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Abstract

I study a mechanism design problem of allocating a single good to an agent when the mechanism
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The aftermarket is beyond the direct control of the designer. However, she can influence the

information structure of the post-mechanism game by disclosing information about the agent’s type

elicited by the mechanism. Under the simplifying assumption that the third party takes a binary
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1 Introduction

Mechanism design theory often abstracts away from the broader economic environment in

which the mechanism design problem is embedded. While this is a useful abstraction, real-

life mechanisms do not take place in a vacuum. Auctions are often run in markets where

bidders can resell the items they bought. Procurement mechanisms are followed by bargain-

ing between winners of contracts and subcontractors. Mergers and acquisitions influence

subsequent strategic interactions between players in the underlying market. While such

post-mechanism games may be beyond the direct control of the designer, their presence has

important consequences for the design problem. One such consequence is that the trans-

parency of the mechanism matters: By carefully disclosing the information elicited by the

mechanism, the designer can indirectly influence the outcomes of the post-mechanism game.

For example, by revealing the price paid by the winning bidder in a first price auction, an

auctioneer changes the information structure of a post-auction resale game. This can lead to

a different split of surplus in the aftermarket, and hence different behavior of agents in the

mechanism. Thus, in mechanism design with aftermarkets, the designer chooses not only

the allocation rule and transfers but also the information disclosure rule.

In this paper, I propose a tractable framework for mechanism design with aftermarkets

that allows me to highlight how the form of the aftermarket influences the structure of the

optimal mechanism, with emphasis on its transparency. For example, what is the optimal

level of privacy in the mechanism depending on whether agents resell their objects in the

aftermarket or buy complementary goods from third-party sellers? How to structure an M&A

transaction to maximize revenue for the seller or total surplus in the market, depending on the

structure of competition and the potential for entry to the industry? The answer identified

by this paper is that the form of the optimal mechanism depends on the properties of the

agent’s payoff from participating in the aftermarket. That payoff function depends on the

type of the agent, and the aftermarket belief about her type induced by the signal disclosed

in the mechanism. I show that what matters is how the willingness to pay for beliefs changes

with the type of the agent.

The baseline model that I study features three players: the mechanism designer, the

agent, and a third party (the analysis extends to the case of multiple agents in the mechanism

under the assumption that only the winner interacts in the aftermarket). The mechanism

designer controls a single good, and designs a mechanism consisting of an allocation rule, a

disclosure rule, and a transfer rule, under full commitment. The agent has a one-dimensional

type, with higher types corresponding to higher willingness to pay for the good, and a utility

that is linear in the type. The agent first participates in the mechanism, and then, conditional
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on acquiring the good, interacts in the aftermarket with the third party. The third party

observes the signal disclosed by the mechanism, and takes a binary action which affects all

players’ payoffs. Crucially, the designer cannot design the aftermarket, and cannot interact

with the third party directly (except by influencing the third party’s beliefs via signals

revealed in the mechanism).

The linearity of the agent’s utility function and the binary action of the third party

are the main simplifications that make the model tractable. Despite the strong restrictions

imposed by these stylized assumptions, the model is flexible enough to qualitatively cap-

ture the main features of economically relevant aftermarkets, including resale, acquisition

of a complementary good, investment decisions, or entry games. Thus, the model sacrifices

mathematical generality in order to tractably analyze a range of aftermarkets differing in

their key economic properties, in line with the goal of the paper.

The key distinction is that of submodular versus supermodular aftermarkets. Suppose

that agent’s types are ordered by willingness to pay for the good, and beliefs are ordered by

first-order stochastic dominance (an order in which a belief is higher if it puts more mass on

higher types). Then, an aftermarket is submodular if the agent’s aftermarket payoff, viewed

as a function of her type and the posterior belief about her type, is submodular. That is,

lower types have a higher willingness to pay for higher beliefs. For example, resale markets

are submodular because low types benefit relatively more from high resale prices. In the

opposite case, when higher types value higher beliefs more than low types, the aftermarket

is supermodular. It turns out that submodular aftermarket make information disclosure

in the mechanism “difficult,” while supermodular aftermarkets make information disclosure

“easy.”

The first result of this paper (Theorem 1) shows that the above claim holds in a very

strong sense in the current simple setting. I prove that if the allocation rule is constant, then

no incentive-compatible mechanism can disclose any non-trivial information (except for the

fact that trade took place) when the aftermarket is submodular. In contrast, information

disclosure is possible if the aftermarket is supermodular, and indeed even the exact type of

the agent can be revealed in an incentive-compatible way.

The main results of the paper (Theorems 2 and 3) demonstrate that the distinction

between submodular and supermodular aftermarkets remains relevant for the identification of

the optimal mechanism. Under certain additional conditions, cutoff mechanisms are optimal

(or nearly optimal) in submodular aftermarket, while partitional mechanisms are optimal in

supermodular aftermarkets. Cutoff mechanism, introduced by Dworczak (2020), are defined

as mechanisms that only disclose information about the random threshold that the agent

must outbid in order to acquire the object. For example, a designer might use a random
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reserve price, and disclose some information about its realization which indirectly reveals

information about the agent’s type conditional on the agent acquiring the good. Partitional

mechanisms reveal information about the type of the agent directly by partitioning the type

space, and disclosing the element of the partition that contains that type.

Exact optimality of cutoff mechanisms is obtained under a relatively strong form of

submodularity of the aftermarket. I show that when this notion is relaxed, cutoff mechanisms

may not be optimal but they remain “nearly optimal” in the sense that by using a cutoff

mechanism, the designer can guarantee a large fraction of the payoff that she would obtain

by employing the fully optimal mechanism.

These results, although established in a restrictive setting, have implications for opti-

mal transparency of real-life mechanisms. When the designer optimizes within the class of

cutoff mechanisms, the optimal mechanism does not disclose any information when there is

only a single agent in the mechanism. This implies that privacy may be desirable in bilat-

eral transactions followed by resale aftermarkets, or other submodular aftermarkets, even

if the designer has intrinsic preferences for more information being disclosed. In contrast,

transparency may be a better design when the mechanism is followed by a supermodular

aftermarket, assuming that the designer benefits from releasing more information.1 When

there are more agents in the mechanism, and the designer runs an auction (this case is

handled in Appendix A), the conclusion is that in submodular aftermarket only informa-

tion about the second highest bid should be disclosed, while in supermodular aftermarket,

the auctioneer can disclose information about the winning bid directly, without upsetting

existence of a separating equilibrium.

Other papers studied the consequences of post-mechanism interactions with third parties

for the design of transparency in auctions and other allocation mechanisms. Progress has

been made under the assumption that the aftermarket has a special structure under which

full disclosure is feasible. Most notably, Zhong (2002), Goeree (2003), Das Varma (2003),

Katzman and Rhodes-Kropf (2008), and Hu and Zhang (2017) study the effects of different

bid disclosure policies on revenue in auctions followed by Bertrand, Cournot, or other forms

of competition.2 More recently, Bos and Pollrich (2021) analyze a model in which agents’

aftermarket payoffs are additively separable and only depend on the posterior mean induced

1 This finding complements the main result of Calzolari and Pavan (2006b) who also investigate whether
privacy is optimal in bilateral contracting using a different setting and a set of conditions focusing on other
aspects of the problem.

2 See also Giovannoni and Makris (2014) who assume that bidders have reduced-form reputational con-
cerns, and Back, Liu and Teguia (2020) who examine the impact of transparency on efficiency and dealers’
revenues in financial over-the-counter markets. With the exception of Hu and Zhang (2017) who also employ
a mechanism design approach, this literature compares a small number of auction formats (e.g. first-price,
second-price) and disclosure rules (e.g. full revelation of bids, revelation of the winning bid).
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by the signal. The special structure guarantees existence of separating equilibria even in

transparent auctions, and these papers point out that no such separating equilibrium exists if

the assumption is relaxed.3 Although these papers differ in the particular settings they study,

all of these assumptions can be seen as some form of supermodularity of the aftermarket.4

Submodular aftermarkets, on the other hand, are much more difficult to study, precisely

because they do not allow to support full disclosure in the mechanism. Some progress has

been made on resale aftermarkets but under restrictive assumptions on the type space and

other features of the environment: For example, relying on a binary type space, Calzolari

and Pavan (2006a) derive the optimal mechanism for the case when the agent gets an offer

from a third party in the aftermarket, and Engelbrecht-Wiggans and Kahn (1991) construct

non-monotone equilibria of an auction followed by resale.

In relation to this literature, this paper is the first to solve for the optimal mechanism

allowing for both supermodular and submodular aftermarkets. By doing so, I uncover the

fundamental distinction between these two cases, and explain the previous results in a single

framework. Section 5.3 elaborates on this point further, and Section 6.2 discusses in detail

the relationship to Calzolari and Pavan (2006a).

The approach of this paper is complementary to Dworczak (2020) that does not impose

as many simpliying assumptions on the setting but restricts attention to cutoff mechanisms.

Here, I restrict the setting (by assuming a linear utility for the agent and a binary action for

a single third party) but derive the optimal mechanism.

An important related problem is when bidders interact with each other after the auction.

If the aftermarket is modeled as a general game, the problem is difficult to study because

agents in the first-stage mechanism consider not only the signaling effect of their behavior

(which is present already when they interact with a third party), but also how much they

learn about others. An easier special case is when the aftermarket stems from the inability

of the auctioneer to prohibit inter-bidder resale (as in Gupta and Lebrun, 1999, Zheng, 2002,

Haile, 2003, Hafalir and Krishna, 2008, Hafalir and Krishna, 2009, Zhang and Wang, 2013,

Carroll and Segal, 2019).5 In this case, the focus is on whether the designer can implement

the optimal allocation rule, and the disclosure rule typically plays a secondary role in the

analysis (e.g., it is beyond the control of the designer). Balzer and Schneider (2019) analyze

3 Bos and Pollrich (2021) show an example in which a separating equilibrium fails to exist; this is a con-
sequence of their assumption that—unlike in this paper—losing bidders also participate in the aftermarket.

4 For example, Assumption 2 in Goeree (2003) is essentially supermodularity of the aftermarket but for the
case of degenerate beliefs (fully revealing signals). An aftermarket payoff that is additively separable from
the auction payoff—as in Giovannoni and Makris (2014), Molnar and Virág (2008), and Bos and Pollrich
(2021)—is also (trivially) supermodular.

5 Calzolari and Pavan (2006a) consider an extension of their model to inter-bidder resale but they do not
derive the optimal mechanism in that framework.
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a different case in which players engage in a costly conflict if agreement is not reached in the

mechanism.

The presence of an aftermarket motivates studying information disclosure after the mech-

anism. There is a large literature on information disclosure before the auction (when the

information is contorolled by the designer and released to bidders to refine the estimates

of their values) or during the auction (with correlated values, observing how much other

bidders bid is a signal about the common value compenent of the good). Notable examples

include Milgrom and Weber (1982), Eső and Szentes (2007), Lauermann and Virág (2012),

Bergemann and Wambach (2015), Li and Shi (2017), and more recently Smolin (2019).

Finally, aftermarkets create allocative and informational externalities in mechanisms

which have been studied by Jehiel, Moldovanu and Stacchetti (1996) and Jehiel and Moldovanu

(2001, 2006).

The rest of the paper is organized as follows. In Section 2, I introduce the model.

Although I study a version with one agent, all results extend to the multi-agent case which

is formally considered in Appendix A. In Section 3, I present the auxiliary result assuming

that the allocation rule is constant. Section 4 contains the main results on optimality of

cutoff and partitional mechanisms, and Section 5 analyzes a few applications. In Section 6,

I discuss cases not covered by the assumptions of the main results. In particular, I show

that the optimal allocation rule can sometimes be non-monotone, and derive robust payoff

bounds from using cutoff mechanisms. Section 7 concludes and discusses future research

directions.

2 The baseline model

A mechanism designer is a seller who chooses a mechanism to sell an indivisible object to

an agent. The agent has a private type θ ∈ Θ. I normalize Θ = [0, 1], and assume that θ

is distributed according to a continuous full-support distribution F with density f . If the

agent acquires the good, she participates in the aftermarket which is an interaction with a

third party. The mechanism designer cannot contract with the third party, neither can she

design the aftermarket game.

The market game consists of two stages: (1) implementation of the mechanism, and (2)

post-mechanism interaction between the agent and the third party (the aftermarket). In the

first stage, the seller chooses and publicly announces a direct mechanism (x, π, t), where

x : Θ→ [0, 1] is an allocation function, π : Θ→ ∆(S) is a disclosure rule with some finite

signal set S, and t : Θ → R is a transfer function.6 If the agent reports θ̂, she receives

6 Using a direct mechanism is without loss of generality, by the Revelation Principle, see for example
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the good with probability x(θ̂) and pays t(θ̂). Conditional on selling the good, the designer

draws and publicly announces a signal s ∈ S according to distribution π(·| θ̂). For technical

reasons, I assume that x(θ) must be right-continuous, and π(s| θ) is measurable in θ. I call

(x, π) a mechanism frame.

In the second stage, which only takes place if the good was allocated, the third party

observes the signal realization s, and Bayes-updates her beliefs. I let F s denote the cdf of

the updated belief over the agent’s type (conditional on the event that the agent acquired

the good and signal s was observed). The third party then takes a binary decision a ∈ {l, h}
to maximize the expectation of an upper semi-continuous function va(θ) : Θ→ R,

a?(F s) ∈ argmax
a∈{l, h}

� 1

0

va(θ)dF s(θ).

When the third party is indifferent, it is assumed that the selection from the argmax corre-

spondence can be made by the designer.

The agent’s payoff, net of transfers, conditional on acquiring the good in the mechanism

is given by

Ua(θ) = ua θ + ca, (2.1)

where ua ≥ 0 and ca are constants. To avoid trivial cases, unless explicitly stated, I assume

that uh 6= ul. Linearity of Ua(θ) in θ is assumed for tractability. The important assumption

is that the action of the third party influences the slope of the utility function of the agent.

The agent’s payoff is normalized to zero if the agent does not acquire the good. The agent’s

final utility is quasi-linear in transfers, and the agent is an expected-utility maximizer.

Although very restrictive, this form of the utility function allows me to capture a variety

of different economic application. We can interpret θ as the probability with which the agent

has an ex-post high type θH > 0. With complementary probability 1−θ, the agent has a low

type θL ∈ (0, θH). The agent learns the ex-post type only after acquiring the object (but

before the aftermarket game). If the payoffs of all players in the aftermarket only depend

on the winner’s ex-post type, the ex-ante expected utility of the agent takes the form (2.1).

I will refer to this interpretation as the ex-post binary-type model.

The mechanism designer’s ex-post utility is given by the function V a(θ) if the good is

allocated and the third party takes action a. If the good is not allocated, the payoff is

normalized to zero. For clarity of exposition, I assume that the designer always weakly

prefers the third party to take the high action, i.e., V h(θ) ≥ V l(θ), for all θ ∈ Θ. To avoid

uninteresting cases, I also assume that when the good is always allocated and no signal is

Myerson (1982).
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sent, the third party will choose the low action:

� 1

0

(vh(θ)− vl(θ))f(θ)dθ < 0; (2.2)

moreover, vh(θ) − vl(θ) takes both strictly positive and strictly negative values, on sets

of points of non-zero measure (otherwise the designer cannot influence the decision of the

third party). To guarantee existence of solutions to all problems considered in this paper, I

assume that V h(θ), V l(θ), and V h(θ)−V l(θ) are upper semi-continuous in θ. The mechanism

designer maximizes expected utility.7

2.1 Aftermarkets

In this subsection, I introduce a classification of aftermarkets, and give some examples.

Definition 1. Given a partially ordered set (Y, �) and totally ordered type space (Θ, ≥),

a function Φ : Y × Θ → R is called submodular if, for any y, y′ ∈ Y such that y � y′,

Φy(θ) − Φy′(θ) is non-increasing in θ; it is called supermodular if Φy(θ) − Φy′(θ) is non-

decreasing in θ.

