on one another. A casual intuition would suggest that participation
by these two groups should be complementary. As Result 5 shows, however, this is not
necessarily the case. When a new member from group j enters, the two forces work in
opposite directions. The intuitive force is that joining is now more valuable for agents in
group i, and the designer can thus benefit by increasing participation by group i (the first
term in expression (5) is positive). On the other hand, however, group j already had
excessive participation (compared to the benchmark without externalities) and hence

19Formally, we ask about the sign of the partial derivative of θi with respect to θj when θi is pinned
down by equation (4). See Appendix A.4 for the derivations.
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adding one more member j drives down the normalized profits from group j. This in
turn means that the designer now puts relatively more weight on revenue extracted from
group i than on how it affects the value for group j. Since participation by group i is
higher than would be optimal for revenue extraction, the designer has an incentive to
exclude members from group i. The net effect depends on which of these two forces is
stronger.

In addition to extending the classic intuitions about dynamics of multi-sided plat-
forms, our analysis is particularly relevant to the emergence of new online commu-
nity formats, such as those with membership gated by ownership of a given NFT (see,
e.g., Kaczynski and Kominers (November 10, 2021, 2024); Cassatt (2023); Kraski and
Shenkarow (2023)).20 Our framework provides practical advice for how NFT project
creators should conceptualize their primary sales. Our results also help explain the
emergence of some mechanisms used for NFT allocation in practice: In the context of
NFT communities built around emergent digital brands, it is common to manage pri-
mary sales through some mixture of an open public sale and a private sale for people
on an “allow list.” The allow-list sale is typically conducted at a lower price than the
public sale. And the allow list itself comprises prospective buyers who the founders be-
lieve are likely to be particularly value-generating for the community—often assessed as
a function of participation in similar communities, or through a survey or other costly
and informative signal of interest.21

4.3 Token-Based Networks

In this application, we investigate the optimal design of a blockchain project that allo-
cates tokens in the primary market to raise revenue and regulate access to the network.
We focus on conditions under which the token can have any value at all (as measured by
the price it achieves in the secondary market), the role of vesting in getting the network
off the ground, and optimal pricing.

We consider two groups of agents. First, there are potential developers, denoted D,
who might actively contribute to building or improving the network. Second, there are
agents who are part of the “general public,” denoted P , who may decide to hold the
token for speculative or investment purposes or use the network’s functionalities but
do not contribute to its development. We assume that agents belonging to the general
public exert a network congestion externality

eP (θ) = −1

which can be interpreted as occupying the network’s computational resources.22 The

20Our perspective on NFTs as gateways to a community of owners follows a common interpretation—
and associated business models—in the NFT industry, and is complementary to the Veblen-good view
of NFTs, explored in the work of Oh, Rosen, and Zhang (2023).

21See, e.g., Kominers and Roughgarden (September 10, 2022); Kominers and The 1337 Skulls Sers
(April 6, 2023).

22For example, congestion leads to increased transaction fees on the bitcoin blockchain (Huberman,
Leshno, and Moallemi (2021)) or increased gas prices on the Ethereum network.

17



developers potentially contribute to the network development, in addition to exerting a
congestion externality:

eD(θ) = −1 + e(θ),

where the dependence of e(θ) on θ reflects potential correlation between willingness to
pay and the likelihood of contributing. Finally, we interpret the value v as the resale
price of the token that will arise in the secondary market once it opens (hence, v is not
indexed by group label i). We assume that the value is given by

v = max

 ∑
i∈{D,P}

∫
ei(θ)xi(θ)µidFi(θ), 0

 .

Intuitively, the value of the token is a reflection of the network functionality—given by
the total expected non-congestion externalities of all developers who hold tokens—net
of the network congestion. Since only developers can provide positive externalities, it
is crucial to incentivize them to join. At the same time, giving the token to too many
agents undermines the value of the network through congestion—a network that is too
congested (relative to its functionalities) becomes useless and has no value.

We interpret θ as capturing an agent’s belief about the (unmodeled) long-term resale
value of the token. It is then natural to assume that the median of the unconditional
distribution of θ is 1. If we assume that tokens can be costlessly liquidated at v once
the secondary market opens, then agents with θ ≥ 1 are the ones who believe the token
will appreciate in value and hence decide to hold it. In contrast, agents with θ < 1 want
to sell as soon as the secondary market opens.

