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MECHANISM DESIGN WITH AFTERMARKETS: CUTOFF MECHANISMS

PIOTR DWORCZAK
Department of Economics, Northwestern University

I study a mechanism design problem in which a designer allocates a single good
to one of several agents, and the mechanism is followed by an aftermarket—a post-
mechanism game played between the agent who acquired the good and third-party
market participants. The designer has preferences over final outcomes, but she cannot
design the aftermarket. However, she can influence its information structure by publicly
disclosing information elicited from the agents by the mechanism.

I introduce a class of allocation and disclosure rules, called cutoff rules, that disclose
information about the buyer’s type only by revealing information about the realization
of a random threshold (cutoff) that she had to outbid to win the object. When there
is a single agent in the mechanism, I show that the optimal cutoff mechanism offers
full privacy to the agent. In contrast, when there are multiple agents, the optimal cut-
off mechanism may disclose information about the winner’s type; I provide sufficient
conditions for optimality of simple designs. I also characterize aftermarkets for which
restricting attention to cutoff mechanisms is without loss of generality in a subclass of
all feasible mechanisms satisfying additional conditions.

KEYWORDS: Mechanism design, information design, aftermarkets, transparency.

1. INTRODUCTION

“THE GAME IS ALWAYS BIGGER THAN YOU THINK.” This phrase succinctly captures a
prevalent feature of practical mechanism design problems—they can rarely be fully un-
derstood without the wider market context. When a seller designs an auction, she should
not ignore future resale or bargaining opportunities that could influence bidders’ endoge-
nous valuations for the object. A dealer in a financial over-the-counter market under-
stands that a counterparty in a transaction may not be the final holder of the asset. Yet,
most theoretical models analyze the design problem in a vacuum.

In this paper, I revisit the canonical mechanism design problem of allocating an ob-
ject to one of several agents endowed with one-dimensional private information. Unlike
in the standard model, the mechanism is followed by an aftermarket, defined as a post-
mechanism game played between the agent who acquired the object and other market
participants (third parties). The aftermarket is beyond the control of the mechanism de-
signer but she may have preferences over equilibrium outcomes of the post-mechanism
game, either directly (e.g., when the designer wants to maximize efficiency) or indirectly
through the impact on agents’ endogenous valuations (e.g., when the designer wants to
maximize revenue).
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Although the mechanism designer is unable to design the aftermarket, she can influ-
ence its information structure by publicly releasing some of the information elicited by the
mechanism. The design problem is therefore augmented with an additional variable—the
disclosure rule. For example, if a bidder who wins an object engages in bargaining over
acquisition of complementary goods after the auction, a disclosure rule impacts the bar-
gaining position of the bidder in the aftermarket. Formally, I model the aftermarket as a
collection of payoffs (for the agents and the designer) that depend on the true type of the
agent who acquired the object but also on the beliefs about that agent’s type induced by
the mechanism.

The resulting structure of the problem can be described as a combination of mechanism
and information design. The mechanism elicits information from the agents to determine
the allocation and transfers, and subsequently discloses some of that information to other
market participants in order to induce the optimal distribution of posterior beliefs in
the aftermarket. The two parts of the problem interact non-trivially because disclosure
influences the incentives of agents to reveal their private information to the mechanism.

Suppose that the designer considers some allocation and disclosure rule, that is, a map-
ping from agents’ types to a probability distribution over mechanism outcomes: which
agent receives the good and what signal is sent. Together with the exogenous aftermarket,
the rule determines the final outcome and payoffs. By the revelation principle, imple-
menting that rule is possible only if there exist transfers such that the resulting direct
mechanism provides incentives for agents both to participate and to report truthfully.
These incentives in the mechanism depend on the agents’ values from acquiring the ob-
ject which are influenced by payoffs from the aftermarket. Those, in turn, depend on the
aftermarket protocol and the beliefs of aftermarket participants. As a result, the set of
implementable allocation and disclosure rules varies with the aftermarket and the prior
distribution of agents’ types—the optimal mechanism is sensitive to details of the envi-
ronment and difficult to find.

Consider, however, the following class of allocation and disclosure rules called cutoff
rules. To receive the object, the agent must report a type that is above some (possibly
random) threshold which I refer to as the cutoff. Depending on the allocation rule, the
cutoff could be, for example, a report (bid) of another agent or a reserve price. I show
that such a cutoff representation exists for any monotone allocation rule. Cutoff rules
are then defined by a joint restriction on allocation and signals: The allocation rule is
monotone, and the signal distribution depends only on the realized cutoff of the winner.
Formally, conditional on the cutoff, the signal from a cutoff mechanism does not depend
on the type of the agent who acquires the good. For example, if the object is allocated to
the highest bidder in an auction, the cutoff is the second highest bid; conditional on the
second highest bid, the message sent after the auction should not depend on the winner’s
type. Thus, a second-price auction with (full or partial) disclosure of the price paid by the
winner implements a cutoff rule but a first-price auction with disclosure of the price does
not.1

The key property of cutoff mechanisms is that the report of the winner does not directly
influence the signal. Instead, the signal is pinned down by the realization of the cutoff

1Many mechanisms commonly used in practice implement cutoff rules. Examples include clock auctions
(such as the “Incentive Auction” run by the Federal Communications Commission in 2017), English auctions
(used widely for auctioning art and wine), as well as all trading mechanisms (including first-price auctions)
that do not disclose the bid of the winner (e.g., privacy-preserving trading platforms in the financial over-the-
counter market; see SIFMA (2016)).
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which is determined independently of the winner’s report. Because the winner cannot
manipulate the signal, cutoff mechanisms admit a truthful equilibrium regardless of the
details of the environment. Formally, as long as a single-crossing condition holds (fixing
the posterior belief in the aftermarket, any agent’s payoff from winning the object is non-
decreasing in her type), irrespective of the aftermarket protocol and the prior distribution
of types, any cutoff rule can be implemented by some transfer scheme. Moreover, this
property is only satisfied by cutoff rules: For any non-cutoff mechanism, there exists an
aftermarket and a prior distribution of types such that this mechanism is not truthful.

The paper focuses on the analysis of cutoff mechanisms and their properties. I develop
methods for finding optimal cutoff mechanisms for general aftermarkets. By drawing a
connection to information design, the paper contributes to the mechanism design liter-
ature by showing how the economic effects of post-mechanism interactions can be ana-
lyzed in a tractable way—with the optimal cutoff mechanism often found in closed form.
Moreover, I show that cutoff mechanisms are uniquely characterized by some proper-
ties that may be desirable in practical design problems, under appropriate assumptions
on the aftermarket interactions. In practical applications that are well approximated by
these assumptions, the paper offers insights about the optimal transparency of allocation
mechanisms; specifically, it supports the use of privacy-preserving mechanisms for single-
agent allocation problems, and explains why and what form of information disclosure may
be optimal when multiple agents compete for the good. In the remainder of this section,
I discuss these findings in more detail.

Suppose that the mechanism designer wants to maximize some objective function, such
as revenue or total surplus. In a general mechanism, disclosure of information interacts
with incentive-compatibility constraints. But in a cutoff rule, regardless of what informa-
tion about the cutoff is revealed, the agents want to report truthfully under appropriately
chosen transfers. Therefore, finding the optimal disclosure rule reduces to a standard in-
formation design problem where the cutoff plays the role of a state variable. Choosing the
allocation rule corresponds to choosing a prior distribution of the state variable. In this
way, the design problem can be decomposed into two independent steps, where each step
can be solved using existing mechanism and information design techniques, respectively.

When the designer contracts with a single agent, a cutoff corresponds to a random
reserve price. If the allocation rule is fixed, it may benefit the designer to disclose infor-
mation about the cutoff. However, if the allocation and disclosure rule are chosen jointly,
a strong conclusion holds: Regardless of the aftermarket game and the designer’s objec-
tive, there always exists an optimal cutoff mechanism that sends no informative signals.
Intuitively, in single-agent problems, the designer has full discretion over the choice of the
prior distribution of the cutoff—any distribution of the cutoff can be induced by choosing
an appropriate non-decreasing allocation rule. Because the designer can directly choose
the prior belief over the state variable (the cutoff), she need not send signals to induce
optimal posterior beliefs.

With more than one agent, it may be strictly optimal to disclose information also when
the designer chooses both the allocation and the disclosure rule. This is because the de-
signer often finds it optimal to induce competition between the agents, that is, condition
the allocation for agent i on how other agents behave in the mechanism. This, however,
means that the designer can no longer choose an arbitrary distribution of the cutoff for
agent i. For example, if the designer decides to run an efficient auction, the distribution
of the cutoff for agent i—the highest competing bid—is exogenous and cannot be chosen.
More generally, when the allocation depends on the ranking of agents’ types, the designer
is constrained in the choice of prior distributions of the cutoffs. As a result, it may be ben-
eficial to send signals to induce posterior beliefs that differ from the prior. I illustrate
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this possibility with several examples and sufficient conditions for optimality of popular
mechanisms, such as a second price (or English) auction with a reserve price and revela-
tion of the price paid by the winner. I also describe cases in which the designer prefers
no disclosure despite the presence of multiple agents, and relies instead on the allocation
rule (e.g., reserve prices or randomization) to optimally influence posterior beliefs in the
aftermarket.

The class of cutoff mechanisms often excludes the optimal mechanism. While the ques-
tion of unconstrained optimal design is beyond the scope of this paper, in Section 5, work-
ing with a single-agent model, I attempt to cast light on the question of when restricting
attention to cutoff mechanisms can be justified. The main result provides conditions on
the aftermarket under which restricting attention to cutoff mechanisms is without loss of
generality (and hence optimality) within a subclass of all feasible mechanisms. To define
the subclass on which the characterization result holds, I first strengthen the notion of
implementability to what I call ex post deterministic (ExD) implementation. ExD imple-
mentation requires truthful reporting regardless of what beliefs the agent holds about
the outcome of randomization devices used by the designer. Cutoff rules can always be
implemented in this stronger sense. The main result shows that among mechanisms that
are ExD implementable and satisfy a regularity condition, only cutoff mechanisms are
feasible when the aftermarket is submodular. Informally, an aftermarket is submodular
if lower types benefit more than high types from a change in posterior beliefs that shifts
more probability mass toward higher types. For example, resale aftermarkets are submod-
ular because low-value agents benefit more (relative to high-value agents) from beliefs
that induce higher resale prices. I also give examples of supermodular aftermarkets for
which cutoff mechanisms are suboptimal.2

The remainder of the paper is organized as follows. The next subsection discusses re-
lated literature. Section 2 introduces the model. Section 3 defines cutoff mechanisms and
Section 4 derives the optimal cutoff mechanism. In Section 5, I discuss when looking at
cutoff mechanisms may be justified. Section 6 concludes. Some less relevant proofs are
relegated to Appendix B. Sections referred to as “Appendices” can be found in the Sup-
plemental Material (Dworczak (2020)).

1.1. Literature Review

This paper combines mechanism design with information design. In a seminal paper,
Myerson (1981) solved the problem of allocating a single asset in a mechanism design
framework, where the designer is allowed to choose an arbitrary mechanism. In contrast,
as surveyed by Bergemann and Morris (2016b), information design takes the mecha-
nism (or game) as given and considers optimization over information structures. In my
model, the principal designs the mechanism and the information structure jointly. My
analysis makes use of the concavification argument first used by Aumann and Maschler
(1995), and applied to the Bayesian persuasion model by Kamenica and Gentzkow (2011).
A methodological contribution of the paper is to find a connection between the mecha-
nism design problem and the concavification result via the introduction of cutoffs.3

2In a companion paper (Dworczak (2020)), I study a similar design problem in a more restricted setting
in which a single third party chooses between two actions, and show that a version of submodularity of the
aftermarket implies optimality of cutoff mechanisms among all feasible mechanisms.