The interpretation is as usual: Submodularity of a function Φ captures substitutability

between elements in Y and types in Θ: The higher the type, the smaller the relative gain

from moving to a higher element in Y . Supermodularity captures complementarity: The

higher the type, the larger the relative gain from moving to a higher element in Y .

By endowing the action space {l, h} of the third party with the order h � l, we obtain

the notions of sub- and supermodularity of the primitive utility functions of the players.

Definition 2. The preferences of two players are co-modular if their respective utility func-

tions are either both submodular or both supermodular in (a, θ). If one of the utility func-

tions is supermodular and the other one is submodular, the preferences of the two players

are called counter-modular.

Definition 3. The aftermarket is submodular if the agent’s and the third party’s preferences

are counter-modular; The aftermarket is supermodular if the agent’s and the third party’s

preferences are co-modular.

7 The designer’s utility does not depend explicitly on transfers but this is without loss of generality: By the
payoff equivalence theorem, expected transfers in any incentive-compatible mechanism are uniquely pinned
down (up to a constant) by the mechanism frame, and therefore the setting allows for objectives such as
expected revenue maximization.
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To justify the use of this terminology, I now informally describe a more general definition

that is not needed for the results of this paper but will be useful when comparing these

results to other papers that do not impose the same structure on the aftermarket. For a

large class of aftermarket games (including many of the aftermarkets studied in the papers

referenced in the introduction), the agent’s expected aftermarket payoff can be written as a

function ÛF s
(θ) of her type θ and the posterior belief F s over her type induced by the signal

realization s. Let �FOSD denote the first-order stochastic dominance relation on the space of

probability distributions ∆(Θ). Then, an aftermarket is called submodular (supermodular)

if Û is submodular (supermodular) on ∆(Θ)×Θ. This general definition of submodular and

supermodular aftermarkets is used in Dworczak (2020) but with the (stronger) likelihood

ratio order on ∆(Θ). To see that the formal definition is a special case of the informal one,

note that in the current model we have ÛF s
(θ) = Ua?(F s)(θ). Thus, if the aftermarket is

submodular according to Definition 3, then it is immediate that Ua?(·)(·) is submodular on

∆(Θ)×Θ. If the aftermarket is supermodular, then Ua?(·)(·) is supermodular.8

Under a submodular aftermarket, lower types of the agent have a higher willingness

to pay for an upward shift in the beliefs (in the first-order stochastic dominance order).

Supermodularity implies the opposite relationship: High types value higher beliefs more

than low types (in relative terms). This property of the aftermarket turns out to be key

for understanding which mechanisms are feasible: Since the mechanism sends informative

signals about the agent’s type, it is as if it allocated posterior beliefs as “goods”. Thus,

sub- or supermodularity of the aftermarket decides about the direction of the single-crossing

condition.

For many results, I will need a stronger definition that additionally requires the agent’s

utility to be strongly sub- or supermodular.

Definition 4. The function Ua(θ) = ua θ + ca is strongly submodular if uh = 0 and ul > 0,

and is strongly supermodular if uh > 0 and ul = 0.

Linearity of Ua(θ) together with the assumption ul 6= uh imply that a submodular Ua(θ)

is strictly submodular, in the sense that Uh(θ) − U l(θ) is strictly decreasing in θ. That is,

lower types of the agent benefit relatively more from the third party switching from the low

to the high action. Strong submodularity is even more demanding in that it sets uh to 0,

implying that the agent’s type does not matter for her payoff in case the third party chooses

the high action (but it matters when the third party chooses the low action).

8 The formal Definition 3 is stronger than the assumption that Ua
?(F )(θ) is sub- or supermodular in (F, θ)

but not in an essential way. If Ua
?(F )(θ) is submodular in (F, θ), then the agent’s preferences must be either

submodular or supermodular; the third party’s preferences must satisfy F �FOSD G =⇒ a?(F ) ≥ a?(G) if
the agent’s preferences are submodular, and F �FOSD G =⇒ a?(F ) ≤ a?(G) otherwise.
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Definition 5. The aftermarket is strongly submodular (supermodular) if it is submodular

(supermodular) and the agent’s utility is strongly sub- or supermodular.

I conclude with some examples of aftermarkets.

Example 1. In cases (a) and (b) below, I explore the ex-post binary-type model: θ is the

ex-ante probability of having a high ex-post type θH ; with probability 1−θ, the ex-post type

is low, θL. The agent learns her ex-post type after acquiring the object in the mechanism.

(a) [Resale]9 The ex-post type is the value for the good, with θH > θL > 0. The third

party has full bargaining power and values the good at v > θH . Without loss of generality, the

price offered by the third party is either high (θH) or low (θL). The aftermarket takes place

with probability λ > 0. This corresponds to Uh(θ) = [(1−λ)(θH−θL)] ·θ+[λθH +(1−λ)θL]

and U l(θ) = [θH − θL] · θ+ θL, for the agent, and vh(θ) = v− θH , vl(θ) = (1− θ)(v− θL) for

the third party.

(b) [Acquiring a complementary good] After the agent acquires the object in the mech-

anism, she can buy a complementary good from a monopolist (third party) who produces

at zero marginal cost. The combined value for holding both objects is high (θH) or low

(θL). If the agent fails to acquire the complementary good in the aftermarket, she gets a

liquidation value r ≥ 0. It is assumed that r < θL < θH . The monopolist quotes an optimal

monopoly price which is either θL − r or θH − r. Because I adopted the convention that

the designer always prefers the high action of the third party, I label θL − r the high action

(leading to high volume of trade in the aftermarket) and θH − r the low action. Then, we

have Uh(θ) = [θH− θL] · θ+ r and U l(θ) = r for the agent, and vh(θ) = θL− r, vl = θ(θH− r)
for the third party.

(c) [Investment game] The first stage is an acquisition of a company by a private equity

firm (agent). In the second stage, the agent raises additional capital from a potential new

investor (the third party). If capital is raised, the expected profit of the company is given

by σ̄0 + σ̄1θ; otherwise it is σ0 + σ1θ, with σ̄1 ≥ σ1 ≥ 0, σ̄0 ≥ 0, and σ̄0 ≥ σ0. If the third

party invests, she gets a share α ∈ (0, 1 − σ1/σ̄1) of the company’s profits; if she doesn’t,

she gets an outside option worth R > 0. We have Uh(θ) = (1 − α)σ̄1 · θ + (1 − α)σ̄0 and

U l(θ) = σ1 · θ + σ0 for the agent, and vh(θ) = α(σ̄0 + σ̄1θ), v
l(θ) = R for the third party.

(d) [Entry game] A regulator decides whether to allocate a license to a start-up offering

a new service. Granting the license has an opportunity cost c to the regulator but the new

service (if offered) generates a social surplus of π > c. The start-up will serve the market

9 This example is also analyzed in Dworczak (2020), and it is similar to the baseline model of Calzolari
and Pavan (2006a).
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with probability θ if the permission is granted. An incumbent in this market (the third

party) decides whether to offer a similar service at a cost k < π conditional on the license

being granted. If only one player offers the new service, she extracts all the surplus but if

both players offer the service, the entire surplus is captured by consumers.10 In this setting,

Uh(θ) = 0 and U l(θ) = π · θ, and vh(θ) = (1− θ)π − k, vl(θ) = 0.

In Example 1(a), the agent’s utility is submodular (low types benefit more from high

resale prices; ul > uh) while the third party’s utility is supermodular (the third party quotes

a high price when she believes that the agent’s type is high), making the aftermarket sub-

modular. The aftermarket is strongly submodular if it takes place with probability one

(λ = 1). The aftermarket in Example 1(b) is also strongly submodular, although for a dif-

ferent reason: Here, the agent’s utility is supermodular (high types benefit more from the

high action—low price—in the aftermarket) but the third party’s utility is submodular (the

third party chooses the high action—low price—when she believes the type of the agent to

be low). The investment game from Example 1(c) is supermodular—both the agent’s and

the third party’s utility functions are supermodular (in particular uh > ul). It is strongly

supermodular when σ1 = 0, that is, when the profit of the company does not depend on the

agent’s type when additional capital is not raised. Finally, the entry game from Example

1(d) induces a strongly supermodular aftermarket: Both the agent’s and the third party’s

utility functions are submodular. Note that sub- and supermodularity of the aftermarket

has nothing to do with whether the agent prefers to signal a high or a low type. In cases

(a) and (c), the agent benefits from inducing a high belief about her type, while in cases (b)

and (d)—from inducing a low belief. What matters is how the willingness to pay for high

beliefs changes with the type.

2.2 Implementability

Because the action of the third party is binary, it is without loss of generality to assume that

the signal sent by the optimal mechanism is also binary (see for example Myerson, 1982).

Moreover, the signal can be labeled by the action that it induces, that is, S = {l, h}. I

denote πh(θ) = π(h| θ). From now on, a mechanism frame is represented by the pair (x, πh),

where x(θ) is the allocation rule, and πh(θ) is the conditional probability of recommending

the high action conditional on type θ acquiring the good in the mechanism.

Definition 6. A mechanism frame (x, πh) is implementable if there exist transfers t such

that the agent participates and reports truthfully in the first-stage mechanism, taking into

10 While this is obviously stylized, one can think of Bertrand-style competition in a market with perfect
price discrimination.
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account the continuation payoff from the aftermarket,

Uh(θ)πh(θ)x(θ) + U l(θ)(1− πh(θ))x(θ)− t(θ) ≥ 0, ∀θ ∈ Θ, (IR)

θ ∈ argmax
θ̂

{Uh(θ)πh(θ̂)x(θ̂) + U l(θ)(1− πh(θ̂))x(θ̂)− t(θ̂)}, ∀θ ∈ Θ, (IC)

and the third party obeys the recommendations,

� 1

0

[vh(θ)− vl(θ)]πh(θ)x(θ)f(θ)dθ ≥ 0, (OBh)

� 1

0

[vh(θ)− vl(θ)](1− πh(θ))x(θ)f(θ)dθ ≤ 0. (OBl)

The tractability of the binary model stems from the fact that the (IR) and (IC) con-

straints admit a simple representation (which is not typically the case in the presence of

an aftermarket). By a standard argument (see Myerson, 1981), it can be shown that there

exists a transfer function t such that (IR) and (IC) are satisfied if and only if

πh(θ)x(θ)uh + (1− πh(θ))x(θ)ul is non-decreasing in θ. (M)

Fact 1. A mechanism frame (x, πh) is implementable if and only if conditions (M), (OBh),

and (OBl) hold.

An interesting consequence of Fact 1 is that a decreasing allocation rule x may be im-

plemented (in contrast to the classical setting of Myerson, 1981) if information is disclosed

in an appropriate way. This is possible whenever uh 6= ul, that is, whenever the agent’s

types have differential preferences over the actions of the third party in the aftermarket.

For example when uh = 0 and ul > 0, implementability is equivalent to monotonicity of

(1− πh(θ))x(θ), and therefore x(θ) can be decreasing as long as this is offset by a sufficient

increase in 1 − πh(θ), the probability of sending the low signal. This is further explored in

Section 6.1 which shows that a non-monotone allocation rule may be chosen in the optimal

mechanism.

I say that an implementable mechanism frame (x, πh) has a disclosure rule that reveals

no information if πh is constant on {θ ∈ Θ : x(θ) > 0}. That is, there is no correlation

between the agent’s type and the action taken by the third party. Two comments are in place.

First, even when a mechanism frame (x, πh) has a no-information-revealing disclosure rule,

it may nevertheless influence the posterior belief of the third party because the third party

conditions on the event that the agent acquired the good. If x is non-constant, the posterior

belief will be different from the prior f even if the mechanism does not send any explicit
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signals. Second, by restricting attention to implementable mechanism frames that satisfy

obedience constraints (OBh) and (OBl), I implicitly focus on payoff relevant consequences

of information disclosure. A non-direct mechanism could send signals that are informative

about the agent’s type but are payoff irrelevant (for a fixed prior) in that they don’t affect

the action taken by the third party; the direct obedient representation of such a mechanism

has a no-information-revealing disclosure rule under the above definition.

3 Pure information intermediation

In a general mechanism, the designer screens the agent’s type by exploiting the differences in

values that different types have for (i) the acquisition of the good, and (ii) different posteriors

beliefs in the aftermarket. In this section, I study an auxiliary problem by shutting down the

first of these channels: I assume that the allocation rule x implemented by the mechanism

is constant. This means that the designer engages in pure information intermediation: she

elicits reports from the agent and sends messages to the third party under commitment,

without the possibility to influence the allocation. Thus, incentives in the mechanism must

come from differences in valuations for posterior beliefs across the agent’s types. This exercise

allows me to better understand the role of sub- and supermodularity of the aftermarket.

Theorem 1. Suppose that x(θ) = 1 for all θ. If the aftermarket is submodular, then all

implementable mechanism frames (x, πh) reveal no information.

If the aftermarket is supermodular, there exist mechanism frames (x, πh) that reveal in-

formation. In particular, full disclosure of the agent’s type is implementable.

The theorem implies that if the designer attempts to send non-redundant signals in a

mechanism followed by a submodular aftermarket, the agent will misreport making the sig-

nals uninformative. The only mechanisms consistent with truth-telling are ones that reveal

no information that could influence the action taken by the third party. In contrast, super-

modular aftermarket impose relatively few constraints on the informativeness of signals in

the mechanism. In particular, full disclosure of the agent’s type is consistent with incentive-

compatibility (and influences the action taken by the third party).

To gain intuition for Theorem 1 in the submodular case, consider the scenario when the

agent’s utility is submodular (then, the third party’s utility is supermodular), such as in a

resale aftermarket. Low types of the agent have a higher willingness to pay for signals that

lead to a high action of the third party (low types benefit relatively more from resale at

a high resale price). However, the third party takes a high action only when she believes

that the agent’s type is high, that is, after seeing a signal that is chosen more often by high
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types. We get a contradiction: If the designer sets a relatively high price for a signal that

leads to a high action, then only low types want to choose that signal but then that signal

cannot lead to a high price. And if the price for the high signal is relatively low, then all

types choose it, and hence the signal is uninformative. In the opposite case when the agent’s

utility is supermodular, low types have a higher willingness to pay for signals that lead to

a low action, but a low action is only taken when the third party believes the type of the

agent to be high (the third party’s utility is submodular).

The contradiction can be seen at a more abstract level by considering posterior beliefs

as “goods” allocated by the mechanism. I will informally refer to a belief being “high” if

it puts relatively more mass on high types.11 There is a conflict between Bayes rule and

incentive-compatibility: Bayes rule implies that higher types must be (at least on average)

associated with higher beliefs; Incentive-compatibility in a submodular aftermarket implies

that higher beliefs must be “allocated” to lower types.

The above conflict disappears in a supermodular aftermarket which reverses the direc-

tion of single crossing between types and beliefs: In incentive-compatible mechanisms, higher

beliefs must be allocated to higher types. Because this is consistent with Bayes rule, the

mechanism can disclose very precise information about the agent’s type, up to full disclo-

sure.12

Theorem 1 extends to non-constant allocation rules that take the form of a threshold

rule, x(θ) = 1{θ≥θ̄}. That is, when the aftermarket is submodular, a threshold allocation

rule cannot be accompanied by an informative disclosure rule. However, the result does

not extend any further: as will be demonstrated soon, information disclosure is possible for

any non-threshold allocation rule even if the aftermarket is submodular. Intuitively, this

is because the designer can use differences in probabilities of obtaining the good to screen

types.

4 Optimal mechanisms

4.1 Cutoff mechanisms and partitional mechanisms

Before stating the main results on optimality, I define two classes of mechanisms that will

play a key role in subsequent analysis.

Cutoff mechanisms were defined and discussed in Dworczak (2020). I restate their defi-

11 This could be formalized using the first-order stochastic dominance order.
12 Crawford and Sobel (1982) study a related problem but with cheap talk. That is, in their model,

communication cannot be supported with transfers, and no player has commitment power. Their results on
(im)possibility of communication have similar intuition.
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nition in the context of the binary model.