We assume that the designer is the network founder who controls the allocation of
tokens in the primary market (with total quantity normalized to 1). The founder thus
maximizes ∑

i∈{D,P}

∫
(vJi(θ)xi(θ) + v(1− xi(θ)))µidFi(θ),

under the assumption that the tokens kept by the founder are valued at v (and do
not contribute to the network congestion). The allocation rule xi(θ) represents holding
tokens, which is required for access to the network. In particular, only agents with
xi(θ) > 0 can contribute to network development.

Solution without vesting. Under our interpretation of θ as the agent’s optimism
about the future value of the network (relative to the resale price of the token), the
designer is constrained to allocation rules satisfying xi(θ) = 0 for θ < 1 (since agents
with θ < 1 will not hold tokens once the secondary market opens). We can then make
the following simple observation:

Result 6. The network token has a strictly positive resale price if and only if

∃θ⋆ ≥ 1 such that

∫ θ̄D

θ⋆
eD(θ)dFD(θ) > 0. (6)
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It is optimal to allocate tokens by posting a single price for the general public, and at
most two prices for developers (where there could be rationing at the lower price).

A strictly positive value of the network can be generated if there exists a price weakly
above the resale value with the property that—among the developers who decide to buy
and then hold the tokens—the average positive externality e(θ) exceeds the conges-
tion externality 1. In other words, the founder must attract the high-value developers
through self-selection based on optimism about the network value. We view Result 6
as a negative result. Compared to the general public, the beliefs of the well-informed
high-skill developers are more likely to be concentrated around 1. Moreover, developers
with unrealistically high expectations may not be the best contributors—e(θ) may be
decreasing in θ above θ = 1. At the same time, the founder cannot engage the poten-
tially valuable developers with θ < 1 because they would prefer to sell their tokens as
soon as the secondary market opens.

Solution with vesting. Next, we observe that if we allow for vesting (an allocation
of tokens with a temporary restriction on reselling them in the secondary market), then
the condition from Result 6 can be relaxed. We model vesting simply by allowing the
designer to choose any allocation rule, where xi(θ) > 0 for θ < 1 is now possible due to
vesting.

Result 7. With vesting, the network token has a strictly positive resale price if and
only if

∃θ⋆ ≥ 0 such that

∫ θ̄D

θ⋆
eD(θ)dFD(θ) > 0. (7)

It is optimal to sell tokens to the general public at a single price that strictly exceeds v
and to developers at at most two prices; if condition (6) fails but condition (7) holds,
then at least one of these prices is below v, involves vesting, and may involve rationing.

With vesting, the designer can access the potentially high-externality developers with
lower beliefs θ about the network value. This expands the set of parameters for which
the token can have a strictly positive resale price. In practice, such a mechanism may
take the form of promising token grants to developers who commit to building around
a new blockchain in advance of launch.

Rationing schemes do not play a role in determining whether the token can have
positive value—in conditions (6) and (7), it is enough to consider the effect of charging
different posted prices to developers. However, rationing may play an important role in
the revenue-maximizing mechanism. Rationing at a low price with vesting may allow the
designer to ensure sufficient participation by high-externality developers with relatively
low θ, without putting too much downward pressure on the price she charges for the
non-rationed option to more optimistic developers. Unlike in the ticket sales example
in Subsection 4.1, it may be optimal to have a rationing scheme with a price of zero for
developers, since the designer can still make money by selling to the general public (or
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by keeping the tokens and reselling them in the secondary market once it opens). In
practice, such mechanisms sometimes take the form of “free mints.” Free mints may be
optimal when e(θ) exceeds the congestion externality even for θ close to zero. Such a
case is plausible if the network founders believe that initially skeptical developers are
likely to engage with the network once they gain access to it.

In token-based networks where the goal is to create a decentralized software ecosystem—
such as with open source projects—our results suggest it makes sense to reserve a share
of the initial tokens for developers, and implement vesting schedules to incentivize ac-
tive participation. While our model is static, intuitively, vesting should be calibrated
so that token holders’ ability to sell kicks in after the ecosystem value has already been
well established.23 And indeed, in practice we often see token-based ecosystems im-
plementing vesting schedules for early participants for precisely this reason, and often
explicitly tying those schedules to project milestones. For example, Howell, Niessner,
and Yermack (2020) and Davydiuk, Gupta, and Rosen (2023) document that vesting
has been widely used in initial coin offerings; vesting has also been common for “layer-2”
blockchain ecosystems such as those of the Arbitrum DAO (accessed March 17, 2024)
and Optimism Collective (December 18, 2023). Singh (December 16, 2023) provides an
overview of mechanisms for token vesting used in practice.

