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Abstract

Many scarce public resources are allocated at below-market-clearing prices, and
sometimes for free. Such “non-market” mechanisms sacrifice some surplus, yet they
can potentially improve equity. We develop a model of mechanism design with redis-
tributive concerns. Agents are characterized by a privately observed willingness to pay
for quality, a publicly observed label, and a social welfare weight. A market designer
controls allocation and pricing of a set of objects of heterogeneous quality, and max-
imizes the expectation of a welfare function. The designer does not directly observe
individuals’ social welfare weights. We derive structural insights about the form of the
optimal mechanism, leading to a framework for determining how and when to use non-
market mechanisms. The key determinant is the strength of the statistical correlation
of the unobserved social welfare weights with the label and willingness to pay.
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1 Introduction

Many goods and services—such as certain types of housing, food, and health care, as well

as national park permits, road access, and various public services—are allocated at below-

market-clearing prices, and sometimes for free. Such “non-market” mechanisms naturally

raise concerns among economists because they sacrifice some allocative surplus by failing

to allocate resources to those who value them the most. However, policymakers often jus-

tify non-market mechanisms on fairness grounds: If resources were allocated using market-

clearing prices, they argue, agents with the lowest willingness to pay would be excluded from

enjoying their benefits. Because low willingness to pay for many goods and services is likely

to be correlated with adverse social and economic circumstances—such as low wealth, health

problems, or unemployment—marketplace designers may be especially concerned about the

welfare of such agents. But how should we think about the resulting efficiency–equity trade-

off?

We study a model in which a market designer allocates a fixed supply of goods with

heterogeneous quality. Each agent’s utility is linear in the quality of the received good and

in monetary transfers—allowing us to parameterize agents’ preferences by a single parameter

called willingness to pay (or WTP for short). Besides the privately observed willingness to

pay for quality, each agent is characterized by a publicly observed label, and an unobserved

social welfare weight. The welfare weight is a reduced form representation of designer’s

redistributive preferences; it measures the social value of giving one unit of money to an

agent. Unobservability of welfare weights captures the idea that the designer may not have

direct access to information about the agent—such as her detailed financial, social, and

economic situation—that determines the welfare weight.

We characterize the optimal incentive-compatible and individually-rational allocation

mechanism for a designer who seeks to maximize the expectation of the welfare function,

given by the sum of agents’ utilities weighted by their social welfare weights. The welfare

function places some weight on revenue as well, with the weight interpreted as the marginal

value for the designer of spending a dollar on the most valuable social cause (for example,

the weight on revenue is equal to the average welfare weight when revenue is returned to

agents in the form of a lump-sum transfer).

The market-design approach that we develop is complementary to the classical public

finance approach. Our designer decides about the allocation of a single type of good without

considering the interaction of this allocation process with macro-level redistribution. The

supply of goods and the social welfare weights are thus modeled as exogenous. While these

assumptions are limiting in some contexts, they are natural descriptions of many relevant

1



policy problems. For example, public assistance programs (such as allocation of public

housing or food stamps) are often run by municipalities or local governments that have

limited control over tax policies. Central governments also resort to non-market mechanisms

when allocating scarce resources, despite having access to conventional redistributive tools;

for example, Covid-19 vaccines were allocated free of charge in most countries, at least

partially because setting positive prices would disadvantage poorer populations, an outcome

viewed by many as raising moral and fairness issues.1

The key tension in our market-design framework is that the designer has redistributive

preferences but does not directly observe the social welfare weights. For example, the de-

signer might want to allocate public housing only to people that have both low income

and low expected future income. While current income can perhaps be observed relatively

precisely (as can be captured by labels in our model), agents are likely to have private in-

formation relevant to determining their future financial situation. The designer cannot elicit

this information truthfully in any (static) allocation mechanism: for example, if the designer

were to promise better terms to those who declare low expectations of future income, it

would be beneficial for everyone to make such a claim. In the absence of additional tools,

the designer is thus forced to rely exclusively on two types of information: labels—which

are publicly observed—and willingness to pay for quality—which can be truthfully elicited

by mechanisms with transfers. As a result, the designer uses the statistical correlation of

labels and willingness to pay with the unobserved welfare weights to “forecast” who is most

in need from the perspective of social welfare. Non-market mechanisms—understood as al-

locating qualities at prices that do not clear the market and thus necessitate rationing—are

optimal precisely when the observable and elicitable information reveals inequalities in the

underlying welfare weights.

Our first main result shows that, fixing a group of agents with the same label (for example,

income below a certain threshold), a non-market allocation is used for agents with the lowest

willingness to pay under two conditions: (1) the expected welfare weight conditional on the

label is strictly higher than the weight on revenue, and (2) all agents in the group have

a strictly positive willingness to pay for quality. The first condition means that the label

identifies a group that the social value of giving one unit of money to a random member

of that group is higher than the weight on revenue, but that the designer cannot give a

lump-sum payment exclusively to this group.2 The second condition means that the good is

1See for example Schmidt et al. (2020), Pathak et al. (2020), Pathak et al. (2022), and the references
therein. In follow-up work, Akbarpour ® al. (2023) study the problem of vaccine allocation by extending
the framework of the current paper to a setting where agents have socioeconomic and health externalities.

2If a lump-sum payment could be given to all agents with the same label in a frictionless manner, the
weight on revenue would be at least equal to the value of giving these agents a lump-sum payment, which
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“universally desired,” a property that is likely to hold for essential goods such as housing or

basic health care. The result then predicts that lowest qualities of universally desired goods

are offered free of charge (but subject to rationing and/or random allocation) to agents with

the lowest willingness to pay. Agents with higher willingness to pay will often be offered

higher qualities at positive prices; however, prices are lower than what they would be in the

market allocation, since the free allocation of lowest qualities allows the designer to decrease

prices for higher qualities.

We call the first reason for using non-market mechanisms “label-revealed inequality.”

Effectively, the designer uses information revealed by labels to identify groups of agents with

high welfare weights on average; she then subsidizes these groups using a combination of

free allocation to low-WTP agents and reduced prices for high-WTP agents. We provide

conditions under which the optimal mechanism takes the simple form—often encountered

in practice—in which the allocation to the whole group is free. In this case, the assignment

of quality is independent of agents’ WTP; in the model, it corresponds to a fully random

allocation. Assumption (1) described in the preceding paragraph is necessary for such fully

random allocation to be optimal. In particular, it is never optimal to allocate the good for

free to all agents when label-contingent lump-sum payments are available to the designer.

Our second main result identifies a distinct reason to use non-market mechanisms. Under

the assumption that the weight on revenue is weakly above the average welfare weight in a

given group (for example, when the designer can give a lump-sum payment to the group),

we show that the market allocation is optimal if and only if a certain function—a weighted

sum of virtual surplus and welfare-weighted information rents—is non-decreasing. We then

argue that this function fails to be non-decreasing when, conditional on the label, there is

strong negative correlation between willingness to pay and social welfare weights. We call

this effect “WTP-revealed inequality.” When lower willingness to pay reveals higher expected

welfare weights, the designer chooses to distort the market mechanism and provide some of

the goods at reduced prices. Unlike in the case of label-revealed inequality, the designer

targets the policy specifically to those agents within the group who select the random-

allocation reduced-price option. The policy achieves the redistributive goal because agents

with highest willingness to pay are incentivized to select the non-random high-price option.

The key condition of strong negative correlation between willingness to pay and welfare

weights is likely to hold in contexts where the variation in willingness to pay stems mainly

from the variation in the ability to pay—which could depend on individuals’ wealth—and

is, by definition, their average welfare weight. Practical reasons for the inability of the designer to condition
lump-sum payments on the label could include administrative costs, political constraints, or inefficiencies
associated with giving cash to agents suffering from behavioral biases.

3



the designer preferences depend on individuals’ ability to pay. The assumption is thus more

plausible when labels are less informative (e.g., the designer cannot observe agents’ incomes

directly); when the good is relatively expensive (so that only high-income individuals would

be able to afford it under the market allocation); and when willingness to pay is not too

heavily affected by subjective tastes (e.g., the good is essential).

We have so far focused on describing conditions under which non-market mechanisms are

optimal. However, our framework predicts that market allocations are optimal in many (and

perhaps most) environments—even when the designer has strong redistributive preferences.

Market mechanisms are preferred when the weight on revenue is high, which could be because

the designer uses the revenue to give a lump-sum payment to a disadvantaged group of agents,

or to subsidize an outside cause that is valuable from a welfare perspective. In particular,

when allocating public resources to corporations, it is natural to expect that the weight

on revenue far exceeds the average welfare weight. Market mechanisms are also optimal

when willingness to pay is not strongly correlated with welfare weights. This could arise

for two distinct reasons: the labels could be very informative, so that the designer can infer

the welfare weights based solely on observable information; or willingness to pay could be

shaped primarily by factors such as private tastes that are orthogonal to social preferences.

The latter case helps explain why we would not want to use non-market mechanisms for

most affordable, everyday goods and services. We further comment on the market-design

implications of our results in Section 6.

1.1 Related work

Non-market allocations in our setting can be interpreted as a form of in-kind transfer—and

economists have for a long time been interested in the efficiency and redistributive impacts of

such mechanisms. Weitzman (1977), for instance, showed that a free, fully random allocation

can be better than competitive pricing when the agents’ needs (as reflected in the designer’s

objective function) are not well expressed by their willingness to pay. Guesnerie and Roberts

(1984), meanwhile, gave a general argument that in-kind transfers can be optimal in second-

best environments. Nichols and Zeckhauser (1982) were among the first to point out that

by increasing the cost of participating in transfer programs, the government can deter the

rich from participating, as long as the cost affects the poor less than the rich. Many other

papers studied self-targeting mechanisms in different settings; see, for instance, Blackorby

and Donaldson (1988), who show that in-kind transfers can be superior to cash transfers

because they screen for the right type of individuals, Besley and Coate (1991) who study

self-targeting for public options, and Gahvari and Mattos (2007) who analyze conditional
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cash transfers.3 Additionally, Cremer and Gahvari (1997) showed that in-kind transfers can

be useful even in the presence of optimal non-linear income taxation. Currie and Gahvari

(2008) provided an excellent survey of this literature and discussed several other justifications

for existence of in-kind transfers.4

Our key contribution to the study of in-kind transfers is to employ tools from the theory

of mechanism design to explore the optimal structure of such redistribution schemes under

rich private information and an arbitrary set of observable labels. We share this market-

design perspective on redistribution with the work of Condorelli (2013) and Dworczak ®

Kominers ® Akbarpour (2021) (henceforth, DKA). Condorelli (2013) provided conditions

for the optimality of market and non-market mechanisms for allocating identical objects to

agents in an environment where the designer maximizes agents’ values that may be different

from their willingness to pay. We extend Condorelli’s (2013) model and objective function

by allowing the designer to have preferences over revenue, and accommodating cases when

lump-sum transfers are not feasible. These features lead to new insights and implications—

for instance, when lump-sum transfers are restricted, randomization in the mechanism may

be optimal even under conditions that would make rationing suboptimal in the setting of

Condorelli (2013). Additionally, our model features heterogeneous qualities of objects (so

that our allocations are matchings between types and qualities) and groups of agents with the

same observable characteristics (giving rise to the novel across-group allocation problem).

Finally, we focus on the economic implications of maximizing a redistributive objective

function, while Condorelli worked with a generic objective function. DKA studied a closely

related question in the context of buyers and sellers with heterogeneous marginal utilities

of money trading a homogeneous good. The current paper takes a more practical approach

by focusing on the problem of allocating public resources, and incorporating a range of

features that play a key role for real-life policymakers: heterogeneous quality of objects,

richer preferences over revenue, additional observable information about the agents, and

potential restrictions on the use of lump-sum transfers.

A few recent papers have enriched these frameworks in different ways. For example,

Kang and Zheng (2020) characterized the set of constrained Pareto optimal mechanisms for

allocating a good and a bad to a finite set of asymmetric agents, with each agent’s role as

a buyer or a seller determined endogenously by the mechanism. Kang (2020b) allowed for

3Self-targeting has also been found to be an effective way of allocating resources in development economics
context; see, for example, Alatas et al. (2016). A similar mechanism, albeit in a very different context of
constitutional design, was explored by Aidt and Giovannoni (2011).

4Note that the economic arguments in favor of in-kind transfers that we focus on in the present work are
distinct from and independent of the idea that it may make sense to give in-kind transfers for paternalistic
reasons, such as in response to agency problems within a household—one of the motivations described by
Currie and Gahvari (2008).
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an exogenous private market where agents can also purchase the good (of potentially higher

quality). Reuter and Groh (2020) studied a similar problem of allocating a finite number

of goods to finitely many agents under redistributive preferences, addressing new challenges

in analyzing and implementing the optimal allocation mechanism in the finite case. Fan,

Chen, and Tang (2021) analyzed optimal allocations of a divisible good when agents have

quadratic preferences over quantity, and differ in bargaining power (modeled as a weight

in the designer’s objective). Finally, Kang and Zheng (2022) studied a buyer-seller market,

where agents are entitled to equal shares of a limited resource, and characterized the optimal

mechanism for arbitrary Pareto weights.

In our approach, (implicit) socio-economic inequality motivates attaching non-equal so-

cial welfare weights to agents. An alternative approach is to model the effects of differences

in wealth via budget constraints. The sizable literature on auction design with budget con-

straints predicts that the designer may resort to non-market allocations even when she is

concerned about maximizing allocative efficiency, as in the work of Che, Gale, and Kim

(2013b). Non-market mechanisms play a different role in the two approaches: In our frame-

work, a non-market allocation may be preferred to the efficient allocation if it redistributes

enough surplus to agents with high welfare weights; in the Che, Gale, and Kim (2013b)

setting, non-market mechanisms arise when achieving the efficient allocation is not possible

due to budget constraints.

