
Online Appendix

OA.1 Interpretation of duality

In this appendix, we interpret the persuasion problem as a linear production problem of Gale

(1960). The states are economic resources, and the probability measure µ0 is a producer’s

endowment of resources. The set ∆(Ω) is the set of linear production processes available

to the producer. A process µ ∈ ∆(Ω) operated at unit level consumes the measure µ of

resources and generates income V (µ). A production plan τ describes the level at which each

process µ is operated. The primal problem is for the producer to find a production plan that

exhausts the endowment µ0 and maximizes the total income.

To interpret the dual problem, imagine that there is a wholesaler who wants to buy out

the producer. The wholesaler sets a unit price p(ω) for each resource ω. The producer’s

(opportunity) cost of operating a process µ at unit level is thus
�
Ω
p(ω)dµ(ω). A price

function p is feasible for the wholesaler if the income generated by each process of the

producer is not greater than the cost of operating the process, which makes the producer

willing to sell all the resources. The dual problem is for the wholesaler to find feasible prices

that minimize the total cost of buying up all the resources.36

Weak duality then states that the total income generated by the producer cannot exceed

the total cost of the resources under feasible prices, which make the producer willing to

sell the resources. Thus, if there exists a plan for the producer and feasible prices for

the wholesaler that equalize the total income with the total cost, then this plan must be

optimal for the producer, and the prices must be optimal for the wholesaler. Moreover,

complementary slackness states that a feasible plan and supporting prices are optimal if and

only if the cost of each operated process is equal to the income it generates. Finally, strong

duality states that there exists a feasible plan for the producer and feasible prices for the

wholesaler such that the cost of each operated process is equal to the income it generates.

To see why optimal prices must be convex in moment persuasion, note that a measure

µ ∈ ∆(Ω) of resources and one unit of resource x = Eµ[ω] are now equivalent for the

producer. If prices failed to be convex, the producer could sell at effectively higher prices by

engaging in such “mean-preserving” transformations of the resources. Thus, the wholesaler

offers convex prices to begin with.

36A similar interpretation of states as resources in the context of persuasion appears in Galperti and Perego
(2018). Dworczak and Martini (2019) offer an interpretation with the producer replaced by a consumer,
production plans by consumption bundles, and the wholesaler by a Walrasian auctioneer who sets prices in
a “Persuasion economy” to clear the market.
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OA.2 Conditions for optimality of full disclosure and no disclosure

In this appendix, we illustrate our general duality results of Section 3, by studying conditions

for optimality of two extreme information structures: full disclosure (distribution τF ∈ T (µ0)

uniquely characterized by attaching probability one to the set of Dirac probability measures

on Ω) and no disclosure (distribution τN ∈ T (µ0) that attaches probability one to the prior

µ0). We argue that strong duality makes the well-known sufficient conditions necessary.

Suppose that µ0 has full support on Ω and let V be Lipschitz on ∆(Ω) so that, by

Theorems 3 and 4, dual attainment holds. Then, full disclosure τF is optimal if and only if

V lies below a linear function that passes through each extreme point (δω, V (δω)):

V (µ) ≤
�
Ω

V (δω)dµ(ω) for all µ ∈ ∆(Ω). (F)

No disclosure τN is optimal if and only if

V is superdifferentiable at µ0. (N)

To prove these two observations, note that Theorem 3 implies that the dual problem (D)

has an optimal solution. Thus, by Corollary 1, a feasible distribution τ ∈ T (µ0) is optimal

if and only if the optimal price function p ∈ P(V ) satisfies (C). The support of τF is the set

of all Dirac probability measures δω on Ω, so (C) simplifies to p(ω) = V (δω) for all ω ∈ Ω.

Thus, τF is optimal if and only if V (δω), treated as a function of ω, belongs to P(V )—this

simplifies to (F). Similarly, the condition for optimality of τN follows from the observation

that feasibility of p along with (C) is equivalent to p being the supergradient of V at the

prior, yielding (N).

Because sufficiency follows from weak duality (Theorem 1), the above conditions are

sufficient even if we relax the assumptions on V and µ0. However, we show that when dual

attainment fails, these conditions are no longer necessary.