3Kolotilin, Mylovanov, Zapechelnyuk, and Li (2017) combined mechanism design with Bayesian persuasion
in a different context by studying a model in which the agent reports private information to the designer who
then communicates her private information to the agent.
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With regard to the structure of the problem, a closely related literature is a series of
papers by Calzolari and Pavan (2006a, 2006b, 2009) on sequential agency. In a sequential
agency problem, the agent contracts with multiple principals, and an upstream princi-
pal decides how much information to reveal to downstream principals (which play a role
analogous to the third parties in my aftermarket). Calzolari and Pavan (2006b) showed in
a two-stage sequential agency model with one agent that, under certain conditions, it is
optimal to reveal no information in the upstream mechanism. This conclusion is similar
to my result about optimality of no-revelation in single-agent problems, but the results
are not related otherwise: Calzolari and Pavan did not restrict attention to cutoff mech-
anisms; I do not impose any of the three economic assumptions of the main theorem of
Calzolari and Pavan. For example, the upstream principal in Calzolari and Pavan has no
direct preferences over the outcome of the second stage; I focus on exactly opposite cases
when the principal is concerned with the final allocation (e.g., because she maximizes total
surplus). Calzolari and Pavan (2006a) considered a model of a revenue-maximizing mo-
nopolist selling an object to an agent who can later resell to a third party. They studied a
simple setting with binary types which allowed them to derive a closed-form solution. My
model is more general in that it allows an arbitrary objective function, multiple agents,
general second-stage game, and general type spaces. I discuss the relationship in more
detail in Section 5.

A number of papers analyze the consequences of post-auction interactions between
the bidders and third parties. Goeree (2003), Das Varma (2003), Katzman and Rhodes-
Kropf (2008), and Hu and Zhang (2017) examined the effect of different bid announce-
ment policies on revenue in standard auctions followed by Bertrand, Cournot, or other
forms of competition. Molnár and Virág (2008), assuming the post-auction payoff is
type-independent and additively separable, provided sufficient conditions under which a
revenue-maximizing mechanism should reveal all or no information about bidders’ types.
Similarly, Giovannoni and Makris (2014) modeled the aftermarket as an additive compo-
nent of the objective function that depends on posterior beliefs, and they interpreted it as
capturing reduced-form reputational concerns. Back, Liu, and Teguia (2020) studied the
effects of transparency on welfare and dealers’ profits in financial over-the-counter mar-
kets.4 In all these papers, sufficiently strong assumptions are imposed on the aftermarket
payoffs to guarantee existence of a revealing (monotone) equilibrium in the first stage,
even when agents’ reports (bids) are fully disclosed. Roughly, these assumptions require
that higher types of agents have a (weakly) higher willingness to pay for more favorable
beliefs (additive separability of the aftermarket payoff is an even stronger assumption). In
the terminology introduced by this paper, this is a feature of supermodular aftermarkets—
such aftermarkets make information disclosure “easy” for the designer. In contrast, the
focus of this paper is on submodular aftermarkets (such as resale aftermarkets) that make
information disclosure “difficult.” The precise meaning of these statements is explained
in the paper. Engelbrecht-Wiggans and Kahn (1991) and Dworczak (2015) explicitly con-
structed non-monotone equilibria using a discrete type space in auctions followed by re-
sale games (an example of a submodular aftermarket).

Overall, previous literature made progress on studying the consequences of aftermarket
interactions with third parties in two cases: when the aftermarket has a special structure
(such as supermodularity) under which full disclosure (and hence any intermediate dis-
closure) is feasible; or in the opposite case but under restrictive conditions on the type

4With the exception of Molnár and Virág (2008) and Hu and Zhang (2017), these papers compare a small
number of fixed auction formats (e.g., first-price, second-price) and announcement rules (e.g., full revelation
of bids, revelation of the winning bid).
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space, objective function, and the aftermarket interaction. By introducing cutoff mecha-
nisms, this paper allows a tractable analysis of general aftermarkets, and moreover shows
that the restriction to cutoff mechanisms has a justification precisely in the cases where
progress has been hindered by lack of tractability (namely, with submodular aftermar-
kets).

A closely related problem is when bidders interact with each other after the mechanism.
In general, such problems are significantly more complicated and yield different economic
insights; this is primarily because agents in the first-stage mechanism consider not only the
signaling effect of their behavior, but also how much they learn about others. A special
case of such problems is auction design with inter-bidder resale (e.g., Gupta and Lebrun
(1999), Zheng (2002), Haile (2003), Hafalir and Krishna (2008, 2009), Zhang and Wang
(2013)). In this literature, to circumvent the difficulty mentioned above, the disclosure
rule is either (i) made redundant by assuming an information structure in the resale stage
(e.g., types are revealed, as in Gupta and Lebrun (1999)), (ii) fixed for the purpose of the
analysis (as in Haile (2003), who assumed that all bids are revealed), or (iii) only relevant
to the extent that it permits implementing the optimal allocation in an equilibrium of the
auction (as in Zheng (2002), where the optimal allocation and payoff are known ex ante,
and no revelation rule can increase the payoff of the mechanism designer). In contrast, the
disclosure rule plays an active role in my model, and in particular interacts non-trivially
with the optimal allocation rule. Carroll and Segal (2019) considered a model where the
auctioneer does not know the resale protocol and maximizes revenue in the worst case
(the designer in my model maximizes a Bayesian objective function).

Balzer and Schneider (2019) analyzed a model in which two players try to resolve a
conflict which (if unresolved) leads to an escalation game between the two sides. Because
the behavior in the conflict management mechanism is informative of the payoff-relevant
types of the players, a designer can influence payoffs in the escalation game by disclosing
information in the mechanism.

The paper considers information disclosure after the auction, where outsiders learn
about bidders’ values. This complements a large literature on information disclosure be-
fore and during the auction, where information is controlled by the seller and refines bid-
ders’ estimates of their own values, as in Milgrom and Weber (1982), Eső and Szentes
(2007), Bergemann and Wambach (2015), Li and Shi (2017), among many others. In these
papers, there is no aftermarket. Lauermann and Virág (2012) considered a model where
losing bidders exercise a common outside option after the auction, and the auctioneer
can disclose information about the value of the outside option either before or after the
auction.

The presence of aftermarkets has been cited as an important motivation for study-
ing mechanisms with allocative and informational externalities, for example in Jehiel,
Moldovanu, and Stacchetti (1996) and Jehiel and Moldovanu (2001).

2. MODEL

A mechanism designer allocates an indivisible good to one of N agents. The designer
chooses an allocation mechanism that specifies the probabilities with which agents re-
ceive the object, monetary transfers, and a signal distribution, as a function of agents’
messages sent to the mechanism. The signal is publicly revealed after the mechanism.
The agent who acquires the object in the mechanism (the “winner”) participates in a
post-mechanism game with third-party players. The mechanism designer cannot directly
influence the post-mechanism game, and cannot contract with the third-party players.
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However, the signal revealed by the mechanism may be used to influence the payoffs
from the post-mechanism game by changing the beliefs over the winner’s type.

Let N denote the set of agents. Agent i ∈ N has a type θi ∈ Θi, where Θi is a finite
subset of R+. (The discrete type space is assumed to simplify exposition; Appendix C
extends the results to continuous distributions.) Types are independent and distributed
according to a prior joint distribution with probability mass function (pmf) f on Θ ≡×i∈NΘi, with fi and Fi denoting the pmf and the cdf (cumulative distribution function) of
the marginal distribution of agent i’s type, respectively. Throughout, bold symbols denote
vectors and products, in particular θ ≡ (θ1� θ2� � � � � θN), θ−i ≡ (θ1� � � � � θi−1� θi+1� � � � � θN),
and f (θ)= ∏

i∈N fi(θi), and a tilde is used to differentiate between random variables and
their realizations, for example, θ̃i denotes a random variable and θi its realization.

Assuming that the mechanism designer has commitment power and is satisfied with
partial implementation, the Revelation Principle will apply; thus, I restrict attention to
direct mechanisms. I assume that the mechanism can send an arbitrary public signal once
the good is allocated; thus, a direct mechanism is a tuple (x�π� t), where x : Θ → [0�1]N
is an allocation rule with

∑
i∈N xi(θ) ≤ 1, for all θ; π :Θ→×i∈N�(Si) is a signal function

with a signal space Si for each agent i, and t :Θ→ RN is a transfer function. I assume that
each Si is finite.5 If agent i reports θ̂i, and other agents report truthfully, she receives the
good with probability xi(θ̂i�θ−i) and pays ti(θ̂i�θ−i). Conditional on allocating the good
to agent i, the designer publicly announces a signal realization s ∈ Si drawn from the
distribution πi(·|θ̂i�θ−i) (no other signals are sent). The identity of the winner is assumed
to be observable. Thus, the posterior belief over the winner’s type θ̃i induced by a truthful
mechanism (x�π� t) conditional on signal realization s is given by (whenever defined)

f s
i (τ)=

∑
θ−i

πi(s|τ�θ−i)xi(τ�θ−i)f(τ�θ−i)

∑
θ

πi(s|θ)xi(θ)f (θ)
� ∀τ ∈ Θi� (2.1)

I do not explicitly model the third-party players in the aftermarket. Instead, the post-
mechanism game is described in reduced form by the conditional expected payoffs it gen-
erates for the winner given the information revealed by the mechanism. Formally, an af-
termarket A is a collection of payoff functions A ≡ {ui(θ; f̄ ) : θ ∈ Θi� f̄ ∈ �(Θi)� i ∈ N },
where ui(θ; f̄ ) denotes the conditional expected payoff to agent i with type θ ∈ Θi, when
the posterior belief over the type θ̃i is f̄ , conditional on agent i holding the good. Impor-
tantly, the aftermarket is a primitive of the model in that its definition is independent of
the mechanism chosen by the designer.

In the truthful equilibrium of the direct mechanism (x�π� t), the expected payoff to
agent i with type θi who deviates to reporting θ̂i conditional on other agents reporting
θ−i is

∑
s∈Si

ui(θi; f s
i )πi(s|θ̂i�θ−i)xi(θ̂i�θ−i) − ti(θ̂i�θ−i). The objective of the mechanism

designer is to maximize∑
i∈N

∑
θ∈Θ

∑
s∈Si

Vi

(
θi; f s

i

)
πi(s|θi�θ−i)xi(θi�θ−i)f (θ)� (2.2)

5Because of a finite type space, looking at finite signal spaces Si is without loss of optimality within the class
of cutoff mechanisms.
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where each Vi :Θi ×�(Θi)→ R is assumed to be upper semi-continuous in the second ar-
gument. Thus, the payoff of the mechanism designer is normalized to zero when the good
is not allocated, and is equal to Vi(θi; f s

i ) otherwise, where Vi(θi; f s
i ) is the payoff condi-

tional on agent i winning the object and belief f s
i being induced in the aftermarket. The

fact that the designer’s payoff does not explicitly depend on transfers is essentially without
loss of generality given that feasible mechanisms are required to be incentive-compatible
and individually-rational: While there may be many transfer rules implementing any given
allocation and disclosure rule, the set of implementing transfer rules is a complete sub-
lattice with a largest element.6 For example, revenue-maximizing expected transfers are
uniquely pinned down by the allocation and disclosure rule, and thus formulation (2.2)
allows for revenue maximization as the objective of the designer.

2.1. The Aftermarket

I model the aftermarket as a “black-box” without explicitly defining the underlying post-
mechanism game. This approach implicitly entails the following assumptions. A Bayesian
game is played after the mechanism between agent i who acquired the good (whose iden-
tity becomes known) and third-party players. Third-party players share the common prior
f over the agents’ types, and observe the identity i of the winner and the public signal
realization s disclosed by the mechanism. This leads to a posterior belief f s

i over the win-
ner’s type. Given belief f s

i and an aftermarket A, the corresponding game has a set of
equilibria EQA

i (f
s
i ), where EQA

i (·) is an upper hemi-continuous correspondence mapping
beliefs over the winner’s type into equilibrium outcomes, where the equilibrium notion
can be specified by the modeler. Then, fixing an equilibrium selection from EQA

i (e.g., the
designer-preferred equilibrium), ui(θ; f s

i ) is the expected equilibrium payoff to type θ of
agent i conditional on s.7

By assumption, the signal sent by the mechanism influences the aftermarket only
through the posterior belief over the winner’s type. Other roles of the signal (e.g., as
a coordination device) can be incorporated by considering an appropriate equilibrium
concept (e.g., a version of correlated equilibrium; see Bergemann and Morris (2016a)).
Consequently, I will not distinguish between two mechanisms that induce the same distri-
bution of posterior beliefs for any prior.