In a broad sense, our paper is connected to the canonical frameworks of public finance and

optimal taxation literature (Diamond and Mirrlees, 1971 and Atkinson and Stiglitz, 1976).

The key distinction is that in our framework the designer takes the inequality in the market

as given, and does not take into account how her mechanism might potentially influence

the welfare weights. In a sense, our designer cannot change agents’ endowments directly—

she can only design the rules of the allocation mechanism. The introduction of observable

characteristics to our model is a classical idea in the taxation literature. For example, Akerlof

(1978) described how “tagging” could be used in the tax system for redistributive purposes.

The interpretation of welfare weights in our model is also closely analogous to how they

are used in public finance; specifically, Saez and Stantcheva (2016) introduced generalized

marginal welfare weights in the context of optimal tax theory and interpreted them as the

value that society puts on providing an additional dollar of consumption to a given individual.

From a technical perspective, our paper is related to a recent body of work that gener-

alizes the Myerson (1981) ironing technique (see also Toikka, 2011). In concurrent research,

Muir and Loertscher (2022) relied on similar techniques to solve a problem of a revenue-

maximizing seller in the presence of resale; Ashlagi, Monachou, and Nikzad (2020) showed

that these methods can be also used in designing the optimal dynamic allocation in a multi-
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good environment by optimizing over how much information is disclosed about different

types of objects. Kang (2020a) derived a variant of this approach based on a tool called

the constrained maximum principle. Finally, Kleiner, Moldovanu, and Strack (2021) demon-

strated that all these procedures can be obtained as a special case of a general property of

extreme points that arise in optimization problems involving majorization constraints.

2 The model

Framework. A designer allocates a set of objects of heterogeneous quality to a set of agents

who differ in both their observable and unobservable characteristics. There is a unit mass

of agents, with each agent characterized by a type vector (i, r, λ). The three dimensions of

agents’ type vectors have a joint distribution in the population that is known to the designer;

formally, we can think of (i, r, λ) as the realization of a random variable on some underlying

probability space, where E[·] will be used to denote the expectation operator.5 The first

ingredient of the type vector, called the label, takes one of finitely many values from the

set I, and is assumed to be publicly observed. Agents with the same label form a group;

there are (measure) µi > 0 agents in group i. The parameter r ∈ R+ is the willingness to

pay (for quality) which is privately observed by the agent. Conditional on label i, the WTP

r has a distribution with cumulative distribution function Gi and continuous density gi,

strictly positive on [ri, r̄i]. Finally, λ ∈ R+ is the social welfare weight on a given individual,

interpreted as the social value of giving that individual one unit of money. Individuals

observe their own types,6 but neither r nor λ of any given individual are observed by the

designer.

There is a unit mass of objects, with each object characterized by a one-dimensional

quality q ∈ Q ⊆ [0, 1], where Q is a compact set. The assumption of unit mass is without

loss of generality: If there is only a mass µ < 1 of objects, we can always add an extra mass

1 − µ of “null” objects with q = 0 because receiving an object with quality 0 in our model

is equivalent to not receiving an object at all. Let F denote the cumulative distribution

function of q, that is, F (q) is the total mass of objects of quality equal to or less than q.

If an agent with willingness to pay r is assigned a good with quality q in exchange for a

monetary transfer t, that agent’s utility is rq− t; if that agent has a social welfare weight λ,

then the contribution of that individual to the social welfare function will be λ(rq − t).
Note that our framework incorporates a few strong assumptions about the environment.

5We do not define notation for the joint distribution because it will not be needed, other than through
conditional expectations and some marginal distributions that we introduce next.

6As we show, it does not matter whether an individual can observe her own social welfare weight λ.
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First, we assume that agents’ utility is quasi-linear in money. Second, we assume that agents

differ only in their “intensity” of preferences but they agree on the ranking of qualities.

Third, each agent’s utility only depends on the expected outcome—agents are risk neutral.7

Fourth, social preferences are captured by weights that are exogenous—reflecting an implicit

assumption that the designer does not take into account how her chosen allocation impacts

social preferences. These simplifying assumptions allow us to derive tight results without

imposing any restrictions on the set of mechanisms.

Assignments and mechanisms. An assignment Γ is a collection of |I| measurable func-

tions Γi : [ri, r̄i]→ ∆(Q) with Γi(q| r) interpreted as the probability that an agent in group

i with willigness to pay r is assigned an object with quality q or less. The assignment Γ is

feasible if

Γi(·| r) is a CDF for all i, and r ∈ [ri, r̄i]; (2.1)∑
i∈I

µi

� r̄i

ri

Γi(q| r)dGi(r) ≥ F (q), ∀q ∈ Q. (2.2)

Condition (2.2) states that the distribution of assigned qualities is first-order stochastically

dominated by the distribution of available qualities. The condition reflects the availability of

free disposal—a decrease in quality can be achieved by randomizing between a given quality

and quality 0. Because the utility of agents only depends on the expected quality, it will be

convenient to denote

QΓi(r) =

� 1

0

qdΓi(q| r);

we write simply Qi(r) if the reference to the underlying assignment Γi is clear.

To describe feasible mechanisms, we rely on the Revelation Principle. A direct mechanism

(Γi, ti)i∈I asks agents to report their willingness to pay r, assigns objects according to Γi(q| r)
in group i, and charges agents according to the transfer function ti(r). As it will turn out,

we do not have to include the social welfare weight λ in the agent’s report because no

incentive-compatible mechanism can improve the social welfare function by trying to elicit

this information from agents (see Claim 2).

Lump-sum payments to agents may or may not be allowed in different applications of

our framework. We use the following modeling approach to accommodate all possible cases:

There is no hard budget constraint for the designer but the mechanism must use non-negative

7While we cannot easily accommodate risk aversion, we can capture some aspects of risk aversion over
the assigned quality by defining the agent’s utility to be rv(q)− t for some concave function v. In that case,
we would define a new random variable q̃ = v(q) with CDF F̃ , called “risk-adjusted quality,” and apply our
results with F̃ as the primitive distribution of quality.
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transfers, i.e., ti(r) ≥ 0 for all i and r.8 However, lump-sum payments to agents may happen

“outside of the mechanism;” this is captured through the designer’s value for generating

monetary surplus in the mechanism (in the objective function that we formally introduce

in the next subsection). For example, if the value for generating monetary surplus is 0 in

the designer’s objective, then the constraint of non-negative transfers is binding and means

that lump-sum payments are not allowed. However, if the value for generating monetary

surplus is equal to the value of giving a lump-sum payment to all agents, then it is as

if lump-sum payments to all agents were allowed. We comment on other cases later. For

incentive-compatible mechanisms, the condition that transfers are non-negative is equivalent

to requiring that for each group i, the utility U i of type ri satisfies U i ≤ riQ
Γi(ri).

Formally, a mechanism (Γi, ti)i∈I is feasible if

� Γ is a feasible assignment, i.e., it satisfies conditions (2.1)–(2.2);

� each agent reports her willingness to pay truthfully:

rQΓi(r)− ti(r) ≥ rQΓi(r̂)− ti(r̂), ∀i, r, r̂; (2.3)

� each agent receives non-negative utility from the mechanism but does not receive a

positive money transfer:

0 ≤ U i ≤ riQ
Γi(ri), ∀i. (2.4)

The following lemma follows from standard arguments that extend Myerson (1981).

Claim 1. A mechanism is feasible if and only if Γ is a feasible assignment, QΓi(r) is non-

decreasing in r for all i, and ti(r) satisfies

Ui(r) ≡ rQΓi(r)− ti(r) = U i +

� r

ri

QΓi(τ)dτ (2.5)

for some U i ∈ [0, riQ
Γi(ri)].

Note that (2.5), commonly referred to as the envelope formula, provides an expression

for the utility of an agent with willingness to pay r in an incentive-compatible mechanism.

8Because agents are buyers in our framework, this constraint on transfers has no impact on the set of
implementable allocation rules—it only constrains lump-sum transfers.
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The objective function. We assume that the designer maximizes the expectation of a

weighted sum of revenue and agents’ utilities weighted by their social welfare weights. The

following observation—which has been made before in different contexts—implies that our

definition of a feasible mechanism is without loss of generality for maximizing this objective.

Claim 2. The designer cannot increase the expectation of her objective function by using an

incentive-compatible mechanism that elicits information about λ.9

Claim 2 is intuitive: Since, conditional on r, λ has no bearing on the individual’s pref-

erences, no incentive-compatible revelation mechanism can condition the allocation or pay-

ments directly on the reported λ. That is, if the mechanism attempted to elicit λ, then

agents would always report whatever λ would lead to the best possible treatment by the

mechanism, regardless of their true type. As a consequence, the designer must form beliefs

about λ based on the information she is able to elicit and observe—that is, r and i. Define

λi(r) ≡ E[λ| i, r]

to be the expectation of λ conditional on i and r, under their joint distribution. To distinguish

λi(r) from the underlying social welfare weight λ, we call λi(r) the Pareto weight on an

agent with label i and willingness to pay r. For technical reasons, we assume that λi(r) is

continuous in r for each i. Let

λ̄i ≡
� r̄i

ri

λi(τ)dGi(τ)

be the average Pareto weight for group i.

With this, we can write the designer’s objective function as

α
∑
i∈I

µi

(� r̄i

ri

ti(r)dGi(r)

)
︸ ︷︷ ︸

revenue

+
∑
i∈I

µi

(� r̄i

ri

λi(r)Ui(r)dGi(r)

)
︸ ︷︷ ︸

social surplus with weights λi

, (OBJ)

where α ≥ 0 is the weight on revenue. Let

hi(r) ≡
1−Gi(r)

gi(r)

9The claim follows from analogous results proven by Jehiel and Moldovanu (2001) and Che, Dessein, and
Kartik (2013a); see also Dworczak ® Kominers ® Akbarpour for the formulation and proof of the claim in
a similar economic context.
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denote the inverse hazard rate of Gi, and let

Ji(r) ≡ r − 1−Gi(r)

gi(r)

denote the virtual surplus function. It is well known from Myerson (1981) that hi(r) measures

the information rents of an agent with WTP r, while Ji(r) captures the designer’s revenue

in an incentive-compatible mechanism. Finally, let

Λi(r) ≡ Er̃∼Gi [λi(r̃)|r̃ ≥ r]

be the average Pareto weight attached to agents with willingness to pay above r. A simple

calculation then shows an alternative representation of the objective function (OBJ).

Claim 3. The objective function (OBJ) can be written as

∑
i∈I

µi

(� r̄i

ri

Vi(r)Q
Γi(r)dGi(r) + (λ̄i − α)U i

)
, (OBJ’)

where

Vi(r) ≡ αJi(r) + Λi(r)hi(r).

The function Vi(r) can be interpreted as the expected social value of allocating a unit

of quality to an agent in group i with WTP r in an incentive-compatible mechanism. Note

that in the standard paradigm of fully transferable utility, this value function would simply

be Ji(r) + hi(r) = r, thus reducing to a measure of allocative efficiency. With α = 0 and

constant Pareto weights, the value function would reduce to hi(r), which corresponds to the

case of maximizing agent surplus when payments are interpreted as “money burning.” In our

setting, the value function consists of a weighted sum of virtual surplus Ji(r) (corresponding

to revenue) and information rents hi(r) weighted by the function Λi(r) representing the

Pareto weights. The weight Λi(r) on the information rent of type r is given by the expected

social welfare weight on all agents in group i with a WTP above r—this is a consequence

of the envelope formula (2.5), which dictates that in order for the mechanism to remain

incentive-compatible, any increase in utility of type r must also be received by all higher

types.

Our objective function is quite general but has important limitations within the context

of redistribution. Primarily, the approach of using exogenous welfare weights reflects the

assumption that the designer takes inequality as given. With this formulation, she cannot

express preferences over any inequality created by the mechanism itself. In particular, we do

11



not accommodate quotas that control the overall fairness of the outcome, and are popular in

some contexts, such as school choice (see for example Echenique and Yenmez, 2015; Bodoh-

Creed and Hickman, 2018).

Interpretation. Claim 2 makes it clear that λi(r)—the Pareto weight—is effectively a

primitive of our model. Nevertheless, we introduced the unobserved social welfare weights

to emphasize the economic forces that give rise to any particular λi(r).

The average Pareto weights λ̄i and λ̄j differ to the extent that the labels i and j capture

observable information that is correlated with the social welfare weights. For example, if

tax data allows the designer to determine the income bracket for each agent, then agents

associated with lower income brackets might receive a higher average Pareto weight.

Similarly, dispersion in λi(r) for any given i should be interpreted as residual correlation

between willingness to pay and social welfare weights, conditional on i. For a concrete ex-

ample, suppose first that no observable information is available, but we elicit the willingness

to pay of two individuals, A and B, for a high-quality house in an attractive neighborhood.

Agent A is willing to pay $500, 000, while agent B is only willing to pay $50, 000. While

the differences between A and B’s willingness to pay may be driven by preferences, they

likely also reflect characteristics such as income and opportunity cost of money that could

in turn affect the welfare weights. Thus, without observing the characteristics that inform

welfare directly, the designer may place a higher Pareto weight on the agent with lower

willingness to pay, reflecting a Bayesian belief that this agent is more likely to be poor.