Let µ0 be the Lebesgue measure on Ω = [0, 1] and let V (µ) = 1{µ=δ0/2+δ1/2}. Since

µ0({0, 1}) = 0, there does not exist τ ∈ T (µ0) with τ(δ0/2 + δ1/2) > 0, so each feasible

distribution τ ∈ T (µ0) is optimal. However, the conditions for optimality of τF and τN both

fail. In particular, (F) does not hold at µ = δ0/2 + δ1/2. As for condition (N), suppose that

p ∈ P(V ) is its supergradient. Then, we would need
� 1

0
p(ω)dω = 0, so that the supporting

hyperplane defined by p touches V at the prior. But since p is Lipschitz and non-negative,

this implies that p is identically 0; hence, the hyperplane defined by p does not lie above the

graph of V at δ0/2 + δ1/2.

The above arguments indirectly show that the dual problem does not have an optimal
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solution. Indeed, the dual problem is to find a non-negative Lipschitz function p satisfying

p(0)/2 + p(1)/2 ≥ 1 that minimizes
� 1

0
p(ω)dω. We know from Theorem 2, that the infimum

is 0. Clearly, the infimum is not attained: It is approximated by a sequence of Lipschitz

functions that take value 1 at ω = 0 and ω = 1, and converge to 0 on (0, 1).

OA.3 Two duality formulations for moment persuasion

In this appendix, we complement the analysis of Section 4 by formulating the dual problem

for moment persuasion. We also introduce an alternative formulation of the dual problem,

and show that the price function from Theorem 5 solves both of these problems. This in

turn allows us to sharpen the connection between our results and existing duality methods

in the next section.

The problem dual to (PM) is to find functions p : X → R and q : X → RN to

minimize

�
Ω

p(ω)dµ0(ω)

subject to p(y) ≥ v(x) + q(x) · (y − x) for all x, y ∈ X,

p is Lipschitz on X, q is measurable and bounded on X.

(DM)

This duality formulation is a consequence of the fact that in our primal problem we rep-

resent feasible solutions as joint distributions of moments and states (similarly to Kolotilin,

2018 and Kolotilin et al., 2023). The dual variable p is a multiplier on the Bayes-plausibility

constraint, while the dual variable q is a multiplier on the martingale constraint.

When, instead, feasibility for the primal problem is described in terms of marginal distri-

butions of moments using a mean-preserving spread constraint (as in Dworczak and Martini,

2019 and Dizdar and Kováč, 2020), we can write the dual problem as finding a function

p : X → R to

minimize

�
Ω

p(ω)dµ0(ω)

subject to p(x) ≥ v(x) for all x ∈ X,

p is convex and Lipschitz on X.

(D′
M)

In both dual formulations, only prices for states in Ω matter. However, as Theorem 5

formally shows, we can always extend these prices to the space of moments X, which provides

additional insights about the structure of the solution to the primal problem (PM).

We now show that these problems can both be treated as duals to (PM) in the sense that

their values provide the relevant upper bound on the value of (PM) that is tight and attained

by the price function identified in Theorem 5.
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Proposition OA.1.

1. Weak duality: If v is measurable and bounded, then for any π feasible for (PM) and

any p feasible for either (DM) or (D′
M),

�
X
v(x)dπX(x) ≤

�
Ω
p(ω)dµ0(ω).

2. No duality gap and primal attainment: If v is bounded and upper semi-continuous,

then there exists an optimal solution to (PM), and the problems (PM), (DM), (D′
M) all

have the same value.

3. Dual attainment: If v is Lipschitz, then the price function p̄ from Theorem 5 solves

(D′
M), and together with the function q from condition 2 of Theorem 5 solves (DM).

Proof. Weak duality. Suppose that π is feasible for (PM). If (p, q) is feasible for (DM), then

�
X

v(x)dπX(x) =

�
X×Ω

(v(x)+q(x)·(ω−x))dπ(x, ω) ≤
�
X×Ω

p(ω)dπ(x, ω) =

�
Ω

p(ω)dµ0(ω).

If instead p is feasible for (D′
M), then

�
X

v(x)dπX(x) ≤
�
X

p(x)dπX(x) ≤
�
Ω

p(ω)dµ0(ω).

No duality gap and primal attainment. When v is bounded and upper semi-continuous on

X, the corresponding V is also bounded and upper semi-continuous on ∆(Ω), and hence, by

Lemma 2, the problem (PM) has an optimal solution π⋆ ∈ Π(µ0).