The following single-crossing property will be needed throughout my analysis.

ASSUMPTION 1—Monotonicity: An aftermarket A is monotone if, for any i ∈N and any
f̄ ∈ �(Θi), the aftermarket payoff ui(θ; f̄ ) is non-decreasing in θ.

If there is no aftermarket and the type is equal to the value, ui(θ; f̄ )= θ, the assumption
is trivially satisfied. With an aftermarket, the assumption says that types can be ranked by
willingness to pay for the object irrespective of the posterior beliefs in the aftermarket.

6See, for example, Kos and Messner (2013) and Dworczak and Zhang (2017) for an intuitive proof. With a
continuous type space, expected transfers would be pinned down up to a constant, by the payoff equivalence
theorem (see, e.g., Milgrom (2004)).

7The black-box approach to the aftermarket is without loss of optimality compared to a revelation-principle
approach of Myerson (1982) in which the designer would send recommendations to all players in the aftermar-
ket, under the assumption of public communication. This approach can also accommodate exogenous private
information of third-party players since the realizations of their private signals (that, without loss of generality,
they observe after observing the public signal s) can be integrated out in the expected payoff functions of the
agent and the designer.
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This is true in most applications where the type is interpreted as a value of the object to
the agent. An analogous assumption is made in all papers studying aftermarkets that are
surveyed in Section 1.1. I conclude with two examples of aftermarkets that will be used
for illustration throughout.

EXAMPLE 1—Resale: 8 Suppose that with probability λ > 0, there is a single third-party
buyer in the aftermarket with some (potentially random) value ṽ for the object. (With the
remaining probability, there is no aftermarket and the agent keeps the good obtaining
her value θ.) The third party bargains with the winner to repurchase the object. If the
equilibrium price is equal to p(f̄ ;v) when the belief over the winner’s type is f̄ and ṽ = v,
then we have ui(θ; f̄ ) = λE[max{θ�p(f̄ ; ṽ)}] + (1 − λ)θ which is monotone in θ. If the
third party has full bargaining power, and the agent-preferred equilibrium is selected,
then

p(f̄ ;v) = max
{

argmax
p

(v−p)
∑
θ≤p

f̄ (θ)

}
�

EXAMPLE 2—Ex Post binary types: Unlike the previous example, this example is a class
of simple aftermarkets that capture different economic applications in a tractable manner.
Suppose that Θi ⊂ [0�1], and let θi be the probability with which agent i has an ex post
high type h. With complementary probability 1 − θi, the agent has a low type l. The agent
learns the ex post type only after acquiring the object (but before the aftermarket game).
If the payoffs of all players in the aftermarket only depend on the winner’s ex post type,
the utility of the winner i depends on the belief f̄ over her ex ante type θ̃i only through its
expectation m(f̄ ) ≡ Eθ̃i∼f̄ [θ̃i]. Thus, denoting agent i’s aftermarket payoff by ui(m) and
ūi(m) when her ex post type is high and low, respectively, we have ui(θ; f̄ ) = θūi(m(f̄ ))+
(1 − θ)ui(m(f̄ )). The aftermarket is monotone if ūi(m) ≥ ui(m) for all posterior means
m.

(a) [Cournot competition]9 Suppose that the mechanism allocates a patent that allows
an entrant to enter a market with an incumbent (the third party). Upon acquiring the
patent, the winner learns her marginal cost of production which is c < 1 for the low type l
and c −� for the high type h, where �> 0. The incumbent has cost c. Market demand is
given by Q(P) = 1 − P , and the two firms compete à la Cournot. The equilibrium payoff
for the agent in the aftermarket is given by ui(m) = 1

9(1 − c+ m�
2 )2 and ūi(m) = 1

9(1 − c+
m�

2 + 3�
2 )

2 when the incumbent believes that the entrant’s type is high with probability m.
The aftermarket is monotone.

(b) [Investment game] Consider again an aftermarket where an entrant interacts with
an incumbent.10 The type θi of the entrant is the probability that her business model suc-
ceeds, in which case a value v = 1 is generated (otherwise, the entrant gets a zero payoff).
Before observing whether the entrant succeeds, the incumbent takes a costly investment
k that allows her to capture a fraction α(k) of the entrant’s value in case the entrant is
successful (and is a sunk cost otherwise): k�(f̄ ) ∈ argmaxkEθ̃i∼f̄ [θ̃iα(k)−k]. Assume that
α :R+ → [0�1] is strictly increasing and concave, differentiable, α′(0)= ∞, and α′(1)≤ 1

8This example generalizes the baseline model of Calzolari and Pavan (2006a).
9This economic application—without the restriction to ex post binary types—was considered by Goeree

(2003), Katzman and Rhodes-Kropf (2008), and Hu and Zhang (2017).
10The first stage could be any mechanism that equips the entrant with something necessary to run her busi-

ness, for example, a license, patent, or funding.
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to guarantee a solution pinned down by the first-order condition. Then, the entrant’s af-
termarket payoff is given by ūi(m) = 1 − α((α′)−1(1/m)) and ui(m)= 0.

2.2. Implementability

I will refer to (x�π), the allocation and disclosure rule, as the mechanism frame.

DEFINITION 1: A mechanism frame (x�π) is dominant-strategy (DS) implementable if
there exist transfers t such that agents participate and report truthfully in the first-stage
mechanism, taking into account the continuation payoff from the aftermarket:∑

s∈Si

ui

(
θi; f s

i

)
πi(s|θi�θ−i)xi(θi�θ−i)− ti(θi�θ−i) ≥ 0� (IR)

θi ∈ argmax
θ̂i∈Θi

∑
s∈Si

ui

(
θi; f s

i

)
πi(s|θ̂i�θ−i)xi(θ̂i�θ−i)− ti(θ̂i�θ−i)� (IC)

for all i ∈N , θi ∈ Θi, and θ−i ∈ Θ−i.

To appreciate the difficulty associated with adding the aftermarket, recall first that when
there is no aftermarket, that is, ui(θi; f s

i )≡ θi, then (x�π) is DS implementable if and only
if xi(θ�θ−i) is non-decreasing in θ for any θ−i, that is, an ex post monotonicity condition
holds (of course, in this case the signal function π is irrelevant). In particular, the charac-
terization of implementable outcomes is invariant to the details of the environment such
as the distribution of types.

With the aftermarket, this is no longer the case. As is clear from previous work refer-
enced in Section 1.1, the details of the aftermarket matter for how much information can
be disclosed. The set of implementable mechanism frames is also sensitive to the prior
distribution of types. The following simple example illustrates.

EXAMPLE 3—Resale: Consider Example 1 with N = 1 (subscript i can be dropped),
Θ = {l�h}, λ < 1, and a third party with a constant value v > h and full bargaining power.
The third party offers price h in the aftermarket when she believes the type of the agent
to be h with probability at least κ ≡ (h − l)/(v − l) (and offers l otherwise). Consider
mechanism frames with binary signals, S = {sL� sH}, with πh ≡ π(sH |h) ≥ 1/2 and πl ≡
π(sL|l) ≥ 1/2. By a direct calculation, (x�π) is implementable if and only if

x(h)− x(l)≥ λ
[
πhx(h)− (1 −πl)x(l)

]
1{ πhx(h)f (h)

πhx(h)f (h)+(1−πl)x(l)f (l)
≥κ}1{ (1−πh)x(h)f (h)

(1−πh)x(h)f (h)+πlx(l)f (l)
<κ}�

Thus, the set of implementable mechanism frames depends on the probability of the after-
market λ, the prior distribution f , and the value v of the third party. When the two signals
induce different prices in the aftermarket (both indicator functions on the right-hand side
are equal to 1), there is a trade-off between the choice of x and the choice of π. Full dis-
closure of the agent’s type can be implemented only when x satisfies x(h)−x(l) ≥ λx(h).

The problem of finding the optimal mechanism is intractable in the absence of restric-
tions on the prior distribution (as in Calzolari and Pavan (2006a), who imposed binary
types as in the example above) or the aftermarket (as in Goeree (2003), Molnár and
Virág (2008), Katzman and Rhodes-Kropf (2008) or Hu and Zhang (2017), who studied
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a restricted set of aftermarkets that permit arbitrary disclosure in the mechanism). In the
next section, I instead introduce a restriction on the class of mechanisms: I study a class
of allocation and disclosure rules (cutoff rules) that can always be implemented, hence
circumventing the above difficulty.

3. CUTOFF MECHANISMS

For each agent i ∈ N , let c̄i be any number greater than maxΘi. Then, Ci = Θi ∪ {c̄i}
is the space of cutoffs for agent i. The key observation I will explore is that monotone
allocation rules define distributions on the space of cutoffs. Let x be an ex post monotone
allocation rule, that is, suppose that xi(θi�θ−i) is non-decreasing in θi for all θ−i. If we
extend the interim allocation rule xi(·�θ−i) by assigning xi(c̄i�θ−i) = 1, then it can be
treated as a cdf on Ci (I will abuse notation slightly by using the same symbol both when
xi(·�θ−i) is an allocation rule on Θi and when it is treated as a cdf on Ci). Furthermore,
I let �xi(c;θ−i) denote the probability that cutoff c is realized (i.e., �xi(·;θ−i) is the pmf
corresponding to the cdf xi(·�θ−i)).

DEFINITION 2—Cutoff Rules: A mechanism frame (x�π) is a cutoff rule if x is an ex
post monotone allocation rule, and there exists a signal function γi : Ci × Θ−i → �(Si)
such that, for all i ∈N , θi ∈Θi, θ−i ∈ Θ−i, and s ∈ Si,

πi(s|θi�θ−i)xi(θi�θ−i)=
∑
c≤θi

γi(s|c�θ−i)�xi(c;θ−i)� (3.1)

When (x�π) is a cutoff rule, I will call (x�π� t) a cutoff mechanism.

To understand the idea behind cutoff mechanisms intuitively, assume first that there is
one agent, N = 1, so that an allocation rule is a one-dimensional function x(θ) (I drop
the subscripts). Consider a random variable c̃ (which I will call a random cutoff) with
realizations in the space of cutoffs C. I say that c̃ is a random-cutoff representation of
the allocation rule x if x(θ) = P(θ ≥ c̃). The interpretation is that the allocation rule
x(θ) can be achieved by drawing a cutoff c from the distribution of c̃, and giving the
good to the agent if and only if the reported type θ is greater than the realized cutoff
c. The observation preceding Definition 2 implies that any monotone allocation rule x
admits a random-cutoff representation: It is enough to take a random variable c̃ on C
with distribution given by cdf x.

The converse is also true: Any random variable c̃ on C represents some monotone allo-
cation rule. Indeed, if y is the cdf of c̃, then y(θ) (restricted to Θ) is a monotone allocation
rule represented by the random cutoff c̃. Thus, there is a one-to-one correspondence be-
tween non-decreasing allocation rules on Θ and (distributions of) random cutoffs on C.

In the general model with N agents, given an ex post monotone allocation rule x, and
fixing the reports θ−i of other agents, agent i’s allocation can be achieved by drawing
cutoffs from the conditional distribution xi(·�θ−i). For example, consider the allocation
rule xi(θi�θ−i) = 1{θi≥θ

(1)
−i }, where θ(1)

−i = maxj =i θj . Then, the cutoff for agent i is equal to
the highest competing type.11

11In this case, the cutoff has a degenerate distribution conditional on θ−i . If ties are instead broken uniformly
at random, then xi(θi�θ−i) = 1{θi≥θ

(1)
−i }/(|{j ∈ N : θj ≥ θ(1)

−j }|) is a two-step function, and the cutoff conditional
on θ−i has a binary distribution, where the lower realization has probability equal to the probability that i wins
the tie-breaker.
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An intuitive interpretation of Definition 2 is thus as follows: In a cutoff rule (x�π),
each agent i reports θ̂i. Conditional on other agents’ reports θ−i, the seller draws a cutoff
ci from the distribution with pmf �xi(·;θ−i). If θ̂i ≥ ci, agent i gets the good, and the de-
signer draws and announces a signal from the distribution with pmf γi(·|ci�θ−i). Crucially,
conditional on the cutoff realization ci and θ−i, the signal distribution is independent of
i’s report θ̂i. If θ̂i < ci, agent i does not receive the good.12

Both assumptions imposed by cutoff mechanisms—that (i) the allocation rule is non-
decreasing, and (ii) the signal distribution is determined by the realization of the cutoff—
are restrictive. Regarding (i), when there is an aftermarket, dominant-strategy imple-
mentability does not imply that the allocation rule is ex post monotone (intuitively, a
higher type might receive the good with lower probability if this is offset by a higher
probability of a favorable signal realization). Regarding (ii), cutoff mechanisms preclude
disclosure rules that reveal information about the winner directly, for example, by fully
revealing her type. Nevertheless, a signal that depends on the realized cutoff ci is infor-
mative about the type of the winner i because third-party players condition on the event
θ̃i ≥ c̃i. Conditional on i winning, a cutoff rule can also disclose information about θ−i.
For example, full disclosure of the losing agents’ reports is allowed: It is enough to set
Si =Θ−i and γi(s|c�θ−i)= 1{s=θ−i} for any s ∈ Si.