Now suppose that the designer additionally has access to tax data, and she knows that

agents A and B have the same income. Conditional on that information, the correlation

between willingness to pay and welfare weights becomes weaker; willingness to pay origi-

nally appeared to be more strongly correlated with welfare weights due to the omission of a

relevant variable—income. However, that correlation is likely still negative, as long as other

unobserved characteristics—such as health shocks or future job prospects—influence both

the welfare weights and willingness to pay for a house. More generally, the more informative

the label, the less residual correlation one would expect between r and λ. But there are

also cases when the correlation can be very weak even in the absence of informative labels.

For example, when the good to be allocated is a movie ticket, and agent A is willing to

pay $10, while agent B is only willing to pay $1, the most likely inference is that agent

A is more interested in that movie than agent B—not necessarily that B is very poor or

otherwise socially disadvantaged. Summarizing, λi(r) naturally depends on the strength of

the underlying social preferences and the degree to which they are uncovered by the label i,

but also on the characteristics of the good, such as the relative importance of personal taste
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versus ability to pay in determining the willingness to pay for it.

As discussed in the Introduction, we think of α—the weight on revenue—as representing

the marginal social value generated by an additional dollar in the designer’s (unmodeled)

budget.10 For example, if a local authority generates revenue by running a public housing

program, the monetary surplus can be returned to citizens as a tax cut, or used to invest in the

construction of new homes. Thus, by varying α, we can analyze how the optimal allocation

mechanism changes depending on the best available use of revenue for the designer.

Several special cases are of particular interest. When α = λ̄i, a dollar of revenue has the

same value to the designer as giving a dollar to a randomly selected agent within group i;

similarly, when α = λ̄ ≡
∑

i µiλ̄i, a dollar of revenue has the same value to the designer

as giving a dollar to a randomly selected agent from the whole population. These cases

are mathematically equivalent to assuming that the designer uses the revenue to finance

lump-sum payments to agents in group i, or all agents, respectively.

The case α = λ̄ can be thought of as a default specification in which the set of agents

represents the entire (local) population, the revenue generated from the mechanism subsidizes

the government’s budget, and the marginal cost of financing the budget is λ̄. If the designer

uses the additional dollar of revenue to lower taxes (so as to balance the budget), then it

is also possible that α < λ̄ if taxation is progressive. For both of these interpretations,

we are implicitly assuming that the designer cannot use the extra dollar of revenue to give

lump-sum payments to some “preferred” group i (a group i with λ̄i > λ̄).

More generally, whenever α < λ̄i for some label i, lump-sum payments to group i are

restricted (this is exactly when our assumption of non-negative transfers in the mechanism

has bite). This could be, for example, a consequence of political constraints.11 Another

interpretation is that lump-sum payments are allowed but there are frictions (such as ad-

ministrative costs) that decrease their marginal value below parity. In the extreme case

α = 0, our model becomes mathematically equivalent to a costly-screening (money-burning)

model in which an agent’s payment to the designer is more appropriately interpreted as a

costly activity (such as standing in a queue) that is socially wasteful.

On the other hand, setting α > λ̄i captures cases in which the designer has a higher

value from spending the revenue outside of group i. This could be because label-contingent

lump-sum payments are feasible, and there exists another group j with λ̄j > λ̄i. Another

possibility is that the designer can spend the monetary surplus generated by the mechanism

on a socially valuable outside cause (such as infrastructure investment).

10In the public finance literature, α is often referred to as the marginal value of public funds.
11Liscow and Pershing (2022) show, using survey data, that the general population (in the US) express a

much stronger political support for in-kind redistribution than for cash transfers.
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3 Optimal mechanisms

We identify an optimal mechanism in two steps:

1. First, the objects are allocated “across” groups: F is split into |I| CDFs F ?
i .

2. Then, the objects are allocated “within” groups: For each label i, the objects F ?
i are

allocated optimally according to the expected-quality schedule Q?
i .

We first explain how to solve the “within” problem, and then use the solution to that problem

to solve the “across” problem.

3.1 The “within” problem

In this step, we assume that Fi is the CDF of object qualities that are to be allocated to

agents with label i. Formally, we refer to the within problem for group i as maximizing

(OBJ’) subject to feasibility with I = {i}, µi = 1, and F = Fi. For a function Ψ, let co(Ψ)

denote the concave closure of Ψ (i.e., the point-wise smallest concave function that bounds

Ψ from above) and let cd(Ψ) denote the concave decreasing closure of Ψ (i.e., the point-wise

smallest concave decreasing function that bounds Ψ from above). When i is fixed, we will

sometimes abuse terminology slightly by referring to r as the agent’s type.

We say that there is assortative matching among types r ∈ [a, b], if Q?
i (r) = F−1

i (Gi(r))

for all r ∈ [a, b]. To account for the possibility that some objects may remain unallocated,

we say that the matching is effectively assortative when it is assortative for

r ∈ [inf{r : Q?
i (r) > 0}, r̄i].

We say that there is random matching among types r ∈ [a, b] if Q?
i (r) = q̄ for some q̄ ∈ [0, 1]

and all r ∈ [a, b].12

Remark 1. Because we have not imposed any assumptions on F (for example, we have

not ruled out degenerate distributions of quality), assortative and random matching could

coincide (if Fi is constant in the relevant range). In particular, the two concepts do not differ

when all types in a given interval are not allocated any objects. The distinction between

random and assortative matching can be guaranteed to be meaningful for each group i by

assuming that (i) F (0) = 0, (ii) F is continuous, and (iii) it is optimal to allocate all objects

within group i, which is implied by
� ri
ri
Vi(r)dGi(r) ≥ 0 for all ri.

12Throughout, H−1(x) denotes the generalized inverse of a right-continuous non-decreasing function H on
[a, b]: H−1(x) = min{y ∈ [a, b] : H(y) ≥ x}, for all x ≤ maxy{H(y)}.
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Theorem 1. Define

Ψi(t) ≡
� 1

t

Vi(G
−1
i (x))dx+ max{0, λ̄i − α} ri 1{t=0}.

The optimal value of the within problem for group i is given by

� 1

0

cd(Ψi)(Fi(q))dq.

An optimal solution is given by an expected-quality schedule

Q?
i (r) = Φ?

i (Gi(r))1{r≥G−1
i (x?i )},

where [0, x?i ] is the maximal interval on which cd(Ψi) is constant, and Φ?
i is non-decreasing

and satisfies

Φ?
i (x) =


� b
a F
−1
i (y)dy

b−a if x ∈ [a, b] and [a, b] is a maximal interval on which co(Ψi) is affine

F−1
i (x) otherwise

for almost all x.13

Moreover, it is optimal to set U i = 0 when α ≥ λ̄i, and U i = Q?
i (ri)ri when α ≤ λ̄i.

As mentioned in Section 1.1, the proof of Theorem 1 uses relatively standard techniques

known as “generalized ironing” that extend Myerson’s methods to richer environments. For

completeness, and because several features of our setting (primarily the non-negativity of

transfers and the continuous distribution of quantity) require these methods to be adjusted,

we present a complete argument in the appendix. In the proof, we work with an arbitrary

objective function of the form (OBJ’), not necessarily coming from maximizing a weighted

sum of revenue and surplus.

Theorem 1 describes a simple procedure to obtain a closed-form solution to the within-

group problem:

1. Compute the function Ψi that is a non-linear transformation of the original objective

function. A noteworthy feature of Ψi is that it incorporates the constraint that transfers

are non-negative: Whenever λ̄i > α, this constraint must bind, and hence U i is set

to the maximal feasible level Qi(ri)ri. In the transformed objective function Ψi, this

corresponds to an upward jump at 0.

13An interval [a, b] is a maximal interval on which co(Ψi) is affine if co(Ψi) is affine on [a, b] and no interval
[c, d] ) [a, b] has that property.
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2. Compute the concave closure co(Ψi) and the concave decreasing closure cd(Ψi) of Ψi.

3. If co(Ψi) < cd(Ψi) over some initial interval (0, x?i ), then objects of quality below the

x?i quantile of Fi are not allocated (the designer uses the free disposal option), and

hence agents with willingness to pay below r?i = G−1
i (x?i ) are assigned quality 0. This

can only happen if Ψi is not decreasing everywhere, which requires Vi(r) to be negative

for some r.

4. The remaining object qualities are partitioned into intervals; the remaining agents are

partitioned in the order of increasing willingness to pay to match the mass of objects

within each interval; whenever co(Ψi) is affine on a (maximal) interval, the matching

between types and quality is random within that interval; whenever co(Ψi) is strictly

concave on an interval, the matching between types and quality is assortative.

The function Ψi plays a key role in determining the properties of the optimal mechanism.

To gain intuition, we can use integration by parts and substitution, and obtain that for any

r > ri,

Ψi(Gi(r)) =

� r̄i

r

τλi(τ)dGi(τ) + (α− Λi(r))r(1−Gi(r)). (3.1)

Thus, the value of Ψi at some quantile x = Gi(r), is the value to the designer from selling

quality 1 at a price of r.

3.2 The “across” problem

Based on the solution to the within problem for each i separately, we can now formulate the

across problem as

max
(Fi)i∈I

{∑
i∈I

µi

� 1

0

cd(Ψi)(Fi(q))dq

}
(3.2)

such that
∑
i∈I

µiFi(q) = F (q), ∀q ∈ Q. (3.3)

Once the optimal F ?
i are found that solve (3.2)–(3.3), the optimal solution within each group

i is described by Theorem 1.

Our second technical result describes a solution procedure for the across problem. Let

V i(x) ≡ |cd(Ψi)
′(x)| denote the (absolute value of the) slope of cd(Ψi) at quantile x. Intu-

itively, V i(x) represents the “ironed” social value that—unlike the social value Vi(G
−1
i (x))—is

guaranteed to be non-decreasing in x.
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Theorem 2. There exists a non-decreasing non-negative function V min(q) such that for all

i and q, the optimal solution (F ?
i )i∈I to (3.2)–(3.3) satisfies

F ?
i (q) = 0 if V i(0) > V min(q),

F ?
i (q) = 1 if V i(1) < V min(q),

F ?
i (q) solves V i(F

?
i (q)) = V min(q) otherwise.

Moreover, V min(q) = min
i:F ?i (q)<1

{V i(F
?
i (q))}.

Theorem 2 gives rise to a simple procedure for allocating goods of different qualities

across groups. The algorithm allocates the objects by gradually increasing the CDFs F ?
i ,

in the order of increasing (ironed) marginal social values V i(·) = |cd(Ψi)
′(·)|. The function

V min(q) keeps track of the running minimum over these values across groups. Starting from

the lowest quality, we increase the CDF F ?
i for group i with the smallest V i at 0 (in the

case where there are several such groups, the proof of Theorem 2 describes how to break the

ties). At any q, we increase the CDF of group(s) i with the lowest V i at F ?
i (q). That is, only

groups i with V i(F
?
i (q)) = V min(q) are allocated objects with quality q. When some F ?

i (q)

reaches 1, we stop increasing the CDF for that group.

The procedure described in the preceding paragraph is a greedy algorithm in that it

allocates quality levels sequentially, from lowest to highest, and the allocation of the given

level of quality only depends on the ranking of marginal social values across the groups,

evaluated at the “current” allocation. A greedy algorithm is optimal because, for all i, the

ironed marginal value V i(·) changes monotonically with the allocation to group i. This

is a consequence of the fact that the optimal within-group allocation concavifies the value

function Ψi, as shown in Theorem 1. Section 5 illustrates the greedy procedure in a simple

numerical example, and gives a graphical interpretation of the greedy procedure.

The proof of Theorem 2 is in the appendix. Intuitively, we solve the program (3.2)–(3.3)

by first considering a relaxed problem in which the constraint that Fi(q) is a CDF is dropped,

and later verifying that there exists a solution to the relaxed program that is feasible. The

index V min(q) is the Lagrange multiplier on the resource constraint (3.3) for the relaxed

problem.

4 Economic implications

We now discuss the main economic implications of our framework. We first focus on the

within-group problem, and emphasize the circumstances under which using a non-market

17



allocation becomes optimal. Then, we turn attention to how the structure of the optimal

within-group allocation affects the split of qualities across different groups. In the next

section, we illustrate and build upon this analysis with a parametric example.

4.1 When to use a non-market mechanism?

4.1.1 Label-revealed inequality

Our first result shows that a non-market allocation becomes optimal when a certain group

has a high average Pareto weight and the good is desired by all agents in that group—in a

sense that we make precise next.

We say that the good is universally desired in group i if ri > 0, that is, if the willingness

to pay of agents in group i is bounded away from 0.14 The main example of universally

desired goods are essential goods (such as housing or basic health care) that everyone has a

need for. An implicit assumption behind this interpretation is that each agent has at least

some ability to pay, so that a good fails to be universally desired only if some agents have

no intrinsic value for it.15

Proposition 1 (Label-revealed inequality). If the average Pareto weight λ̄i in group i is

strictly larger than the weight on revenue α, and the good is universally desired in group i,

then there exists r?i > ri such that the optimal allocation within group i is random at a price

of 0 for all types r ≤ r?i .

Proposition 1 states that it is always optimal to allocate some objects randomly to the

lowest-WTP agents at a price of 0 if (i) the designer cares more about the surplus of an

average agent within group i than about revenue, and (ii) the good is universally desired.

The first assumption is likely to hold when label i is targeted for preferential treatment or

affirmative action, but making direct monetary transfers to group i is not feasible. In the

natural case α = λ̄, we have α < λ̄i if the label i is associated with a group of agents that

the designer cares about more than about the average agent in the population.