Thus, weak duality above implies that max (PM) ≤ inf (DM). Moreover, if p is feasible for

(D′
M), then, by Corollary 13.3.3 in Rockafellar (1970), p has a bounded subgradient (which

we denote q), so that, for all x, y ∈ X,

p(y) ≥ p(x) + q(x) · (y − x) ≥ v(x) + q(x) · (y − x),

showing that (p, q) is feasible for (DM) and hence max (PM) ≤ inf (DM) ≤ inf (D′
M).

Thus, it suffices to show that max (PM) = inf (D′
M). The proof is essentially the same

as the proof of Lemma 5. Let PM(v) denote the sets of functions p : X → R feasible for

(D′
M). By Baire’s Theorem, there exists a non-increasing sequence of Lipschitz functions vk

converging pointwise to v. Let π⋆k denote an optimal solution to (PM) with the objective

function vk. For each k ∈ N, we have

�
X×Ω

v(x)dπ⋆(x, ω) ≤ inf
p∈PM (v)

�
Ω

p(ω)dµ0(ω) ≤ min
p∈PM (vk)

�
Ω

p(ω)dµ0(ω) =

�
X×Ω

vk(x)dπ⋆k(x, ω),
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where the first inequality holds by max (PM) ≤ inf (D′
M), the second inequality holds by

PM(vk) ⊂ PM(v) for vk ≥ v, and the equality holds by Theorem 5. It is thus sufficient to

show that

lim
k→∞

�
X×Ω

vk(x)dπ⋆k(x, ω) ≤
�
X×Ω

v(x)dπ⋆(x, ω).

Thanks to compactness of Π(µ0), up to extraction of a subsequence, we can suppose that π⋆k
converges weakly to some π ∈ Π(µ0). Then for each j ∈ N, we have

lim
k→∞

�
X×Ω

vk(x)dπ⋆k(x, ω) ≤ lim
k→∞

�
X×Ω

vj(x)dπ⋆k(x, ω) =

�
X×Ω

vj(x)dπ(x, ω),

where the first inequality holds because vk ≤ vj for k ≥ j, and the equality holds because

vj is (Lipschitz) continuous and π⋆k → π. Then letting j go to infinity and invoking the

monotone convergence theorem,

lim
j→∞

�
X×Ω

vj(x)dπ(x, ω) =

�
X×Ω

v(x)dπ(x, ω),

we obtain

lim
k→∞

�
X×Ω

vk(x)dπ⋆k(x, ω) ≤
�
X×Ω

v(x)dπ(x, ω) ≤
�
X×Ω

v(x)dπ⋆(x, ω),

where the last inequality holds because π⋆ is an optimal solution to (PM). This establishes

that max (PM) = inf (DM) = inf (D′
M).

Dual attainment. When v is Lipschitz, Theorem 5 guarantees existence of p̄ and q with all

required properties, and such that for any π optimal for (PM),

�
X

v(x)dπX(x) =

�
Ω

p̄(ω)dµ0(ω).

It follows that p̄ solves (D′
M) and (p̄, q) solve (DM).

Proposition OA.1 formalizes our claim from Section 4 that the two conditions in Theorem

5 correspond to two alternative formulations of the problem dual to (PM). At the same time,

the proposition shows that these two problems have the same solution, at least under the

conditions of Theorem 5. This observation allows us to describe the exact connection between

our general duality result and existing duality approaches to moment persuasions.
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OA.4 Detailed relationship to other duality methods

The one-dimensional moment persuasion problem has received special attention (see, for

example, Gentzkow and Kamenica, 2016, Kolotilin et al., 2017, Kolotilin, 2018, Dworczak

and Martini, 2019, and Dizdar and Kováč, 2020). When the objective function is Lipschitz,

Theorem 5 generalizes Theorems 1 and 2 in Dworczak and Martini (2019): By a simple

transformation, condition 1 of Theorem 5 establishes existence of a convex and (Lipschitz)

continuous function p⋆ and a cumulative distribution function G⋆ of moments (a mean-

preserving contraction of F0) such that

p⋆ ≥ v,

supp(G⋆) ⊆ {x ∈ X : p⋆(x) = v(x)},�
Ω

p⋆(x)dF0(x) =

�
Ω

p⋆(x)dG⋆(x).