Note that the the allocation rule determines how much information can be disclosed
by a cutoff rule. If all types of agent i receive the good with the same probability (the
allocation rule is constant), the cutoff for agent i is degenerate and hence uninformative
about her type. The “steeper” the allocation rule, that is, the larger the differences in
probabilities of acquiring the good between high and low types, the more informative the
cutoff is about the type of the winner.

While Definition 2 provides an intuitive interpretation of cutoff mechanisms, its condi-
tions are difficult to verify for a generic mechanism frame (x�π). Thus, I give an equiva-
lent definition below.

PROPOSITION 1: A mechanism frame (x�π) is a cutoff rule if and only if, for all i,

πi(s|θi�θ−i)xi(θi�θ−i) is non-decreasing in θi for all s ∈ Si and θ−i ∈ Θ−i� (M)

PROOF: That cutoff rules satisfy condition (M) is immediate from Definition 2. To
prove the converse, let (x�π) be a mechanism frame satisfying (M). Because both the
property (M) and the definition of a cutoff rule are checked for every i ∈ N separately, I
fix an agent i and a profile θ−i, and suppress these symbols from the notation (x(θ) stands
for xi(θ�θ−i) etc.). Let βs(θ) ≡ π(s|θ)x(θ). By condition (M), βs(θ) is a non-decreasing
function on Θ, for any s. Summing over s ∈ S , we get that x(θ) is non-decreasing. Let
θ = min(Θ), and let θ− be the largest type in Θ smaller than θ, for any θ > θ. Because
βs(θ) is non-decreasing, it induces a positive additive (not necessarily probabilistic) mea-
sure with pmf μs on C defined by μs(θ) = βs(θ), and μs(θ) = βs(θ) − βs(θ

−) for any
θ > θ. The pmf μs is absolutely continuous with respect to the pmf �x of the cutoff rep-
resenting the allocation rule x:

μs(θ) ≤
∑
s′∈S

μs′(θ) = �x(θ)�

12In order to implement a cutoff rule when N > 1, the designer must properly correlate the cutoffs for
different agents to make sure the good is allocated to at most one agent ex post. However, the joint distribution
of cutoffs is irrelevant for payoffs (because only one agent interacts in the aftermarket) and implementability
(all that matters is the marginal distribution for any agent), and thus the joint distribution need not be specified.
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By the Radon–Nikodym theorem, there exists a positive function gs on C that is a density
of μs with respect to �x. In particular,

π(s|θ)x(θ) = βs(θ) = μs

({τ : τ ≤ θ}) =
∑
c≤θ

gs(c)�x(c)� (3.2)

for all θ and s ∈ S . Moreover, we have, for any θ,

x(θ)=
∑
c≤θ

∑
s∈S

gs(c)�x(c) =⇒
∑
c≤θ

(∑
s∈S

gs(c)− 1
)
�x(c)= 0�

It follows that
∑

s gs(c) = 1, for all c with �x(c) > 0. I can now define the measure γ :
C → �(S) by γ(s|c)= gs(c), for all c with �x(c) > 0 (and in an arbitrary way for c which
have probability zero under �x). Because

∑
s gs(c)= 1, γ is a well-defined signal function.

Moreover, equation (3.2) implies that the equality (3.1) from Definition 2 of cutoff rules
holds for all s and θ. Q.E.D.

Proposition 1 allows me to interpret cutoff rules as mechanism frames that satisfy a
strengthening of the ex post monotonicity condition—they are monotone in the type θi

for every signal realization s ∈ Si. This property plays a key role in the analysis of imple-
mentability in the next subsection.

3.1. Implementability of Cutoff Rules

THEOREM 1: A mechanism frame is DS implementable for any prior distribution f and
any monotone aftermarket A if and only if it is a cutoff rule.

PROOF: To prove that any cutoff rule is DS implementable, I argue that condition (M)
implies implementability for any prior distribution and any monotone aftermarket (this is
enough due to Proposition 1; alternatively, one could directly verify that Rochet (1987)’s
cyclic monotonicity condition holds). We can formally think of signal realizations as defin-
ing distinct goods allocated by the seller. Then, condition (M) says that for each of these
goods, indexed by s, the allocation rule is non-decreasing. Moreover, a monotone after-
market guarantees that a single-crossing property holds between the types of each agent
and allocations of each of the goods. Thus, for every s ∈ Si and every fixed θ−i, there ex-
ists a transfer rule tsi (θi�θ−i) that implements the allocation rule πi(s|θi�θ−i)xi(θi�θ−i) of
good s. Defining ti(θi�θ−i)= ∑

s∈Si
tsi (θi�θ−i) finishes the first part of the proof.

To prove the converse, again by Proposition 1, it is enough to show that if a mecha-
nism frame (x�π) is DS implementable for any prior distribution f and any monotone
aftermarket A, then it must satisfy condition (M). Fix any (x�π), i ∈ N , θi > θ̂i and θ−i.
Since (x�π) is assumed DS implementable, condition (IC) has to hold for θi and θ̂i with
some transfers ti. In particular, type θi cannot find it profitable to report θ̂i, and vice versa.
Summing up the two resulting inequalities, we can cancel out transfers, and obtain∑

s∈Si

[
ui

(
θi; f s

i

) − ui

(
θ̂i; f s

i

)][
πi(s|θi�θ−i)xi(θi�θ−i)−πi(s|θ̂i�θ−i)xi(θ̂i�θ−i)

] ≥ 0� (3.3)

Denote βs(τ) ≡ πi(s|τ�θ−i)xi(τ�θ−i). Since condition (3.3) must hold for any mono-
tone aftermarket and any prior, it must hold in particular for aftermarkets with
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ui(θi; f s
i ) = ui(θ̂i; f s

i ) for all s with βs(θi) ≥ βs(θ̂i), and ui(θi; f s
i ) > ui(θ̂i; f s

i ) otherwise.13

Under such ui, inequality (3.3) becomes∑
{s∈Si :βs(θi)<βs(θ̂i)}

[
ui

(
θi; f s

i

) − ui

(
θ̂i; f s

i

)][
βs(θi)−βs(θ̂i)

] ≥ 0� (3.4)

with ui(θi; f s
i ) > ui(θ̂i; f s

i ) for each s in the summation. We have thus obtained that a sum
of strictly negative terms is nonnegative. This is only possible when the set of indices in
the sum is empty: {s ∈ Si : βs(θi) < βs(θ̂i)} = ∅. Because θi > θ̂i and θ−i were arbitrary,
this shows that condition (M) holds, finishing the proof. Q.E.D.

The economic intuition for Theorem 1 is straightforward: Under a cutoff rule, the re-
port of the winner does not directly influence the signal sent by the mechanism, and thus
the winner cannot manipulate the aftermarket belief over her type. Losing agents can
manipulate posterior beliefs, but this is irrelevant since they do not participate in the af-
termarket. This is reminiscent of why VCG mechanisms (such as second-price auctions)
are truthful. In a VCG mechanism, the report of an agent does not influence the transfer
the agent pays, except when it changes the allocation. In a cutoff mechanism, the report
does not influence the signal, except when it changes the allocation. While the agent can
change the outcome by affecting the probability with which she acquires the good, mono-
tonicity of the aftermarket implies that such a deviation can be deterred by appropriately
chosen transfers.

To gain intuition for the converse part of Theorem 1, it is again helpful to think of
different signal realizations s ∈ S as different goods allocated by the designer. For any
fixed prior distribution and aftermarket, incentive-compatibility requires that these goods
are allocated with probability that is non-decreasing in the agent’s type on average across
s. However, as we consider all possible priors and aftermarkets, the allocation probabil-
ity must be monotone in each good s separately—this is the only way to guarantee that
the average allocation probability is monotone regardless of the (endogenous) valuations
ui(θi; f s

i ) for different goods s. By Proposition 1, this is exactly what defines cutoff mech-
anisms.

In subsequent analysis, I will only use the part of Theorem 1 that guarantees that cutoff
mechanisms can always be made incentive-compatible by an appropriate choice of trans-
fers. However, the converse part has economic consequences as well. Implementability
for all prior distributions and aftermarkets implies that cutoff mechanisms are a natu-
ral benchmark that can be used to establish a lower bound on the value of the objective
function in any design problem with a monotone aftermarket. Moreover, cutoff rules are
the largest class that can serve this purpose: Any rule outside of the class cannot be im-
plemented in at least some cases, and hence cannot serve as a universal lower bound.
Furthermore, I show in Appendix A that for some aftermarkets, such as resale, requiring
implementability for all prior distributions f is already enough to rule out all but cutoff
rules. This property can be useful in practical design problems due to its connection to
robustness. In general, the transfer function implementing a cutoff rule will depend on
the prior f , and hence cutoff mechanisms are not a detail-free design.14 However, if the

13Note that a payoff function ui satisfying these properties exists because—by choosing f appropriately—we
can ensure that f s

i = f s′
i for any s = s′.

14This is a consequence of the setting rather than a feature of cutoff rules: With the aftermarket, the prior
f and the aftermarket A directly influence the values ui(θi; f s

i ) that agent i has for winning. In the analogy
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designer hopes to implement a mechanism frame robustly, that is, without knowing the
details of the environment, it is certainly necessary that there exist transfers that imple-
ment that frame in each possible case. Thus, Theorem 1 implies that a designer interested
in robust implementation of a mechanism frame has no reason to look beyond the class
of cutoff mechanisms.15

4. OPTIMAL CUTOFF MECHANISMS

In this section, I consider optimization in the class of cutoff mechanisms. I first focus on
the single-agent case which produces a particularly sharp result and simplifies exposition.
Then, I show how to generalize the solution to multi-agent mechanisms.

4.1. Optimal Cutoff Mechanisms With a Single Agent

In this subsection, I assume N = 1 (and omit the subscript i in the notation).
I say that a disclosure rule π reveals no information if every signal realization s is unin-

formative about the type of the agent: π(s|θ)= π(s|θ̂) for all θ� θ̂ ∈Θ�s ∈ S . Importantly,
even when π reveals no information, the posterior belief in the aftermarket may differ
from the prior because the fact that the agent participates in the aftermarket is informa-
tive of her type when the allocation rule x is non-constant. The following result establishes
a strong conclusion about optimal cutoff mechanisms in the single-agent model.

THEOREM 2: With N = 1, the problem of maximizing (2.2) subject to (x�π) being a cutoff
rule has an optimal solution (x��π�) where π� reveals no information.

The conclusion of Theorem 2 holds regardless of the objective function. The type of
the objective may influence the shape of the optimal allocation rule x� but never requires
the designer to make explicit announcements via π�.16

I prove the theorem in two steps: First, I consider optimization over disclosure rules
for any fixed allocation rule x, and then I show that at the optimal allocation rule x�, the
corresponding optimal π� reveals no information. The first step provides an important
building block for the multi-agent model, while the second step is specific to the case of a
single agent.