For intuition, note that for a fixed allocation, when α < λ̄i, the designer would like to

minimize the transfers that agents pay. The non-negative transfers condition prevents the

designer from giving a monetary transfer to agents directly, and implementing assortative

matching requires prices to be increasing. Consider, instead, providing the lowest qualities

14Using the lower bound ri to define universally desired goods makes our results cleaner, but the gist of the
assumption is that Gi is concentrated on values of r above ri. That is, our results that assume universally
desired goods continue to hold for distributions that attach a small enough mass to r ∈ [0, ri].

15If there are some agents with literally no income, then their willingness to pay for any good is zero, and
our framework does not correctly account for their welfare since it places no social value on their allocation,
regardless of λ.
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for free to all agents with willingness to pay below some cutoff ri. When—and only when—

the good is universally desired, this policy leads to an increase in the utility of the lowest-

WTP agents. Increasing the utility of lowest-WTP agents, in itself, does not necessarily

constitute an improvement in the designer’s objective because the designer need not be

directly concerned about the welfare of those agents; indeed, the only assumption we made

is about the average Pareto weight. However—and this is the key observation—providing the

goods for free to agents with low willingness to pay also allows the designer to lower prices

(and hence increase utility) for higher types. This comes at a cost: Providing the goods

for free precludes any screening in the corresponding region, reducing allocative efficiency;

in particular, the highest-WTP agents in the free-allocation region must necessarily receive

below-efficient quality. However, it can be shown that the reduction in allocative efficiency

is always second-order relative to the benefits when the region of random matching is small

(see Appendix B for a formal argument).

The optimal mechanism determines the size of the random-allocation interval by trading

off a decrease in prices against a decrease in allocative efficiency. Thus, it is often the case

that random matching at the bottom of the distribution of willingness to pay coincides with

assortative matching at the top of the distribution. In the next section, we illustrate how the

random-allocation region varies with the primitives of the model using a parametric example.

Here, we are instead interested in the circumstances under which the trade-off is resolved

towards a fully random allocation. This type of in-kind redistribution is quite common in

practice: the good is allocated for free to those satisfying certain verifiable eligibility criteria

(which are captured by the label i in our model). Because the price is set to 0, some sort of

rationing becomes necessary (which in practice may take the form of an explicit or implicit

lottery). To rule out trivial cases, we assume that Fi—the pool of quality levels available to

group i—is non-degenerate.16

Proposition 2 (Optimality of free provision). A necessary condition for a fully random

allocation to be optimal within group i is that

αr̄i ≤
� r̄i

ri

rλi(r)dGi(r). (4.1)

Condition (4.1) becomes sufficient if Vi(r) = αJi(r) + Λi(r)hi(r) is quasi-convex.

The key condition (4.1) is derived from a hypothetical scenario in which the designer has

only one (infinitesimal) unit of the object with quality 1 to allocate: For full randomization

16When Fi is a degenerate (Dirac delta) distribution, there is no difference between assortative and random
matching.
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to be optimal, it must be that the value of revenue from selling that object at a maximal

price to the highest willingness-to-pay agent is smaller than the value of allocating this object

uniformly at random at a price of 0. This necessary condition becomes sufficient under a

regularity condition on Vi(r).

Overall, Proposition 2 provides some support for in-kind distribution, but only if certain

restrictive conditions are met. First, the designer must not be able to target a direct cash

transfer to the “eligible” agents. Indeed, a direct consequence of inequality (4.1) is that

optimality of full randomization requires that the average Pareto weight λ̄i in group i be

strictly higher than the weight on revenue α. In particular, if lump-sum transfers to group i

are feasible for the designer, then a fully random allocation cannot be optimal. Second, the

weight on revenue (measuring how effectively it can be used for other purposes) should be

relatively small. Third, such schemes are more likely to be optimal for universally desired

goods; note that if the Pareto weights are non-increasing, then the right-hand side of (4.1)

is bounded above by (1/2)(r̄i + ri)λ̄i, and thus when ri = 0, the average Pareto weight must

be at least twice as large as the weight on revenue. However, when ri is large, it may suffice

that λ̄i is only slightly above α. Moreover, holding fixed λ̄i > α, (4.1) is satisfied in the limit

as the support of willingness to pay shrinks to a point. Thus, optimality of free provision is

more likely for goods for which heterogeneity in tastes is limited.

An interesting corollary of Proposition 2 is that it is never optimal to allocate goods fully

at random to the target population at a constant strictly positive price—even though such

an allocation mechanism is feasible for universally desired goods. This is because a fully

non-market allocation can only be justified if the average Pareto weight strictly exceeds the

weight on revenue; but if that is the case, then the unique optimal price is 0.17

4.1.2 WTP-revealed inequality

So far, we have focused on cases in which random allocation is optimal because the average

Pareto weight on group i exceeds the weight on revenue α. We have also argued that it

matters that the good is universally desired. Next, we ask whether the use of random

allocation is limited to these cases. The following result provides a negative answer, by fully

characterizing when the designer should resort to randomization for at least some agents in

group i.

17While it is tempting to criticize some existing social programs that charge a relatively small price and
rely on some form of rationing, it is important to emphasize that the result only applies if the price is below
everyone’s WTP (an empirical statement); besides, small prices could be imposed for reasons other than
raising revenue and screening that our model does not capture (for example, due to moral-hazard concerns).
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Proposition 3 (WTP-revealed inequality). Suppose that (i) the average Pareto weight λ̄i

in some group i does not exceed the weight on revenue α, or (ii) the good is not universally

desired for group i. Then, every optimal mechanism provides random allocation to agents

in group i with willingness to pay in some (non-degenerate) interval if and only if the social

value function Vi(r) = αJi(r) + Λi(r)hi(r) is not non-decreasing.

Proposition 3 can also be viewed as providing necessary and sufficient conditions for a

market solution to be optimal. The first assumption rules out the circumstances that lead

to the conclusion of Proposition 1; we already know that assortative matching cannot be

optimal in that case. When the designer can give a lump-sum payment to agents in group

i or the good is not universally desired, optimality of fully assortative matching reduces to

checking the monotonicity of the function αJi(r) + Λi(r)hi(r), which is the weighted sum of

revenue and social-welfare-weighted information rents of the agents.

Assuming differentiability, we can provide further economic intuition: Random matching

will be used for a subset of agents as long as for some r, we have

α + Λ′i(r)hi(r) + (Λi(r)− α)h′i(r) < 0.

Suppose that the inverse hazard rate is non-increasing—an assumption that is satisfied by

many commonly used distributions and implies that effectively assortative matching maxi-

mizes revenue. Then, random matching will be optimal for agents with willingness to pay

close to r if either (i) the average Pareto weight on types above r is sufficiently greater than

the weight on revenue, or (ii) the Pareto weights are declining sufficiently quickly with r.

That last condition can be interpreted as saying that, conditional on i, willingness to pay

is strongly negatively correlated with the unobserved social welfare weights; this is more

likely to be true when the label i is not very informative of the agents’ underlying weights

(e.g., when the label does not include any information about the agent’s income). Intuitively,

if Pareto weights are declining with willingness to pay around r, the designer would like to

give more rents to agents with types just below r. This can be achieved by making the

allocation random in a (small) interval around r. Indeed, compared to assortative match-

ing, agents near the left end of that interval will now receive a higher expected quality and

hence—by the envelope formula (2.5)—a higher expected utility. This modification generally

reduces both allocative efficiency and revenue, and hence the redistributive motive must be

strong enough to justify random matching as optimal.

Proposition 3 is related to results in the literature. First, when there is only one label,

quality is binary (q = 0 or q = 1), and α = λ̄ (the revenue is redistributed as a lump-sum

payment), our setting reduces to the one-sided version of the model of DKA, who show that
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competitive pricing (which is a special case of assortative matching) may fail to be optimal

when the Pareto weights have large dispersion. Under the assumption of non-increasing

inverse hazard rate, non-increasing Pareto weights, and α ≥ λ̄i, a simple calculation based

on Proposition 3 shows that assortative matching is optimal in our framework when α ≥
maxr{λi(r) − Λi(r)}. Thus, when revenue can be used more flexibly, non-optimality of

a market allocation requires both a high dispersion and a high level of the Pareto weights.

Second, Proposition 3 relates to results known from the analysis of the costly screening model,

in which transfers are replaced by “money-burning” (corresponding to the case α = 0).

Among others, Hartline and Roughgarden (2008), Condorelli (2012), and Chakravarty and

Kaplan (2013) showed that the assortative allocation maximizes unweighted agent surplus

when the inverse hazard rate is non-decreasing.18 Proposition 3 extends this condition to

the case when surplus is weighted by the Pareto weights: it is required that Λi(r)hi(r)—the

product of the inverse hazard rate at r and the average Pareto weight on all types above r—is

non-decreasing. At the same time, Proposition 1 implies that the conclusion of Proposition 3

is true only under the assumption that the good is not universally desired (that is, only if

ri = 0—an assumption that is made in the aforementioned papers).

4.2 How to allocate objects based on labels?

So far we have focused on allocation within individual groups. We now focus on what the

insights of Section 4.1, combined with Theorem 2, tell us about the allocation of objects

across the groups. We begin by characterizing the structure of supp(F ?
i )—the set of object

qualities allocated to group i—in simple cases in which the optimal allocation takes the same

form in all groups.

Proposition 4 (Across-group allocation with random matching). Suppose that it is optimal

to use a (fully) random allocation in each group i ∈ I. Relabel the groups so that lower i =

1, . . . , |I| corresponds to lower
� r̄i
ri
τλi(τ)dGi(τ). Then, there exists an optimal mechanism

in which supp(F ?
i ) = [qi, qi+1] ∩ supp(F ), for some {qi}|I|+1

i=1 with min supp(F ) = q1 ≤ q2 ≤
... ≤ q|I| ≤ q|I|+1 = max supp(F ).

Proposition 4 states that when all groups receive a random allocation (the conditions

for optimality of such an allocation are given in Proposition 2), the optimal across-group

allocation is particularly simple: groups can be ordered, and groups higher in the ranking

receive uniformly higher qualities. Intuitively, under fully random allocation, the designer’s

18Similar conditions were obtained as early as the work of McAfee and McMillan (1992) in a setting
where bidders collude but cannot share payments among each other; then, bidding in the auction becomes
equivalent to burning utility (see also Bauer, 2022 for a related model and result).
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marginal value from allocating a unit of quality to group i is equal to
� r̄i
ri
τλi(τ)dGi(τ) and

does not depend on the previously allocated qualities. Thus, in the implementation of the

greedy algorithm from Section 3, the designer maximizes overall welfare by first allocating

the lowest qualities to the group with the lowest marginal social value, then allocating the

lowest of the remaining qualities to the group with the second-lowest marginal social value,

and so on. This is in sharp contrast to the optimal across-group allocation when the market

mechanism is used within each group.

Proposition 5 (Across-group allocation with assortative matching). Suppose that it is op-

timal to use effectively assortative matching in each group i ∈ I. Relabel the groups so

that lower i = 1, . . . , |I| corresponds to lower r̄i. Then, there exists an optimal mecha-

nism in which supp(F ?
i ) = [q

i
, q̄i] ∩ supp(F ), for some {q

i
, q̄i}|I|i=1 with q̄1 ≤ q̄2 ≤ ... ≤

q̄|I| = max supp(F ). Moreover, if the good is not universally desired for any group, then

q
i

= min supp(F ) for all i ∈ I.

When assortative matching is used within groups (as is optimal under the conditions

given in Proposition 3), we should in general expect non-trivial overlaps in the quality levels

allocated to different groups. In the special case that all groups have the same support of

willingness to pay and the good is not universally desired, it is in fact optimal for all groups

to receive the same range of qualities. Intuitively, under assortative matching, the marginal

value of allocating an object to a given group i varies with how many objects have already

been allocated. This is because higher-WTP agents generate more value for the designer

than lower-WTP agents within the same group. Overlaps in qualities across groups i and j

occur whenever the highest-WTP agent within group i generates more social value then the

lowest-WTP agent within group j, and vice versa.

The social value generated by the lowest quality allocated to a given group (which is

received by the lowest-WTP agent under assortative matching) is often 0; in fact, this is

always the case for goods that are not universally desired.19 If the good is not universally

desired for any group, then it is optimal for the designer to allocate the lowest-quality goods

to all groups.

A similar observation explains the conclusion about the highest qualities. The marginal

value of allocating the highest-quality object is determined by the value αr̄i generated by the

highest-WTP agent in group i. Thus, the ranking of the upper bounds on WTP determines

19Note a subtle difference: It is of course also true that agents with willingness to pay 0 generate no value
for the designer when objects are allocated randomly. However, precisely because of the randomness, the
marginal value from the perspective of the object is positive. In contrast, under assortative matching, certain
qualities are allocated to the lowest-WTP agents deterministically, and hence can have marginal value 0 to
the designer.
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which groups receive the highest-quality objects. It may seem surprising that these values

do not depend on the Pareto weights. In particular, if r̄i is only slightly higher than r̄j, then

group i receives at least some higher-quality objects even if the designer puts no weight on

the welfare of agents in group i, and a high weight on the welfare of agents in group j. To

see why, note that the utility of the highest type r̄i is pinned down by the allocation to lower

types r < r̄i within her group (see the envelope formula (2.5)). In particular, the utility

of the highest-WTP agent in an incentive-compatible mechanism does not depend on the

quality of the object that she receives—higher quality only translates into a higher price.

This implies that the allocation at the top of the distribution only affects the designer’s

revenue, and hence the highest-quality object is allocated to the group i with the highest

upper bound on willingness to pay r̄i.

Finally, we analyze the structure of the across-group allocation when groups differ in

their internal allocation. To deliver the main insight in the sharpest possible form, we focus

on the case of two groups with opposite modes of allocation. We consider a more general

situation in the context of our parametric example in the next section.