Definition 7. A mechanism frame (x, πh) is a cutoff rule if x is non-decreasing, and the

disclosure rule πh can be represented as

πh(θ)x(θ) =

� θ

0

γ(c)dx(c), (4.1)

(1− πh(θ))x(θ) =

� θ

0

(1− γ(c))dx(c), (4.2)

for almost all θ ∈ Θ, for some measurable signal function γ : Θ→ [0, 1], where dx(·) denotes

the measure induced by the non-decreasing right-continuous function x(θ).

Definition 7 has the following interpretation. Any non-decreasing allocation rule x can be

extended to a cumulative distribution function on the type space Θ.13 (I will abuse notation

slightly by using the same symbol x to denote that cdf.) Let cx be a random variable, called

the cutoff, with realizations in Θ and a distribution given by the cdf x. Then, the allocation

rule x can be implemented by drawing a realization c of the random cutoff cx, and giving

the good to the agent if and only if the reported type exceeds c. Indeed, we have

P(θ gets the good) = P(θ ≥ cx) = x(θ).

In a cutoff mechanism, the signal distribution is determined (through the function γ) by the

realization of the random cutoff cx representing the allocation rule x. That is, the agent

reports a type θ̂, the designer draws a cutoff c, the agent gets the good if and only if θ̂ ≥ c,

and then the designer draws and announces a signal s whose distribution depends only on

c. Because the third party takes a binary action, it is without loss of generality to focus on

binary signals. Therefore, the signal function γ is one-dimensional: γ(c) is the probability

of recommending the high action conditional on cutoff realization c.

Conditional on the cutoff cx, the signal from a cutoff rule is independent of the agent’s

type. However, because the third party conditions on the event θ ≥ cx, the signal realization

is informative about the agent’s type if it refines the third party’s belief about cx. Thus,

informative signals can be sent by a cutoff rule when the distribution of cx is non-degenerate

(not deterministic). A non-degenerate distribution of cx is equivalent to the allocation rule

x being a non-threshold rule.

It is worth emphasizing that the auxiliary signal function γ is just a convenient and

intuitive way of defining the restrictions imposed by a cutoff rule—there exists an equivalent

definition that does not refer to γ.

13 This is because x was assumed to be right-continuous.
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Fact 2 (Dworczak, 2020). A mechanism frame (x, πh) is a cutoff rule if and only if x(θ)πh(θ)

and x(θ)(1− πh(θ)) are both non-decreasing in θ.

One direction of the equivalence is immediate: If a cutoff rule satisfies conditions (4.1)-

(4.2), then it clearly satisfies the monotonicity conditions from Fact 2. The other direction

can be shown using the Radon-Nikodym theorem. Fact 2 has an immediate corollary: Cutoff

rules always satisfy incentive-compatibility constraints (with appropriately chosen transfers).

Fact 3. Any cutoff rule satisfies the monotonicity condition (M).

By Fact 1, a cutoff rule is implementable if and only if it satisfies the obedience constraints

(OBh) and (OBl). In other words, any information disclosure about the cutoff is consistent

with incentive-compatibility constraints. In particular, as long as the allocation rule is not

a threshold rule (so that the distribution of the cutoff is non-degenerate), information about

the agent’s type can be disclosed regardless of the aftermarket. Intuitively, a cutoff rule

discloses information that separates the agent’s types θ > θ̂ in proportion to the difference

in their allocation probabilities x(θ) and x(θ̂). Note that when x(θ) = x(θ̂), the types θ and

θ̂ must receive exactly the same signal distributions in a cutoff rule, and hence the same

distribution of actions of the third party (this can be seen from either (4.1) - (4.2) or Fact

2). When ∆ = x(θ) − x(θ̂) > 0, there is a probability ∆ that a cutoff realization will lie

between θ and θ̂, and in this case the mechanism can send a signal that will separate types

θ and θ̂ (e.g., by fully disclosing the cutoff realization, the mechanism induces a posterior

belief that truncates the prior above the lower type θ̂ but below the higher type θ).

In contrast to cutoff mechanisms, partitional mechanisms reveal information about the

agent’s type directly.

Definition 8. A mechanism frame (x, πh) is a partitional rule if the signal is a deterministic

function of the type: πh(θ) ∈ {0, 1}, for all θ ∈ Θ.

A partitional mechanism defines a binary partition of the type space, with the two sets

in the partition corresponding to the two possible actions of the third party. In an imple-

mentable partitional mechanism, the partition will consist of two intervals. A partitional

mechanism is typically not a cutoff mechanism, and vice versa (the only exceptions are

boundary cases, for example, a mechanism that makes no announcements is both a par-

titional and a cutoff mechanism). Figure 4.1 contrasts a typical shape of a cutoff and a

partitional mechanism.

The following fact confirms the intuition developed in Section 3.

Fact 4. The only partitional mechanisms that are implementable for a strongly submodular

aftermarket are ones with disclosure rules that reveal no information.
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Fig. 4.1: A Cutoff Mechanisms versus a Partitional Mechanism: The shaded area under the
allocation rule represents the probability of sending a recommendation conditional
on a certain type (third party’s utility is supermodular)
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The proof of Fact 4 is immediate: Consider the case when the agent’s utility is strongly

submodular (ul > 0, uh = 0) and the third party’s utility is supermodular (vh(θ) − vl(θ)

is non-decreasing). Condition (M) then implies that πh = 1{θ≤θ?} for some θ? (for θ such

that x(θ) > 0). But then we get a contradiction with both obedience constraints (OBl) and

(OBh) holding at the same time.

When the aftermarket is supermodular, there are many partitional rules that are im-

plementable: For example, full disclosure (which induces a binary monotone partition of

the type space in terms of πh) is a partitional mechanism, and is implementable when the

allocation rule x is non-decreasing.

4.2 Main results

Under the assumptions of Section 2, the mechanism designer solves

max
x, πh

� 1

0

(
V h(θ)πh(θ)x(θ) + V l(θ)(1− πh(θ))x(θ)

)
f(θ)dθ (4.3)

subject to (M), (OBh), and (OBl).

I introduce optimal mechanisms in two steps. In the first step, I consider a problem

in which the allocation rule x is fixed, and the designer optimizes over disclosure rules (the

crucial difference to Section 3 is that x is not necessarily constant in the type). In the second

step, I consider joint optimization.
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4.2.1 Optimal information disclosure

Fix a non-decreasing allocation rule x and consider optimizing (4.3) only over disclosure

rules.14 The problem can be simplified to

max
πh

� 1

0

(
V h(θ)− V l(θ)

)
πh(θ)x(θ)f(θ)dθ. (4.4)

Theorem 2. Fix a non-decreasing allocation rule x, and suppose that the designer’s and

the third party’s preferences are co-modular. The following mechanism achieves the maximal

value of (4.4) subject to (M), (OBh), and (OBl):

• A cutoff rule, when the aftermarket is strongly submodular;

• A partitional rule, when the aftermarket is supermodular.

Theorem 2 makes a strong prediction about the form of the optimal disclosure rule de-

pending on the form of the aftermarket: In (strongly) submodular aftermarkets, the optimal

mechanism discloses information about the cutoff, while in supermodular aftermarkets, the

optimal mechanism discloses information about the type of the agent directly. The intuition

follows from the results of Section 3: Submodular aftermarkets make information disclosure

difficult; however, information about the cutoff can always be revealed (Fact 3); thus, disclos-

ing the cutoff is sufficient to achieve the optimum. In contrast, supermodular aftermarkets

make information disclosure easy: thus, the designer can send very informative signals to

induce the optimal distribution of actions in the aftermarket.

Under symmetry assumptions, Theorem 2 extends immediately to the multi-agent setting,

with x treated as the interim expected allocation rule (see Appendix A for details and the

discussion of the consequences of the theorem for the case of multiple agents). While in

the baseline single-agent model the optimal x will typically take a simple threshold form, it

might take a more complicated form when there are more agents (e.g., x will be continuously

increasing in a typical auction).

Theorem 2 makes two assumptions that are worth discussing. First, it is assumed that

the third party’s and the designer’s utility functions are co-modular (either both supermod-

ular, or both submodular). This condition is not essential but significantly simplifies the

14 The results of this section easily generalize to the case of allocation rules that are not non-decreasing.
The optimal solution in this case can be obtained by replacing x(θ) in the monotonicity constraint (derived
from condition M) by its lower monotone envelope, denoted x(θ), and defined as

x(θ) = sup{χ(θ) : χ(θ) ≤ x(θ), ∀θ, χ is non-decreasing}.
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problem: It is possible to improve any suboptimal mechanism by shifting probability mass

under πh in the direction that increases the objective function (4.4) while preserving the

obedience constraints. Formally, I prove the theorem by defining an order (similar to first-

order stochastic dominance) on the set of feasible disclosure rules, and by arguing that the

optimal mechanism must be a maximal point of that order. When the preferences of the

designer and the third party are not co-modular, this simple approach does not work.15 In

Section 5, I analyze an example in which this assumption is violated but a cutoff mechanism

is nevertheless optimal. Second, I assume that the aftermarket is strongly submodular. The

theorem would not be true if I only assumed that the aftermarket is submodular but I argue

in Section 6.2 that cutoff mechanisms are likely to remain approximately optimal when the

strong version of submodularity is replaced with the weaker version. The reason for the

asymmetry in the statement of the theorem (I did not assume strong supermodularity in the

second part) is that in supermodular aftermarkets the monotonicity constraint (M) turns

out to be slack. In contrast, constraint (M) binds in submodular aftermarkets, and thus

more structure is needed to obtain a simple optimal mechanism.

4.3 Joint optimization

I turn attention to joint optimization over allocation and disclosure rules. First, I provide

conditions under which the optimal allocation rule is non-decreasing.

Lemma 1. If either (i) all player’s preferences are supermodular and V l(θ) is non-decreasing;

or (ii) the agent’s utility function is supermodular, the third party’s and the designer’s pref-

erences are submodular, and V l(θ) is non-decreasing; or (iii) the agent’s utility function is

submodular, the third party’s and the designer’s preferences are supermodular, and V h(θ) is

non-decreasing; then the optimal allocation rule is non-decreasing.

Lemma 1 assumes that the designer’s and the third party’s utility functions are co-

modular, and considers three (out of four possible) cases. The first case in Lemma 1 cor-

responds to a supermodular aftermarket, while the second and the third to submodular af-

termarkets. The conclusion of Lemma 1 does not hold in the fourth case of a supermodular

aftermarket but with all player’s utility functions being submodular (this structure obtains

in the aftermarket from Example 1(d)). In Section 6.1, I construct an example of an optimal

partitional mechanism that has a non-monotone allocation rule in this case. Intuitively, this

is a mechanism in which the designer excludes high types from trading to induce a high

action in the aftermarket (since the third party chooses the high action when she believes

15 Instead, I could employ optimal control techniques but because the monotonicity constraint (M) will
typically bind at the optimal solution, the problem is not always tractable.
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the type of the agent to be low). Such a mechanism is incentive-compatible because lower

types have a higher willingness to pay for signals that lead to the high action.

Lemma 1 gives sufficient conditions for optimality of a non-decreasing allocation rule,

while Theorem 2 derives conditions under which optimal disclosure takes a particular form

for any non-decreasing allocation rule. Thus, I can provide the following sufficient conditions

for optimality of cutoff and partitional mechanisms.

Theorem 3. Suppose that the designer’s and the third party’s preferences are co-modular,

and that V h(θ) and V l(θ) are non-decreasing in θ.16 The following mechanism achieves the

maximal value of (4.3) subject to (M), (OBh), and (OBl):

• A cutoff rule, when the aftermarket is strongly submodular;

• A partitional rule, when all players’ utility functions are supermodular.

Proof. The theorem follows directly from Theorem 2 and Lemma 1.

Examples satisfying the assumptions of Theorem 3 are provided in Section 5 which con-

siders applications of the model.

An optimal partitional rule typically discloses information in the form of a binary signal.

However, an optimal cutoff mechanism never discloses information:

Fact 5 (Dworczak, 2020). If the designer is constrained to use a cutoff mechanisms, and op-

timizes jointly over allocation and disclosure rules, then the optimal single-agent mechanism

has a disclosure rule that does not reveal any information.

Therefore, Theorem 3 makes a strong prediction about the optimal transparency of the

mechanism depending on the structure of the underlying aftermarket: When the aftermarket

is strongly submodular, privacy is always optimal. When the aftermarket is supermodular,

information disclosure can (and often will be) optimal. This conclusion relies on the single-

agent case: In Appendix A, I extend the model to the case of multiple agents and show

that Theorem 3 is still true. However, Fact 5 is not. Therefore, the prediction must be

appropriately modified.

5 Applications

In this section, I analyze the simple applications introduced by Example 1.

16 It is enough that V ā(θ) is non-decreasing, where ā = l when the designer’s utility is supermodular, and
ā = h when the designer’s utility is submodular.



5 Applications 20

For the designer’s objective, I focus on two cases: total surplus maximization, which

requires V a(θ) = Ua(θ)+va(θ), and revenue maximization which can be shown to correspond

to

V a(θ) = ca + uaJ(θ), where J(θ) = θ − 1− F (θ)

f(θ)
, (5.1)

is the virtual surplus function which I assume is non-decreasing throughout.

I derive the optimal mechanism explicitly in two cases: for the model from Example 1(a)

and the model from Example 1(c). Case (b) is similar to (a) and discussed only informally.

Case (d) is different and will be discussed in Section 6.1.

5.1 Resale

In this subsection, I consider the model from Example 1(a): After buying the good in the

mechanism, the agent learns her ex-post value which is high (θH) with probability θ and low

(θL) with probability 1 − θ, and then receives a take-it-or-leave-it offer from a third party

with value v. I consider the case λ = 1, that is, when the offer is made with probability one.

This means that the aftermarket is strongly submodular (the general case is considered in

Section 6.2).

Under the assumption that V h(θ) is non-decreasing in θ, let θh be the smallest number

in [0, 1] such that V h(θ) ≥ 0 for all θ ≥ θh. To avoid trivial cases, I assume that,

� 1

θh

(vh(θ)− vl(θ))f(θ)dθ < 0. (5.2)

If condition (5.2) fails, the optimal mechanism is trivial: The allocation rule x(θ) = 1{θ≥θh}

followed by no disclosure implements the high action of the third party with probability one,

and because the designer always prefers the high action, achieves the upper bound on the

designer’s payoff. Assumption (5.2) implies that this upper bound is not achievable.

5.1.1 Total surplus maximization

Suppose that the mechanism designer maximizes efficiency in the market. When the resale

price is high, the total surplus (conditional on allocating the good) is v, and otherwise it

is (1 − θ)v + θθH because only low-value agents resell for a low price. Thus, V h(θ) = v,

and V l(θ) = (1 − θ)v + θθH , i.e., the designer’s utility is supermodular. This means that

the designer’s and the third party’s preferences are co-modular. By Theorem 2, a cutoff

mechanism is optimal for any fixed non-decreasing allocation rule. By Theorem 3, because

V h(θ) is non-decreasing in θ, a cutoff mechanism is also optimal for the joint optimization



5 Applications 21

problem. Moreover, using the proofs of Theorems 2 and 3, I can pin down the exact form of

the optimal mechanism.17

Claim 1. Fix a non-decreasing allocation rule x. Suppose that

� 1

0

(θ(v − θL)− (θH − θL))x(θ)f(θ)dθ ≥ 0. (5.3)

Then, the total-surplus-maximizing mechanism implementing x has a disclosure rule that

reveals no information (and induces the high price in the aftermarket).

If condition (5.3) fails, define x̄res as the smallest solution to the equation

� 1

0

(θ(v − θL)− (θH − θL)) max{x(θ)− x̄res, 0}f(θ)dθ = 0. (5.4)

Then, the total-surplus-maximizing mechanism implementing x has a disclosure rule given

by π?h(θ) = max{1− x̄res/x(θ), 0}.