4.4 College Admissions

Our final application is to designing admission policy in the context of a college or other
academic program in which students’ value for participating (and hence, their willingness
to pay) depends on the composition of the student body. Specifically, we assume that
students’ values for attending are higher when the incoming class is balanced across
various characteristics such as socioeconomic background, minority status, geography,
or field of interest.24

In this setting, on top of the unobserved heterogeneity in willingness to pay param-
eterized by the type θ, each (prospective) student has a label i = (b, t), where b ∈ B
captures diversity characteristics (that we refer to as “background”) and t ∈ T captures
observable measures of talent or ability (that we refer to as “test score”). We assume that
a student with characteristics (b, t) exerts an externality e(b, t) on all other students—for
example, students could value interacting with talented peers. Additionally, students

23For analysis of the dynamics of token-based networks see for example Bakos and Halaburda (2022),
Cong, Li, and Wang (2022), Sockin and Xiong (2023), and Reuter (2024).

24Our model of here complements the large market design literature on matching with diversity
considerations. The frameworks of Abdulkadiroğlu and Sönmez (2003), Abdulkadiroğlu (2005), Hafalir,
Yenmez, and Yildirim (2013), Echenique and Yenmez (2015), Wang, Jagadeesan, and Kominers (2019),
and Sönmez and Yenmez (2022), for example, provide different ways of designing matching mechanisms
to implement diversity objectives when the relevant dimensions of identity are fully observable and the
objectives can be stated in terms of target allocation or priority rules. By contrast, we take the potential
externalities from diverse membership as a primitive and ask how to design a mechanism that produces
the optimal selection on diversity status within a single school, in a setting with private information.
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are assumed to value diversity: For any b, let

sb =
∑
t∈T

µ(b,t)e(b, t)

∫
x(b,t)(θ)dF(b,t)(θ),

be the mass of admitted students with background b, weighted by their externality. Then,
a student’s willingness to pay for attending the college is θv, where v = ν(s1, . . . , s|B|)
satisfies the usual Inada conditions in each argument. These assumptions reflect the
idea that—everything else being equal—there is a higher marginal value for adding
a student from a background group that is underrepresented. For example, setting
ν(s1, . . . , s|B|) =

∏
b s

µb

b corresponds to assuming that the ideal composition of the
student body mimics the population shares µb of the respective groups.25

The designer (the college) maximizes a weighted sum of revenue (with weight β) and
student welfare: Wi(θ) = βJi(θ)+(1−β)hi(θ), where recall that hi(θ) = (1−Fi(θ))/fi(θ)
is the inverse hazard rate, which we assume is non-increasing.

The example is a special case of our baseline model except that the value v is now a
function of multiple arguments; in Appendix A.5, we explain how the proofs of Theorem 1
and Proposition 1 can be modified to cover this case.

When affirmative action is allowed. When the college is allowed to condition
admission decisions on all observable characteristics, we obtain the following result as a
corollary of Proposition 1.

Result 8. When admission decisions can explicitly condition on background character-
istics, and β ≥ 1/2, it is optimal to use a posted-price mechanism for every group i, with
prices varying across the labels i.

According to Result 8, the optimal admission policy is relatively simple: Each student
faces a price for admission that depends on both the measure of their talent t and their
background b. This mechanism could be implemented through a constant tuition and a
combination of merit and diversity scholarships, along with prohibitively high prices for
candidates with low ability t.

The role of the assumption β ≥ 1/2 is to make the college’s objective function strictly
increasing in θ. For a sufficiently low weight β on revenue, the college’s objective function
could become decreasing, in which case it would be optimal to drop prices to 0 and admit
students using a label-dependent lottery. In this scenario, diversity considerations would
lead to higher probabilities of admission for minority groups.

When affirmative action is not allowed. Next, we investigate the optimal admis-
sion mechanism when the college is not allowed to explicitly condition on the background

25See Strack and Yang (2023) for a related analysis of admission policies where compositional con-
siderations are modeled as a hard constraint.
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characteristics b ∈ B. Mathematically, this means that the set of labels is taken to be
just the values t ∈ T ; the allocation rule xt(θ) cannot depend on b directly; and thus

sb =
∑
t∈T

µt

∫
e(b, t)

µ(b, t)f(b, t)(θ)

µtft(θ)︸ ︷︷ ︸
e
(b, t)

(θ)

xt(θ)dFt(θ),

where we now treat e(b, t)(θ) as the effective externality of group (b, t). The key obser-
vation is that the “composition externalities” are now a function of the type θ. While θ
does not matter for the actual externality, when the college cannot condition admission
decisions on background characteristics, willingness to pay becomes useful in inferring a
candidate’s background. Indeed, e(b, t)(θ) is proportional to the share of candidates with
background b among candidates with test score t. As a result, the expected externality
may naturally be decreasing in θ for groups who tend to have low willingness to pay (e.g.,
students coming from disadvantaged backgrounds). This changes the optimal admission
policy:

Result 9. When admission decisions cannot explicitly condition on background char-
acteristics, it is optimal to use a kt−tiered pricing mechanism for group t, where kt ≤
|B|+ 1.