Proposition 6 (Intermediate quality to a random-matching group). Suppose that |I| = 2

and that it is optimal to use effectively assortative matching in group i = 0 and fully random

matching in group i = 1. Then, there exist q ≤ q̄ such that supp(F ?
1 ) = [q, q̄]∩ supp(F ), and

supp(F ?
0 ) = ([0, q] ∪ [q̄, 1]) ∩ supp(F ). Moreover, assuming a non-degenerate distribution of

quality, q̄ < 1 if αr̄0 >
� r̄1
r1
τλ1(τ)dG1(τ); and q > 0 when αr0 <

� r̄1
r1
τλ1(τ)dG1(τ).

In practice, when a certain group of eligible agents receives goods for free, the quality of

those goods tends to be lower than the quality in the “market” (this lower quality may also

take the form of rationing, i.e., some agents receiving quality q = 0). Proposition 6 indicates

that this is typically not optimal when eligibility is verifiable (via the label). Instead, under

permissive conditions (for example, when the good is not universally desired for group 0),

the goods the designer chooses to provide for free are those of intermediate quality.

For intuition, note that when a random-allocation mechanism is used for group 1, the

designer’s payoff depends only on the expected quality allocated to that group. In contrast,

when assortative matching is used, the designer’s payoff depends on the dispersion in quality.

The latter observation is particularly intuitive in the context of revenue maximization: A

revenue-maximizing seller chooses to decrease the allocation of the low types in order to

lower the information rents of the high types (Myerson, 1981). In fact, it will often be

optimal not to allocate some objects in group 0, in which case the marginal value of quality

is 0 up to some point (in the greedy algorithm described in Theorem 2). At the same time,

the marginal value of quality allocated to agents with high willingness to pay in group 0
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may be large—especially if r̄0 is high. Thus, the designer allocates both the lowest- and

highest-quality objects to group 0, leaving the intermediate-quality objects for group 1.

5 Illustrative example

In this section, we analyze an extended parametric example that illustrates and expands on

the insights presented in Section 4. We additionally use the example to showcase a graphical

solution method based on the techniques developed in Section 3, providing mathematical

intuition behind our results.

5.1 The setup

Suppose that in each group i, willingness to pay is distributed uniformly on [ri, ri+1], where

ri ≥ 0. Pareto weights are given by λi(r) = λ̄i(γi + 1)(ri + 1− r)γi , for some γi > −1. Then,

group i is completely characterized by the the triple (ri, λ̄i, γi). The lower bound on WTP

ri ≥ 0 controls whether (and to what degree) the good is universally desired. The average

Pareto weight λ̄i measures—in relation to the fixed weight on revenue α—the strength of

the designer’s redistributive preference towards group i.20 The parameter γi controls the

dispersion in Pareto weights within group i: When γi = 0, the weights are equal; when

γi < 0, they are increasing in WTP; and when γi > 0, they are decreasing in WTP, with the

limiting case γi →∞ corresponding to the Rawlsian objective (positive weight only attached

to the agent with the lowest utility within group i).

5.2 Optimal within-group allocation

We first consider the optimal within-group allocation, fixing i ∈ I and the CDF of quality Fi

allocated to group i (assumed non-degenerate). Under our assumptions, the function Ψi(x),

as defined in Theorem 1, is first convex and then concave in the interval (0, 1], potentially with

a jump at 0 (see Figure 5.1); it follows that the concave decreasing closure cd(Ψi)(x) lies above

the function Ψi(x) precisely in some interval of the form [0, x?i ], where x?i ∈ [0, 1]. Thus, the

structure of the optimal within-group mechanism follows immediately from Theorem 1, and

takes a particularly simple form.

Result. There exists x?i ∈ [0, 1] such that the optimal mechanism allocates qualities randomly

to agents with r ≤ G−1
i (x?i ), and assortatively to agents with r > G−1

i (x?i ).

20Note that by construction, λ̄i is equal to the expected value of λi(r) with respect to the distribution of
WTP r in group i.
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Economically, our first result shows that in-kind redistribution to the lowest-WTP agents

may coexist with assortative matching at the “top of the distribution.” This is a manifes-

tation of the trade-off between redistribution and efficiency. Note that both fully random

allocation and fully assortative matching are special cases, with x?i = 1 and x?i = 0, respec-

tively. While we do not expect the simple structure to remain optimal in general (beyond the

example, the optimal allocation may “alternate” between random and assortative matching

multiple times), we expect the forces that determine x?i—the fraction of objects allocated by

a non-market mechanism—to be more robust. In the remainder of this subsection, we focus

on studying how the optimal cutoff x?i depends on the primitives of the model.

When lump-sum payments are not available

We first assume that λ̄i ≥ α, so that label i identifies agents treated preferentially by the

designer but a direct lump-sum transfer may not be feasible (when λ̄i > α). To find x?i , we

solve the equation Ψi(x)−Ψ′i(x)x = Ψi(0), using the fact that the concave decreasing closure

cd(Ψi) coincides with Ψi at 0, and is tangent to Ψi at x?i (if x?i < 1). While a closed-form

solution is not available in general when Ψi has a jump at 0, we can calculate x?i in the

special case when there is no dispersion in the Pareto weights.21

Result. When λ̄i ≥ α and γi = 0, the fraction of objects allocated randomly in the optimal

mechanism is

x?i =


√

2ri(λ̄i−α)

2α−λ̄i
if that expression is well-defined and below 1,

1 otherwise.

In line with Proposition 1, the non-market allocation is used for the lowest qualities of

the good when the good is universally desired (ri > 0) and the designer attaches a strictly

higher weight to group i than to revenue (λ̄i > α). By the definition of Ψi in Theorem 1,

these two assumptions together are equivalent to Ψi exhibiting a jump at 0. Then, even if the

function Ψi is concave on (0, 1], the concave decreasing closure cd(Ψi) lies above Ψi in some

non-degenerate interval [0, x?i ] (see the top left panel of Figure 5.1). Moreover, the number

of objects allocated randomly is increasing in the size of the jump, and hence increasing in

both ri and λ̄i.

Next, we ask when a fully non-market solution is optimal (x?i = 1). This possibility is

illustrated in the right top panel of Figure 5.1: The jump of Ψi at 0 is so large that the

concave decreasing closure cd(Ψi) lies everywhere above Ψi. Since the second assumption in

21This special case does not significantly constrain our analysis in terms of economic insight because the
intuition behind Proposition 1 does not rely on dispersion in Pareto weights.
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Figure 5.1: Illustration of the within-group solution: The function Ψi (solid line) and its
concave decreasing closure cd(Ψi) (dashed line when different from Ψi)

Proposition 2 always holds in our example, condition (4.1) is both necessary and sufficient.

Result. Fully random matching is optimal (x?i = 1) if and only if

λ̄i ≥ α
ri + 1

ri + 1
2+γi

.

In particular, λ̄i > α is necessary for full randomization to be optimal, while a higher

ri makes the condition easier to satisfy (in particular, λ̄i > α becomes sufficient when ri is

high enough); this is intuitive because higher λ̄i − α and ri increase the size of the jump

of Ψi at 0. Perhaps more surprisingly, a high concentration of weights on the lowest-WTP

agents (high γi) makes the condition more difficult to satisfy. The reason is that—holding the

average weight fixed—higher γi implies lower weights on agents with high willingness to pay.

Then, the motive to maximize revenue dominates the motive to maximize welfare for high

types, and the designer optimally uses assortative matching at the top of the distribution.

This intuition suggests that free provision of goods can only be optimal when the target

population is relatively uniform, perhaps because the label identifying the group is highly

informative of the characteristics that determine the social welfare weights.

27



When lump-sum payments are available

Next, we consider the case α ≥ λ̄i, when group i is not preferentially treated (or a label-

contingent lump-sum payment is feasible), as in the setting of Proposition 3.

We first observe that when some agents in group i have low willingness to pay (ri is

low) and the weight on revenue α is large, some objects may be discarded in the optimal

mechanism. In our formulation, free disposal of qualities below the xi-quantile is optimal

when Ψi(x) is increasing in [0, xi] (see the bottom left panel in Figure 5.1). The cutoff xi is

positive if and only if α(ri−1)+ λ̄i < 0. The reason for this is familiar from Myerson (1981):

discarding some objects raises revenue. Since the revenue motive for discarding objects is a

well-known property, for the remainder of this section, we focus on cases when free disposal

is not used.

When lump-sum payments to group i are feasible, Ψi does not have a jump at 0, and

we can solve for the cutoff x?i explicitly. The cutoff is positive if and only if the function

Ψi is convex in some initial interval; otherwise, the function Ψi is concave everywhere, and

hence it coincides with its concave closure, making fully assortative matching optimal (see

the bottom right panel of Figure 5.1).

Result. When α ≥ λ̄i, the fraction of objects allocated randomly in the optimal mechanism is

x?i = 1−min

{
1,

(
2α

λ̄i(γi + 1)

) 1
γ

}
.

It follows that fully assortative matching is optimal if and only if 2α ≥ λ̄i(γi + 1).

When 2α < λ̄i(γi + 1), the lowest-quality objects are allocated for free. Consistent with

our discussion in Section 4, the use of a non-market mechanism is supported both by the

levels of Pareto weights in group i and their dispersion. However, there is a sense in which

dispersion plays a more important role. First, sufficiently high dispersion (as controlled by

γi) is sufficient for making it optimal to allocate the lowest-quality objects for free. Second,

some degree of dispersion (with higher weights on agents with low WTP) is necessary under

our assumption that α ≥ λ̄i (in fact, we need γi > 1). In particular, when there is no

dispersion in Pareto weights, assortative matching is always optimal.

An interesting property of the optimal mechanism in our example is that—whenever

label-contingent lump-sum payments are feasible—assortative matching is used at the top of

the distribution of WTP; in Appendix C, we show that this is a general property, at least as

long as Pareto weights are non-increasing in WTP. Intuitively, under these assumptions, the

revenue-maximizing motive dominates the welfare-maximizing motive for agents with high

WTP.
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Finally, we ask how the level of inequality revealed by WTP (dispersion of Pareto weights)

influences the fraction of objects allocated by a non-market mechanism. It turns out that

the relationship is non-monotonic, with the use of non-market allocation maximized at an

intermediate level of inequality.

Result. When α ≥ λ̄i, the fraction of objects allocated randomly in the optimal mechanism

is zero (x?i = 0) both when γi = 0 and (in the limit) when γi → ∞. The fraction of objects

allocated randomly is maximized at the unique positive γi that solves the equation

exp
(

γi
γi+1

)
(γi + 1)

=
λ̄i
2α
.22

The non-monotonicity exhibited in the example is a general property, as we show in

Appendix C. For intuition, consider the case when γi →∞ (so that we approach the Rawlsian

objective). Even though the optimal mechanism uses random matching for the lowest types,

the randomization region actually vanishes as the weights become increasingly skewed. The

average Pareto weight is fixed at a level below the weight on revenue, so as the weight on the

lowest-WTP agents increases, the weight on all higher-WTP agents converges to 0. Thus,

the motive to maximize revenue eventually dominates for almost all agents, which makes

assortative matching increasingly attractive, and optimal in the limit.23

5.3 Optimal across-group allocation

In this subsection, we use the properties of the optimal within-group solution to solve a

simple instance of an optimal across-group allocation. We suppose that there are two groups,

respectively labeled i = 0 and i = 1, where the main distinction is that λ̄1 > α > λ̄0. That

is, group i = 1 is poorer, disadvantaged, or for some other reason treated preferentially by

the designer. Revenue is used to finance a lump-sum payment to all agents. Additionally,

we assume that r0 ≥ r1 > 0, that is, the good is universally desired, and group 0 has higher

WTP. The distribution of quality F has a strictly positive density on [0, 1].

We begin with a simple result that illustrates Proposition 4.

Result. Suppose that the designer uses a fully random allocation in both groups. Then, in

22When α = λ̄i, the fraction of objects allocated randomly is maximized when γi is slightly above 3, and
is equal to approximately 20%. As α grows, the maximal fraction of objects allocated randomly declines,
while the level of inequality required to achieve it grows. For example, when α = 2λ̄i, the maximal fraction
is around 10% and is achieved when γi is slightly below 9.

23While the designer could maximize the welfare of the lowest-WTP agent by giving her a random quality
for free, this would necessarily decrease revenue to 0. Since α ≥ λ̄i, even though the weight on some
individuals diverges to ∞, the revenue motive dominates the welfare motive in expectation over all types.
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the optimal across-group allocation, the group i with higher λ̄i

(
ri + 1

γi+2

)
receives uniformly

higher quality.

The straightforward comparative static in the preceding result is that higher λ̄i makes it

more likely that group i receives higher-quality objects. The term ri is a sufficient statistic for

the distribution of WTP in our parametric example, and it captures the fact that higher WTP

means that allocating an object is more valuable. The 1
γi+2

term measures the importance of

the distribution of Pareto weights within a group. Group i is more likely to receive priority

over the other group if the Pareto weights within that group are more skewed towards agents

with high WTP. This is because agents with highest WTP necessarily receive the highest

utility among all agents in their group; if they also have a high Pareto weight, then the

designer can generate more social value from that group.

From now on, we assume that 2α < λ̄0(γ0 +1), so that an effectively assortative matching

is optimal within group 0. In group 1, meanwhile, we know that it is optimal to allocate

qualities below the x?0-quantile for free at random, and the remaining qualities assortatively.

Figure 5.2: Illustration of the across-group solution: The graph depicts cd(Ψi) for both
groups i = 0, 1, while the line below depicts the resulting allocation of quality.