When condition (5.3) holds, it is optimal not to send any signals in the mechanism

because in the absence of additional information, the third party takes the high action. To

understand the case when (5.3) fails, define θ̄res by

θ̄res = sup{θ ∈ Θ : x(θ) ≤ x̄res}. (5.5)

When x is continuous, x̄res = x(θ̄res). The optimal mechanism recommends the low action

with conditional probability one when the good is allocated to a type θ below θ̄res, and with

conditional probability x̄res/x(θ) when the good is allocated to a type θ above θ̄res. The

intuition is that the mechanism has to exclude enough low types from the high signal to

induce the high action of the third party. This is possible when x(θ) is non-constant and

non-decreasing: The unconditional probability of sending a high signal for type θ ≥ θ̄res

is equal to x(θ) − x̄res, so that higher types have a higher probability of receiving a high

price in the aftermarket. The unconditional probability of sending the low signal is constant

and (in general) non-zero for all types above θ̄res. This is necessary to keep the mechanism

incentive-compatible. If the highest type received the high price with probability one, low

types would deviate and report a high type. The non-zero probability of a low signal provides

the necessary separation between low and high types (only when the low signal is sent, high

types have a strictly higher value for winning the object).

I now turn to the problem of joint optimization over allocation and disclosure rules.

17 The proofs of Claims 1 - 2 are skipped—they follow directly from the proofs of Theorems 2 and 3.
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Claim 2. One of the two following mechanisms maximizes total surplus:

(a) x?(θ) = 1 and π?h(θ) = 0, for all θ,

(b) x?(θ) = 1{θ≥θ?}, and π?h(θ) = 1, where θ? is defined by

Ef [θ| θ ≥ θ?] =
θH − θL
v − θL

.18 (5.6)

Mechanism (a) is optimal if and only if Ef [θ] ≤ v
v−θH

F (θ?).

In both cases, the optimal mechanism sends no signals (see Fact 5), so it either always

induces the low price (case a) or always induces the high price (case b). If the designer is

not trying to affect the default price in the aftermarket (which is low under assumption 5.2),

it is optimal to always allocate the object because the objective function is non-negative.

To induce the high price, the designer excludes low types from trading: The threshold θ? is

chosen so that the third party is exactly indifferent between the high and the low price (and

quotes the high price).

5.1.2 Revenue maximization

I now derive the revenue-maximizing mechanism. Equation (5.1) implies that revenue-

maximization corresponds to V h(θ) = θH and V l(θ) = θL + (θH − θL)J(θ). Because the

distribution F was assumed to be regular, V a(θ) is submodular. This means that the de-

signer’s and the third party’s preferences are counter-modular, and hence I cannot apply

Theorem 2 directly. Intuitively, the reason for the difficulty is that the third party must be

persuaded to offer a high price. This requires that the mechanism sends the high recommen-

dation only when the type of the agent is relatively high (on average). On the other hand,

the designer benefits more from giving the high resale price to low types (the gap between

V h(θ)−V l(θ) is decreasing in the type). The resulting trade-off makes the problem of finding

the optimal mechanism harder.

Under additional regularity assumptions, the problem can be solved by applying optimal

control techniques. Let J̄ = max{J ′(θ) : θ ∈ Θ}, and assume that J̄ is well defined and

finite.

Claim 3. Fix a non-decreasing and absolutely continuous allocation rule x.19 Suppose that

θH − θL
v − θL

≤ E[θ| θ ≥ θ̄res] +
1− θ̄res
J̄

, (5.7)

18 This is just a special case of the equation
� 1

θ?
(vh(θ)− vl(θ))f(θ)dθ = 0.

19 It is enough if x is absolutely continuous on {θ ∈ [0, 1] : x(θ) > 0}, i.e.x can be equal to zero in some
initial interval.
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where θ̄res was defined in (5.5). Then, the highest expected revenue over all mechanisms

implementing x can be obtained by a cutoff mechanism. Moreover, in this case, the profit-

maximizing mechanism coincides with the welfare-maximizing mechanism from Claim 1. If

F is the uniform distribution on [0, 1], condition (5.7) holds.

Under the assumptions of Claim 3, the revenue-maximizing disclosure rule coincides with

the surplus-maximizing disclosure rule. Intuitively, this is because efficient disclosure does

not create additional information rents for the agent in the submodular aftermarket—it is

the low types that have a higher willingness to pay for the signals that lead to high resale

prices.

I now turn to the problem of optimizing jointly over allocation and disclosure rules. This

is an optimal control problem with two control variables and a monotonicity constraint, so

obtaining a general solution is challenging. I focus on the case in which I can solve the

problem by relaxing the monotonicity constraint.20 I do not have to assume regularity of the

distribution F but instead (for technical reasons) I assume that the virtual surplus function

J(θ) is convex.

Claim 4. Suppose that J is convex. Let θ? be defined by (5.6). If θL+ (θH− θL)J(θ) ≤ 0 for

all θ ≤ θ?, then the profit-maximizing mechanism is given by x?(θ) = 1{θ≥θ?}, and π?h(θ) = 1.

The optimal mechanism under the assumption of Claim 4 has a disclosure rule that

reveals no information. The allocation rule excludes just enough low types from trading so

that a high price is quoted in the aftermarket conditional on trade in the mechanism. This

allows the designer to charge a price in the mechanism equal to the resale price, and extract

all the surplus from the agent.

For an illustration of what might happen when the assumptions of Claim 4 fail, suppose

that F is the uniform distribution on [0, 1], and θL = 0. Then, θ? defined by (5.6) is given by

θ? = 2θH/v− 1 and lies in (0, 1] under assumption (5.2). When θH/v ≤ 3/4, it is optimal to

sell to all types above θ? and reveal no information via the disclosure rule. When θH/v > 3/4,

so that θ? > 1/2, it becomes more difficult to induce a high price in the aftermarket, in the

sense that the mechanism must exclude relatively high types from trading (types with a

positive virtual surplus). When θ? is high enough, it becomes optimal not to induce a high

price at all—in this case, the optimal mechanism is identical to the one that would arise

in the absence of an aftermarket (i.e., the seller sells to all types with non-negative virtual

surplus).

20 In other cases, the monotonicity constraint will bind at the optimal solution, and standard optimal
control techniques cannot be applied.
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The aftermarket from Example 1(b) (acquiring a complementary good) is strongly sub-

modular, and thus the analysis is very similar to the one above. In particular, a cutoff

mechanisms maximizes total surplus, and maximizes revenue under additional conditions.

The nature of the aftermarket is quite different because the agent wants to pretend that her

type is low—if she induces a low belief of the third party, she can acquire the complementary

good at a lower price. Nevertheless, what matters for the properties of optimal mechanisms

is not the direction of preferences over beliefs but rather how the willingness to pay for

favorable beliefs depends on the type of the agent.

5.2 The investment game

In this subsection, I solve the investment model from Example 1(c). The mechanism designer

sells a company to an agent (e.g., a private equity firm) who then hopes to attract an

investment from the third party in the aftermarket. The profitability of the company is

increased from σ0 + σ1θ to σ̄0 + σ̄1θ when the investment is made, and the investor is

rewarded with a fraction α ∈ (0, 1− σ1/σ̄1) of the company profits (not investing yields an

outside option of R).

5.2.1 Total surplus maximization

In the case of maximizing efficiency in the market, the designer’s utility function is equal

to the total profit of the company: V h(θ) = σ̄0 + σ̄1θ and V l(θ) = σ0 + σ1θ. All players’

preferences are supermodular. Moreover, V l(θ) is non-decreasing. By Theorem 2, optimal

disclosure for a fixed allocation rule takes a partitional form. By Theorem 3, a partitional

mechanism with a non-decreasing allocation rule is also optimal overall.

Claim 5. Fix a non-decreasing allocation rule x. The total-surplus-maximizing mechanism

implementing x has a disclosure rule π?h(θ) = 1{θ≥θ?x}, where θ?x is defined as

θ?x = min

{
θ̂ :

� 1

θ̂

(α(σ̄0 + σ̄1θ)−R)x(θ)f(θ)dθ ≥ 0

}
. (5.8)

Claim 6. Let θ?1 be defined by (5.8) when x ≡ 1. The total-surplus-maximizing mechanism

is a partitional rule given by x?(θ) = 1{θ≥θ?inv}, where

θ?inv = min

{
θ?1, −

σ0

σ1

}
and has a disclosure rule π?h(θ) = 1{θ≥θ?

x?
}, where θ?x? is defined by (5.8).
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I omit the proofs of Claims 5 and 6 because they follow immediately from the proofs of

Theorems 2 and 3. The optimal mechanisms are very intuitive: Because in a supermodu-

lar aftermarket high types have a higher willingness to pay for high beliefs, the mechanism

charges types above the threshold θ?x a higher price for the good in exchange for sending a

signal that induces investment in the aftermarket. Types below a threshold pay a discounted

price but since this fact is revealed, they do not benefit from the investment in the aftermar-

ket. The surplus-maximizing allocation rule is x? ≡ 1 when the profits of the company are

non-negative even without investment and for the lowest type of the agent (that is, when

σ0 ≥ 0). In the opposite case, the designer may exclude types θ ≤ θ0 ≡ (−σ0/σ1) from trad-

ing, where θ0 is the marginal type that breaks even in the absence of investment. If θ0 ≥ θ?1,

then all types that trade pay the high price and receive investment in the aftermarket.

5.2.2 Revenue maximization

By formula (5.1), maximizing revenue of the designer from selling the company to the agent

corresponds to V h(θ) = (1− α)σ̄0 + (1− α)σ̄1J(θ) and V l(θ) = σ0 + σ1J(θ). Thus, because

I assumed that (1 − α)σ̄1 ≥ σ1, the designer’s utility is supermodular—Theorems 2 and 3

imply optimality of partitional rules. Moreover, the proof can be used to deduce the exact

form of the optimal mechanism.

Claim 7. For a fixed non-decreasing allocation rule x, the revenue-maximizing mechanism

implementing x coincides with the surplus-maximizing mechanism implementing x (from

Claim 5).

Intuitively, if the allocation is fixed, a revenue-maximizing designer prefers to induce

investment as often as possible, because investment in the aftermarket raises the virtual

surplus for all types of the agent. The difference in revenue and surplus maximization is

reflected in the choice of the allocation rule:

Claim 8. Let θa be the smallest solution to V a(θ) = 0.21 Let θ?1 be defined by (5.8) when

x ≡ 1. The revenue-maximizing mechanism is a partitional rule given by x?(θ) = 1{θ≥θ?inv},

where

θ?inv = min {max{θh, θ?1}, θl}

and has a disclosure rule π?h(θ) = 1{θ≥θ?
x?
}, where θ?x? is defined by (5.8).

The allocation rule in the revenue-maximizing mechanism excludes more types than the

surplus-maximizing mechanism. When θl is high, so that the seller makes losses when selling

21 If V a(θ) does not cross zero at all, then θa = 0 if V a ≥ 0, and θa = 1 if V a ≤ 0.
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to most types of the agent when there is no investment, it is optimal to set a single high price

that always induces investment. The threshold type is the larger of θ?1 (which is just enough

to induce investment) and θh (which is the marginal type with exactly zero virtual surplus

for the seller conditional on investment in the aftermarket). When θl is low, the mechanism

posts two prices, announces which price was paid, and induces investment precisely when

the buyer chooses the higher price.

5.3 Comparing submodular and supermodular aftermarkets

Sections 5.1 and 5.2 illustrate the differences between submodular and supermodular after-

markets. Information is difficult to disclose in a submodular aftermarket: It would not be

incentive-compatible to disclose the type of the agent directly because low types could not be

disincentiveized from pretending to be high types. As a result, the optimal mechanism only

discloses information about the cutoff which provides coarse information about the agent’s

type. If the allocation and disclosure rules are chosen jointly, it is optimal not to disclose

anything (except for the fact that trade took place). In contrast, in a supermodular after-

market, it is feasible to disclose the type of the agent directly, and the optimal mechanism

exploits that by partitioning the type space and charging higher types for the higher sig-

nal. Typically, there will be non-trivial information disclosure even when the allocation and

disclosure rules are chosen jointly.

A more subtle difference that connects these results to the results from Section 3 is that

supermodular aftermarkets allow the mechanism designer to essentially sell the good and

the signals separately. In a partitional mechanism, the buyer could be seen as paying a

constant price for the good and an extra fee for acquiring the high signal (a signal inducing

the high action in the aftermarket). In contrast, a cutoff mechanism crucially relies on

“bundling” signals with the allocation probabilities. If the allocation is constant, only a

constant (uninformative) signal can be sent (see Theorem 1). When types are separated by

different allocation probabilities, they can also receive different signals but only in proportion

to these differences: If ∆x = x(θ) − x(θ̂), then types θ and θ̂ must receive the same signal

with probability 1−∆x in a cutoff mechanism. Effectively, the allocation rule can be used

to introduce slack in the monotonicity constraint (M) which creates the possibility to send

informative signals until the constraint starts binding again.

Due to their tractability, supermodular aftermarkets has been studied quite extensively

in the literature (without being formally distinguished from submodular aftermarkets); see

for example Zhong (2002), Goeree (2003), Das Varma (2003), Katzman and Rhodes-Kropf

(2008), and Hu and Zhang (2017). Consider the case when the aftermarket is a Cournot
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competition between the agent and the third party. Supermodularity of that aftermarket

obtains because lower-cost (high-type) agents benefit more than high-cost (low-type) agents

from inducing a belief that they have a low cost. The way these papers use that assumption

is by showing that the auction in the first stage has a separating equilibrium even when the

winning bids (or all the bids) are disclosed. When the aftermarket is submodular (e.g., if

it is a resale aftermarket), a separating equilibrium does not exist in a transparent auction,

in line with the above discussion. However, separating equilibria exist if the auction only

reveals the cutoff (which corresponds in this case to the second-highest bid). I formally

extend my analysis to multi-agent mechanisms in Appendix A.

6 Limits of the main results

6.1 Beyond the case of a non-decreasing allocation rule

In Lemma 1, I did not include the case when the aftermarket is supermodular but all payers’

preferences are submodular. The reason is that in this case the optimal allocation rule can

be decreasing, even when V a(θ) is non-decreasing.

For a simple example, consider case (d) from Example 1: A regulator (designer) decides

whether to allocate a license to a start-up (agent) offering a new service with social value π.

The type θ is the probability that the entrant will offer the service conditional on getting

the license. An incumbent (third party) can also offer the service at cost k. If there is

a monopolist provider of the service, that player gets the entire surplus, but if there is a

duopoly, Bertrand competition shifts the entire surplus to consumers. Suppose that the

regulator puts weight α ≤ 1 on the entrant’s profits, and weight 1 on the joint surplus of

the incumbent and the consumers. Then, because granting the license has cost c, we have

V h(θ) = π − c > 0 and V l(θ) = αθπ − c (note that both V a(θ) are non-decreasing in θ). To

limit the number of cases, assume that 1 − k/π < c/(απ) (e.g., α is relatively low or k is

relatively high). I provide the following claim without a proof because it follows relatively

easily from previous proofs.

Claim 9. The optimal mechanism is partitional: x?(θ) = 1{θ≤θ?}+ 1{θ≥θ̄?}, π
?
h(θ) = 1{θ≤θ?},

where θ? = 1− k/π and θ̄? = c/(απ).

The allocation rule is non-monotone because it excludes intermediate types (θ ∈ (θ?, θ̄?).

The intuition behind the result is as follows. If the incumbent believes that the type of the

agent is relatively low, she will enter (this gives the regulator her firs-best outcome ex-post).

Moreover, low types of the agent are hurt less by the entry decision of the incumbent because

they are less likely to enter themselves—it is thus possible to support an outcome in which
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the low action is implemented when the type of the agent is low. The optimal mechanism

allocates the license to types below θ? (for free) and reveals that fact to induce entry by

the incumbent. Conditional on types above θ?, the designer knows that she cannot induce

entry by the incumbent. Thus, she only wants to allocate the license if the probability of the

agent’s entry conditional on allocation is high enough to cover the designer’s cost c. As a

result, she allocates the license to types above θ̄? at a strictly positive fee equal to θ̄?π = c/α.