Proof of Theorem 2. Step 1: Optimization Over Disclosure Rules. I fix a non-decreasing
allocation rule x, and optimize over disclosure rules π subject to (x�π) being a cutoff
rule. The proof strategy is as follows: As discussed in Section 3, any non-decreasing allo-
cation rule x can be represented by a random cutoff, which I will denote c̃x. In a cutoff
mechanism, the signal only depends on the realization of c̃x. By Theorem 1, any disclosure
of the cutoff is compatible with both (IR) and (IC) constraints. Thus, the mechanism de-
sign problem becomes a pure information design problem in which the designer chooses

developed by the proof of Theorem 1, prices of goods indexed by s ∈ Si must depend on how valuable these
goods are to agent i.

15That being said, when the designer does not know the distribution of types and the aftermarket, it is no
longer without loss of generality to restrict attention to direct mechanisms. The designer might instead fix an
indirect mechanism, allowing the allocation and disclosure rule to be determined endogenously in equilibrium
as the distribution and the aftermarket vary.

16As discussed in Section 2.1, Theorem 2 does not preclude the possibility that the designer could send
uninformative signals to coordinate play in the aftermarket, if the aftermarket game were modeled explicitly
instead of using the black-box approach.
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a disclosure policy of the random cutoff c̃x in order to induce the optimal distribution of
posterior beliefs—this is the Bayesian persuasion problem of Kamenica and Gentzkow
(2011) where the relevant state is the cutoff.

The prior distribution of the cutoff c̃x (the state variable) is given by the cdf x. Given
signal function γ and a signal realization s, the conditional distribution of c̃x has a cdf
xs(c) = [∑ĉ≤c γ(s|ĉ)�x(ĉ)]/[

∑
ĉ γ(s|ĉ)�x(ĉ)]. I will be using y as a generic symbol for

a cdf of a conditional distribution of the cutoff. The aftermarket belief over the win-
ner’s type can be derived in two steps in a cutoff rule: (i) given a signal realization, the
conditional cdf of the cutoff is y , (ii) conditional on the agent acquiring the object, the
corresponding posterior belief over that agent’s type is

f y(θ) ≡ Pc̃∼y(θ̃ = θ|θ̃ ≥ c̃) = y(θ)f (θ)∑
τ

y(τ)f (τ)
� (4.1)

The above derivation uses the fact that the order of conditioning does not matter, and
that, in a cutoff rule, the signal is independent of the winner’s type conditional on the
cutoff, so that in step (ii), the belief over the winner’s type depends on the signal only in-
directly through the conditional distribution of the cutoff. Using the equivalence between
non-decreasing allocation rules and distributions over cutoffs, f y can also be interpreted
as the aftermarket belief over the type of the agent who acquired the good that would
arise if the designer implemented the allocation rule y(θ) (and disclosed no further infor-
mation). Next, let

V(y) =
∑
θ∈Θ

V
(
θ; f y

)
y(θ)f (θ) (4.2)

be the expected payoff to the mechanism designer conditional on the signal inducing a cdf
y of the cutoff and the agent acquiring the object in the mechanism. Equivalently, V(y) is
the expected payoff to the mechanism designer that would arise if the allocation function
were y (instead of the actual x) and the mechanism revealed no additional information to
the third party. It now follows from Theorem 1 and the results of Kamenica and Gentzkow
(2011) that we can optimize over distributions of conditional distributions over the cutoff
subject to a Bayes-plausibility constraint (this is immediate, but I provide a formal proof
in Appendix B.1).

LEMMA 1: With N = 1, for any non-decreasing allocation rule x, the problem of maximiz-
ing (2.2) over π subject to (x�π) being a cutoff rule is equivalent to

max
�∈�(�(C))

Ey∼�V(y)� (4.3)

s.t. Ey∼�y(θ)= x(θ)� ∀θ ∈Θ� (4.4)

The mechanism designer seeks to maximize her expected payoff over distributions
� of beliefs over the cutoff (equation (4.3)). Condition (4.4) is the Bayes-plausibility
constraint—the induced distributions over the cutoff must average out to the prior (with
distributions represented by cdfs).

Lemma 1 implies that the concavification approach of Aumann and Maschler (1995)
and Kamenica and Gentzkow (2011) can be applied to the current setting. Let X be the
set of all non-decreasing allocation rules on Θ.



MECHANISM DESIGN WITH AFTERMARKETS 2645

COROLLARY 1: With N = 1, for a fixed allocation rule x, the maximal expected payoff to
the mechanism designer is equal to the concave closure of V at x: coV(x) ≡ sup{ν : (x� ν) ∈
CH(graph(V))}, where CH denotes the convex hull, and graph(V) ≡ {(x̂� ν̂) ∈ X × R : ν̂ =
V(x̂)}.

Step 2: Optimization Over Allocation Rules. By Corollary 1, the value to the designer at
an optimal solution, now involving optimizing over x as well, is supx∈X coV(x). By defini-
tion of the concave closure, supx∈X coV(x) = supx∈X V(x), that is, the value of the function
and its concave closure coincide at the supremum. An optimal solution x� exists because
V is upper semi-continuous on a compact set. This finishes the proof of Theorem 2: V(x�)
is the expected payoff to the mechanism designer when x� is the allocation rule and the
disclosure rule reveals no information. Q.E.D.

The proof provides a simple intuition for Theorem 2: When choosing an optimal cutoff
rule, the problem of the designer is to choose a prior distribution of cutoffs (the allo-
cation rule), and then optimally disclose information about the realized cutoff. Thus, the
designer is a Sender who can choose the prior distribution of the state. When the posterior
belief can be chosen directly by choosing the prior, there is no need to reveal additional
information about the state. In the design of the optimal cutoff mechanism, there is no
need to reveal additional information about the cutoff because the optimal posterior dis-
tribution can be induced directly by choosing the prior (the allocation rule). To illustrate
the above results, I apply them to solve an example.

EXAMPLE 4—Resale: Consider Example 1 with N = 1, λ = 1, and Θ = {l�h} with
f (l) = f (h). There is a single third party with a constant value v ∈ (h�2h− l) that makes
a take-it-or-leave-it offer to the agent in the aftermarket. The designer maximizes total
surplus: V (θ; f̄ ) = θ1{θ>p(f̄ )} + v1{θ≤p(f̄ )}, where p(f̄ ) denotes the optimal offer made by
the third party under posterior belief f̄ over the agent’s type (with ties broken in the
designer’s favor).

It is clear that x(h) = 1 in the optimal solution. Hence, the set of allocation rules is a
one-dimensional family indexed by the probability x(l) with which the object is allocated
to the low type l. The cutoff representation c̃x of x is a binary random variable on C =
{l�h} with pmf �x given by �x(l) = x(l) and �x(h)= 1 − x(l).

Fix an arbitrary distribution of the cutoff with cdf y . This distribution corresponds to
a belief f y(h) = 1/(1 + y(l)) that the type of the agent is high conditional on participa-
tion in the aftermarket (see equation (4.1)). The third party offers a high price h when
she believes that the probability of the high cutoff is at least α� ≡ 2 − (v − l)/(h − l).
With a binary cutoff distribution, the function V(y), defined by (4.2), only depends on the
probability 1 − y(l) that the cutoff is high, and thus can be represented as

V(y)= V1

(
1 − y(l)

) =
{
vf (l)+ hf(h)− v

(
1 − y(l)

)
f (l) if 1 − y(l) < α��

v − v
(
1 − y(l)

)
f (l) if 1 − y(l)≥ α��

(4.5)

(The subscript 1 in V1 is introduced to formally distinguish between the one-dimensional
function V1 : [0�1] → R and V that is a function of the entire cdf; this representation will
allow a simple graphical analysis.)

By Corollary 1, optimal disclosure for any fixed allocation rule x yields the concave
closure of V1. The function V1 and its concave closure are depicted in Figure 1. When
1 − x(l) < α�, so that the third party would offer a low price when no signals are sent,
it is optimal to disclose information about the cutoff in the form of a binary signal: s ∈



2646 PIOTR DWORCZAK

FIGURE 1.—Function V1 (solid line) and its concave closure (dashed line) when v(v − h) < h(h− l) (panel
A) or v(v− h) > h(h− l) (panel B).

{sL� sH}. The designer sends sL when the cutoff is low with probability η and sends sH in
all other cases. The probability η is chosen so that conditional on sH , the third party is
indifferent between offering the high and the low price (and offers the high price). When
1 −x(l) ≥ α�, the third party already offers a high price under the prior; V1 coincides with
its concave closure, and the designer makes no announcement in the optimal mechanism.

Next, suppose that the designer can optimize over both the allocation and the disclosure
rule, that is, she can additionally choose x(l). In Figure 1, since any x(l) ∈ [0�1] is feasible,
the designer can choose an arbitrary point on the x-axis to maximize the concave closure
of V1. There are two cases to consider depending on which of V1(0) and V1(α

�) is greater:
V1(0) is the expected surplus when the designer lets all types trade in the mechanism
(which results in a low price in the aftermarket), while V1(α

�) is the expected surplus
when the designer excludes (exactly) enough low types from trading to always induce a
high price in the aftermarket:

(A) V1(0) > V1(α
�) (holds when v(v − h) < h(h− l); see panel A in Figure 1): In this

case, intuitively, it is difficult to induce a high price in the aftermarket. The optimal
mechanism corresponds to choosing 1 − x(l) = 0 because the concave closure of
V1 is maximized at 0. All types trade in the mechanism, no information is disclosed,
and the price in the aftermarket is low.

(B) V1(0) < V1(α
�) (holds when v(v − h) > h(h− l); see panel B in Figure 1): In this

case, it is relatively easy to induce a high price in the aftermarket. The optimal
mechanism corresponds to choosing 1 − x(l) = α� because the concave closure of
V1 is maximized at α�. Low types trade with probability 1 − α�, no information is
disclosed, and the price in the aftermarket is high.

In both cases, no information is disclosed in the optimal mechanism.

I conclude with a few remarks based on the above example. First, since no information
disclosure is always optimal with one agent, the allocation rule (equivalently, the distri-
bution of cutoffs) is chosen to optimally trade-off its direct allocative effect against the
quality of beliefs in the aftermarket. The trade-off can be seen in Figure 1: A higher dis-
tribution of the cutoff induces higher beliefs in the aftermarket (the optimal price jumps
up at α�) at the cost of excluding the low type from trading with higher probability (the
function V1 is decreasing for a fixed price in the aftermarket). Second, Theorem 2 implies
that no information disclosure is optimal only at the optimal allocation rule. As the ex-
ample shows, information disclosure can be optimal when the allocation rule is chosen
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suboptimally. Third, there could be two reasons why no information is disclosed in the
optimal mechanism: (i) In case (A), information disclosure would be beneficial (since the
aftermarket price is low otherwise) but no information can be disclosed because the op-
timal prior distribution of the cutoff is degenerate (the allocation rule is constant); (ii) in
case (B), the cutoff has a non-degenerate distribution but information disclosure would
lower the expected surplus.

4.2. Optimal Cutoff Mechanisms With Multiple Agents

I now consider the model with N agents. I show that the general problem can be re-
duced to one-dimensional optimization over disclosure rules, allowing the application of
methods derived for the single-agent case. This is accomplished by working with reduced
forms of cutoff mechanisms.17

Let x̄i :Θi → [0�1] denote a generic (interim expected) allocation rule for agent i. Def-
initions (4.1) and (4.2) are directly generalized to the multi-agent setting by putting back
the subscripts i. Vi(yi) is interpreted as the designer’s expected payoff from interacting
with agent i that would arise if yi were the interim expected allocation rule for agent i
and the mechanism revealed no additional information. Let Xi denote the set of one-
dimensional non-decreasing allocation rules on Θi.

THEOREM 3: The problem of maximizing (2.2) over cutoff rules has the same value as

max
{x̄i∈Xi}i∈N

∑
i∈N

coVi(x̄i) (4.6)

subject to the Matthews–Border condition:∑
i∈N

∑
θi>τi

x̄i(θi)fi(θi)≤ 1 −
∏
i∈N

Fi(τi)� ∀τ ∈RN� (M-B)

Any cutoff mechanism that maximizes (2.2) induces a reduced form that solves the prob-
lem (4.6) subject to (M-B). Conversely, any solution to problem (4.6) subject to (M-B) is a
reduced form of a cutoff mechanism that maximizes (2.2).