The main insight of Result 9 is that randomized admission at lower prices may
become optimal when affirmative action is not allowed. Moreover, the number of distinct
admission options (differing in the price and probability of acceptance) is upper-bounded
by the number of distinct background characteristics that matter for assessing diversity.

The intuition for the result is straightforward. Suppose that the college must ad-
mit a certain mass of students coming from economically underprivileged backgrounds
to ensure a high value v. When affirmative action is available, the college achieves
that via targeted admission decisions and scholarships. But when such a policy is not
available, the college must rely on self-selection to ensure diversity. Since students com-
ing from economically underprivileged backgrounds tend to have low willingness to pay
(due to low ability to pay), the college would have to reduce prices substantially for
everyone to ensure enrollment of such students. Randomization relaxes that trade-off:
When applying, students can be offered a choice between a high-tuition option and a
lottery-assigned low-tuition option. Higher willingness-to-pay students would choose to
avoid the additional admission risk and select into the high-tuition option, while low
willingness-to-pay students could be admitted via the rationed option with sufficient
probability to ensure the desired level of diversity. Note that such a policy necessarily
bundles together admission and funding decisions.

This mechanism is similar in spirit to the work of Aygün and Bó (2021) illustrating
how to design an affirmative action policy that incentivizes applicants to reveal their
minority status—except that in our setting, agents are revealing their diversity status
endogenously through their choice of admission option, rather than explicitly revealing
it to the mechanism upfront. Meanwhile, our observation that the optimal mechanism
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for implementing a diverse membership outcome depends heavily on whether explicitly
conditioning on group labels is permitted echoes an insight of Fryer Jr., Loury, and
Yuret (2008) that implementing “color-blind” (versus “sighted”) affirmative action to
some degree requires flattening the allocation distribution with regards to signals such
as test scores that are not directly linked to group identity, but may be correlated with
it (see also Fryer Jr. and Loury (2013), and Heo and Park (2023)).26

Our results may help explain the recent admission trends among US colleges. In the
last few years, many colleges moved to stop conditioning admission decisions on stan-
dardized test scores because of concerns that this was advantaging more affluent and
otherwise better resourced students. More recently, a number of colleges have reversed
course on this, reinstating standardized test score consideration because they have found
that test scores were less susceptible to socioeconomic bias than other factors such as
participation in numerous extracurriculars.27 Our framework demonstrates that if the
distribution of scores t across groups b is heavily skewed towards more advantaged stu-
dents (e.g., because they have access to private tutoring), then admitting more students
with higher t undermines the self-selection mechanism. Thus, the college may find it op-
timal not to condition admission decisions on t.28 If we think of the score t as comprising
two dimensions—a standardized test score along with a second component accounting
for extracurriculars, essays, and so forth—then the preceding logic suggests that colleges
would want to adjust the weights on these two components to reflect how they correlate
with background characteristics.

4.5 Additional Applications

To close, we briefly comment on other potential applications.

Ad auctions. A recent US Department of Justice antitrust case revealed that Google
had been relying on a Randomized Generalized Second Price auction (RGSP) to sell ad
spots to advertisers. The RGSP used by Google differed from a classical generalized
second-price auction in two ways. First, the competitiveness of the bid depended not
only on the bid amount but also on the campaign’s long-term value (LTV), determined by
factors such as ad quality and the context of the search query. Second, even conditional
on LTV, Google would sometimes randomly permute the top bidders if their bids were

26Our observations on how need- and merit-based financial aid shift the distribution of students
selecting into admission also relate to work in public finance, market design, and higher education more
broadly that has has examined these distributional impacts empirically (see, e.g., Heller (2006); Biró,
Hassidim, Romm, Shorrer, and Sóvágó (2020); Heo (2023)).