Intuitively, intermediate types of the agent are excluded because they are high enough to

deter the incumbent from entering but too low to cover the cost for the regulator.

Note that when c/α is high (above 1), then because Θ ≡ [0, 1], the unique optimal

allocation rule is decreasing: x?(θ) = 1{θ≤θ?}. Without information disclosure, there would

always exist an optimal allocation rule that is non-decreasing because the agent’s payoff in

the aftermarket is non-decreasing in her type regardless of the action taken by the third

party.

6.2 Beyond the case of a strongly submodular aftermarket

In this section, I investigate the robustness of the main results to relaxing the assumption that

the aftermarket is strongly submodular (that is, I only assume that it is submodular). I show

that the optimal mechanism may sometimes lie outside of the class of cutoff mechanisms.

However, a cutoff mechanism is guaranteed to achieve at least half of the optimal value in

the worst case regardless of the objective function of the designer (subject only to some

general conditions), and achieves a much better optimality guarantee in more restricted

environments.

Throughout, I focus (without loss of generality) on the case when the agent’s utility

function is submodular. I use the resale model from Example 1(a) as an illustration of the

results—note that this aftermarket is always submodular but is strongly submodular only

when the resale stage happens with probability λ = 1.

I assume that V l(θ) and V h(θ) are both non-decreasing, and that the preferences of the

designer and the third party are co-modular. Recall that θa ∈ [0, 1] was defined as the

(smallest) point at which V a(θ) = 0, for a ∈ {l, h}.22 I assume that a slightly stronger

version of condition (2.2) holds:

� 1

θh

(vh(θ)− vl(θ))f(θ)dθ < 0. (6.1)

If assumption (6.1) fails, the optimal mechanism is trivial (and is a cutoff mechanism):

22 If V a(θ) does not cross zero at all, then θa = 0 if V a ≥ 0, and θa = 1 if V a ≤ 0.
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Allocate to all types above θh and reveal no information via the disclosure rule. Similarly as

in (5.6), I define θ? as the (smallest) solution to

� 1

θ?
(vh(θ)− vl(θ))f(θ)dθ = 0. (6.2)

That is, when the good is allocated only to types above θ?, it is optimal for the third party

to choose the high action (assumption 6.1 implies that θh < θ?).

Proposition 1. Under the above assumptions, the optimal mechanism takes one of the two

possible forms:

1. x?(θ) = 1{θ≥θl}, π
?
h(θ) = 0 (no information is revealed and the low action is taken by

the third party),

2. The allocation rule x?(θ) is a two-step function:

x?(θ) =


0 θ < θl,

uh

ul
θl ≤ θ < θ?,

1 θ? ≤ θ,

and π?h(θ) = 1{θ≥θ?}.

Mechanism 1 is optimal if and only if

� 1

θl

V l(θ)f(θ)dθ ≥ uh

ul

� θ?

θl

V l(θ)f(θ)dθ +

� 1

θ?
V h(θ)f(θ)dθ.

Mechanisms 1 is a cutoff mechanism but mechanism 2 is not (in fact, it is a partitional

mechanism). In mechanism 2, types below θl do not get the object, types in [θl, θ
?] receive

the object with probability uh

ul
and always face a low action in the aftermarket, and types in

[θ?, 1] receive the object with probability 1 and always face a high action in the aftermarket.

To better understand the intuition for optimality of mechanism 2, it is useful to compare

it to the optimal cutoff mechanism. Within the class of cutoff mechanisms, the derivation

of the optimal mechanism is straightforward—the proof is omitted.23

Claim 10. Under the above assumptions, the optimal cutoff mechanism is either mechanism

1 from Proposition 1, or mechanism 3: x?(θ) = 1{θ≥θ?}, π
?
h(θ) = 1 (no information is revealed

and a high action is taken in the aftermarket) with θ? defined by (6.2).

23 That proof is easy because, by Fact 5, the optimal cutoff mechanism has a disclosure rule that reveals
no information. Therefore, the problem reduces to finding the optimal allocation rule in two cases: when
the high action is always taken, or when the low action is always taken.



6 Limits of the main results 30

Mechanism 2 from Proposition 1 converges to the mechanism 3 from Claim 10 as uh → 0.

When uh = 0, the aftermarket becomes strongly submodular, and the two mechanisms

coincide (which is consistent with Theorem 3 which predicts that a cutoff mechanism is

optimal). However, for any uh, mechanism 2 dominates. Both mechanisms induce a high

action for types above θ?. It is not possible to induce a high action for types below θ?

because, by definition, θ? is the smallest threshold that still induces the high action. However,

mechanism 2 allocates to types below θ? and recommends a low action, while mechanism 3

does not allocate the good at all.

To understand the difference, I will use the resale model from Example 1(a). In this case,

uh/ul = 1− λ, where λ is the probability that the resale stage happens. Suppose first that

λ = 1 (the aftermarket is strongly submodular). Both mechanisms allocate to types above

θ? and reveal no information via their disclosure rules. When the aftermarket takes place

with probability one, and the high price is always quoted by the third party, the agent’s

endogenous value for acquiring the object is equal to the resale price θH . In particular, the

value no longer depends on the agent’s type θ. As a consequence, the designer has to charge

exactly θH for reporting a type above θ?, leaving the agent with no information rents (if

the agent received a positive information rent, types below θ? would have an incentive to

misreport to also receive a positive rent). It follows that it is not incentive-compatible to offer

the good and recommend the low price to agents below θ?. Otherwise, higher types would

have to be offered a strictly positive information rent, contradicting the above reasoning.

Suppose now that λ < 1. In this case, even when a high resale price is quoted in the

aftermarket, higher types of the agent have a strictly higher value for the object (driven

by the event that the aftermarket does not take place and the agent is the final holder of

the good). Thus, types in [θ?, 1] receive a positive information rent, proportional to the

probability of the aftermarket not taking place, 1 − λ. As a consequence, the designer can

sell the good to types below θ? but only with sufficiently small probability so that higher

types do not want to deviate to reporting a type below θ?. In the optimal mechanism 2, the

good is offered exactly with probability 1− λ (the probability of the aftermarket not taking

place) to types below θ?. A low price is recommended for these types, so it remains optimal

for the third party to quote a high price for types above θ?.24

Intuitively, the slope ua of the agent’s utility in her type determines the ability of the

designer to screen types by offering the good with different probabilities. When the utility

is flat (e.g., uh = 0), it is impossible to screen. When the slope is strictly positive (uh > 0),

24 This would not be possible in a cutoff mechanism because the probability of recommending the low price
would have to be non-decreasing in the type, by Fact 2. It is not non-decreasing: the low price is never
recommended for types above θ?.
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more information can be elicited and revealed by offering different allocation probabilities.

With the aftermarket, the slope depends on the action of the third party. When uh > 0, the

slope is bounded away from zero regardless of the action taken by the third party (ul > uh).

The optimal mechanism 2 fully exploits this feature to screen the agent’s type by offering the

good with different probabilities. Cutoff mechanisms, by design, reveal information about

the cutoff, and are hence incentive-compatible regardless of the slope of the agent’s utility

in the aftermarket (Fact 3). However, this also means that cutoff mechanisms do not fully

exploit the possibility to screen when the slope of the agent’s utility is bounded away from

zero.

Example 1(a) is similar to the baseline model considered by Calzolari and Pavan (2006a).

The differences are that (i) Calzolari and Pavan assume that the agent’s type is binary (I

model it as a continuous variable), (ii) Calzolari and Pavan consider revenue maximization

(I study general objective functions), and (iii) Calzolari and Pavan consider a stochastic

binary value of the third party but assume that the aftermarket always happens (I assume

that the third party has a fixed value which is higher than the value of the agent but the

aftermarket happens with interior probability). The effect of a stochastic value of the third

party is similar to the effect of an interior probability of the aftermarket: Instead of assuming

that the aftermarket does not take place, I could assume that the value of the third party is

below the value of the agent. As a result, the optimal mechanisms from Proposition 1 have a

similar structure to the optimal mechanisms identified by Calzolari and Pavan (2006a) (with

some differences stemming from the discrete versus continuous types space).

One insight from Proposition 1 and Claim 10 complementary to Calzolari and Pavan

(2006a) is that the optimal mechanism reveals information only when there is non-zero

probability that there will be no gains from trade after the mechanism: either because the

aftermarket does not happen (as in my model), or because the third party has a low value

(as in the model of Calzolari and Pavan, 2006a).

6.2.1 Robust payoff bounds

Proposition 1 and Claim 10 imply that a cutoff mechanism may sometimes be suboptimal.

However, these results do not directly show how much value the designer may lose by using

a mechanism in this class instead of the optimal mechanism. Under the assumptions of the

previous subsection, I provide robust payoff bounds on the performance of cutoff mechanisms.

Proposition 2a. Under the assumptions of Section 6.2, regardless of the functional form

of V a(θ), a cutoff mechanism achieves at least a fraction ul/(ul + uh) of the value of the

optimal mechanism.
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Because ul > uh in a submodular aftermarket, a cutoff mechanism achieves at least

half of the optimal value in the worst case but that fraction can be much larger when the

“deviation” from a strongly submodular aftermarket is small (uh is small). For instance, in

Example 1(a), ul/(ul + uh) = 1/(2 − λ), so if the aftermarket happens with probability at

least 1/2, then a cutoff mechanism achieves at least 2/3 of the optimal value, and when it

happens with probability 3/4, the guarantee rises to 4/5.

For the simple Example 1(a), it is possible to obtain even better guarantees for particular

objective functions of the designer.

Proposition 2b. If the designer maximizes total expected surplus in Example 1(a), then for

any fixed λ ∈ [0, 1] the optimal cutoff mechanism achieves at least a fraction

1

1 + 1
2
(
√
λ− λ)

of the social surplus of the optimal mechanism.

In particular, regardless of λ, f , l, h, v, a cutoff mechanism is guaranteed to yield more

than 88% of the optimal surplus. Moreover, a cutoff mechanism is optimal at λ = 0 and at

λ = 1 (see Figure 6.1).

Proposition 2c. If the designer maximizes expected revenue in Example 1(a), and r ≡
θH/θL, then for any fixed λ ∈ [0, 1] the optimal cutoff mechanism achieves at least a fraction

max

{
1

2− λ
,

1

1− λ(1− r)

}
.

of the expected revenue of the optimal mechanism.

For example, if r = 1.5, then a cutoff mechanisms achieves at least 75% of the optimal

expected revenue in all cases. For any finite r, the gap disappears close to λ = 0 and λ = 1

(see Figure 6.1).

6.2.2 Discussion

Summarizing, the assumption of strongly submodular aftermarket is needed for Theorems 2

and 3 but the designer might not be losing much by looking at cutoff mechanisms. Moreover,

cutoff mechanisms remain relatively simple when the problem gets more complicated (see

Dworczak, 2020). In contrast, I conjecture that the exactly optimal mechanism 2 identified

by Proposition 1 is likely to increase in complexity when the relatively stylized assumptions

are relaxed because its construction relies on satisfying the monotonicity constraint with

equality whenever possible.
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Fig. 6.1: Robust payoff guarantees from using a cutoff mechanism in Example 1(a): social
surplus (solid line), revenue for θH/θL ≤ 1.5 (thick dotted line) and arbitrary ob-
jective (thin dotted line)
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7 Conclusions

This paper considered a simplified model of mechanism design with aftermarkets that allowed

me to capture various economic applications and highlight how the structure of the aftermar-

ket influences the form of the optimal mechanism. In particular, I argued that submodular

aftermarkets (such as resale) favor privacy in the optimal mechanism while supermodular

aftermarkets allow for direct information disclosure about the agent’s type. These results

have implications for how real-life market designers might think about transparency of allo-

cation mechanisms depending on the context of the market in which these mechanisms are

embedded.

I conjecture that the distinction between submodular and supermodular aftermarkets re-

mains relevant for the form of optimal mechanisms beyond the framework of this paper. The

literature already identified cases in which full disclosure is optimal when the aftermarket

is supermodular. The submodular case is far more difficult to analyze because—as shown

here—the optimal mechanism will often disclose information in a way that leads to a binding

monotonicity (or global incentive-compatibility) constraint. Consequently, the exactly opti-

mal mechanism may be not only hard to find but also complicated. Thus, a more promising

direction might be to look for notions of approximate optimality (as in Section 6.2) that

provide support for using simpler mechanisms.
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A Multi-agent mechanisms

In this section, I extend the model to multi-agent symmetric settings.25 I maintain the

assumption that only the agent who acquires the object in the mechanism interacts in the

aftermarket.

There are N ex-ante identical agents, indexed by i = 1, 2, ..., N . Each agent i has

a privately observed type θi ∈ Θ. Types are distributed i.i.d. according to a full-support

distribution f on Θ ≡ [0, 1]. The payoff of the designer and the third party may depend

on the type of the agent in the aftermarket but not on the agent’s identity. Therefore, the

utility functions V a(θ) and va(θ) take the same form as in the one-agent model.

Under these assumptions, it is without loss of generality to look at symmetric mecha-

nisms. I consider Bayesian implementation. Symmetric N -agent direct mechanisms can be

represented by their reduced forms (x, π, t), where x : Θ → [0, 1], π : Θ → ∆(S), and

t : Θ → R are all one-dimensional functions, subject to the constraint that x is feasible

under f for some joint N -dimensional allocation rule x with
∑N

i=1 xi(θ) = 1 for all θ ∈ ΘN :

x(θ) =

�

ΘN−1

xi(θ, θ−i)
∏
j 6=i

f(θj)dθj. (A.1)

For non-decreasing interim allocation rules x, condition (A.1) is equivalent to the so-called

Matthews-Border condition:

� 1

τ

x(θ)f(θ)dθ ≤ 1− FN(τ)

N
, ∀τ ∈ [0, 1], (MB)

If the allocation rule x is not non-decreasing, condition (MB) is necessary but no longer

sufficient (see Matthews, 1984, and Border, 1991). I will consider the relaxed problem with

constraint (MB). Thus, the obtained solution is guaranteed to be feasible only if the optimal

x turns out to be non-decreasing.

As before, it is without loss of generality to look at binary signal spaces, S = {l, h}.
Then, letting πh(θ) denote the probability of sending the high signal conditional on type θ

and allocating the object, any mechanism can be represented by its reduced form (x, πh, t).

Under Bayesian implementation, conditions for implementability of (x, πh) are formally

identical to those from the one-agent model. That is, equations (M), (OBl), (OBh) together

with (MB) fully characterize all implementable pairs (x, πh).

25 Symmetry is assumed solely for expositional simplicity.
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Finally, the objective function of the mechanism designer is given by

N

� 1

0

(
V h(θ)πh(θ)x(θ) + V l(θ)(1− πh(θ))x(θ)

)
f(θ)dθ (A.2)

which only differs from the one-agent objective function in that it is multiplied by N .

A symmetric mechanism in the multi-agent setting is defined as a cutoff (partitional)

mechanism if its reduced form is a one-agent cutoff (partitional) mechanism.

For a fixed interim allocation rule, we obtain a problem that is formally identical to the

one-agent problem considered in the previous sections (the additional constraint MB only

pertains to the allocation rule). Therefore, Theorem 2 applies without any modifications

(with x interpreted as an interim allocation rule). Theorem 3 can be extended as well,

although this requires a proof.

Theorem 4. For any N , suppose that the designer’s and the third party’s preferences are

co-modular, and and that V h(θ) and V l(θ) are non-decreasing in θ. The following mechanism

achieves the maximal value of (4.3) subject to (M), (OBh), (OBl), (MB):

• A cutoff rule, when the aftermarket is strongly submodular;

• A partitional rule, when all players’ utility functions are supermodular.

A.1 Discussion

The implications of the analysis with multiple agents are qualitatively similar to the ones

from the single-agent model. I briefly comment on the differences below.