Figure 5.2 illustrates, qualitatively, how the greedy algorithm from Theorem 2 produces

an optimal across-group allocation. Qualities are allocated from lowest to highest (as indi-

cated in the bottom line in the figure), with the “next” level of quality allocated to the group

with a smaller (absolute value of the) slope of the function cd(Ψi). Intuitively, the slope of
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cd(Ψi) at x captures the marginal value of quality given that a mass x of qualities has been

already allocated according to the optimal within-group mechanism.

For intuition, it is helpful to think of α being large relative to λ̄0, so that we can ap-

proximately treat the designer as maximizing revenue in group 0. In particular, when

α(r0 − 1) + λ̄0 < 0, the slope of cd(Ψ0) is zero in some initial interval, and the optimal

mechanism for group 0 uses free disposal. Then, the lowest-quality objects are allocated to

group 0 since they are optimally discarded anyway. More generally, the marginal value of

allocation to low-WTP agents is low when revenue is the dominant motive for the designer.

Allocation of qualities to group 0 continues until the slope of cd(Ψ0) equalizes with the slope

of cd(Ψ1) at 0, as indicated by point A in Figure 5.2.

The next “batch” of qualities is allocated entirely to group 1 (see the green region in

Figure 5.2). This is because the lowest qualities in group 1 are allocated randomly; as a

result, the marginal value of allocation is constant in the mass of allocated objects in the

random-allocation region, as reflected by the constant slope of cd(Ψ1) in the interval from

B to C.

As soon as assortative matching “kicks in” in group 0 (which happens at point C), the

designer optimally splits qualities across both groups. For any quality level q in this region,

the fraction of objects allocated to each group is between 0 and 1, and such that the marginal

values are always equalized across the groups.

Finally, for the configuration in Figure 5.2, the highest qualities are allocated to group 0.

The reason is that the slope of cd(Ψ1) at 1 is equal to the slope of cd(Ψ0) at some interior

point (point D in the figure); this implies that when the designer optimally allocates the last

unit of quality to group 1, there are agents in group 0 who generate even higher marginal

value—they must receive the highest quality under assortative matching.

The following result summarizes our reasoning, and gives conditions under which the

various regions we described are non-degenerate.

Result. There exist cutoffs 0 ≤ q < q̂ < q̄ ≤ 1 such that, in the optimal across-group

allocation, objects of quality q ≤ q are allocated to group 0 (with potentially some objects

discarded), objects of quality q ∈ [q, q̂] to group 1, objects of quality q ∈ [q̂, q̄] to both groups

(in the sense that each q in this interval is shared by both groups), and objects of quality

q ≥ q̄ to group 0. Additionally, q > 0 when α(r0 − 1) + λ̄0 < 0; and q̄ < 1 when r0 > r1.

Finally, to illustrate Proposition 6, we suppose that a fully random allocation is optimal

for group 1. Optimality of fully random matching means that cd(Ψ1) is affine, and its slope

is constant. In Figure 5.2, this would correspond to the line segment BC being “stretched”

to the entire interval [0, 1], and the curved segment
>

CE removed. In this case, the greedy

algorithm allocates all qualities to group 1 in one “batch.” In contrast, group 0 receives
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extremal qualities.

6 Market design implications

The optimal mechanism in our framework is always a combination of (i) random matching,

which can be seen as a form of in-kind redistribution, and (ii) assortative matching, corre-

sponding to the allocation that would arise in a competitive market equilibrium. Random

matching can be optimal only when there is enough dispersion in the welfare weights to merit

the allocative distortion—and even then, for random matching to be optimal, the designer

needs to be able to identify sufficient information about the inequalities in agents’ unob-

served social welfare weights to be able to target the redistribution properly. The designer

can observe, directly or through the mechanism, the label and the willingness to pay. Those

give rise to two distinct paths for in-kind redistribution to be optimal:

1. Label-revealed inequality: If some label i identifies a group of agents that have a higher

welfare weight on average than the weight on revenue α, then Proposition 1 shows that

in-kind redistribution becomes optimal when the good being allocated is universally

desired.

Food stamp programs serve as an illustration. Group i can be defined by a set of ver-

ifiable eligibility criteria—such as low income—that are strongly correlated with what

society associates with those most in need. For various reasons, it might be impractical,

politically infeasible, or costly to give monetary transfers to group i, so that α < λ̄i may

hold. Then, since food (defined broadly enough) is a universally desired good, in-kind

redistribution can be justified by our Proposition 1. We can furthermore ask whether

the simple form that many of these programs take—providing an undifferentiated food

stamp free of charge—is optimal. Condition (4.1) in Proposition 2 is sufficient (and

almost necessary) for optimality of providing a constant quality at a zero price. This

condition is more likely to hold when the dispersion in willingness to pay is low.24

This may indeed be the case in the context of food aid: Food stamp programs tend

to be addressed to relatively poor households which do not vary significantly in their

ability to pay. Moreover, when the recipients have discretion in choosing individual

food items, differences in willingness to pay due to dietary preferences should also be

small. Thus, our framework provides a justification for allocating the same food stamp

free of charge to everyone who is eligible.

24In fact, as r̄i approaches ri, condition (4.1) reduces to the requirement that α < λ̄i.
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In contrast, consider the example of public housing programs. In some countries,

as many as a third of households are eligible for some form of housing assistance,

implying that the ability (and hence willingness) to pay of some recipients could be

quite large.25 In such cases, in light of Proposition 2, a fully random allocation is

unlikely to be optimal. A superior solution, based on Proposition 1 and illustrated

in Section 5, is to provide the lowest-quality houses at a minimal price in a lottery,

and use a price gradient for granting access to higher-quality housing. Using a low

price for the lottery ensures that even those who opt for higher quality can be charged

a below-market price. At the same time, the price gradient ensures a more efficient

allocation, and raises more revenue.

2. WTP-revealed inequality: The second rationale for using in-kind redistribution in our

framework (Proposition 3) is when willingness to pay reveals information about the

welfare weights. In general, differences in willingness to pay may reflect both differences

in idiosyncratic preferences as well as differences in ability to pay. For markets in which

there is strong negative correlation between willingness to pay and the welfare weights,

the designer can use the information revealed by agents’ behavior to specifically target

those individuals within a group who are likely to have a high welfare weight.

For example, a patient who has a low willingness to pay for an important medical

treatment is more likely to be poor, and thus to have a high expected welfare weight.

In such cases, the designer can redistribute by introducing a reduced-price lottery for

low-quality health care (e.g., providing health care services with higher waiting times)

in order to separate low- and high-WTP agents—and subsidize the former via a reduced

price.

Our framework also identifies two distinct forces supporting the use of market mechanisms

even in the presence of redistributive concerns:

1. The revenue motive: As predicted by Proposition 2, assortative matching will be used

for at least some agents as long as the weight on revenue α exceeds the average Pareto

weight λ̄i in a given group i. Moreover, by Proposition 3, for (Myerson-)regular dis-

tributions of willingness to pay, the fraction of objects allocated using the market

mechanism increases with α. A high α occurs naturally when revenue is a driving

objective unto itself (e.g., when the marketplace owner is a private, for-profit institu-

tion). However, the weight on revenue can also be high in public contexts in which

25van Dijk (2019) notes that “34% of Dutch households, 26% of Austrian households, and 19% of French
households live in subsidized housing.”

33



it is possible to subsidize selected groups of agents via direct lump-sum transfers, or

when the designer uses the revenue to fund an outside cause that is socially valuable.

For example, consider a government designing an auction to allocate goods such as

spectrum licenses or oil and gas leases to firms. Because the social value of a dollar

funding the government budget is probably higher than the marginal social value of

giving a dollar to the firms participating in the auction, assortative matching is typically

optimal, perhaps with some restriction on supply to further increase revenue.

The same force behind optimality of assortative matching applies in any situation in

which direct label-specific lump-sum payments are feasible (so that α ≥ λ̄i for any

group i). For example, if it is feasible to give cash transfers to those eligible for

public housing (perhaps in the form of tax credits), then there is an argument against

using lotteries to allocate public housing—we can do better by allocating assortatively

at least at the top of the distribution of willingness to pay, and using the resulting

revenue to fund monetary transfers to all eligible agents.

2. The efficiency motive: Assortative matching is optimal for maximizing the efficiency

of the allocation—and this force works in favor of a market allocation even when the

weight on revenue α is strictly below the average Pareto weight λ̄i. Efficiency becomes

the dominant force when Pareto weights do not vary too much with willingness to

pay, conditional on the label i. Indeed, Proposition 3 implies that a fully assortative

matching becomes optimal when α ≥ maxr{λi(r)−Λi(r)}, which can be true even for

very low α when there is little dispersion in λi(r).

Low dispersion in λi(r) can arise in two cases: (i) when the designer does not have

strong redistributive preferences to begin with (there is little dispersion in the un-

observed welfare weights) or, more interestingly, (ii) when willingness to pay is not

correlated with the underlying welfare weights, conditional on the label. Observation

(ii) helps explain why a market allocation is desirable for most goods and services

even when the designer has strong preferences for redistribution. Agents’ needs are

unlikely to be strongly correlated with willingness to pay for goods that are relatively

cheap (affordable, at least in small quantities, to most people) and whose value depends

heavily on tastes. Additionally, the residual correlation between willingness to pay and

the unobserved welfare weights decreases when more information becomes available in

the form of labels (see the interpretation of the model in Section 2). For example,

if a country provides free health care to eligible citizens, it becomes less likely that

the low willingness to pay in the non-eligible group reflects adverse social or economic

circumstances, since these circumstances would likely be partly captured by the label.
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Hence, using in-kind redistribution to address label-reveled inequality should often be

expected to coexist with a market allocation to the populations that are not being

targeted for redistribution.

7 Concluding remark

Focusing on an objective function that assigns arbitrary welfare weights to market partici-

pants sets this work apart from the standard mechanism design paradigm. Indeed, while the

mechanism design literature has developed an impressive framework for designing revenue-

maximizing auctions and allocatively efficient mechanisms, there has been far less focus on

how to use those same tools to understand the ways in which the structure of optimal mecha-

nisms responds to redistributive goals. Our paper is thus one of relatively few attempts thus

far using mechanism design to give guidance to real-world market designers about how to

optimally structure market-level redistributive systems. We hope to see more work devoted

to this problem.
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Appendix

A Proofs of the results in the main text

A.1 Proof of Theorem 1

Because the within-group problem can be solved for each group i separately, we fix i ∈ I,

and drop the subscripts i to simplify notation. We prove the theorem under the assumption

that the designer maximizes a general objective function of the form

� r̄

r

V (r)QΓ(r)dG(r) + v U (A.1)

for some upper semi-continuous function V : [r, r̄]→ R and some constant v ∈ R.

Fixing the CDF of available quality F , we call an expected quality schedule Q : [r, r̄]→
[0, 1] feasible if Q = QΓ for some Γ : [r, r̄] → ∆(Q), and there exist transfers t such that

(Γ, t) is a feasible mechanism. Given two CDFs F, G : [a, b] → [0, 1], we say that F is a

mean-preserving spread (MPS) of G if

� t

a

F (x)dx ≥
� t

a

G(x)dx, ∀t ∈ [a, b],

with equality for t = b. We say that F first-order stochastically dominates G if F (x) ≤ G(x)

for all x ∈ [a, b]. The following lemma describes all feasible expected quality assignments,

assuming no free disposal.

Lemma 1. If F is the CDF of available qualities, then Q(r) is a feasible assignment of

expected qualities (with no free disposal) if and only if Q(r) = Φ(G(r)), where Φ : [0, 1] →
[0, 1] is a non-decreasing, left-continuous, mean-preserving spread of F−1.

Proof. Since F (q) is a CDF, we can apply Strassen’s Theorem (see Theorem 3.4.2(a) of Müller

and Stoyan, 2002): A CDF F̄ (q) is a distribution of posterior means of a random variable

distributed according to F if and only if F is a mean-preserving spread of F̄ . Moreover, by

the usual argument, the IC constraint (2.3) implies that the assignment of expected qualities

must be non-decreasing. This monotonicity condition uniquely pins down Q(r) given F̄ and

G: F̄ (q) is the (normalized) mass of objects of quality q or less available to agents; this mass
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must be allocated to agents with willingness to pay r or lower; therefore, for any q, there

exists r such that F̄ (q) = G(r), and it follows that

Q(r) = F̄−1(G(r)).

Finally, we claim that a function Φ is equal to F̄−1 for some feasible F̄ if and only if Φ

satisfies the conditions of the lemma. That is,

F̄ is a CDF on [0, 1] and F is a MPS of F̄ ⇐⇒

F̄−1 : [0, 1]→ [0, 1] is non-decreasing, left-continuous, and F̄−1 is a MPS of F ; (A.2)

this follows from Lemma 1 found in Brooks and Du (2021).

The proof of Lemma 1 can be understood through its connection to information design:

We can treat F as the prior distribution of a random variableX (quality); Strassen’s Theorem

implies that a distribution F̄ of posterior means of X can be induced from the prior F (under

some signal when X is treated as a state variable) if and only if F is a mean-preserving spread

of F̄ . Hence, in our assignment problem, mean-preserving contractions of the distribution

F describe all feasible distributions of expected quality. Moreover, incentive-compatibility

constraints imply that there is a unique assignment of expected qualities to types because

the assignment must be monotone in the willingness to pay r.