27See, e.g., Wren (March 28, 2022), Korn (February 5, 2024), and the discussion therein.
28In our model, it may in fact be optimal to give higher priority to certain intermediate or even low

scores t if they are particularly prevalent within some underrepresented groups b. However, (unmodeled)
moral-hazard considerations may prevent colleges from implementing admission rules that are non-
monotone in test scores (see Sönmez (2013) for discussion of an instance when precisely this moral
hazard issue arose in practice).
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close enough.29

Setting aside the question of whether RGSP was anti-competitive, our framework
provides a simple explanation for why Google might have preferred the RGSP design
to a simpler auction format. Effectively, Google is selling access to its multi-sided plat-
form: Allocation of ad slots generates (mostly negative) externalities because ads shown
as search results affect consumers’ search experience (and hence their willingness to
engage with the search engine). A bidder’s externality would typically vary with charac-
teristics that are observable to Google (e.g., the fit between the ad and the consumer’s
query); however, it could also depend on characteristics that are unobserved or cannot
be conditioned on. For example, a consumer’s search experience might deteriorate if
they are shown an ad by the same advertiser over and over again; yet, Google might
be unable to explicitly down-weight bidders who bid aggressively on particular search
queries.

Adopting a model similar to the one we developed in Section 4.2 demonstrates that
Google would have an incentive to use heterogeneous prices for bidders differing in
their observed externalities (e.g., a higher price for campaigns with low ad quality)—
as captured by the use of LTVs. At the same time, reasoning analogous to that used
in Section 4.4 suggests that randomization could be used to ensure a more balanced
composition of ads, in lieu of explicit preferential treatment of some bidders. While
other reasons for randomization could be possible—e.g., the classical ironing solution of
Myerson (1981) provides a justification if the distribution of bidders’ values is sufficiently
irregular—some of Google’s own testimony at trial was suggestive of an externality story:
A Google representative claimed that if the auction did not occasionally flip the winner
with the runner-up, then “Amazon would always show up on top” (Agius (October 18,
2023)).

Brand image concerns. Membership-like effects arise in sales of branded goods that
are consumed in public, such as clothes, cars, or even certain types of NFTs. Companies
that sell such goods must take into account how potential pricing strategies affect the
composition of their customer base; this feeds into the brand perception, which in turn
affects consumers’ willingness to pay. Our framework can be used to quantitatively study
membership design in the presence of well-known effects such as the “bandwagon effect”
(people seek to own goods that other individuals, especially those with high status,
own) or the “snob effect” (widespread ownership of a good, especially by a consumer’s
peers, can cause it to lose value).30 In the language of our model, these effects can be
captured by externalities (positive or negative) that potentially depend on consumer
characteristics that are not directly observed by the seller (e.g., socioeconomic status).

The intuition from Section 4.1 suggests that a posted-price mechanism maximizes
sales revenue for goods whose value is increasing in the wealth and status of the con-
sumers that own them (e.g., luxury fashion and flashy cars). As in Section 4.2, however,

29For details, see Weitzman (October 5, 2023). Randomization was also used by Yahoo! under the
name of “squashing;” see, e.g., Agius (October 18, 2023).

30See, e.g., Leibenstein (1950), Vigneron and Johnson (1999), and Han, Nunes, and Drèze (2010)).
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it may be optimal to offer such goods at low or zero prices to selected individuals (iden-
tified by observables) whose public consumption has a particularly strong effect on the
perceived value of the good (e.g., to celebrities or social media influencers). Meanwhile,
our model predicts that lotteries at below-market-clearing prices may be optimal if con-
sumers with intermediate willingness to pay contribute most positively to the brand
value; certain brands may aim to maintain scarcity without creating the perception of
being out of reach for the middle class. For example, Nike sells some collections of
its shoes at prices that create excess demand that is then rationed via an explicit lot-
tery (referred to as the “SNKRS drawing”; see Nike (accessed March 17, 2024))—our
framework provides an explanation rationalizing such a sales mechanism.

Affordable housing. Composition effects—similar to the ones we analyzed in Sec-
tion 4.4—are relevant for the design of affordable housing programs (such as LIHTC
in the US). On the one hand, the value of a housing unit to potential tenants may
depend on the demographic composition of the neighborhood; on the other hand, allo-
cation of an affordable housing unit often creates externalities for the current residents
(see, e.g., Diamond and McQuade (2019)). This makes housing in a given area a type
of a membership good whose optimal allocation can be analyzed using our framework.
When direct use of certain demographic characteristics (such as race) is not allowed in
social programs, our results (in particular from Section 4.4) suggest a potential role for
carefully constructed lotteries (see Cook, Li, and Binder (2023) for a discussion of how
suboptimally designed rationing schemes may conflict with the designer’s redistributive
goals).
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A Proofs Omitted from the Main Text

A.1 Proof of Theorem 1

We first note that an optimal solution to the designer’s problem exists, by a standard
argument (the objective function is upper semi-continuous on a compact set, when we
endow the space of non-decreasing allocation rules with the L1 topology). Our proof
strategy is to take an arbitrary mechanism, and then show that this mechanism can
be weakly improved upon by a modified mechanism that satisfies the properties listed
in Theorem 1. This will establish that there exists an optimal mechanism with these
properties.