The problem of optimal information disclosure for a fixed allocation rule is identical

mathematically. The only difference is in the interpretation: In the multi-agent model,

the role of x(θ) from the single-agent model is played by the interim expected allocation

rule. In a partitional mechanism, this is mostly irrelevant. In a cutoff mechanism, the

implication is that the distribution of the cutoff can depend on the distribution of other

agents’ information. For example, in a monotone equilibrium of an auction, the cutoff

corresponds to the second highest bid, and thus results about optimality of disclosure should

be interpreted as pertaining to the disclosure of the second highest bid.

The problem of joint optimization over allocation and disclosure rules is altered by the

presence of the Matthews-Border condition. Practically, this means that the optimal (interim

expected) allocation rule will typically not be a simple threshold rule. This has consequences

for the optimal design of cutoff mechanisms which might disclose non-trivial information
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about the cutoff when there are multiple agents (which never happens with one agent). This

is explained in detail in Dworczak (2020) that focuses entirely on cutoff mechanisms.

In the resale example of Section 5.1, the surplus-maximizing mechanism for the case

N ≥ 2 is a cutoff mechanism that can take two possible forms: Either (i) it is an auction

with a reserve price that is sufficiently high so that conditional on allocation the high resale

price is always induced (no signals are sent), or (ii) it is a mechanism that sends a binary

signal that depends on the second highest type, and allocates the good to the highest bidder

if that bidder’s type is above a threshold; or to a random agent (regardless of the type)

otherwise. See the Online Appendix for a formal statement and proof. A revenue-maximizing

mechanism could take an even more complicated form but at least in some cases mechanism

(i) is also revenue-maximizing.

In the investment game of Section 5.2, the surplus-maximizing mechanism for the case

N ≥ 2 is a partitional mechanism: The designer runs an efficient auction, and then discloses

whether the bid of the winner was above or below a threshold. To maximize revenue, the

designer would additionally introduce a reserve price (but the disclosure rule would remain

the same).

B Proofs

B.1 An auxiliary optimization problem

This appendix formulates and proves some key lemmas that will be used in the subsequent

proofs. I consider the maximization problem

max
y: Θ→[0, 1]

� 1

0

φ(θ)y(θ)f(θ)dθ (B.1)

subject to

y(θ) is non-decreasing, (B.2)

y(θ) ≤ x(θ), ∀θ ∈ Θ, (B.3)� 1

0

ψ(θ)y(θ)f(θ)dθ ≥ c, (B.4)

for some upper semi-continuous functions φ : Θ → R, ψ : Θ → R, a non-decreasing right-

continuous allocation rule x, and a constant c ∈ R. The function φ is either non-negative or

non-positive.

To avoid trivial cases, I make the following assumptions. There exists at least one feasible
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y. In the case when φ is non-negative, (B.1) is upper-bounded by setting y(θ) = x(θ), and

this upper bound cannot be achieved:

� 1

0

ψ(θ)x(θ)f(θ)dθ < c.

In the case when φ is non-positive, (B.1) is upper-bounded by taking y(θ) = 0, and this

upper bound cannot be achieved: c > 0.

Lemma 2. Consider the maximization problem (B.1) - (B.4).

If φ and ψ are both non-increasing, the optimal solution takes the form y(θ) = min{x(θ), x̄}
for x̄ ∈ [0, 1] such that (B.4) holds with equality.

If φ and ψ are both non-decreasing, the optimal solution takes the form y(θ) = x(θ)1{θ≥θ?}

for θ? ∈ [0, 1] such that (B.4) holds with equality.

Proof of Lemma 2. Consider two candidate solutions y1 and y2. I say that y1 dominates

y2 if (i)
� 1

0
y1(θ)f(θ)dθ =

� 1

0
y1(θ)f(θ)dθ, and (ii)

� α
0
y1(θ)f(θ)dθ ≤

� α
0
y1(θ)f(θ)dθ for all

α ∈ [0, 1].

Take an optimal solution y? to problem (B.1) - (B.4).26 Let α ≡
� 1

0
y?(θ)f(θ)dθ. Then,

y? solves the problem (B.1) - (B.4) with the additional constraint

α =

� 1

0

y(θ)f(θ)dθ. (B.5)

Suppose that φ and ψ are non-decreasing. Consider y′(θ) which satisfies (B.2), (B.3),

(B.5), and dominates y?. Then, Y ′(θ) =
� θ

0
y′(τ)f(τ)dτ first-order stochastically dominates

Y ?(θ) =
� θ

0
y?(τ)f(τ)dτ . It follows that y′ satisfies (B.4) and achieves a higher value of the

objective (B.1) than y?, so y′ is optimal.

Thus, an optimal solution can be found among functions y that satisfy (B.2), (B.3), and

are not dominated by any other function satisfying these constraints with the same value

of
� 1

0
y(θ)f(θ)dθ. Because functions of the form y(θ) = x(θ)1{θ≥θ?} dominate all functions

satisfying (B.2) and (B.3) with equal
� 1

0
y(θ)f(θ)dθ, y(θ) = x(θ)1{θ≥θ?} is optimal for some

θ? ∈ [0, 1].

I only have to prove that θ? is set in such a way that condition (B.4) holds with equal-

ity. By assumption, there exists a feasible solution y′. Some function of the form y(θ) =

x(θ)1{θ≥θ?} dominates y′, so there exists a feasible solution of the form y(θ) = x(θ)1{θ≥θ?}.

Again by assumption, whether φ is non-negative or non-positive, the upper-bound solutions

y ≡ x and y ≡ 0 are not feasible, respectively. Thus, (B.4) has to hold with equality.

26 The solution exists because the domain is compact in the product topology, and the objective function
is upper semi-continuous.
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In the case when φ and ψ are non-increasing, consider y′ satisfying (B.2), (B.3), (B.5),

which is dominated by y?. By a similar reasoning, y′ is optimal. Thus, an optimal solution

is a function y that is dominated by all functions satisfying (B.2) and (B.3). Such a function

takes the form y(θ) = min{x(θ), x̄} for some constant x̄ ∈ [0, 1]. By the same reasoning as

in the previous case, x̄ has to be such that constraint (B.4) holds with equality.

For the remaining results in this appendix, I will use tools from optimal control theory.

The following lemma establishes sufficient conditions for a feasible candidate solution y to

be optimal for problem (B.1)-(B.4).

Lemma 3. Suppose that y is an absolutely continuous function which satisfies constraints

(B.2) - (B.4). Suppose that there exist (i) a function u(θ) ≥ 0 such that y(θ) − y(0) =� θ
0
u(τ)dτ , for all θ ∈ [0, 1], (ii) a piece-wise continuous λ(θ) ≥ 0, (iii) a piece-wise differ-

entiable and piece-wise continuous p(θ) ≤ 0, and (iv) a constant η, such that:

1. u(θ) > 0 =⇒ p(θ) = 0,

2. x(θ) > y(θ) =⇒ λ(θ) = 0,

3. p′(θ) = (λ(θ)− φ(θ)− ηψ(θ)) f(θ), whenever it is differentiable,

4. p can jump up at finitely many points τ , p(τ−) < p(τ+), provided that x(τ) = y(τ).

5. p(0) = 0 and p(1) = 0,

6. if constraint (B.4) does not bind, then η = 0; if constraint (B.4) is assumed to bind,

then η is unrestricted; in other cases, η ≥ 0.

Then, y solves the problem (B.1) - (B.4).

Proof. Follows by applying Theorem 1 on page 317 of Seierstad and Sydsaeter (1987) to the

problem (B.1) - (B.4). The condition p(θ) ≤ 0 and condition (1) come from the requirement

that the non-negative control function u(θ) maximizes the Hamiltonian (which is linear in

the control function). Condition (2) is a complementary-slackness condition on the Lagrange

multiplier λ(θ) that comes from the constraint y(θ) ≤ x(θ). Condition (3) is the standard

law of motion for the multiplier p, and condition (4) follows from the fact that the endpoints

of y are not restricted. Sometimes p might have a jump discontinuity at 1, which is captured

by condition (5). The constraint (B.4) is incorporated by defining an auxiliary state variable

Γ(θ) with Γ′(θ) = ψ(θ)y(θ)f(θ), Γ(0) = 0, and Γ(1) ≥ c. Because Γ does not appear

in the Hamiltonian, the corresponding multiplier η is constant. Condition (6) summarizes

the properties of η depending on the whether Γ(1) ≥ c is binding or not. The concavity

assumptions are satisfied because the problem and the constraints are linear in y.
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I now apply Lemma 3 to obtain sufficient conditions for a cutoff mechanism to solve the

problem (B.1) - (B.4).

Lemma 4. Consider problem (B.1)-(B.4) and assume additionally that x is absolutely con-

tinuous. Suppose that x̄ is well-defined by

� 1

0

ψ(θ) min{x(θ), x̄}f(θ)dθ = c.

Define θ? = max{θ ∈ [0, 1] : x(θ) ≤ x̄}, and η by

� 1

θ?
(φ(θ) + ηψ(θ))f(θ)dθ = 0.

If φ(θ)+ηψ(θ) crosses zero once and from above, then y(θ) = min{x(θ), x̄} solves the problem

(B.1)-(B.4).

Proof. By assumption, y(θ) = min{x(θ), x̄} is a feasible candidate solution. To prove that

y is optimal, let λ(θ) = φ(θ) + ηψ(θ) for θ ≤ θ?, and λ(θ) = 0 for θ > θ?. Next, define p

as in Lemma 3 with p(0) = 0. By the choice of λ, p(θ) = 0 for θ ≤ θ?. To guarantee that

p(1) = 0, we need � 1

θ?
(φ(θ) + ηψ(θ))f(θ)dθ = 0,

and this pins down η. Suppose that φ(θ) + ηψ(θ) crosses zero once and from above. The

function φ(θ)+ηψ(θ) has to cross zero to the right of θ? because otherwise the above equality

could not hold. Thus, φ(θ) + ηψ(θ) is positive for θ ≤ θ?. This means that λ(θ) ≥ 0 for all

θ. Finally, p(θ) is non-positive because its derivative on [θ?, 1], equal to −(φ(θ) + ηψ(θ)), is

first non-positive, and then non-negative.

B.2 Proof of Theorem 1

I will not assume that (2.2) holds to show that the proof extends to the opposite case as

well.

Since x(θ) = 1 for all θ, constraint (M) becomes

πh(θ)(u
h − ul) is non-decreasing in θ.

Take for concreteness the case when the agent’s utility is submodular, ul > uh (the other

case is fully analogous, and uh = ul is ruled out by assumption). Then, πh has to be non-

increasing. By condition (OBh), the mean value theorem for integrals, and the assumption
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that v is supermodular (since the aftermarket is submodular),

0 ≤
� 1

0

(vh(θ)− vl(θ))πh(θ)f(θ)dθ = πh(0
+)

� α

0

(vh(θ)− vl(θ))f(θ)dθ,

for some α ∈ [0, 1]. If πh(0
+) = 0, then πh ≡ 0 (which would end the proof) because πh is

non-increasing. Otherwise, we have

� α

0

(vh(θ)− vl(θ))f(θ)dθ ≥ 0

which, by the fact that v is supermodular, implies that

� 1

β

(vh(θ)− vl(θ))f(θ)dθ ≥ 0,

for all β ∈ [0, 1]. Then, by condition (OBl), and again by the mean value theorem,

0 ≥
� 1

0

(vh(θ)− vl(θ))(1− πh(θ))f(θ)dθ = (1− πh(1−))

� 1

γ

(vh(θ)− vl(θ))f(θ)dθ,

for some γ ∈ [0, 1]. Unless
� 1

γ
(vh(θ) − vl(θ))f(θ)dθ = 0, this implies that πh(1

−) = 1, and

because πh is non-increasing, we must have πh ≡ 1 (which would end the proof).

If
� 1

γ
(vh(θ) − vl(θ))f(θ)dθ = 0, then because

� α
0

(vh(θ) − vl(θ))f(θ)dθ ≥ 0, and v is

supermodular, it must be that
� 1

0
(vh(θ)−vl(θ))f(θ)dθ = 0. Since vh and vl are not identical

(vh 6= vl), πh must be constant.

Now suppose that the aftermarket is supermodular. First, consider the case when both

the agent’s and the third party’s utilities are supermodular. Then, full disclosure of the type,

understood as S = [0, 1], π(·|θ) = δ{s=θ}, corresponds to implementing πh(θ) = 1{θ≥θ̂}, where

θ̂ is defined as the smallest solution to vh(θ)−vl(θ) = 0 (due to supermodularity of the third

party’s objective function). (OBh) holds by construction, and (M) holds because πh(θ) is

non-decreasing. When both player’s utility functions are submodular, then full disclosure

corresponds to πh(θ) = 1{θ<θ̂}, and (M) holds because πh(θ) is non-increasing (and agent’s

utility is submodular, so that ul ≥ uh).

B.3 Proof of Theorem 2

Part I: Submodular aftermarkets. I prove the theorem assuming that agent’s utility is

strongly supermodular—the opposite case when the agent’s utility is strongly submodular is
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analogous.27 Under this assumption and the assumptions of Theorem 2, uh > 0, and ul = 0,

and the third party’s and designer’s utility functions are submodular. The optimal design

problem takes the form

max
πh

� 1

0

[
πh(θ)V

h(θ) + (1− πh(θ))V l(θ)
]
x(θ)f(θ)dθ (B.6)

subject to

0 ≤ πh(θ) ≤ 1, ∀θ ∈ Θ, (B.7)

πh(θ)x(θ) is non-decreasing in θ, (B.8)� 1

0

vh(θ)πh(θ)x(θ)f(θ)dθ ≥
� 1

0

vl(θ)πh(θ)x(θ)f(θ)dθ, (B.9)

� 1

0

vl(θ)(1− πh(θ))x(θ)f(θ)dθ ≥
� 1

0

vh(θ)(1− πh(θ))x(θ)f(θ)dθ. (B.10)

I consider two cases. First, suppose that

� 1

0

vh(θ)x(θ)f(θ)dθ ≥
� 1

0

vl(θ)x(θ)f(θ)dθ, (B.11)

i.e., the third party takes the high action in the absence of any additional information. Then,

revealing no information (πh ≡ 0) is a feasible mechanism, and it is optimal because, by

assumption, V h ≥ V l. In this case, the optimal mechanism has a disclosure rule that does

not reveal any information, and is thus trivially a cutoff mechanism.

Consider the opposite case in which condition (B.11) fails. Let y(θ) ≡ πh(θ)x(θ). I

consider a relaxed problem without the constraint (B.10) (I will verify ex-post that this

constraint is satisfied at the solution of the relaxed problem). By deleting terms that do not

affect the value of the objective function we obtain

max
y

� 1

0

[
V h(θ)− V l(θ)

]
y(θ)f(θ)dθ

subject to

0 ≤ y(θ) ≤ x(θ), ∀θ ∈ Θ,

y(θ) is non-decreasing in θ,

27 In that case, in the derivation that follows, I would still consider (B.6) - (B.10) but with (B.8) replaced
by

(1− πh(θ))x(θ) is non-decreasing in θ,

and y(θ) ≡ (1− πh(θ))x(θ).
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� 1

0

[
vh(θ)− vl(θ)

]
y(θ)f(θ)dθ ≥ 0.

Under assumptions of Theorem 2, define φ(θ) = V h(θ)− V l(θ), ψ(θ) = vh(θ)− vl(θ). Then,

the problem becomes identical to the auxiliary optimization problem considered in Appendix

B.1. The functions V and v are submodular, so φ and ψ are non-increasing. By Lemma 2,

the optimal mechanism takes the form y(θ) = min{x(θ), x̄} for some x̄ ∈ [0, 1]. This means

that both πh(θ)x(θ) and (1−πh(θ))x(θ) = x(θ)−y(θ) = max{x(θ)−x̄, 0}, are non-decreasing

which corresponds to a cutoff mechanism (by Fact 2). The problem becomes

max
x̄

� 1

0

[
V h(θ)− V l(θ)

]
min{x(θ), x̄}f(θ)dθ

subject to � 1

0

[
vh(θ)− vl(θ)

]
min{x(θ), x̄}f(θ)dθ ≥ 0.