Theorem 3 implies that to solve the general problem, it is enough to solve N one-
dimensional persuasion problems—corresponding to finding the concave closure of each
Vi—and then maximize over interim expected allocation rules subject to condition (M-B).
The proof of the theorem (found in Appendix B.2) follows the same steps as the deriva-
tion of the optimal mechanism in Section 4.1 for the single-agent case. However, there are
two complications associated with working with interim expected allocation rules instead
of a single-agent allocation rule. First, one must guarantee that the N-tuple of interim
expected allocation rules (x̄1� � � � � x̄N) is feasible, that is, induced by some joint allocation
rule x under f . This is ensured by the Matthews–Border condition (M-B) that has been
derived in the literature on reduced-form auctions as a necessary and sufficient condition
for feasibility (see Matthews (1984), and Border (1991)). Second, interim expected alloca-
tion rules are not sufficient to express dominant-strategy implementability—the reduced

17A reduced form of a mechanism (x�π� t) is derived by taking expectations over θ̃−i , thereby obtaining the
(interim expected) allocations, signals, and transfers as a function of θi only, for each i ∈ N ; see Appendix B.2
for details.
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form of a mechanism can only be used to establish Bayesian implementability. However,
I show that in the class of cutoff mechanisms, there is no gap between Bayesian and
dominant-strategy implementation; the argument relies on a proof technique developed
by Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) in the literature on BIC-DIC
equivalence (see also Manelli and Vincent (2010)).

When agents are ex ante identical, it is without loss of optimality to look at symmetric
mechanisms, and the maximization problem in Theorem 3 takes a simpler form:

N max
x̄∈X

coV(x̄) subject to
∑
θ>τ

x̄(θ)f (θ) ≤ 1 − FN(τ)

N
� ∀τ ∈ R� (4.7)

When N = 1, the Matthews–Border condition (M-B) holds vacuously; hence, uncon-
strained maximization of the concavified objective, maxx∈X coV(x) = maxx∈X V(x), im-
plies the optimality of no disclosure. In contrast, when N ≥ 2, the Matthews–Border con-
dition is not redundant, and the optimal cutoff mechanism may disclose information. To
see why, consider the symmetric case (4.7). The concave closure of V is taken in the space
of all non-decreasing interim allocation rules (equivalently, all distributions over the cut-
off), while the actual rule x̄ must be chosen from a strictly smaller subset of rules that
satisfy the condition (M-B), so that it is possible that

max
x̄∈X �x̄ satisfies (M-B)

coV(x̄) > max
x̄∈X �x̄ satisfies (M-B)

V(x̄)�

Whenever the above inequality holds, it is optimal to induce conditional distributions over
the cutoff that do not correspond to an interim allocation rule satisfying (M-B), and that
can only be achieved by sending informative signals in the mechanism. To illustrate this
point, I revisit Example 4.

EXAMPLE 5—Resale: Consider the same problem as in Example 4 but with N > 1.
Because agents are ex ante identical, I can look at the symmetric optimization problem
(4.7). Because the high type of any agent need not receive the good with probability 1,
the space of cutoffs is C = {l�h� c̄} with c̄ > h. The problem is to find x̄(l) and x̄(h)
to maximize coV(x̄) subject to x̄(h) ≤ (2/N)(1 − 1/2N), x̄(l) + x̄(h) ≤ 2/N (the M-B
condition), and x̄(l)≤ x̄(h) (non-decreasing allocation rule).

By using the reduced-form representation of mechanisms, I solve the joint optimization
problem by only looking at the interim expected allocation and disclosure from the per-
spective of a single agent. Because agents are symmetric, I will refer to “the” agent and
“the” cutoff by fixing one (any) of the N agents.

It is intuitive that the optimal mechanism should maximize the probability of trade for
high types by setting x̄(h) to its maximal feasible level (2/N)(1 − 1/2N) (I prove that this
is indeed the case in Appendix B.3). Thus, the allocation rule can be again parameterized
by a single number x̄(l), aiding the comparison to the case N = 1 in Example 4. For any
cdf y on C, we have

V(y) =

⎧⎪⎪⎨
⎪⎪⎩
vy(l)f (l)+ hy(h)f (h) if

y(h)− y(l)

y(h)
< α�

vy(l)f (l)+ vy(h)f (h) if
y(h)− y(l)

y(h)
≥ α�

= y(h)V1

(
1 − y(l)

y(h)

)
� (4.8)

where V1 is defined by (4.5). Equation (4.8) implies that the key properties of V can be
understood by conditioning on the event that the cutoff is strictly less than c̄ (as in the
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FIGURE 2.—Function V1 (solid line) and its concave closure (dashed line) when v(v − h) < h(h− l) (panel
A) or v(v − h) > h(h− l) (panel B).

opposite case the agent does not receive the good). The expected contribution to total
surplus is obtained by multiplying the expected payoff conditional on the cutoff being
strictly below c̄ (which is given by the same function V1 as in the case N = 1) by the
probability y(h) that the cutoff is strictly below c̄. Moreover, it can be easily verified that

coV(y) = y(h)coV1

(
1 − y(l)

y(h)

)
�

which allows me to use the same graphical illustration as in Example 4: The x-axis will
now represent the probability that the cutoff is high conditional on the cutoff being strictly
below c̄ (see Figure 2).

For any fixed (feasible) allocation rule x̄, the optimal disclosure rule can be derived in
the same way as in Example 4: Depending on whether 1 − x̄(l)/x̄(h) is below or above
α�, the optimal disclosure rule will either feature a binary signal or no announcement.
Instead, I focus on joint optimization over allocation and disclosure rules. Since x̄(h) =
(2/N)(1 − 1/2N), the problem becomes

max
x̄(l)

coV1

(
1 − x̄(l)

(2/N)
(
1 − 1/2N

))
subject to x̄(l)≤ 1

N

1
2N−1 �

Unlike in the case N = 1 when the choice of x̄(l) was unconstrained, the designer can
only choose from a subset of all prior distributions over the cutoff. Indeed, the constraint
on x̄(l) implies that the prior belief 1 − x̄(l)/x̄(h) that the cutoff is high (conditional on
the cutoff being less than c̄) must be at least α ≡ (2N − 2)/(2N − 1) (see Figure 2). For
intuition, recall that (i) the good is always allocated to a high type when a high type is
present, and (ii) the allocation rule is symmetric. Thus, before any additional information
is disclosed, the third party must believe that the probability x̄(l) with which any given
agent faces a low cutoff is bounded above by the probability that no other agent has a
high type (1/2N−1) times the probability that an agent is selected uniformly at random
from N agents (1/N). Consequently, she must place sufficiently high probability on the
cutoff being high. This is an example of a more general observation that the presence of
multiple agents imposes constraints on the interim allocation rule through the Matthews–
Border condition (M-B).
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Panel A in Figure 2 (the case v(v − h) < h(h − l)) illustrates the possibility that in-
formation disclosure is optimal: As long as α < α� (a low price would be quoted if no
information was disclosed), it is optimal to choose x̄(l) that induces the lower-bound be-
lief α over the cutoff (since coV1 is decreasing), and disclose a binary signal that pushes
the third party’s posterior belief to either 0 or α�. This mechanism can be implemented as
a second price auction in which a low type places a low bid bl, a high type places a high bid
bh, and the auctioneer sends a low signal sL with probability η when the price is low, and
sends a high signal sH in all other cases. The parameter η is chosen so that conditional
on sH , the third party is indifferent between a low and a high price in the aftermarket
(and offers a high price). It is easy to show that any optimal mechanism must disclose
information in this case.

In panel B of Figure 2 (the case v(v − h) > h(h − l)), the unconstrained optimal x̄(l)
corresponding to inducing belief α� is feasible when α < α�. In this case, there is no
information disclosure but x̄(l) is chosen to be x̄(h)(1 − α�) that is strictly lower than
(1/N)(1/2N−1). Thus, the optimal cutoff mechanism can be implemented as a second
price auction with “inefficient” allocation at the low bid: When all agents place a low bid,
the good is not allocated with probability z < 1, where z is sufficiently high so that, con-
ditional on the good being allocated, the third party is indifferent between offering a low
and high price in the aftermarket (and offers a high price).

Contrasting Example 4 with Example 5 highlights the difference between the case
N = 1 and N > 1. When N = 1, the designer can select any prior for the persuasion
problem by choosing the corresponding allocation rule. But when N > 1, the designer is
constrained in the choice of interim expected allocation rules due to the feasibility con-
straint (M-B). Effectively, the designer solves N persuasion problems and chooses a prior
for each problem, but the priors are jointly constrained. Therefore, it might be optimal to
send signals that induce posterior beliefs that do not correspond to a feasible collection
of prior distributions (i.e., a feasible collection of interim expected allocation rules). For
instance, in case (A) of Example 5, when the mechanism allocates to high types with max-
imal probability (which is optimal), there is no feasible allocation rule that induces the
belief that the cutoff is low with probability 1. However, this belief can be induced with
positive probability by sending a signal revealing the low realization of the cutoff.

4.3. Optimality of Simple Disclosure Rules

In this subsection, I provide sufficient conditions for optimality of full and no disclosure
of the cutoff. Importantly, these conditions are expressed in terms of how the designer’s
payoff depends on the beliefs over the winner’s type. In Appendix B.4, I prove that a con-
ditional distribution of beliefs over the winner’s type is feasible, that is, induced by some
cutoff rule, if and only if (i) a Bayes-plausibility condition holds, and (ii) each posterior
belief over the winner’s type likelihood-ratio (LR) dominates the prior belief.18 Condition
(i) is natural in the context of information design (see Kamenica and Gentzkow (2011)),
while condition (ii) is a consequence of monotonicity (M) of cutoff rules—regardless of
the signal, higher types receive the good with higher probability, so a posterior belief over
the winner’s type must be higher than the prior. Define

Wi(f̄ )=
∑
θ∈Θi

Vi(θ; f̄ )f̄ (θ) (4.9)

18A pmf g likelihood-ratio dominates a full-support pmf f if g(θ)/f (θ) is non-decreasing.
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as the expected payoff to the designer conditional on agent i winning and posterior belief
f̄ over i’s type. Let Mfi be the set of distributions over Θi that likelihood-ratio dominate
the prior fi, and let f x̄i

i , defined by (4.1), be the posterior belief over i’s type given the
interim expected allocation rule x̄i, when i is the winner and no other information is
revealed.

PROPOSITION 2: The problem of maximizing (2.2) over cutoff rules for a fixed (interim
expected) allocation rule x̄ has the same value as

∑
i∈N

(∑
θi∈Θi

x̄i(θi)fi(θi)

)
coMfiWi

(
f
x̄i
i

)
� (4.10)

where coMfiWi(f
x̄i
i ) ≡ sup{ν : (f x̄i

i � ν) ∈ CH(graph(Wi)|Mfi
)}, and graph(Wi)|Mfi

is the
graph of Wi restricted to domain Mfi .

Objectives (4.6) and (4.10) are analogous except for two important details. First, in
(4.10), Wi is concavified in the subspace Mfi � �(Θi), while in (4.6), the concave closure
of Vi is taken in the entire space �(Ci). This is because a cutoff rule can induce an ar-
bitrary belief over the cutoff but can only induce beliefs over the winner’s type that LR
dominate the prior. Second, in (4.10), the concavified objective is multiplied by an addi-
tional term

∑
θi∈Θi

x̄i(θi)fi(θi)—the ex ante probability of allocating the good to agent i.
This is because the distribution of beliefs over the winner’s type is a conditional distribu-
tion (conditional on allocating the good to agent i), so the conditional expected payoff
must be converted into an ex ante expected payoff. As a corollary of Proposition 2, I
obtain the following result.

COROLLARY 2: If Wi is convex on its domain, the optimal cutoff mechanism fully discloses
i’s cutoff when i is the winner. If Wi is concave, the optimal cutoff mechanism reveals no
information when i is the winner.

Corollary 2 is related to a result by Molnár and Virág (2008) who derived conditions un-
der which full and no disclosure of the type of the winner is part of a revenue-maximizing
mechanism followed by a post-auction market. These results are complementary: Mol-
nár and Virág (2008) allowed all feasible mechanisms but restricted attention to settings
where the aftermarket payoff is an additively separable component that does not depend
on the type of the agent (precluding all examples considered in this paper). I allow more
general aftermarkets but restrict attention to the class of cutoff mechanisms.