Let N = |I|. We consider an auxiliary problem for the designer of reoptimizing her
objective over the allocation rule xi(θ) for group i only, keeping the other allocation
rules fixed, subject to preserving the values vj for all groups j ∈ I. Value preservation
requires

vj = νj

(∑
k∈I

∫
ek→j(θ)xk(θ)µkdFk(θ)

)
, for all j ∈ I.

Because we are keeping fixed all allocation rules other than the one for group i, we can
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impose a stronger condition that implies value preservation:

cj =

∫
ei→j(θ)xi(θ)µidFi(θ), for all j ∈ I,

for some constants cj (pinned down by the initial mechanism). Formally, the auxiliary
problem becomes:

max
xi

∫
Wi(θ)xi(θ)dFi(θ) (8)

s.t. cj =

∫
ei→j(θ)xi(θ)µidFi(θ), for all j ∈ I,

xi(θ) is non-decreasing.

We can rewrite the first constraint in vector notation as

c = Ei(xi).

Let ki = dim(Ei) + 1. After a change of basis (multiplying the left- and right-hand side
of the above equality by an appropriate matrix), we can assume that Ei has an image
contained in Rki−1, and that c ∈ Rki−1 (the remaining coefficients are always zero, so
they can be dropped).

We now restate (in a slightly modified form) a result from Kang (2023),31 which
is an extension of Carathéodory’s Theorem to infinite-dimensional spaces based on the
contributions of Bauer (1958) and Szapiel (1975):

Theorem 0. Let X be a convex, compact set in a locally convex Hausdorff space, and
let E : X → Rk−1 and W : X → R be continuous affine functions. Suppose that L ⊂ Rk

is closed and convex, and that E(X ) ∩ L ̸= ∅. Then, there exists x⋆ ∈ X such that
W (x⋆) = maxx∈X :E(x)∈LW (x) and

x⋆ =
k∑

j=1

αjxj,
k∑

j=1

αj = 1, αj ≥ 0, and xj ∈ Ex(X ), ∀j = 1, . . . , k,

where Ex(X ) denotes the set of extreme points of X .

Intuitively, Theorem 0 states that the problem of maximizing a linear objective
function over a compact convex set X subject to k − 1 linear constraints admits a
solution that is a convex combination of at most k extreme points of X .

We can apply Theorem 0 to our problem by setting X to be the set of non-decreasing
allocation rules (which is convex and compact when we endow it with the L1 topology), E
to be Ei, L to consist of the single point c ∈ Rki−1, and W (x) =

∫
Wi(θ)x(θ)dFi(θ). By

Theorem 0, there exists a solution to the auxiliary problem that is a convex combination

31See also Doval and Skreta (2024) for a similar argument used in the context of information design.
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of at most ki extreme points of the set of non-decreasing allocation rules; that is, there
exists a solution to (8) that takes the form

xi(θ) =
ki∑
j=1

αj1{θ≥θj},

for some weights αj ≥ 0 adding up to 1 and cutoff types θj, j = 1, .., ki. Applying
the same argument for all i ∈ I establishes existence of a solution in which there is a
ki-tiered pricing mechanism for every group. Additionally, the top tier is granted full
access: xi(θ) = 1 for θ ≥ θj (which does not preclude the possibility that θj = θ̄ in which
case removing the top tier from the mechanism would not affect the designer’s expected
payoff).

To prove the second part of the theorem, we consider an auxiliary problem in which
we fix all the externality values vi but reoptimize over all allocation rules jointly:

max
x1,..., xN

∑
i∈I

vi

∫
Wi(θ)xi(θ)µidFi(θ)

s.t. vi = νi

(∑
j∈I

∫
ej→i(θ)xj(θ)µjdFj(θ)

)
, for all i ∈ I,

xi(θ) is non-decreasing, for all i ∈ I.

The problem can be rewritten, for some vector of constants c ∈ RN , as

max
x1,..., xN

∑
i∈I

vi

∫
Wi(θ)xi(θ)µidFi(θ)

s.t. c =
∑
j∈I

µjE
j(xj),

xi(θ) is non-decreasing, for all i ∈ I.