Setting x̄ = maxθ{x(θ)} is not feasible when condition (B.11) fails, and the objective function

is non-decreasing in x̄. Thus, the constraint must bind at the optimal solution:

� 1

0

[
vh(θ)− vl(θ)

]
min{x(θ), x̄}f(θ)dθ = 0.

Finally, I have to verify that the solution to the relaxed problem is feasible for the original

problem, i.e., that

� 1

0

vl(θ)(1− πh(θ))x(θ)f(θ)dθ ≥
� 1

0

vh(θ)(1− πh(θ))x(θ)f(θ)dθ.

We know that � 1

0

[vl(θ)− vh(θ)]x(θ)f(θ)dθ > 0.

From the above,

0 <

� 1

0

[vl(θ)− vh(θ)]x(θ)f(θ)dθ

=

� 1

0

[vl(θ)− vh(θ)]y(θ)f(θ)dθ︸ ︷︷ ︸
0

+

� 1

0

[vl(θ)− vh(θ)](x(θ)− y(θ))f(θ)dθ

=

� 1

0

[vl(θ)− vh(θ)](1− πh(θ))x(θ)f(θ)dθ, (B.12)

so constraint (B.10) holds. Thus, a cutoff mechanism is optimal.
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Part II: Supermodular aftermarkets. The proof follows almost exactly the same steps as

in the previous case, so I omit most details, and only highlight the differences.

Assume that agent’s utility is supermodular (again, the opposite case if fully analogous

and thus skipped). That is, uh > ul. Then, the assumptions of Theorem 2 imply that the

third party’s and designer’s utility functions are supermodular. As in the case of a submodu-

lar aftermarket, I consider the optimization problem (B.6)—(B.10), however, with constraint

(B.8) replaced by the original monotonicity constraint (M). Define y(θ) = πh(θ)x(θ), and

consider the relaxed problem

max
y

� 1

0

[
V h(θ)− V l(θ)

]
y(θ)f(θ)dθ

subject to

0 ≤ y(θ) ≤ x(θ), ∀θ ∈ Θ, (B.13)� 1

0

[
vh(θ)− vl(θ)

]
y(θ)f(θ)dθ ≥ 0. (B.14)

The relaxation is that I dropped both the monotonicity constraint (M) and the obedience

constraint (B.10). We can define φ(θ) = V h(θ)−V l(θ), and ψ(θ) = vh(θ)−vl(θ). This time,

these functions are non-decreasing. Thus, Lemma 2 from Appendix B.1 yields the conclusion

that the optimal y(θ) = πh(θ)x(θ) takes the form y(θ) = x(θ)1{θ≥θ?} for some θ? ∈ [0, 1]

(technically, the problem in Lemma 2 has a monotonicity constraint but dropping it does

not change the solution). It is immediate that because x is non-decreasing, condition (M) is

satisfied with this πh, and so is (B.10) for the optimal choice of θ? (see the proof of Lemma

2). Therefore, the partitional mechanism that solves the relaxed problem is also feasible

(and hence optimal) for the original problem.

B.4 Proof of Lemma 1

I prove the result for cases (i) and (ii). Case (iii) is fully analogous to case (ii) and thus

skipped.28 In cases (i) and (ii), the agent’s utility is supermodular (uh > ul). Let y(θ) =

x(θ)πh(θ). The (relaxed29) problem of the designer can be written as

max
x, y

� 1

0

(V h(θ)− V l(θ))y(θ)f(θ)dθ +

� 1

0

V l(θ)x(θ)f(θ)dθ (B.15)

28 The difference is that I would define y(θ) = x(θ)(1− πh(θ)) instead of y(θ) = x(θ)πh(θ).
29 As usually, we can drop the constraint (OBl) because it is never binding in the optimal solution.



B Proofs 46

subject to

0 ≤ y(θ) ≤ x(θ), ∀θ ∈ Θ, (B.16)� 1

0

[
vh(θ)− vl(θ)

]
y(θ)f(θ)dθ ≥ 0, (B.17)

(uh − ul)y(θ) + ulx(θ) is non-decreasing in θ. (B.18)

The rest of the proof proceeds differently depending on the cases. I consider case (ii)

first.

Case (ii). Define z(θ) = uh−ul
uh

y(θ) + ul

uh
x(θ). Constraint (B.18) implies that z is non-

decreasing in a feasible mechanism. Thus, fixing any non-decreasing z, we can consider an

auxiliary problem of choosing x optimally:

max
x

� 1

0

[
V l(θ) + (V l(θ)− V h(θ))

ul

uh − ul

]
x(θ)f(θ)dθ (B.19)

subject to

0 ≤ z(θ) ≤ x(θ), ∀θ ∈ Θ, (B.20)

uh
� 1

0

[
vh(θ)− vl(θ)

]
z(θ)f(θ)dθ ≥

� 1

0

ul
[
vh(θ)− vl(θ)

]
x(θ)f(θ)dθ. (B.21)

Because the aftermarket is submodular, both V h(θ) − V l(θ) and vh(θ) − vl(θ) are non-

increasing. V l(θ) is non-decreasing by assumption. This means that the objective function

V l(θ) + (V l(θ)− V h(θ)) ul

uh−ul is non-decreasing, and the constraint (B.21) is preserved when

x is modified by “shifting mass to the right.” By the reasoning in Lemma 2 in Appendix

B.1, the optimal x?(θ) must be equal to z(θ) for θ < θ? and to 1 for θ ≥ θ?. In particular,

x? is non-decreasing.

Case (i). In this case, the proof is easier. Because the aftermarket is supermodular,

V h(θ) − V l(θ) and vh(θ) − vl(θ) are both non-decreasing. Because V l(θ) is non-decreasing

by assumption, the objective function (B.15) is increased by shifting mass to the right under

both x and y (in the sense explained in the proof of Lemma 2). Moreover, such a simul-

taneous shift preserves constraints (B.17) and (B.18). It follows that both y and x must

be non-decreasing in the optimal mechanism. In fact, in this case, we can pin down the

shapes of the optimal x? and y? more precisely—they must both have a threshold structure:

x?(θ) = 1{θ≥θ?} and y?(θ) = 1{θ≥θ̂} for some θ̂ ≥ θ? ≥ 0.
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B.5 Proof of Claim 3

Deleting terms that do not depend on πh, and letting y(θ) ≡ (1 − πh(θ))x(θ), the design

problem can be written as

max
y

� 1

0

[J(θ)− 1] y(θ)f(θ)dθ

subject to

0 ≤ y(θ) ≤ x(θ), ∀θ ∈ Θ,

y(θ) is non-decreasing in θ,
� 1

0

[(θH − θL)− θ(v − θL)] y(θ)f(θ)dθ ≥
� 1

0

[(θH − θL)− θ(v − θL)]x(θ)f(θ)dθ.

Let φ(θ) = J(θ)−1, and ψ(θ) = (θH − θL)− θ(v− θL). Let x̄ and θ? be defined as in Lemma

4. We can apply Lemma 4 which provides sufficient conditions for y(θ) = min{x(θ), x̄} to

be optimal. Define η as a solution to equation
� 1

θ?
(φ(θ) + ηψ(θ))f(θ)dθ = 0. That is,

η =

� 1

θ?
(J(θ)− 1) f(θ)dθ� 1

θ?
(θ(v − θL)− (θH − θL)) f(θ)dθ

=
(1− θ?)

(θH − θL)− (v − θL)E[θ| θ ≥ θ?]

By Lemma 4, it is enough to prove that Λ(θ) ≡ φ(θ) + ηψ(θ) crosses zero once and from

above. A sufficient condition is that Λ′(θ) ≤ 0 for all θ. This gives us the condition

η ≥ J̄

v − θL
,

where recall that J̄ = maxθ J
′(θ). Let ∆ ≡ (θH − θL)/(v− θL). Plugging in the definition of

η, and simplifying, a sufficient condition for optimality of y(θ) = min{x(θ), x̄} is

∆− (1− θ?)
J̄

≤ E[θ| θ ≥ θ?] ≤ ∆ (B.22)

By definition of x̄, the obedience constraint holds with equality at y, which means that

0 =

� 1

θ?
[∆− θ] (x(θ)− x̄)f(θ)dθ.

Because x(θ) is non-decreasing, the mean value theorem for integrals implies that

� 1

θ?
[∆− θ] f(θ)dθ ≥ 0.
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And this condition implies that ∆ ≥ E[θ| θ ≥ θ?]. Thus, the sufficient condition (B.22)

reduces to

∆ ≤ E[θ| θ ≥ θ?] +
1− θ?

J̄
.

For uniform distribution, we have J̄ = 2, and E[θ| θ ≥ θ?] = (1 + θ?)/2. Consequently,

∆ ≤ 1 + θ?

2
+

1− θ?

2
= 1,

and condition (B.22) always holds.

B.6 Proof of Claim 4

I denote y(θ) ≡ (1 − πh(θ))x(θ) and z(θ) ≡ πh(θ)x(θ). Then the joint design problem can

be written as

max
y≥0, z≥0

θH

� 1

0

z(θ)f(θ)dθ +

� 1

0

[θH − (θH − θL)(1− J(θ))] y(θ)f(θ)dθ (B.23)

subject to

y(θ) is non-decreasing in θ, (B.24)

0 ≤ y(θ) + z(θ) ≤ 1, ∀θ, (B.25)� 1

0

z(θ)φ(θ)f(θ)dt ≥ 0, (B.26)

where φ(θ) ≡ (θH − θL) − (v − θL)(1 − θ). I will consider a relaxed problem where I omit

constraint (B.24), and verify at the end that this constraint holds.

After constraint (B.24) is dropped, we can apply standard optimal control techniques to

solve the problem (B.23) subject to (B.25) - (B.26) treating y(θ) and z(θ) as control variables

chosen at any θ from the set U = {(y, z) ∈ (0, 1)2 : y + z ≤ 1}. The Hamiltonian is

H =

(θH + λφ(θ))︸ ︷︷ ︸
λz(θ)

z(θ) + (θL + (θH − θL)J(θ))︸ ︷︷ ︸
λy(θ)

y(θ)

 f(θ),

Let θ be the unique point such that φ(θ) = 0, and let θ? be defined by (5.6). Then, we

have θ? < θ, and there exists a unique λ > 0 such that λz(θ) goes through the point (θ?, 0).

By assumption, λy(θ) ≤ 0 for all θ ≤ θ?. Moreover, for θ ≥ θ, we have λz(θ) ≥ λy(θ),

by direct inspection. Because λz(θ) is affine in θ, and λy(θ) is convex in θ, this implies

that λz(θ) ≥ λy(θ) for all θ ≥ θ?. Therefore, y(θ) = 0 and z(θ) = 1{θ≥θ?} maximizes
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the Hamiltonian point-wise subject to (y(θ), z(θ)) ∈ U . Moreover, z(θ) satisfies constraint

(B.26) with equality, by definition of θ?. Because y(θ) = 0 is non-decreasing in θ, constraint

(B.24) also holds, and thus we have obtained an optimal solution, by the Maximum Principle

for optimal control.30

B.7 Proof of Proposition 1

The problem of the designer is given by

max
x, πh

� 1

0

[
πh(θ)V

h(θ) + (1− πh(θ))V l(θ)
]
x(θ)f(θ)dθ (B.27)

subject to

0 ≤ πh(θ) ≤ 1, ∀θ ∈ Θ, (B.28)

πh(θ)x(θ)uh + (1− πh(θ))x(θ)ul is non-decreasing in θ, (B.29)� 1

0

vh(θ)πh(θ)x(θ)f(θ)dθ ≥
� 1

0

vl(θ)πh(θ)x(θ)f(θ)dθ, (B.30)

� 1

0

vl(θ)(1− πh(θ))x(θ)f(θ)dθ ≥
� 1

0

vh(θ)(1− πh(θ))x(θ)f(θ)dθ. (B.31)

The last constraint (B.31) can be ignored because it will always be slack at the optimal

solution (due to the assumption that V h(θ) ≥ V l(θ) for all θ).

I will solve the problem in three steps. In the first two steps, I solve two auxiliary

problems in which some choice variables are fixed. This allows me to derive restrictions on

the structure of the optimal solution. In the last step, I optimize in the class of candidate

solutions that satisfy these restrictions.

First, I consider an auxiliary problem for a fixed non-decreasing allocation rule x (I will

show later that a non-decreasing x is optimal). If the high action is an optimal response for

the third party given x when no further information is reveled, then it is clearly optimal not

to reveal any information. Thus, I can focus on the case when the low action is chosen if no

further information is revealed:

� 1

0

(vh(θ)− vl(θ))x(θ)f(θ)dθ < 0.

30 See for example Seierstad and Sydsaeter (1987).
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Defining y(θ) = (1− πh(θ))x(θ), and

λ ≡ (ul − uh)/ul

(the symbol λ has already been used in Example 1(a) but the definition above coincides with

the meaning of λ in that example), the auxiliary problem is

min
y

� 1

0

(V h(θ)− V l(θ))y(θ)f(θ)dθ (B.32)

subject to

0 ≤ y(θ) ≤ x(θ), ∀θ, (B.33)

(1− λ)x(θ) + λy(θ) is non-decreasing in θ, (B.34)� 1

0

(vh(θ)− vl(θ))x(θ)f(θ)dθ ≥
� 1

0

(vh(θ)− vl(θ))y(θ)f(θ)dθ, (B.35)

Because both V h(θ) − V l(θ) and vh(θ) − vl(θ) are non-decreasing (by submodularity of

the aftermarket, and co-modularity of the designer’s and the third party’s preferences), the

optimal y pushes mass as far as possible to the left (in the sense explained in Appendix

B.1, in the proof of Lemma 2). Formally, consider the following candidate solution, for some

α ∈ [0, 1]: yα(θ) = max{0, ỹα(θ)}, where

ỹα(θ) =

x(θ) if θ < α

x(α)− 1−λ
λ

(x(θ)− x(α)) if θ ≥ α.

That is, yα(θ) is first equal to x(θ), then it is such that constraint (B.34) holds with equality,

and then yα(θ) = 0. I claim that for any feasible y′, there exists α such that yα achieves a

weakly lower value of the objective function (B.32). Indeed, given y′, define a function of

the form yα(θ) such that

� 1

0

yα(θ)f(θ)dθ =

� 1

0

y′(θ)f(θ)dθ.

Given a feasible y′(θ), an α that gives rise to the above equality can always be found.31 Then,

y′ first-order stochastically dominates yα, in the sense defined in previous proofs. Therefore,

yα is feasible, and achieves a weakly lower value of the objective function (B.32). Therefore,

31 In particular, if y′(θ) satisfies condition (B.35), then the condition is preserved as mass is shifted to the
left, because the function vh(θ)− vl(θ) is non-decreasing.
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an optimal y can always be found in the form of yα, for some α ∈ [0, 1].

Note that when λ = 1, this is the same solution as appeared in the proof of Theorem 2.

However, when λ < 1, the optimal function yα(θ) is first non-decreasing, and then it might

be strictly decreasing (if x(θ) is strictly increasing). When yα(θ) is decreasing, it decreases

at exactly the rate which makes the constraint (B.34) bind.

In the second step, I prove that the optimal x(θ) is non-decreasing, and derive further

necessary conditions on the structure of the solution. First, I change variables in the problem

(B.27) - (B.30). Let z(θ) = (1− λ)x(θ) + λy(θ). Then, the problem becomes

max
x, z

� 1

0

[
λV h(θ) + (1− λ)(V h(θ)− V l(θ))

]
x(θ)f(θ)dθ −

� 1

0

[
V h(θ)− V l(θ)

]
z(θ)f(θ)dθ

(B.36)

subject to

z(θ) ≤ x(θ) ≤ max

{
1,

1

1− λ
z(θ)

}
, ∀θ, (B.37)

z(θ) is non-decreasing in θ, (B.38)� 1

0

(vh(θ)− vl(θ))x(θ)f(θ)dθ ≥
� 1

0

(vh(θ)− vl(θ))z(θ)f(θ)dθ, (B.39)

I fix an arbitrary feasible z, and show that the optimal x must be non-decreasing. By

the usual argument (using the assumption that both V h(θ) and V h(θ) − V l(θ) are non-

decreasing), the optimal x(θ) pushes mass as far as possible to the right. That is, the

optimal x(θ) must be first equal to the lower bound z(θ), and then to the upper bound

max
{

1, 1
1−λz(θ)

}
. Because z(θ) is non-decreasing as well, it follows that x(θ) is non-

decreasing.