Corollary 2 can be used to provide simple examples showing that full disclosure of the
cutoff is uniquely optimal.19 I conclude with such an example.

EXAMPLE 6—Cournot Competition: Consider the Cournot competition model (case
(a) of Example 2). Suppose that there are N ex ante symmetric potential entrants com-
peting for a single patent, and the mechanism designer chooses a disclosure rule in an
auction to maximize total surplus (defined as the area under the demand curve minus

19When W is strictly convex and N = 1, a consequence of Corollary 2 and Theorem 2 is that the optimal
cutoff distribution must be degenerate, or, equivalently, the optimal allocation rule takes the form x(θ)= 1{θ≥r}
for some r (then, and only then, full disclosure and no disclosure of the cutoff coincide).
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the costs of production). Dropping subscripts (due to symmetry), we obtain V (θ; f̄ ) =
θV (Ef̄ [θ̃]) + (1 − θ)V (Ef̄ [θ̃]), where V (m) and V (m) denote the total surplus condi-
tional on the winner’s type being high or low, respectively, when the aftermarket belief
about the winner’s type has expectation m. From this, we get that

W(f̄ )=
∑
θ∈Θ

V (θ; f̄ )f̄ (θ) = Ef̄ [θ̃]V (
Ef̄ [θ̃]) + (

1 −Ef̄ [θ̃])V (
Ef̄ [θ̃]) ≡ W

(
Ef̄ [θ̃])�

The objective function W(f̄ ) depends on the posterior belief over the winner’s type only
through its expectation. By direct calculation, W (m) is a quadratic function of m with
a strictly positive coefficient on m2. It follows that W(f̄ ) is a convex function of f̄ . By
Corollary 2, full disclosure of the cutoff is uniquely optimal in the class of cutoff rules.20

For example, if the designer uses a second-price auction to allocate the patent, then dis-
closure of the price after the auction is optimal.

4.4. Optimality of Simple Mechanisms Under Continuous Type Spaces

To simplify exposition, I focused on the case of a discrete type space. However, as Ap-
pendix C formally demonstrates, all the results established so far continue to hold when
the distribution of types is continuous on any compact, convex Θ ⊂ RN

+ . While this case
does not add any new economic insights, it is sometimes more tractable by permitting the
use of calculus. For this section only, I adopt a continuous type space to characterize opti-
mal cutoff mechanisms under the assumption that the payoff in the aftermarket depends
on the posterior belief only through its mean. This assumption is satisfied in Example 2
which I will use for illustration of the results derived below. To streamline exposition, I
further assume that agents are symmetric (hence drop the subscript i) and I normalize
Θ ≡ [0�1]. I let f denote the density of the prior distribution of an agent’s type, and F be
the cdf.

For any density function f̄ on [0�1], let M(f̄ ) ≡ ∫ 1
0 θf̄ (θ)dθ, and assume that W(f̄ ) =

W (M(f̄ )) for some measurable function W : [0�1] → R+, where W is defined as in (4.9):
W(f̄ )= ∫ 1

0 V (θ� f̄ )f̄ (θ)dθ. I also let m(c)≡ ∫ 1
c
θf (θ)dθ/(1 −F(c)) denote the expected

value of θ̃ conditional on θ̃ ≥ c, and let w(c) ≡ W (m(c)), for any c ∈ [0�1]. Thus, w(c)
is the expected payoff to the designer conditional on allocating the good and inducing a
belief that the type of the winner is above c.

PROPOSITION 3: Suppose that f is continuous and fully-supported on [0�1].
1. If W is concave and non-decreasing, it is optimal to allocate the good to the highest type

if it exceeds r� (and to no one otherwise), and to reveal no information, where

r� ∈ argmax
r∈[0�1]

(
1 − FN(r)

)
W

(∫ 1

r

θ dFN(θ)

1 − FN(r)

)
� (4.11)

2. If W is concave and non-increasing, it is optimal to allocate the object uniformly at
random and reveal no information.

20This follows from strict convexity of W (m) in the mean m: If any information about the cutoff was pooled,
it would be possible to reveal additional information and raise total surplus.
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3. Assume that W is differentiable, and let Jw(c)≡w(c)−w′(c) 1−F(c)

f (c)
. If (i) W is convex,

and (ii) Jw(c) is non-positive for c ≤ r, and positive non-decreasing for c ≥ r, then it is
optimal to allocate the good to the highest type if it exceeds r (and to no one otherwise),
and to disclose the maximum of the second highest type and r. A sufficient condition for
(ii) is that W is non-decreasing and log-concave.

The proof of Proposition 3 can be found in Appendix C.1.
If W is concave and non-decreasing, it is optimal not to disclose any information, and

the allocation rule is designed to maximize the posterior expected type of the winner by
allocating to the highest bidder. The mechanism can additionally raise the expectation by
excluding types below r from trading. However, this incurs a cost for the designer because
the good is not always allocated. The r� that solves equation (4.11) optimally trades-off
these two effects.

Second, if W is concave and non-increasing, it is optimal to allocate the good randomly,
with no disclosure. In this case, the designer wants to minimize the expectation of the type
of the winner. However, a cutoff mechanism cannot allocate to low types more often than
to high types—hence the use of a uniform lottery.

Third, if W is convex, full disclosure of the cutoff is optimal. The optimal allocation
rule is determined by the properties of the function Jw(c) that reflects the local trade-off
between the allocation in the mechanism (as captured by the term w(c)) and the informa-
tion structure induced in the aftermarket (as captured by the term w′(c)(1 − F(c))/f (c).
Allocating the good with smaller probability conditional on realization c lowers surplus
if w(c) is positive, but increases the posterior belief over the winner’s type conditional
on allocating. The function Jw(c) is similar to the virtual surplus function that reflects the
trade-off between allocative efficiency and information rents in the revenue-maximization
problem. In the regular case, the virtual surplus function is non-decreasing, and the seller
does not use randomization to maximize revenue. Analogously, if Jw(c) is non-decreasing,
the designer does not use randomization to optimally influence beliefs in the aftermarket.

I apply Proposition 3 to solve two examples based on the model of Example 2.

EXAMPLE 7—Ex Post Binary Types: Consider first the investment game (case (b) of
Example 2). Let k(m) = argmaxk{mα(k) − k} be the optimal investment for the incum-
bent when the expected type of the entrant is m. Consider a designer who maximizes total
surplus in the aftermarket. Because the value generated if the entrant is successful is split
between the entrant and the incumbent, maximizing surplus is equivalent to minimizing
the cost of the (socially wasteful) investment k(m): W (m) = m− k(m). By the envelope
formula, we have W ′(m) = 1 − α(k(m)) ≥ 0, and W ′′(m) = −α′(k(m))k′(m) ≤ 0. Thus,
W is non-decreasing and concave. By Proposition 3 point (1), the optimal mechanism in
the first stage is an auction with a reserve price and no information disclosure.

Next, consider the Cournot model (case (a) of Example 2). By Example 6, for any fixed
allocation rule, full disclosure of the cutoff maximizes total surplus. Using Proposition 3,
we can also pin down the optimal allocation rule. First, W (m) is a convex, non-decreasing
function on [0�1]. Moreover, because W (m) is a quadratic function, it is log-concave. It
follows from point (3) of Proposition 3 that the optimal mechanism is to run a second-
price auction with some reserve price r and reveal the price paid by the winner.

The analysis so far has been silent about when using a cutoff mechanism is optimal when
arbitrary mechanisms are allowed. It is easy to show that the optimal cutoff mechanism for
the investment-game aftermarket (case (b)) is optimal overall. However, it follows from
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the analysis of Goeree (2003) and Hu and Zhang (2017) that with the Cournot aftermar-
ket (case (a)), the optimal cutoff mechanism from Example 7 is not optimal overall—the
optimal mechanism discloses the type of the agent rather than the cutoff.21 It turns out that
optimality of cutoff mechanisms depends primarily on the structure of the aftermarket.
This is the subject of the next section.

5. WHEN IS THE RESTRICTION TO CUTOFF MECHANISMS JUSTIFIED?

The goal of this section is to derive conditions on the aftermarket under which restrict-
ing attention to cutoff rules is without loss of generality. The main result characterizes
cutoff rules as the unique feasible class within mechanism frames that (i) satisfy a strong
notion of implementability, and (ii) induce posterior beliefs that can be ranked in a cer-
tain way. While mathematically limiting, conditions (i) and (ii) have no bite when there
is no aftermarket. Under (i) and (ii), I show that cutoff rules are without loss of general-
ity under submodular aftermarkets. The next subsection strengthens the notion of imple-
mentability; Section 5.2 defines submodular aftermarkets; Section 5.3 contains the main
result.

To simplify exposition, and because the ideas presented here are orthogonal to the
complications associated with multi-agent mechanisms, I assume that there is a single
agent (N = 1), and hence drop the subscript i.22

5.1. Ex Post Deterministic Implementation

I say that a mechanism frame (x�π) is deterministic if, for all θ and s, x(θ) ∈ {0�1}
and π(s|θ) ∈ {0�1}. Randomization in the mechanism can be captured by allowing the
designer to have a type θ0 drawn (independently of the agent’s type) from some auxiliary
type space Θ0, and letting the mechanism depend deterministically on the extended type
profile (θ�θ0) ∈Θ×Θ0.

OBSERVATION 1: For any mechanism frame (x�π), there exists a measurable space Θ0

and a distribution over Θ0 with cdf F0 such that

x(θ) =
∫
Θ0

x̂(θ;θ0)dF0(θ0)� (5.1)

π(s|θ) =
∫
Θ0

π̂(s|θ;θ0)dF0(θ0)� (5.2)

where (x̂(·;θ0)� π̂(·;θ0)) is a deterministic mechanism frame for any θ0 ∈ Θ0. I call (x̂� π̂)
the deterministic decomposition of (x�π).

When randomization is modeled as an endogenous type of the designer, it is natural
to extend the notion of implementability by requiring truthful reporting regardless of the
beliefs held by the agent over the designer’s type (as in dominant-strategy implementa-
tion).

21Goeree (2003) and Hu and Zhang (2017) focused on revenue (not total surplus) and did not assume ex
post binary types, but their results can be easily modified to apply to this setting.

22As shown in a previous working version of the paper, the results can be extended to the general case.
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DEFINITION 3: A mechanism frame (x�π) is ex post deterministically (ExD) im-
plementable if there exists a deterministic decomposition (x̂� π̂) of (x�π) such that
(x̂(·;θ0)� π̂(·;θ0)) is implementable for all θ0.

ExD implementation requires that a mechanism can be represented as an ex ante ran-
domization over deterministic and incentive-compatible mechanisms. Thus, a mechanism
is ExD-IC if the designer could disclose the outcome of any randomization prior to the
agent reporting her type and still satisfy the IC constraints. Consequently, the agent
should report truthfully regardless of what beliefs she holds about how the designer is
randomizing.

ExD implementation is desirable in contexts where agents do not fully trust the mech-
anism designer. Arguably, as long as the designer implements an outcome that lies within
the support of the distribution, it is difficult to prove that randomization was not correctly
conducted. All other deviations by the designer, such as changing the payments or the
allocation as a function of reports, can be directly detected. If the agent thinks that the
designer has limited commitment in that she might disobey the rules of the mechanism as
long as this cannot be detected, she might not want to report truthfully even if the mech-
anism was IC. However, the agent would want to report truthfully if the mechanism was
ExD-IC.23

With a monotone aftermarket, ExD-IC mechanisms include all cutoff mechanisms.

PROPOSITION 4: When the aftermarket is monotone, any cutoff rule is ExD imple-
mentable.

PROOF: By Definition 2 of a cutoff rule, we have, for any s and θ,

π(s|θ)x(θ) =
∑
c≤θ

γ(s|c)�x(c)=
∑
c∈C

∑
s′∈S

(1{s′=s}1{θ≥c})γ
(
s′|c)�x(c)�

This, however, is a representation of a cutoff rule as randomization over deterministic
and implementable mechanism frames, where implementability follows from the mono-
tonicity of the allocation in θ for any c ∈ C and s′ ∈ S (and monotonicity of the aftermar-
ket). Q.E.D.