Let K = dim(Im(E)) + 1 where E(x1, . . . , xN) :=
∑

j∈I µjE
j(xj). After a change of

basis, we can assume that E has an image contained in RK−1 and c ∈ RK−1.
We know from the first part of the proof that there exists an optimal solution in

which each allocation rule xi can be written as xi(θ) =
∑N

j=1 α
i
j1{θ≥θij}, for some weights

αi
j ≥ 0 (adding up to 1) and cutoff types θij, j = 1, .., N + 1 (where we have used the

fact that ki ≤ N +1). Fixing the cutoff types, and the value V̄ of the optimal payoff for
the designer, the optimal weights αi

j must satisfy the following system of inequalities:
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V̄ =
∑
i∈I

N+1∑
j=1

αi
j vi W̃

i
j ,

ck =
∑
i∈I

N+1∑
j=1

µi α
i
j ẽi,j,k, k = 1, . . . , K − 1,

1 =
N+1∑
j=1

αi
j, ∀i ∈ I,

0 ≤ αi
j, ∀j = 1, . . . , N + 1, i ∈ I,

for some constants W̃ i
j and ẽi,j,k that do not depend on the weights αi

j. Moreover, any
set of weights that satisfies this system of equations defines an optimal solution. A
solution to the system exists (because there exists an optimal solution to the designer’s
problem that takes this form). The system of linear equations has N(N + 1) variables
and N + K equality constraints. By the fundamental theorem of linear algebra, there
exists a solution to the system of equations in which (at most) N +K weights are non-
zero. It follows that setting N +K cutoff types (equivalently, prices) optimally allows
the designer to achieve full optimality in her optimization problem.

A.2 Proof of Proposition 1

Consider the auxiliary problem of reoptimizing over xi subject to keeping the expected
externalities exerted by group i on other groups at least as large as in some initial mecha-
nism. Imposing a weak inequality (as opposed to an equality, as in the proof of Theorem
1) is sufficient because we assumed that (i) all functions νj are non-decreasing, and (ii)
the designer’s payoff is non-decreasing in the values vj (since

∫
Wj(θ)xj(θ)dFj(θ) ≥ 0

for all non-decreasing allocation rules xj). The auxiliary problem thus becomes:

max
xi

∫
Wi(θ)xi(θ)µidFi(θ) (9)

s.t. cj ≤
∫

ei→j(θ)xi(θ)µidFi(θ), for all j ∈ I,

xi(θ) is non-decreasing,

for some constants cj. We can assign Lagrange multipliers λj ≥ 0 to the inequality
constraints,32 and then the problem is to maximize a Lagrangian∫ (

Wi(θ) +
∑
j∈I

λjei→j(θ)

)
xi(θ)µidFi(θ).

32The existence of Lagrange multipliers follows from Theorem 2.165 in Bonnans and Shapiro (2000)
as long as cj , for each j ∈ I, is in the interior of all possible values that the right-hand side can take
as xi(θ) varies. Whenever this is not the case, xi(θ) must take the form of a threshold allocation rule,
which is what we want to show.
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By assumption that Wi(θ) is strictly increasing and ei→j(θ) is non-decreasing in θ, for all
j, Wi(θ) +

∑
j∈I λjei→j(θ) is strictly increasing in θ for any set of Lagrange multipliers.

It follows that there exists an optimal solution in which xi(θ) is a threshold (one-price)
allocation rule.

A.3 Supplementary Materials for Section 4.1

In this appendix, we provide supplementary calculations for Results 2 and 3.
First, we note that the first-order conditions for optimality of θ⋆0 and θ⋆1 for prob-

lem (2) read
J (θ⋆0)

−e(θ⋆0)
=

J (θ⋆1)

−e(θ⋆1)
=

R

V
.

Thus, we cannot have two non-degenerate membership tiers when J(θ)/(−e(θ)) is strictly
increasing. In particular, this shows that a 1-tiered pricing mechanism is optimal under
the assumption of Result 2. The rest of Result 2 follows from standard analysis of
first-order conditions for maximizing objective (2) when θ1 is set to θ̄. The derivative of
objective (2) with respect to x0 is

x0

∫ θ̄

θ0

e(θ)dF (θ)

∫ θ̄

θ0

J (θ)dF (θ) +

(
v0 + x0

∫ θ̄

θ0

e(θ)dF (θ)

)∫ θ̄

θ0

J (θ)dF (θ).