Moreover, the theorem resolves (positively) the conjecture of Dworczak and Martini that

if the objective function V is measurable with respect to a moment m(ω), then so is the

corresponding price function.

It is worth noting that we impose stronger regularity conditions on the price function

compared to Dworczak and Martini. In our dual formulation (D′
M), we assume that prices p

are Lipschitz continuous, while Dworczak and Martini only assume continuity. The general

trade-off is that stronger regularity conditions on the dual variable make it more difficult to

prove that the dual problem has a solution in the assumed class, but—conditional on proving

existence—impose tighter structure on the solutions to the primal problem. We impose a

stronger condition on p because Lipschitz continuity is directly implied by Theorem 5. Dizdar

and Kováč (2020) prove, under weaker assumptions on the objective function, that the prices

that solve the dual problem of Dworczak and Martini are in fact Lipschitz.37 Thus, it seems

that in most economically relevant cases imposing Lipschitz continuity of prices in the dual

is without significant loss of generality.38

Kolotilin (2018), Galperti et al. (2023), and Kolotilin et al. (2023) use an alternative

approach to the persuasion problem. Instead of working with an objective function V :

37Dizdar and Kováč show that the dual problem in one-dimensional moment persuasion has an optimal
solution by demonstrating that feasible solutions can be restricted to a compact set of uniformly Lipschitz
functions. Our proof strategy is different: We construct the optimal solution (a price function on the space
of moments) from the supergradient of the concave closure of V .

38That being said, it is easy to come up with examples where the dual problem (D′
M) has a solution in

the class of continuous functions but not in the class of Lipschitz functions. For instance, when µ0 is fully
supported on Ω = [0, 1] and v(x) = −

√
x, p(x) = −

√
x is continuous and achieves the lower bound in (D′

M),
but a Lipschitz solution does not exist.
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∆(Ω) → R, they consider a Sender and a Receiver whose utility functions are w : A×Ω → R
and u : A × Ω → R where A is the space of the Receiver’s actions. The Sender chooses a

joint distribution π ∈ ∆(A×Ω) of the recommended action a and the state ω. On top of the

Bayes plausibility constraint, π must satisfy the obedience constraint, which requires each

recommended action to be incentive-compatible for the Receiver given the beliefs it induces.

As noted in Section 6, it is possible to reformulate the alternative problem as our problem,

and vice versa.

By setting A = X in the model of Kolotilin (2018), we can draw a tight connection

between the two duality approaches. For w(a, ω) = v(a) and u(a, ω) = −(a− ω)2, the dual

problem in Kolotilin (2018) is to find a continuous function p : Ω → R and a bounded

measurable function q : A→ R to

minimize

�
Ω

p(ω)dµ0(ω)

subject to p(ω) + q(a)(a− ω) ≥ v(a) for all (a, ω) ∈ A× Ω,

(DA)

where p and q are multipliers for the Bayes plausibility and obedience constraints. Thus,

the problem (DA) corresponds to our dual problem (DM), and condition 2 of Theorem 5

establishes that this problem is solved by the price function p̄ derived from our general

duality results from Section 3.

OA.5 Comments on the convex-roof construction

In this appendix, we further investigate the properties of the convex-roof construction that

underlies the proof of Theorem 5. Our goal is twofold: On one hand, we are interested in

regularity conditions under which the convex roof is (Lipschitz) continuous, guaranteeing

that it can be used as the price function p̄ satisfying conditions 1 and 2 of Theorem 5 (and

hence as a solution to the dual problems (D′
M) and (DM)). On the other hand, we show (by

means of examples) that the convex roof can behave in surprisingly pathological ways when

the space of moments is multi-dimensional, explaining why we need stronger assumptions to

extend existing duality methods to the multi-dimensional case.

The main result in this appendix shows that if the support of the prior contains the

boundary of its convex hull, then the convex roof preserves the Lipschitz constant of the

objective function, and hence the convex roof could be used as a solution to problems (DM)

and (D′
M).

Proposition OA.2. Let v be L-Lipschitz on X, and let Ω contain the boundary of X. Then

p̌ is L-Lipschitz on X.
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Proof. By the proof of Theorem 5, there exists a price function p̄ : X → R that is convex

and L-Lipschitz. Moreover, for each z ∈ X, we have p̌(z) ≥ p̄(z) and, for each y ∈ Ω, there

exists a sequence xn ∈ X converging to some x ∈ X such that q(xn) converges to some

r(y) ∈ RN , with ∥r(y)∥ ≤ L, and

p̌(y) = p̄(y) = lim
n→∞

{v(xn) + q(xn) · (y − xn)}.