Moreover, using the definition of z, the optimal solution has the following structure: for

some 0 ≤ α ≤ β ≤ 1,
x(θ) = y(θ) is non-decreasing θ < α,

y(θ) = 0 and x(θ) is non-decreasing α < θ < β,

x(θ) = 1 and y(θ) is non-decreasing β < θ.

Moreover, at the points α and β, monotonicity of z must be preserved. In particular, because

y drops down to zero at α, x has to jump up at α, except for cases when α ∈ {0, 1}.
Since we know that the optimal x(θ) is non-decreasing, we can now combine the structural

insights about the solution from both auxiliary problems considered above. We know that

y(θ) is non-decreasing and equal to x(θ) on [0, α], and then non-increasing until it hits zero.
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Thus, we can refine the structure of the optimal solution:
x(θ) = y(θ) is non-decreasing θ < α,

y(θ) = 0 and x(θ) is non-decreasing α < θ < β,

y(θ) = 0, x(θ) = 1 β < θ.

Given the above structure of the optimal solution, the optimization problem can be, without

loss of generality, formulated as

max
x, α

� α

0

V l(θ)x(θ)f(θ)dθ +

� 1

α

V h(θ)x(θ)f(θ)dθ (B.40)

subject to

x(θ) is non-decreasing on [0, α) ∪ (α, 1] (B.41)

x(α+) ≥ 1

1− λ
x(α−), (B.42)

� 1

α

(vh(θ)− vl(θ))x(θ)f(θ)dθ ≥ 0. (B.43)

In the above problem, x(α+) and x(α−) denote the right and the left limits of x(θ) at α,

respectively, where (by convention) x(0−) = 0 and x(1+) = 1. If α = 0 and x(θ) = 1 satisfy

constraint (B.43), then this is clearly the optimal solution (given that V h(θ) ≥ V l(θ)).

However, such a solution is precluded by assumption (6.1).

Recall that θl and θh denote the points where V l and V h cross zero, respectively. I

consider three candidate solutions, depending on whether (i) α = 0, (ii) α = 1, or (iii)

α ∈ (0, 1) in the optimal solution. In the last step of the proof, I derive conditions for each

of these three candidate solutions to be optimal.

Cases (i) and (ii) are relatively straightforward. In case (i), because V h is non-decreasing,

the optimal solution is x(θ) = 1{θ≥γ} for some γ. Let θ? denote the solution to the equation

� 1

θ?
(vh(θ)− vl(θ))f(θ)dθ ≥ 0.

Then, γ = max{θ?, θh}. Assumption (6.1) implies that θ? ≥ θh, so that γ = θ?. The optimal

y is equal to 0 everywhere in this case. I will refer to this mechanism as mechanism 0.

In case (ii), it is optimal to set x(θ) = y(θ) = 1{θ≥θl}. This is mechanism 1 from

Proposition 1.

Finally, I consider case (iii). By considering the auxiliary problem in which x(α) is fixed,
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the problem can be decomposed into two independent parts, on [0, α], and on [α, 1]. On

[0, α], the optimal x must take the form x(θ) = x(α)1{θ≥θl}. On [α, 1], the optimal x takes

the form x(θ) = 1{θ≥max{θh, θ?}}. If θl ≥ α, then we conclude that the optimal solution must

take the form from case (i). Therefore, because θh ≤ θl, we must have θl ≤ α ≤ θ?, and

x(θ) = 1{θ≥θ?} on [α, 1]. However, it is not possible in case (iii) that x drops at α, and

thus we must have α ≥ θ?. Finally, inequality (B.34) must hold with equality at the optimal

solution in case (iii). Summarizing, we obtained,

x(θ) =


0 θ < θl,

1− λ θl ≤ θ < θ?,

1 θ? ≤ θ.

The corresponding optimal y is equal to x on [0, θ?], and equal to 1 − λ on [θ?, 1], so that

y(θ) = (1− λ)1{θl≤θ≤θ?}. This is mechanism 2 from Proposition 1.

Summing up, the optimal solution is one of three candidate solutions derived above. One

can directly compare the expected payoffs from these three mechanisms to find the optimal

one. The expected payoffs in cases (i) - (iii) are, respectively,

� 1

θ?
V h(θ)f(θ)dθ, (B.44)

� 1

θl

V l(θ)f(θ)dθ, (B.45)

(1− λ)

� θ?

θl

V l(θ)f(θ)dθ +

� 1

θ?
V h(θ)f(θ)dθ. (B.46)

Mechanism 0 (corresponding to the expected payoff (B.44)) is never strictly optimal because

mechanism 2 always yields a weakly higher expected payoff. Therefore, either mechanism 1

or mechanism 2 is optimal.

B.8 Proof of Propositions 2a, 2b and 2c

The goal is calculate (the inverse of)

r?(λ) ≡ sup
exp. payoff of the optimal mechanism

exp. payoff of the optimal cutoff mechanism
,

where the supremum is taken over all parameters of the model subject to constraints imposed

in Section 6.2, for fixed λ ≡ (ul − uh)/uh. I use the notation from the proof of Proposition
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1. Using Proposition 1 and Claim 10, I can write

r?(λ) ≤ sup
(1− λ)

� θ?
θl
V l(θ)f(θ)dθ +

� 1

θ?
V h(θ)f(θ)dθ

max{
� 1

θl
V l(θ)f(θ)dθ,

� 1

θ?
V h(θ)f(θ)dθ}

.

Proof of Proposition 2a: The proof of Proposition 2a is immediate:

r?(λ) ≤
(1− λ)

� θ?
θl
V l(θ)f(θ)dθ +

� 1

θ?
V h(θ)f(θ)dθ

max{
� 1

θl
V l(θ)f(θ)dθ,

� 1

θ?
V h(θ)f(θ)dθ}

≤ sup
a≥0, b≥0

(1− λ)a+ b

max{a, b}
= 2− λ,

using the fact that V a(θ) is non-decreasing.

For the remaining two cases, I assume that the model is that of Example 1(a).

Proof of Proposition 2b: For the problem of maximizing total surplus in Example 1(a),

we have θl = 0. It is easy to see that in the worst-case scenario, the two candidate optimal

cutoff mechanisms must yield exactly the same surplus, that is,

� 1

0

V l(θ)f(θ)dθ =

� 1

θ?
V h(θ)f(θ)dθ. (B.47)

This allows me to formulate the problem as

sup
θL, θH , v, f

(1− λ)
� θ?

0
V l(θ)f(θ)dθ +

� 1

θ?
V h(θ)f(θ)dθ� 1

θ?
V h(θ)f(θ)dθ

, (B.48)

subject to (B.47).

I can normalize one of parameters θL, θH , v because the numerator and the denominator

can be divided by a constant without changing the value of the ratio. I choose a normalization

such that v = 1 (then, 0 ≤ θL ≤ θH ≤ 1).

Using the form of the objective function that arises under total surplus maximization,

and in particular linearity in θ, I can write

� 1

0

V l(θ)f(θ)dθ = V l(Ef [θ]), (B.49)

� 1

θ?
V h(θ)f(θ)dθ = (1− F (θ?))V h(Ef [θ|θ ≥ θ?]), (B.50)

� θ?

0

V l(θ)f(θ)dθ = F (θ?)V l(Ef [θ|θ ≤ θ?]). (B.51)

Therefore, the dependence of the ratio on f is only through three parameters: β ≡ F (θ?),
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θ̄ ≡ Ef [θ|θ ≥ θ?]), and θ ≡ Ef [θ|θ ≤ θ?]). In particular, Ef [θ] = βθ+ (1− β)θ̄. Moreover, by

the definition of θ? (see equation 6.2), we have

(v − θH)(1− F (θ?)) =

� 1

θ?
(v − θL)(1− θ)f(θ)dθ,

so that

θ̄ =
θH − θL
v − θL

.

The distribution parameters are only constrained by θ ≤ θ̄, and in particular the ratio no

longer depends explicitly on θ?.

The next step is to solve for θ using equality (B.47). Because (B.47) is linear in θ, we

get a unique solution that we can plug back into (B.48) to obtain

r?(λ) ≤ sup
θL, θH

(3θHλ− 3λ− 2θH − θHλ2 + λ2 + 1)θL + θ2
Hλ

2 − 2θ2
Hλ+ θ2

H − θHλ2 + θHλ+ λ

(2θHλ− 2λ− 2θH + 1)θL + λ− θ2
Hλ+ θ2

H

.

The derivative of the above expression with respect to θL is

λ(θH − 1)2(λ− 1)(θH + λ− θHλ)

(θL + λ− 2θHθL − 2θLλ− θ2
Hλ+ θ2

H + 2θHθLλ)2
≤ 0,

because λ ≤ 1, θH +λ ≥ θHλ, and the denominator is non-negative. Therefore, it is optimal

to set θL = 0. Plugging this above, we can conclude that

r?(λ) ≤ sup
θH

θ2
Hλ

2 − 2θ2
Hλ+ θ2

H − θHλ2 + θHλ+ λ

λ− θ2
Hλ+ θ2

H

.

Since an optimal mechanism is trivially a cutoff mechanism when either θH = θL or θH = v,

there must be an interior solution for θH in the above problem. From the first-order condition,

we obtain the following condition for the optimal θH :

2θH + λ− 4θHλ+ 2θHλ
2 − λ2

λ− θ2
Hλ+ θ2

H

=
(2θH − 2θHλ)(θ2

Hλ
2 − 2θ2

Hλ+ θ2
H − θHλ2 + θHλ+ λ)

(λ− θ2
Hλ+ θ2

H)2

Simplifying,

λ− 2hλ+ θ2
Hλ− θ2

H = 0.

The above quadratic equation has only one solution in the feasible region, and it is equal to

θH =

√
λ√

λ+ 1
.
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Plugging the solution back into the ratio, we obtain,

r?(λ) ≤ 1 +
1

2
(
√
λ− λ).

The inverse of this expression is the ratio in the statement of Proposition 2b. Finally,

notice that the gap is largest for λ that maximizes
√
λ − λ, that is, for λ = 1/4. We have

r?(1/4) = 9/8.

Proof of Proposition 2c: For the case of revenue maximization, we have V l(θ) = θL +

(θH − θL)J(θ), where J(θ) is the virtual surplus function (non-decreasing by assumption),

and V h(θ) = (1− λ)V l(θ) + λθH . Thus,

� 1

θ?
V l(θ)f(θ)dθ = (1− F (θ?))(θL + (θH − θL)θ?),

and we can write

� 1

θ?
V h(θ)f(θ)dθ =

[
(1− λ) +

λθH
θL + (θH − θL)θ?

]� 1

θ?
V l(θ)f(θ)dθ.

Therefore,

r?(λ) ≤
(1− λ)

� θ?
θl
V l(θ)f(θ)dθ +

� 1

θ?
V h(θ)f(θ)dθ

max{
� 1

θl
V l(θ)f(θ)dθ,

� 1

θ?
V h(θ)f(θ)dθ}

≤
(1− λ)

� θ?
θl
V l(θ)f(θ)dθ +

[
(1− λ) + λθH

θL+(θH−θL)θ?

] � 1

θ?
V l(θ)f(θ)dθ� 1

θl
V l(θ)f(θ)dθ

≤ 1− λ+
λθH
θL

= 1− λ(1− r). (B.52)

Combining the bound established above with the bound from the proof of Proposition

2a, we obtain that for revenue maximization:

r?(λ) ≤ min{2− λ, 1− λ(1− r)}.

Taking the inverse of the above expression yields the conclusion of Proposition 2c.



B Proofs 57

B.9 Proof of Theorem 4

The proof is similar to the proof of Lemma 1 except for the presence of an additional

constraint—the Matthews-Border condition (MB). (The intuition behind the proof is iden-

tical but the formal argument must be appropriately adjusted.) As before, I will show that

the optimal allocation rule x has to be non-decreasing. Then, the conclusion of Theorem 4

follows from Theorem 2.

I will only consider the case when the agent’s utility is strongly supermodular and the

aftermarket is submodular—this is the most difficult case, and the remaining cases are either

analogous or straightforward given the proof of Lemma 1.

Under strong submodularity, at the optimal solution, y(θ) ≡ πh(θ)x(θ) must be non-

decreasing. Consider the problem of optimizing over x for a fixed non-decreasing y (such

that there exists at least one feasible x; otherwise such y cannot be part of the optimal

solution):

max
x

� 1

0

V l(θ)x(θ)f(θ)dθ,

subject to

y(θ) ≤ x(θ) ≤ 1, ∀θ, (B.53)
� 1

τ

x(θ)f(θ)dθ ≤ 1− FN(τ)

N
,∀τ ∈ [0, 1]. (B.54)

Notice that y must satisfy (B.54). Otherwise, because x must be point-wise higher than y,

no x would be feasible for the above problem. Conditions (B.53) and (B.54) jointly imply

that for any β ≤ τ , � τ

β

y(θ)dθ +

� 1

τ

x(θ)f(θ)dθ ≤ 1− FN(β)

N
.

Therefore, condition (B.54) can be sharpened to

� 1

τ

x(θ)f(θ)dθ ≤ Γ(τ) ≡ min
β≤τ

[
1− FN(β)

N
−
� 1

β

y(θ)f(θ)dθ

]
︸ ︷︷ ︸

g(β)

+

� 1

τ

y(θ)f(θ)dθ.

I denote by x̄(τ) the function that is obtained by solving

� 1

τ

x(θ)f(θ)dθ = Γ(τ) (B.55)

point-wise for all τ (x̄ is determined uniquely up to a zero-measure set of points). By

assumption, V l(θ) is non-decreasing. Thus, the optimal x? pushes all mass to the right (in
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the formal sense explained in the proof of Lemma 2). This implies that there exists some

threshold θ? such that x?(θ) = y(θ) for θ < θ? and x?(θ) = x̄(θ) for θ ≥ θ?. Thus, to prove

that x?(θ) is non-decreasing, I have to show that x̄(θ) is non-decreasing and that it lies above

y(θ).

Denote by β?(τ) = max{argminβ≤τ g(β)} the (largest) solution to the inner optimization

problem in Γ(τ). We have either β?(τ) ∈ {0, τ} (boundary solution) or FN−1(β?(τ)) =

y(β?(τ)) (an interior solution satisfying the first-order condition). As τ grows, larger values

of β are feasible but the objective function does not depend on τ , so β?(τ) is non-decreasing.

When β?(τ) < τ in some neighborhood, then β?(τ) does not depend on τ , and differentiating

(B.55) yields x̄(θ) = y(θ). Similarly, when β?(τ) = τ in some neighborhood, we conclude

that x̄(θ) = FN−1(θ). In the case of a boundary solution, the (left) derivative of g(β) at

β = τ must be non-positive (otherwise the optimal β would be smaller than τ), that is,

FN−1(τ) ≥ y(τ). This shows that x̄(θ) ≥ y(θ) for all θ. Finally, to show that x̄(θ) is

non-decreasing, I have to show that it is non-decreasing whenever it switches between y(θ)

and FN−1(θ) (I have to rule out the possibility of a downward jump). When x̄(θ) switches

from y(θ) to FN−1(θ), this follows from the argument shown above. Suppose that x̄(θ)

switches from FN−1(θ) to y(θ) at θ. Then, we must have β?(τ) = θ for all τ in some right

neighborhood of θ (because β?(θ) = θ, β?(τ) is non-decreasing and does not depend on τ

when the solution is interior). It follows that the first-order condition holds at β?(θ) = θ so

that FN−1(θ) = y(θ). Thus, x̄(θ) is in fact continuous at θ.

This proves that the optimal x?(θ) is non-decreasing. The conclusion now follows by

applying Theorem 2.
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