Because the function Φ(q) from Lemma 1 is left-continuous, its value at 0 is not pinned

down. This is a reflection of the fact that the designer’s expected payoff from the mechanism

does not depend on the allocation for a measure-zero set of types, in particular, on the

allocation of type r. However, the allocation for type r, Q(r), appears in the constraint

defining the non-negative transfers condition. This constraint is most permissive when Q(r)

is set to its maximal feasible level which is Q(r+) (since Q must be non-decreasing). (Here,

and hereafter, we denote f(x+) = limy↘x f(y).) Because it is convenient to keep Φ left-

continuous also at 0, we will extend the function Φ by assuming that Φ(x) = 0 for all x ≤ 0,

and then the non-negative transfers condition becomes U ≤ rΦ(0+).

Given Lemma 1, we can write the problem of maximizing (A.1) under no-free-disposal as

max
Φ

{� r̄

r

V (r)Φ(G(r))dG(r) + max{0, v} rΦ(0+)

}
subject to

Φ is a MPS of F−1.
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Indeed, notice that when v ≤ 0, it is optimal to choose U as low as possible, and hence U = 0

in the optimal mechanism (U ≥ 0 by individual rationality). In contrast, when v > 0, the

non-negative transfers condition implies that it is optimal to set U to its maximal feasible

level rΦ(0+).

Integration by parts and by substitution yields

� r̄

r

V (r)Φ(G(r))dG(r) =

� 1

0

(� 1

t

V (G−1(x))dx

)
dΦ(t).

Whenever we write
�
f(x)dΦ(x) for some measurable function f , we mean the Lebesgue

integral with respect to the σ-additive measure µΦ defined by µΦ([a, b]) = Φ(b+)− Φ(a), in

particular, µΦ({a}) = Φ(a+)−Φ(a). Under this convention, and recalling that Φ(x) = 0 for

x ≤ 0, we can also write

Φ(0+) =

� 1

0

1{t=0}dΦ(t).

Then, we can write (A.1) as

� 1

0

(� 1

t

V (G−1(x))dx+ max{0, v} r 1{t=0}

)
dΦ(t).

Using the definition of Ψ from Theorem 1, we conclude that the objective function is� 1

0
Ψ(x)dΦ(x); problems of this form admit an easy-to-describe solution.

Lemma 2. Consider the problem

max
Φ: Φ is a MPS ofΦ0

{� 1

0

Ψ(x)dΦ(x)

}
,

where Ψ(x) is an upper semi-continuous function and Φ0 is given. The value of the problem

is
� 1

0
co(Ψ)(x)dΦ0(x), and the solution is given by

Φ?(x) =


� b
a Φ0(x)dx

b−a if x ∈ [a, b] and [a, b] is a maximal interval on which co(Ψ) is affine,

Φ0(x) otherwise,

for almost all x.

Proof. For any Φ, we have

� 1

0

Ψ(x)dΦ(x) ≤
� 1

0

co(Ψ)(x)dΦ(x).

Moreover, the function on the right hand side of the inequality is maximized at Φ = Φ0
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because co(Ψ)(x) is a concave function. It follows that the value of the problem in the lemma

is bounded by
� 1

0
co(Ψ)(x)dΦ0(x). We show that this upper bound can be achieved. Consider

the candidate solution Φ?(x) from the statement of the lemma. First, this function is feasible

(by Gentzkow and Kamenica, 2016). Moreover, supp(Φ?) ⊆ {x : Ψ(x) = co(Ψ)(x)}, and

on that set, Φ? = Φ0. Indeed, whenever Ψ(x) < co(Ψ)(x), x must lie in the interior of an

interval in which co(Ψ)(x) is affine, and hence, by definition, Φ?(x) is constant in that region.

Thus,
� 1

0
Ψ(x)dΦ?(x) =

� 1

0
co(Ψ)(x)dΦ0(x).

The form of the solution is consistent with the concurrent findings of Kleiner et al. (2021),

who derive general properties of extreme points that emerge as solutions to problems of the

form considered in the lemma. The maximization problem in Lemma 2 can also be seen as

analogous to a Bayesian persuasion problem in which the designer’s preferences over posterior

beliefs depend only on the posterior mean (see Kolotilin, 2018, and Dworczak and Martini,

2019) with a key difference: The MPS condition is flipped, requiring the solution Φ to be a

mean-preserving spread (rather than a mean-preserving contraction) of the prior Φ0. This

makes the problem very easy to solve by finding a concave closure of the objective function.

Lemmas 1 and 2 immediately imply that the value of the maximization problem under

no-free-disposal is given by

� 1

0

co(Ψ)(x)dF−1(x) =

� 1

0

co(Ψ)(F (q))dq,

where the equality follows from integration by substitution. Moreover, a solution is given by

Q?(r) = Φ?(G(r)), where Φ? is described in Lemma 2.

Next, we modify the solution to allow for free disposal. Allowing for free disposal is equiv-

alent to allowing for “downward” first-order stochastic dominance shifts in the distribution

of expected quality allocated to agents. That is, Q(r) is a feasible expected-quality schedule

with free disposal if Q(r) = Φ̄(G(r)) for some Φ̄ ≤ Φ, where Φ is a mean-preserving spread

of F−1 (see Lemma 1). Note that Φ̄ dominates Φ in the FOSD order because the FOSD

relation is reversed by taking the inverse of the CDFs (and both Φ̄ and Φ are inverses of the

CDFs of the expected quality). Therefore, to derive the optimal expected-quality schedule

under free disposal from the corresponding solution without free disposal, it is enough to

solve an optimization problem of the following form:

Lemma 3. Consider the problem

max
Φ

� 1

0

co(Ψ)(x)dΦ(x)
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subject to

Φ(x) ≤ Φ?(x),

where Φ?(x) is the solution given in Lemma 1. The value of the problem is
� 1

0
cd(Ψ)(x)dΦ?(x),

and the solution is given by

Φ??(x) = Φ?(x)1{x≥x?}

for almost all x, where [0, x?] is the maximal interval on which the concave decreasing func-

tion cd(Ψ) is constant.

Proof. By definition of x?, the function cd(Ψ)(x) is constant and equal to co(Ψ)(x?) on

[0, x?] and coincides with co(Ψ)(x) otherwise. On one hand, we have for any feasible Φ,

� 1

0

co(Ψ)(x)dΦ(x) ≤
� 1

0

cd(Ψ)(x)dΦ(x) ≤
� 1

0

cd(Ψ)(x)dΦ?(x),

where the first inequality follows from the fact that co(Ψ) ≤ cd(Ψ), and the second follows

from the fact that cd(Ψ) is non-increasing and Φ dominates Φ? in the FOSD order. On the

other hand, if we define Φ?? as in the statement of the lemma, then we have

� 1

0

co(Ψ)(x)dΦ??(x) =

� x?

0

co(Ψ)(x)dΦ??(x) +

� 1

x?
co(Ψ)(x)dΦ??(x)

= co(Ψ)(x?)Φ?(x?) +

� 1

x?
cd(Ψ)(x)dΦ?(x) =

� 1

0

cd(Ψ)(x)dΦ?(x)

by the properties of co(Ψ), cd(Ψ), and Φ??(x). Thus, Φ?? achieves the upper bound and

hence is a solution to the problem described in Lemma 3.

With Lemma 3, Theorem 1 follows directly from Lemma 1: The value of the problem is

� 1

0

cd(Ψ)(x)dΦ?(x) =

� 1

0

cd(Ψ)(x)dF−1(x) =

� 1

0

cd(Ψ)(F (q))dq,

where the last equality follows from integration by substitution. The optimal solution is

given by an expected-quality schedule

Q?(r) = Φ??(G(r)) = Φ?(G(r))1{G(r)≥x?} = Φ?(G(r))1{r≥G−1(x?)},

where Φ? is described in Lemma 1. Finally, the choice of the optimal U was described in the

discussion leading up to Lemma 2.
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A.2 Proof of Theorem 2

We solve the program (3.2)–(3.3) by solving a relaxed problem in which the constraint that

Fi(q) is a CDF is dropped, and then verifying that the solution of the relaxed program is

feasible. The relaxed program is to solve for the optimal Fi(q) for every q ∈ Q separately:

max
0≤xi≤1

{∑
i∈I

µicd(Ψi)(xi)

}
(A.3)

s.t.
∑
i∈I

µi xi = F (q). (A.4)

This program can be solved using standard Lagrangian techniques (constraint qualification

holds trivially in our problem). Fix q ∈ Q. There exists a Lagrange multiplier,26 which

we denote by L(q), such that the optimal x?i maximizes
∑

i∈I µi[cd(Ψi)(xi) − L(q)xi] while

satisfying the constraint (A.4). Because the Lagrangian is concave, the first-order condition

is both necessary and sufficient. Let X?
i (q) be the set of points satisfying the first-order

condition: X?
i (q) = {x : cd(Ψi)

′(x) = L(q)} whenever this set is non-empty, and otherwise

X?
i (q) = {0} if cd(Ψi)

′(0) < L(q) and X?
i (q) = {1} if cd(Ψi)

′(1) > L(q). By the preceding

argument, we know that there exists a selection x?i ∈ X?
i (q) such that (A.4) holds. Moreover,

because each cd(Ψi) is concave and continuous, we know that each X?
i (q) is a closed interval

(potentially a singleton).

To prove the theorem, it remains to show that there exists a selection F ?
i (q) from each

X?
i (q) that is non-decreasing (then, it can be modified on a measure-zero set of points to

make it into a CDF; notice that it is guaranteed by the constraint (A.4) that each F ?
i is 0

at 0 and 1 at 1).

Because the constraint in (A.4) is increasing in q, it follows that the Lagrange multiplier

L(q) is a non-increasing function of q. Moreover, the sets X?
i (q) are non-decreasing in the

strong set order by concavity of cd(Ψi). Define a vector function

C(q, α) =
[
(1− α) minX?

1 (q) + αmaxX?
1 (q), . . . , (1− α) minX?

|I|(q) + αmaxX?
|I|(q)

]
.

By definition, for each q,
∑

iCi(q, 0) ≤ F (q) while
∑

iCi(q, 1) ≥ F (q). By continuity,

there exists α?(q) such that
∑

iCi(q, α
?(q)) = F (q) (moreover, the values of Ci(q, α

?(q)) are

uniquely pinned down, even if α?(q) is not). We can now define F ?
i (q) as Ci(q, α

?(q)). By

direct inspection and the strong-set order property of X?
i (q), each F ?

i (q) is non-decreasing,

which finishes the proof once we set V min(q) = −L(q).

26In case there are multiple Lagrange multipliers, we pick the largest one.
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A.3 Proofs of the results in Section 4

Proof of Proposition 1. The proof is immediate from Theorem 1. The assumptions of Propo-

sition 1 ensure that there is an upward jump in Ψi at 0, and therefore cd(Ψi)(x) must be

affine on [0, x], for some small enough x. (Of course, when cd(Ψi)(x) is constant for small

x, it is possible that types r ≤ r?i do not receive any objects; however, this is still random

matching according to our definition; see also Remark 1.)

Proof of Proposition 2. When Fi is a non-degenerate distribution, by Theorem 1, full ran-

domization is optimal if and only if cd(Ψi) is affine, which is true if and only if

Ψi(x) ≤ (1− x)Ψi(0) + xΨi(1)

for all x > 0. We have

Ψi(0) = max{0, α− λ̄i}ri +

� r̄i

ri

τλi(τ)dGi(τ).

Using the fact that Ψi(1) = 0, we can write the condition as, for all r > ri,

Ψi(Gi(r)) ≤ (1−Gi(r))

[
max{0, α− λ̄i}ri +

� r̄i

ri

τλi(τ)dGi(τ)

]
. (A.5)

To see that this implies α < λ̄i, note that by diving both sides by 1 − Gi(r), using the

expression (3.1), and taking the limit as r → r̄i, we get

αr̄i ≤ max{0, α− λ̄i}ri +

� r̄i

ri

τλi(τ)dGi(τ) < max{0, α− λ̄i}ri + r̄iλ̄i. (A.6)

Thus, if α ≥ λ̄i, we would get (α − λ̄i)r̄i < (α − λ̄i)ri which is a contradiction. Using this

observation to simplify (A.6), we obtain the necessary condition (4.1).

Finally, suppose that αJi(r) + Λi(r)hi(r) is quasi-convex. This implies that Ψi is first

convex and then concave on (0, 1]. The necessary condition implies that Ψi(0) ≥ Ψi(1) −
Ψ′(1). Together, these two facts imply that Ψi(x) ≤ (1− x)Ψi(0), for all x.

Proof of Proposition 3. The first assumption guarantees that Ψi does not have a jump at

0, and hence is a continuous function. Then, Theorem 1 implies that effectively assortative

matching is optimal if and only if Vi(r) is non-decreasing in r. (Strictly speaking, this

conclusion does not follow from the statement of Theorem 1 when Vi(r) is constant on some

intervals, since in this case co(Ψi) may have affine parts. However, the proof of Theorem 1
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makes clear that on intervals [a, b] on which co(Ψi) is affine and co(Ψi) = Ψi, the designer

is indifferent between random and assortative matching, and hence an assortative matching

is also optimal.)

Proof of Proposition 4. The conclusion is immediate from Theorem 2. When there is fully

random matching in group i, the function cd(Ψi) is affine, and thus its slope is constant,

equal to Ψi(0) (since Ψi(1) = 0). By Proposition 2, fully random matching requires that

λ̄i > α, and under this inequality, we have that Ψi(0) =
� r̄i
ri
rλi(r)dGi(r).