Thus, for each z ∈ X and each y ∈ bdX ⊂ Ω, we have

p̌(z) − p̌(y) ≥ lim
n→∞

{v(xn) + q(xn) · (z − xn) − v(xn) − q(xn) · (y − xn)} = r(y) · (z − y),

showing that r(y), with ∥r(y)∥ ≤ L, is a subgradient of p̌ at y ∈ bdX.

By Theorem 7.12 in Aliprantis and Border (2006), at each z ∈ int(X), the convex roof

p̌ has a subgradient r(z) ∈ RN . We claim that ∥r(z)∥ ≤ L. Suppose that r(z) ̸= 0, as

otherwise the claim is trivial. Since z ∈ int(X) and ∥r(z)∥ > 0, there exists t > 0 such that

y := z + tr(z) ∈ bd(X) ⊂ Ω. Hence,

L ∥y − z∥ ≥ p̄(y) − p̄(z) = p̌(y) − p̄(z) ≥ p̌(y) − p̌(z)

≥ p̌(z) + r(z) · (y − z) − p̌(z) = r(z) · (y − z) = ∥r(z)∥∥y − z∥,

showing that ∥r(z)∥ ≤ L.

Thus, for each z, y ∈ X, we have

p̌(z) − p̌(y) ≤ r(y) · (z − y) ≤ ∥r(y)∥∥z − y∥ ≤ L∥y − z∥,

showing that p̌ is L-Lipschitz on X.

Next, we construct an example showing that the assumptions of Proposition OA.2 are

not redundant: p̌ does not always preserve the Lipschitz constant of v even when N = 2 and

Ω is finite.

Example OA.1. Let Ω = {(−l, 0), (0, 1), (l, 0)} with l > 1 and v(x) = |x1| for x ∈ X,

which is 1-Lipschitz. We can apply Corollary 1 to show that full disclosure is optimal and

thus p that coincides with v on Ω solves (D). Indeed, condition (C) holds, and, by Jensen’s

inequality,

V (µ) =

∣∣∣∣�
Ω

ω1dµ(ω)

∣∣∣∣ ≤ �
Ω

|ω1|dµ(ω) =

�
Ω

p(ω)dµ(ω) for all µ ∈ ∆(Ω).

It is easy to see that p̌ is given by p̌(x) = l(1−x2) for all x ∈ X, so the Lipschitz constant of
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p̌ is l > 1. Of course, by Theorem 5, there exists a different convex extension p̄ of p from Ω

to X (for example, consider p̄ = v on X) that is convex, 1-Lipschitz, and satisfies p̄ ≥ v. ■

The next example demonstrates the additional difficulties that arise when the dimension

of the space of moments is three (or higher). In this case, even when the objective function

is continuously differentiable, and the set of extreme points of X is compact, the convex roof

may be discontinuous.

Example OA.2. The example is adapted from Example 5.1 in Bucicovschi and Lebl (2013).

Let

K =
{

(x1, x2, x3) : x1 = −1, x22 + x23 = 1
}
∪
{

(x1, x2, x3) : x1 = 1, x22 + x23 = 1
}
,

and ω⋆ = (0, 0, 1). Define Ω = K ∪ {ω⋆}, and note that its convex hull X is a cylinder:

X =
{

(x1, x2, x3) : −1 ≤ x1 ≤ 1, x22 + x23 ≤ 1
}
.

Define the objective function as v(x) = x21 for x ∈ X, which is Lipschitz. We can again apply

Corollary 1 to show that p that coincides with v on Ω solves (D).

We will now show that the convex roof p̌ is discontinuous at ω⋆. On any line segment

{(x1, x2, x3) : −1 ≤ x1 ≤ 1, x2 = y, x3 = z)} with y ̸= 0 and y2 + z2 = 1, the convex roof p̌

must be identically 1. This shows that p̌ is discontinuous at ω⋆ = (0, 0, 1), because p̌(ω⋆) = 0

yet p̌(ωn) = 1 for the sequence ωn = (0, 1/n,
√

1 − 1/n2) that converges to ω⋆, as n→ ∞.