The intuition is as simple as the proof: In a cutoff rule, the cutoff captures random-
ization in the mechanism from the perspective of the agent. Moreover, the designer can
reveal the cutoff realization and the signal realization to the agent before asking her to
report her type. This is because the allocation remains monotone in the type conditional
on a cutoff and signal realization (recall property (M)).

Proposition 4 implies that ExD implementation has no additional bite without the
aftermarket—any monotone allocation rule is ExD implementable because any mono-
tone allocation rule admits a cutoff representation. However, with the aftermarket, there
exist IC mechanisms that are not ExD-IC, as the following simple example illustrates.

EXAMPLE 8—Resale: Consider the setting of Example 3. As shown there, the mech-
anism frame x(l) = 1 − λ�x(h) = 1 with full disclosure of the agent’s type, π(sH |h) =

23This discussion is inspired by Akbarpour and Li (2020) who used a similar concern to motivate their class
of credible mechanisms (see also Dequiedt and Martimort (2015)).
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π(sL|l) = 1, is implementable. However, it is not ExD implementable. To see why, note
that, in any deterministic decomposition, there must be a θ0 ∈ Θ0 such that x(h;θ0) =
x(l;θ0) = 1. Example 3 shows that full disclosure is not incentive-compatible when cou-
pled with this allocation rule, and thus there cannot exist a deterministic decomposition
of (x�π) into implementable mechanism frames.

In the next section, I identify aftermarkets for which the concept of ExD implementabil-
ity has the most bite, and prove a partial converse to Proposition 4.

5.2. Submodular Aftermarkets

To avoid cases where players care about the “label” of a belief, I make the following
assumption which is automatically satisfied when the payoffs in the aftermarket are de-
rived from optimal choices of Bayesian agents: If for some f̄ � ḡ ∈ �(Θ), u(θ; f̄ ) = u(θ; ḡ)
for all θ ∈ Θ (beliefs f̄ and ḡ have the same payoff consequences), then also u(θ; f̄ ) =
u(θ;λf̄ + (1 − λ)ḡ) for any λ ∈ (0�1) (their convex combination has the same payoff
consequences). The same property is assumed about the designer’s payoff V . More sub-
stantially, I impose submodularity of the agent’s payoff in her type and beliefs—implying
that the willingness to pay for “high” beliefs is decreasing in the type of the agent. I use
the likelihood-ratio order on beliefs defined in Section 4.3,24 which I will denote by �LR.

DEFINITION 4: An aftermarket A is submodular if for any f̄ � ḡ ∈ �(Θ),

f̄ �LR ḡ =⇒ u(θ; f̄ )− u(θ; ḡ) is non-increasing in θ�

An aftermarket is strictly submodular if additionally

f̄ �LR ḡ =⇒ u(θ; f̄ )− u(θ; ḡ) is strictly decreasing in θ

whenever u(θ; f̄ ) = u(θ; ḡ) for some type θ ∈Θ.

An aftermarket is submodular if lower types have a higher willingness to pay for an
upward shift in beliefs. For example, if all types of the agent prefer to be perceived as a
high type, this means that any improvement in posterior beliefs is valued more by lower
types. This is the case in resale aftermarkets because lower types benefit more (relative
to keeping the good) from a high resale price. In particular, the resale aftermarket from
Example 1 satisfies submodularity because beliefs higher in the LR order lead to (weakly)
higher resale prices. Simple resale aftermarkets are typically not strictly submodular—this
is because two types θ > θ̂ differ in their willingness to pay for a resale price p only if that
price is accepted by θ̂ but rejected by θ. It can be shown that a resale market becomes
strictly submodular if every price happens with positive probability conditional on any
given signal realization (e.g., because the value of the third party is stochastic).

Submodularity may also be consistent with agents preferring to be perceived as low
types. In Example 2, submodularity requires that ū(m) − u(m) is non-increasing in the
posterior mean m. The investment game from Example 2(b) induces a strictly submodular

24To allow for the possibility of disjoint supports, I say that ḡ �LR f̄ if there exist full-support ḡε and f̄ε such
that f̄ε → f̄ , ḡε → ḡ, and for small enough ε > 0, ḡε(θ)/f̄ε(θ) is non-decreasing in θ.
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aftermarket because ū(m) is strictly decreasing and u(m) = 0: Each type benefits from
being perceived as a low type but lower types are hurt (strictly) less by an increase in the
posterior mean.

An example of an aftermarket that does not satisfy submodularity is the Cournot model
from Example 2(a). Here, the agent wants to be perceived as a high type (i.e., as having
a low cost), and high types benefit more from more favorable beliefs—the aftermarket
is in fact supermodular (where a supermodular aftermarket is defined by reversing the
monotonicity condition in Definition 4).

A key observation is that it is difficult to disclose information about the agent’s type un-
der a submodular aftermarket: Indeed, submodularity implies that the direction of single-
crossing is opposite to the one dictated by Bayesian updating. If beliefs are thought of as
goods allocated by the mechanism, then submodularity of the aftermarket implies that
high beliefs (beliefs that put more mass on higher types) must be “allocated” to lower
types. Bayesian updating requires the opposite: On average, high beliefs must be associ-
ated with high types. This tension implies that an incentive-compatible mechanism can
only disclose coarse information when the aftermarket is submodular.

5.3. The Characterization

DEFINITION 5: A mechanism frame (x�π) is regular if the posterior beliefs {f s}s∈S over
the agent’s type can be completely ranked in the likelihood-ratio order.

The regularity condition is mathematically restrictive. However, regularity does not in
itself rule out signals that directly reveal the agent’s type, which is important in the con-
text of upcoming results. It holds, for example, when the disclosure rule has a monotone
partitional structure in either the type of the agent or the cutoff. Finally, regularity auto-
matically holds when the type space is binary, which is assumed in many papers studying
optimal information design, including Calzolari and Pavan (2006a, 2006b).

THEOREM 4: Suppose that the aftermarket is strictly monotone25 and strictly submodular.
Then, any regular ExD implementable mechanism frame is payoff-equivalent to a cutoff rule.

The assumption of strict monotonicity and submodularity can be dropped if the mech-
anism is robust to how the agent breaks ties between reports.

DEFINITION 6: A mechanism frame is strictly implementable if there exists a transfer
rule t such that for each θ, the agent strictly prefers her allocation to any distinct allocation
received by a different type:

argmax
θ̂

∑
s∈S

u
(
θ; f s

)
π(s|θ̂)x(θ̂)− t(θ̂) = I(θ)�

where I(θ) = {θ̂ : ∀s�π(s|θ̂)x(θ̂) = π(s|θ)x(θ)}. A mechanism frame is strictly ex post de-
terministically (SExD) implementable if it has a deterministic decomposition into strictly
implementable mechanism frames.

25An aftermarket is strictly monotone if u(θ; f̄ ) is strictly increasing in θ for any f̄ ∈ Θ. Strict monotonicity
is satisfied in Example 2(a) and (b) and holds for any original monotone aftermarket if we add an arbitrarily
small probability that the aftermarket does not take place (in which case the agent keeps the good and receives
a value equal to her type), as in Example 1 for any λ < 1.
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Strict implementability requires that, for some transfer rule, the agent strictly prefers to
receive the outcome that she obtains by reporting truthfully. This has no bite without the
aftermarket: If different types receive the good with different probabilities, there exists
a transfer rule that makes truthful reporting a unique optimal strategy.26 Failure of this
property implies that the mechanism relies on all types breaking the indifference in the
direction preferred by the designer.

THEOREM 4’: Suppose that the aftermarket is monotone and submodular. Then, any reg-
ular SExD implementable mechanism frame is payoff-equivalent to a cutoff rule.

COROLLARY 3: If |Θ| = 2, then any SExD-IC mechanism followed by a monotone and
submodular aftermarket is payoff-equivalent to a cutoff mechanism.

The proofs of Theorems 4 and 4’ can be found in Appendices B.5 and B.6. I show that
incentive-compatibility of the mechanism implies that if two types receive the same allo-
cation, then lower types must be assigned to signals that lead to higher posterior beliefs
(in the likelihood-ratio order). This is a consequence of the single-crossing property in
types and beliefs induced by a submodular aftermarket. On the other hand, Bayesian up-
dating implies the opposite relationship between types and beliefs. The resulting conflict
between incentive-compatibility and Bayes plausibility limits the informativeness of sig-
nals that can be sent in a feasible mechanism. Information about the cutoff can always be
disclosed (Theorem 1), and the proof demonstrates that this lower bound on informative-
ness is achieved.

ExD implementation plays an important role in the proof because it allows me to ap-
ply the above reasoning for every endogenous type of the designer separately. Under
weaker solution concepts, it would be possible to use randomization in the mechanism to
disclose additional information about the agent’s type. For example, in the single-agent
binary-types model of Calzolari and Pavan (2006a), the aftermarket is a resale game and
is therefore submodular. Nevertheless, Calzolari and Pavan showed that in one of four
cases, it is optimal to use a non-cutoff mechanism (in particular, a non-cutoff mechanism
is feasible). Corollary 3 implies that the incentives to report truthfully in their optimal
mechanism (which is analogous to the mechanism considered in Example 8) crucially rely
on providing a random outcome to the low type. If the agent did not trust the designer to
correctly randomize, she would not report truthfully.

The assumption of a submodular aftermarket is crucial for the result. Under the oppo-
site case of supermodularity (which is satisfied by the Cournot aftermarket—see case (a)
of Example 2), it is easier to disclose information. In that case, the relationship between
types and beliefs implied by incentive-compatibility and Bayes plausibility is aligned:
Higher types are associated with higher beliefs. It is thus possible to support truthful
disclosure of the type by using transfers, even when all types receive the same allocation.
Indeed, Goeree (2003) and Hu and Zhang (2017) showed that the optimal mechanism
for a Cournot aftermarket is to fully disclose the type of the winner. In those cases, as
seen in Examples 6 and 7, an optimal cutoff mechanism fully discloses the cutoff. Thus,
restricting attention to cutoff mechanism is likely to be suboptimal when the aftermarket
is supermodular.

26Such a transfer rule would not in general guarantee the same payoff to the designer. However, it could
guarantee an arbitrarily close approximation of that payoff.
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6. CONCLUDING REMARKS

In this paper, I studied mechanism design in a setting where the mechanism is fol-
lowed by an aftermarket, that is, a post-mechanism game played between the agent who
acquired the object and third-party market participants. Existence of an exogenous af-
termarket creates a new tool in the design problem—the disclosure rule. By disclosing
information elicited by the mechanism, the designer influences the information structure
of the aftermarket. I introduced a tractable class of cutoff rules that are characterized
by being always implementable—regardless of the aftermarket and the prior distribution
of types. Under a strong notion of implementability and regularity, cutoff rules coincide
with the set of feasible outcomes in cases when the aftermarket satisfies a submodularity
condition.

Although the results of this paper are established under relatively strong assumptions,
many of them continue to hold under much weaker conditions. For instance, cutoff rules
remain dominant-strategy implementable even if types are allowed to be correlated. The
assumption of a public signal and of irrelevance of beliefs over losing agents’ types allowed
me to characterize the payoffs in the aftermarket as a function of a single posterior belief.
However, this assumption could be relaxed as well: The aftermarket payoffs would then
depend on the vector of beliefs (one belief for each realization of a different private signal)
about the entire type profile. In a cutoff rule, the distributions of these signals would be
required to only depend on the cutoff and the losing agents’ reports. With an analogous
definition of monotonicity of the aftermarket, cutoff rules would remain the unique class
satisfying implementability for all aftermarkets and prior distributions. However, char-
acterizing optimal cutoff mechanisms with private signals would require more advanced
tools such as the Bayes correlated equilibrium of Bergemann and Morris (2016a) and is
left for future work.

The approach taken to mechanism design in this paper is non-standard. Instead of look-
ing for the optimal mechanism that can depend on fine details of the model, I proposed a
class of allocation and disclosure rules with a certain robustness property (implementabil-
ity in the “worst case”). Within the class, the designer maximizes a Bayesian objective—
distinguishing this approach from models that look for the mechanism with the highest
payoff guarantee (optimality in the “worst case”). An interesting direction for future re-
search is to apply this approach to other design problems.
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