Proof of Proposition 5. By the assumption that effectively assortative matching is optimal,

we must have cd(Ψi)(x) = Ψi(x), except possibly for x ≤ x?i if cd(Ψi)(x) is constant on

[0, x?i ]. By direct calculation (and using the fact that for bounded-support, positive-density

distributions, the inverse hazard rate is 0 at the upper bound), we obtain Ψ′i(1) = −αr̄i. The

conclusion follows directly from Theorem 2 and the observation that Ψi has a continuous

derivative (by the assumptions that gi(r) and λi(r) are continuous, and that gi(r) is strictly

positive so that hi(r) is also continuous). When ri = 0, we have that

Ψ′i(0) = −α
(
ri −

1

gi(ri)

)
− λ̄i

1

gi(ri)
> 0,

and hence Ψi is increasing in the neighborhood of 0. Thus, cd(Ψi) is constant in some initial

interval, and hence has a zero slope. When ri = 0 for all i, by Theorem 2, all groups are

allocated the lowest-quality objects.

Proof of Proposition 6. The first part of the proposition follows immediately from Theorem 2

by observing that the slope of cd(Ψ1) is constant, while the (absolute value of the) slope of

cd(Ψ0)(q) is increasing in q.

We prove the second part. For q̄ < 1, we need that |cd(Ψ0)′(1)| > |cd(Ψ1)′(1)| = Ψ1(0),

since then Theorem 2 implies that the highest qualities are allocated to group 0. This

yields the condition αr̄0 >
� r̄1
r1
τλ1(τ)dG1(τ). For q > 0, we need that |cd(Ψ0)′(0)| <

|cd(Ψ1)′(0)| = Ψ1(0), since then Theorem 2 implies that lowest qualities are allocated to

group 0. Since group 0 features effectively assortative matching, either |cd(Ψ0)′(0)| = 0 or

cd(Ψ0)′(0) = Ψ′0(0) > −αr0. Thus, we obtain the condition αr0 <
� r̄1
r1
τλ1(τ)dG1(τ).
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Online Appendix

B A precise intuition for Proposition 1

In this appendix, we present a more precise intuition for Proposition 1. Consider Figure B.1

(we drop the subscript i to simplify notation). Suppose that the expected quality schedule

Q(r) is strictly increasing. Recall that utility of type r can be expressed as U(r)+
� r
r
Q(τ)dτ .

Under the assumption that λ̄ > α, the designer wants to minimize prices subject to the

constraint t(r) ≥ 0, and hence we can assume t(r) = 0 and U(r) = Q(r)r.

Figure B.1: An expected quality schedule Q(r) and the corresponding payment rule t(r)
(solid lines). Dotted lines indicate the perturbation of the mechanism (Q, t).

We show that the designer’s objective is increased by a perturbation of the mechanism

that allocates objects at random and for free to some small set of types [r, r+ε]. Indeed, such

a perturbation allows the designer to decrease prices for everyone else (as long as r > 0) while

only causing a second-order distortion to allocative efficiency. Let qε denote the expected

quality of objects allocated to types [r, r + ε] under Q, and let Qε(r) = qε for r ≤ r + ε and

Qε(r) = Q(r) otherwise.27 Setting tε(r) = 0 yields U ε(r) = qεr. The associated change in

utility for type r equals[
U ε(r) +

� r

r

Qε(τ)dτ

]
−
[
U(r) +

� r

r

Q(τ)dτ

]
= (qε −Q(r))r +

� min{r, r+ε}

r

(qε −Q(τ))dτ.

27We can assume that qε > 0; if qε = 0, then there is nothing to prove since the allocation is already
constant in some interval around the lowest type.
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The first term is first-order in ε and captures the increase due to the increase in utility for

the lowest type r (which happens as long as that type values the increase in quality, that is,

r > 0). For types above r + ε, this increase in utility is achieved via a price discount, which

is possible when the allocation of type r+ε is decreased (since this relaxes the IC constraints

for all higher types). The second term is second-order in ε and captures the welfare effects

of the distortion in allocation.

C Additional results for Section 4

C.1 Assortative matching at the top

In Sections 4 and 5, we emphasized that random matching of objects to the lowest-WTP

agents often coincides with assortative matching “at the top of the distribution.” Here, we

formalize this observation.

We say that there is assortative matching at the top if the mechanism allocates the

highest-quality objects assortatively to agents with willingness to pay r above some threshold.

For the result, we assume that Pareto weights are non-increasing, i.e., that willingness to

pay is negatively correlated with the unobserved welfare weights.

Proposition 7. If λi(r) is non-increasing in r, and α ≥ λ̄i, any optimal mechanism features

assortative matching at the top within group i.

The result is intuitive: Non-increasing Pareto weights along with the assumption that the

weight on revenue is weakly larger than the average Pareto weight, imply that the weight on

revenue is larger than the weight on the utility of agents with high willingness to pay. Since

assortative matching is optimal for revenue maximization at the top of the distribution (the

so-called “no distortion at the top” result), it dominates random matching for high enough r.

C.2 Non-monotonicity in the use of non-market mechanisms

In the context of the parametric example in Section 5, we have shown that the fraction of

objects allocated randomly is non-monotone in the degree of inequality in Pareto weights;

we now show that this conclusion obtains more generally, at least when α ≥ λ̄i.

Proposition 8. Suppose that J ′i(r) ≥ J i, for all r and some constant J i > 0. Consider any

sequence of within-group-i problems indexed by n ∈ N, differing only in the specification of

Pareto weights λni . Assume that, for all n, λni (r) is non-increasing in r, and λ̄ni ≤ α. If

either

2



� for all r and ε > 0, |λni (r)− λ̄ni | < ε for large enough n, or

� for all r > r and ε > 0, λni (r) < ε for large enough n,

then any convergent sequence of optimal allocations converges point-wise to effectively assor-

tative matching.

Proposition 8 predicts that a market mechanism is optimally used in the two boundary

cases when the objective function approaches (i) allocative efficiency, and (ii) the Rawlsian

objective (all weight on the agent with lowest welfare). Combined with Proposition 3, this

means that a non-market mechanism is used when there is significant inequality in Pareto

weights, but not when the inequality takes the extreme form of all weight attached to the

“poorest” agent. In this sense, the use of non-market allocations is non-monotone in the

degree of inequality between agents.

Intuitively, there is a trade-off between the revenue and efficiency motives (both of which

are forces behind assortative matching) and the WTP-revealed inequality (a force behind

random matching). When willingness to pay is relatively uninformative about agents’ needs,

the revenue and efficiency motives dominate. As willingness to pay becomes increasingly

informative, the designer may opt for a partially random allocation to identify those most

in need through the mechanism. Eventually, when only a small fraction of agents receive an

increasingly high welfare weight, the use of random allocation becomes negligible because

the revenue motive and efficiency motives dominate for all remaining agents.

C.3 Who gets the highest-quality object?

Finally, we generalize the observation from Sections 4 and 5 about the allocation of the

highest-quality object across groups that feature assortative matching at the top. We show

that as long as there is assortative matching at the top in each group (as predicted, for

example, by Proposition 7), the allocation of the highest-quality objects depends only on

the ranking of the upper limits of willingness to pay.

Proposition 9. Suppose that, for each group i, it is optimal to have assortative matching at

the top. Relabel the groups so that lower i = 1, . . . , |I| corresponds to lower αr̄i. Then, there

exists an optimal mechanism in which supp(F ?
i ) = [q

i
, q̄i]∩supp(F ) for some {q

i
, q̄i}|I|i=1 with

q̄1 ≤ q̄2 ≤ ... ≤ q̄|I| = max supp(F ).

Proposition 5 establishes the same conclusion as Proposition 9 under the assumption

that matching is (effectively) assortative in each group i. Proposition 9 shows that a much

weaker condition is needed—namely, that matching is assortative at the top in each group i.

3



D Proofs the results in Appendix C

Proof of Proposition 7. Suppose that there is random matching at the top, that is, Ψi(x) is

affine for x ∈ [x, 1] for some x, and take x so that this is the maximal random-allocation

region. There are two cases to consider. If x = 0, then we have to rule out that Ψi(0) ≥
Ψi(1) − Ψ′i(1); if x > 0, then it suffices to rule out that Ψ′i(x) ≥ Ψ′i(1) (if x > 0 is the

beginning of the maximal interval of random matching, then the slope of cd(Ψi) at x must

be equal to the slope of Ψi, and that slope must be larger than the slope of Ψi at 1 since

cd(Ψi) ≥ Ψi with an equality at 1). Because Gi has bounded support, its inverse hazard rate

is 0 at the upper bound; thus, Ψ′i(1) = −αr̄i. Thus, the first possibility can be ruled out if

αr̄i > (α− λ̄i)ri +

� r̄i

ri

τλi(τ)dGi(τ) ⇐⇒ α(r̄i − ri) > −λ̄iri +

� r̄i

ri

τλi(τ)dGi(τ). (D.1)

But we have

� r̄i

ri

τλi(τ)dGi(τ)− λ̄iri < r̄i

� r̄i

ri

λi(τ)dGi(τ)− λ̄iri = λ̄i(r̄i − ri);

thus, (D.1) can be ruled out by the hypothesis that α ≥ λ̄i. The second possibility can be

ruled out if, for all r,

αr − (α− Λi(r))hi(r) < αr̄,

which clearly holds as long as α ≥ Λi(r) which is true by the fact that λi(r) is non-increasing

and λ̄i ≤ α.

Proof of Proposition 8. Throughout the proof, we drop the dependence on n from the nota-

tion.

Consider the first case first. We know that J ′i(r) = 1 − h′i(r) ≥ J i, so h′i(r) ≤ 1 − J i.
By Proposition 3, since we know that α ≥ λ̄i for all n, to prove that assortative matching is

optimal, it is enough to prove that the second derivative of Ψi is non-positive. The sign of

the second derivative of Ψi is opposite to the sign of the following expression:

α+Λi(r)−λi(r)+(Λi(r)− α)︸ ︷︷ ︸
≤0

h′i(r) ≥ α−2ε+(Λi(r)−α)(1−J i) = −2ε+Λi(r)+(α−Λi(r))J i ≥ 0,

for all 2ε < αmin{1, J i} ≤ Λi(r) + (α − Λi(r))J i. Thus, by taking ε satisfying that last

condition, and n large enough, we conclude that the solution to the problem is assortative

matching (this conclusion is stronger than that of Proposition 3 in that assortative matching

is exactly optimal for n large enough).
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Now consider the second case. By the same calculation as before, for any x > 0, there

exists a large enough n so that Ψi is strictly concave on [x, 1]. This means that if there is

a random-allocation region that does not vanish in the limit as n → ∞, then it must take

the form of [x0, x1] with x0 → 0 and x1 > x > 0 as n → ∞, where x does not depend on

n. (Intuitively, while Ψi is concave on [x, 1] for any x if n is large enough, it could be the

case that the concave closure of Ψi is supported at a point x0 that converges to 0, and some

other point—bounded away from 0—that lies in the region where Ψi is concave.) We show

that this leads to a contradiction.

First, it is convenient to decompose

Ψi(x) =

� 1

x

Ji(G
−1
i (x))dx︸ ︷︷ ︸

ΨRi

+

� 1

x

Λi(G
−1
i (x))hi(G

−1
i (x))dx︸ ︷︷ ︸

ΨWi

.

Our strategy is to show that, for large enough n, ΨR
i is strictly concave (with a second

derivative bounded away from 0), while ΨW
i and its derivative are arbitrarily small, and thus

they cannot change the shape of Ψi in the limit.

Note that there exists m > 0 such that

(ΨR
i )′′(x) = −J

′
i(G

−1
i (x))

gi(G
−1
i (x))

< −m < 0,

by assumption that the derivative of Ji is lower bounded, and that the density gi is continuous

on its support (so it has an upper bound). Also note that for any ε > 0, and x such that

G−1
i (x) < ε, for large enough n, we have

ΨW
i (x) ≤ ΨW

i (0) =

� 1

0

(� r̄i

G−1
i (x)

λi(τ)dGi(τ)

)
dr ≤ λ̄iG

−1
i (x) + ε(r̄i − ri) ≤ ε ·M,

where the second-to-last inequality uses the assumption that Pareto weights are below ε for

large enough n, and M is some constant. By the same assumption, for any ε > 0, x > 0,

and large enough n, we have

|(ΨW
i )′(y)| ≤ |−Λi(G

−1
i (y))hi(G

−1
i (y))| ≤ ε,

for any y ≥ x.

We are ready to obtain the desired contradiction. A necessary condition for cd(Ψi) to be

5



affine on [x0, x1] is that

Ψi(x1)−Ψ′i(x1)(x1 − x0)−Ψi(x0) ≤ 0. (D.2)

Note, however, that

ΨR
i (x1)− (ΨR

i )′(x1)(x1 − x0)−ΨR
i (x0) = −

� x1

x0

y(ΨR
i )′′(y)dy ≥ 1

2
m(x1 − x0)2. (D.3)

Since x1 ≥ x > 0 for all n, and x does not depend on n, this expression is bounded away

from 0. Yet, by the inequalities established above on ΨW
i and (ΨW

i )′, we have

∣∣(Ψi(x1)−Ψ′i(x1)(x1 − x0)−Ψi(x0))−
(
ΨR
i (x1)− (ΨR

i )′(x1)(x1 − x0)−ΨR
i (x0)

)∣∣ ≤ ε · M̃,

for some constant M̃ . For large enough n, we can take ε small enough so that ε · M̃ <
1
2
m(x1 − x0)2 which is inconsistent with (D.2) and (D.3), a contradiction.

Proof of Proposition 9. The proof follows from the proof of Proposition 5 by noting that the

relevant part of the proof only uses the assumption that matching is assortative at the top in

group i; indeed, assortative matching at the top suffices to conclude that cd(Ψi)(x) = Ψi(x)

for large enough x.
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