By Theorem 5, there exists a convex, Lipschitz extension p̄ (for example, p̄ = v). ■

Finally, we construct an instance of moment persuasion (with a discontinuous objective

function) in which there exists an optimal convex and Lipschitz price function on Ω solving

the original dual (D), but the price function cannot be extended to a convex and continuous

function on X. This example, unlike the previous ones, goes beyond indicating a problem

with the convex-roof construction; it shows that—beyond the case of a Lipschitz v— requir-

ing the price function to be (Lipschitz) continuous on X in the multi-dimensional moment

persuasion problem may be too demanding.

Example OA.3. The example is adapted from Example 5.4 in Bucicovschi and Lebl (2013).

Let

K =
{

(x1, x2, x3) : −1 ≤ x1 ≤ −x3, x22 + x23 = 1
}
∪
{

(x1, x2, x3) : x1 = 1, x22 + x23 = 1
}
,
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and ω⋆ = (0, 0, 1). Define Ω = K∪{ω⋆}, and note that its convex hull X is the same cylinder:

X =
{

(x1, x2, x3) : −1 ≤ x1 ≤ 1, x22 + x23 ≤ 1
}
.

Define the objective function

v(x) =


1, x ∈ K,

0, x = ω⋆,

−1, x /∈ K ∪ {ω⋆}.

Because the sets K and {ω⋆} are closed and disjoint, the function v is upper semi-continuous.

We claim that full disclosure is optimal in this instance of moment persuasion. We

can again apply Corollary 1 by defining p = v on Ω. Then, p is trivially Lipschitz, and

condition (C) holds, so all we have to check is that for all x ∈ X, and µ ∈ ∆(Ω) such that�
Ω
ωdµ(ω) = x,

�
Ω
p(ω)dµ(ω) ≥ v(x). When x /∈ K, this is trivial because p ≥ 0. When

x ∈ K, the conclusion is trivial for all µ with support in K. So the only case we have to

check is when x ∈ K but supp(µ) contains the point ω⋆. We will prove that this case cannot

arise. Indeed, since ω⋆ is an isolated point of Ω, it would have to be that µ(ω⋆) > 0 and

x = µ(ω⋆)ω⋆ +

�
K

ωdµ(ω).

But x ∈ K implies that, for almost all ω ∈ supp(µ), ω2 = 0 and ω3 = 1 (as otherwise

x22 + x23 < 1). But the only points in K with that property are (−1, 0, 1) and (1, 0, 1). This

is a contradiction with µ(ω⋆) > 0, because µ(ω⋆) > 0 implies that x1 ∈ (−1, 1).

We will now show that there does not exist a convex and continuous extension of p to

X. On any line segment {(x1, x2, x3) : −1 ≤ x1 ≤ 1, x2 = y, x3 = z)} with y ̸= 0 and

y2 + z2 = 1, the function p takes the value 1 for x1 ∈ [−1,−z] ∪ {1}. Hence, any convex

extension p̄ of p must be identically equal to 1 on such a line segment. This, however, means

that such p̄ must be discontinuous at ω⋆ = (0, 0, 1). Indeed, p̄(ω⋆) = 0, but p̄(ωn) = 1 for

the sequence ωn = (0, 1/n,
√

1 − 1/n2) that converges to ω⋆. ■

OA.6 An example with infinite Sx for Section 4.3.2

Suppose that µ0 is uniformly distributed on

Ω = X = {(ω1, ω2) ∈ [−2, 2] × [0, 1]} ∪ {(ω1, ω2) ∈ [−2, 2] × [−1, 0] : (ω1/2)2 + ω2
2 ≤ 1},
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and suppose that the objective function is

v(x) =

−(x21 − 1)2, x2 ≥ 0,

−(x21 + x22 − 1)2, x2 ≤ 0.