Solving for x0 yields the second condition characterizing the solution in Result 2.
To obtain Result 3, suppose that θ⋆1 is the optimal cutoff type if the designer restricts

attention to posted-price mechanisms. We can then consider how the expected payoff of
the designer changes under the following perturbation of the mechanism: For some type
θ0 < θ⋆1, allocate access to types θ ∈ [θ0, θ

⋆
1] with some small probability ϵ > 0. This

perturbation is profitable for small enough ϵ if∫ θ⋆1

θ0

e(θ)dF (θ) ·R + V ·
∫ θ⋆1

θ0

J(θ)dF (θ) > 0 ⇐⇒ J (θ⋆1)

−e(θ⋆1)
<

∫ θ⋆1
θ0

J (θ)dF (θ)∫ θ⋆1
θ0
(−e(θ))dF (θ)

,

where we have relied on the first-order condition for θ⋆1 to substituteR/V = J (θ⋆1)/(−e(θ⋆1)).

A.4 Supplementary Materials for Section 4.2

To derive the pricing formula (4), we first rewrite the designer’s maximization prob-
lem relying on the fact that—by Proposition 1—optimal allocation rules take the form
xi(θ) = 1{θ≥θi} for some cutoff types θi, for all i ∈ I:

max
{θi}i∈I

∑
i∈I

(
µi

(
v0i +

∑
j∈I

µj

∫ 1

θj

ej→idFj(θ)

)(∫ 1

θi

Ji(θ)dFi(θ)

))
.
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Assuming the first-order approach is valid (i.e., that we have an interior solution), the
first-order condition with respect to θi yields

−µiviJi(θi)fi(θi)−
∑
j∈I

µjµiei→jfi(θi)Rj = 0,

where vi and Rj are defined as in the main body of the paper. Rearranging and using
the equality pi = θivi yields the pricing equation (4): pi = βivi− (1−βi)

∑
j∈I ei→jµjRj.

To determine when participation by group i is a substitute or a complement for
participation by group j, we employ the implicit function theorem to calculate the
partial derivative of θi with respect to θj, when θi satisfies the pricing formula (4) and
θj is treated as a free parameter. Holding fixed θk for k ̸= {i, j}, denote the objective
function in the designer’s maximization problem by W(θi, θj). The accompanying first-
order condition for θi can then be rewritten as W ′

θi
(θi, θj) = 0. Then, using the implicit

function theorem,33 we get that

∂θi
∂θj

= −
−(1− βi)

(
− ∂vi

∂θj

1
v2i

∑
k ei→kµkRk +

1
vi
ei→jµj

∂Rj

∂θj

)
W ′′

θiθi
(θi, θj)

= −
(1− βi)µjfj(θj)

(
− 1

v2i
ej→iei→R + 1

vi
ei→jJj(θj)

)
W ′′

θiθi
(θi, θj)

.

Note that the second-order condition (which must hold at an interior solution that we
are assuming) implies that the denominator of the preceding expression, W ′′

θiθi
(θi, θj), is

negative. Therefore, we get that participation by group i is a substitute for participation
by group j if and only if

ei→j · Jj(θj)−
1

vi
· ej→i · ei→R < 0.

Additionally, since Jj(θ) is non-decreasing, we have that Jj(θ) ≤ 0 if and only if θj is
below the revenue-maximizing level βj (absent externalities). Thus, by Result 4, the
sign of Jj(θ) is opposite to the sign of the aggregate revenue externality ej→R.

A.5 Supplementary Materials for Section 4.4

In this appendix, we briefly explain how our arguments extend to the case when the
value functions νi are common to all groups, νi = ν for all i ∈ I, but ν is a function of
multiple arguments: v = ν(s1, . . . , sK), where each sk depends linearly on the allocation
rule to each group.

To extend the first part of Theorem 1 to this case (in order to obtain Result 9), note
that we can modify the proof of Theorem 1 by fixing the values of each of the inputs

33Formally, in order to do so, we need to assume that W ′′
θiθi

(θi, θj) ̸= 0.
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sk. Doing so implies that the auxiliary problem (8) of optimizing over an allocation rule
for a single group will have K linear constraints. Thus, by the same argument as in the
proof of Theorem 1, we need at most K+1 prices in the optimal mechanism. This gives
us Result 9.

Result 8 is implied by an analogous modification applied to the proof of Proposition 1
(instead of imposing a constraint on the values vj for all groups j, we impose a constraint
on the inputs sk to the single value function ν). Note that the designer’s payoff is
non-decreasing in the value v because—under the objective of weighted revenue and
surplus—the designer’s payoff from every group is always non-negative.
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