The optimal solution to (D) is p(x) = 0 for all x ∈ X. Moreover,

S⋆ = {x ∈ X : x21 = 1, x2 ≥ 0} ∪ {x ∈ X : x21 + x22 = 1, x2 ≤ 0},

and Γx = Ω, so that Sx = supp(πX), for all x ∈ S⋆. Thus, π ∈ Π(µ0) is an optimal solution

to (PM) if and only if Sx ⊂ S⋆. Applying Jensen’s inequality to a strictly concave function

ω2 7→
√

1 − ω2
2 and a strictly convex function ω2 7→ −

√
1 − ω2

2, we conclude that π ∈ Π(µ0)

satisfies Sx ⊂ S⋆ only if Sx contains the set {x ∈ X : x21 + x22 = 1, x2 ≤ 0}. That is, for

x2 < 0, each optimal signal must pool the states within a line segment {(t, x2) ∈ Ω : t > 0}
to induce a posterior mean (

√
1 − x22, x2) and pool the states within a line segment {(t, x2) ∈

Ω : t < 0} to induce a posterior mean (−
√

1 − x22, x2). This shows that there does not exist

an optimal signal such that Sx is a finite set. Since the set {x ∈ X : x21 = 1, x2 ≥ 0}
consists of line segments, there are multiple optimal signals differing in how states with

ω2 ≥ 0 are pooled. There exists an optimal signal with Sx = {x ∈ X : x21 + x22 = 1, x2 ≤
0}∪{(−1, 1/2), (1, 1/2)}, so that Sx = ext(Sx), in line with Theorem 8, but there also exists

an optimal signal with Sx = S⋆, so that Sx ̸= ext(Sx).

OA.7 An explicit formula for property 1 in Proposition 2

Let g denote the density of the prior distribution µ0 on Ω.

Lemma OA.1. Property 1 in Proposition 2 holds if and only if for almost all t ∈ [x1, x1],

� lt

lt

l(2f ′(t) − f ′′(t)l)g(t+ l, f(t) − f ′(t)l)dl = 0.

Proof. Define Ω̃ =
⋃
t∈[x1,x1]

It and recall that µ0(Ω̃) = 1. By footnote 27, E[ω|ω ∈ It] =

(t, f(t)) is equivalent to E[ω1|ω ∈ It] = t. Let G be the distribution function of the posterior

mean of ω1 induced by π⋆, so that, for all t ∈ [x1, x1], we have

G(t) =

�
⋃

s∈[x1,t]
Is

g(ω1, ω2)dω1dω2.

By the definition of the conditional expectation, property 1 in Proposition 2 holds if and
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only if, for all t ∈ [x1, x1], we have

� t

x1

sdG(s) =

�
⋃

s∈[x1,t]
Is

ω1g(ω1, ω2)dω1dω2.

Consider a change of variables on Ω̃ given by the following transformation: (ω1, ω2) =

(t+ l, f(t)− f ′(t)l) where t ∈ [x1, x1] and l ∈ (lt, lt). This transformation is diffeomorphism,

as (1) it is one-to-one and onto Ω̃, because It ∩ Is = ∅ for t ̸= s, (2) it is continuously

differentiable, because f is a twice continuously differentiable function, and (3) the Jacobian

determinant is negative on Ω̃,

J(t, l) = det

(
∂ω1

∂t
∂ω2

∂t
∂ω1

∂l
∂ω2

∂l

)
= det

(
1 f ′(t) − f ′′(t)l

1 −f ′(t)

)
= −(2f ′(t) − f ′′(t)l) < 0,

where the inequality follows from the second-order condition for the second property in

Proposition 2 on the (relatively) open set It. Thus, by the Change of Variables Theorem

(Theorem 13.49 in Aliprantis and Border, 2006 and Remark 1.3 in Villani, 2009), we have,

for all t ∈ [x1, x1],

G(t) =

� t

x1

� ls

ls

|J(s, l)|g(s+ l, f(s) − f ′(s)l)dlds

=

� t

x1

� ls

ls

(2f ′(s) − f ′′(s)l)g(s+ l, f(s) − f ′(s)l)dlds,

and

� t

x1

sdG(s) =

� t

x1

� ls

ls

(s+ l)|J(s, l)|g(s+ l, f(s) − f ′(s)l)dlds

=

� t

x1

� ls

ls

(s+ l)(2f ′(s) − f ′′(s)l)g(s+ l, f(s) − f ′(s)l)dlds.

Substituting G from the first equation to the last equation, we have, for all t ∈ [x1, x1],

� t

x1

� ls

ls

l(2f ′(s) − f ′′(s)l)g(s+ l, f(s) − f ′(s)l)dlds = 0,

which holds if and only if the inner integral is 0 for almost all s ∈ [x1, x1].
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