Variability and Strength in Gradient Phonotactic Acquisition

Thomas Denby and Matt Goldrick

Northwestern University

Introduction

- Phonotactics
 - Restrictions over sequences of speech sounds
 - Often gradient
 - Some sequences appear more often than others
 - Part of the speaker's grammatical knowledge
 - Used in production and perception of novel items
 - E.g. Jusczyk et al. (1993); McQueen (1998); Vitevitch & Luce (1998); Munson (2001)

syllable-final [s] vs. [z]

```
kis
mæs

sæs
nus

baiz
```

[s] appears in more contexts, more frequently, than [z] syllable/word-finally

- 1. Contextual variability
- 2. Exemplar strength

- 1. Contextual variability
 - High contextual variability draws learner's attention to invariant aspects of input
 - Measured by type frequency
- 2. Exemplar strength

- 1. Contextual variability
- 2. Exemplar strength

- 1. Contextual variability
- 2. Exemplar strength
 - Strength of individual items making up pattern affects strength of entire pattern
 - Measured by token frequency

Overview

- 3 artificial language experiments
 - Sources of information correlated in the input
 - Token frequency, type frequency
 - Artificial language experiments allow us to decorrelate contextual variability and exemplar strength

Overview

Three experiments:

Experiment 1 Correlated

Experiment 2 Experiment 3

Isolated Anti-correlated

32 participants each Online (Amazon Mechanical Turk)

BACKGROUND

- Thought experiment
 - You're a Martian who has never encountered a "chair" before
 - How do you learn the category CHAIR?

Seat	•	
Back	•	
Four legs	•	
No arms	•	
Grey	•	
Metal	•	

Seat	• •
Back	• •
Four legs	• •
No arms	• •
Grey	•
Metal	•

Seat	•	•	•	
Back	•	•	•	
Four legs	•	•	•	
No arms	•	•		
Grey	•			_
Metal	•			

Seat	•	•	•	•
Back	•	•	•	•
Four legs	•	•	•	
No arms	•	•		
Grey	•			
Metal	•			

Seat	•	•	•	•
Back	•	•	•	•
Four legs	•	•	•	
No arms	•	•		
Grey	•			
Metal	•			

Cook		_		
Seat				
Back	•	•	•	•
Four legs	•	•	•	
No arms	•	•		
Grey	•			
Metal	•			

- Seat
- Back
- Googly eyes
- Tongue

Seat	•	•	•	•
Back	•	•	•	•
Four legs	•	•	•	
No arms	•	•		
Grey	•			
Metal	•			

- Seat
- Back
- Googly eyes
- Tongue

CHAIR!

- Directs learner's attention to invariant features of category
 - Learn what is important
 - [Back], [Seat]
 - Also, what's **not** important
 - Material, arms
 - Classic finding from psychology
 - Estes & Burke (1953); Munsinger & Kessen (1966);
 Dukes & Bevan (1967); Posner & Keele (1968)

- Enhances pattern learning
- Correlated with pattern productivity

- Enhances pattern learning
 - Phonetics (Lively, Logan & Pisoni, 1993)
 - High variability training improves acquisition of non-native phoneme categories
 - Across many linguistic domains (e.g. Rost & McMurray, 2009; Endress & Hauser, 2011; Twomey, Ranson, & Horst, 2014; Gomez, 2002; Richtsmeier, 2011)
- Correlated with pattern productivity

- Enhances pattern learning
- Correlated with pattern productivity
 - Morphology (Bybee, 1988)
 - High type-frequency morphemes are highly productive
 - Phonotactics (see Pierrehumbert, 2003)

- Phonotactics
 - What is context for a phonotactic pattern?
 - Other segments in the syllable
 - Variability along relevant dimension
 - Type frequency = contextual variability

syllable-final [s] vs. [z]

```
kis
buz
mæs kis
luz
luz
las
nus bas
```

[s] appears in more variable contexts

- Strength of individual items making up a pattern
 - Facilitatory
 - Not significant

- Strength of individual items making up a pattern
 - Facilitatory
 - Facilitatory effects of frequency ubiquitous in language processing
 - If items making up pattern are highly active, entire pattern may be more active/productive
 - Not significant

- Strength of individual items making up a pattern
 - Facilitatory
 - Not significant
 - High frequency items are so strong they are exceptional
 - HF morphemes often exceptional (Bybee, 1988)
 - Learners attribute features of HF item as idiosyncratic to that item, not generalizable to other similar items
 - N.B. Can't be completely irrelevant

syllable-final [s] vs. [z]

[s] appears more frequently overall, regardless of context

EXPERIMENTS

Methodology

- Continuous recognition memory task (Bernard, 2015)
 - Stimuli presented auditorily
 - Prompt: "Have you heard this syllable before?"
 - After stimulus plays: respond "YES" or "NO"

Methodology

- Familiarization phase
 - Two repetitions of set of familiarization syllables
 - Syllables divided into two patterns
 - Arbitrary phonotactic constraint
 - Coda pattern: /n,f/ vs. /s,b/
 - Monosyllabic nonce words
- Generalization phase
 - Four additional repetitions of set, intermixed with single presentation of novel *generalization* syllables
 - ½ follow each coda pattern

	Variability	Strength	
Advantaged pattern	{fef, sif, buf, saf}	{fef, fef, fef} x 4	
Disadvantaged pattern	{fes, fes, fes, fes}	{fes, fes, fes, fes}	
Generalization	faf, nuf, fis, bas		

	Variability	Strength	
Advantaged pattern	{fef, sif, buf, saf}	{fef, fef, fef} x 4	
Disadvantaged pattern	{fes, fes, fes, fes}	{fes, fes, fes, fes}	
Generalization	faf, nuf, fis, bas		

- Rate of participants incorrectly responding yes on novel generalization syllables a measure of generalizing pattern
 - Compare false alarm rates for generalization syllables reflecting each pattern

Experiment 1

Variability/strength
 correlated

Example set

- Advantaged pattern: 16 syllables x 4 reps
 - 64 tokens/block

VS.

- Disadvantaged pattern: 4 syllables x 4 reps
 - 16 tokens/block

```
{baf, ban, buf, bun, fef, fen, fuf, fun, naf, nan, nif, nin, sef, sen, sif, sin} x 4 reps
```

{bas, fub, nis, seb} x 4 reps

 Participants acquire gradient phonotactic

Participants
 generalize pattern
 with high contextual
 variability, high
 exemplar strength

Reality check!

- Isolate individual factors
 - Experiment 2a
 - Contextual variability
 - Experiment 2b
 - Exemplar strength

Experiment 2a

 Contextual variability alone

> Advantaged pattern: 16 syllables x 2 or 3 reps

> > 40 tokens/block

VS.

- Disadvantaged pattern: 4 syllables x 10 reps
 - 40 tokens/block

Example set

```
{baf, ban, buf, bun,
  fef, fen, fuf, fun,
  naf, nan, nif, nin,
  sef, sen, sif, sin}
  x 2 or 3 reps
```

{bas, fub, nis, seb} x 10 reps

Experiment 2a

Participants
 generalize pattern
 with high contextual
 variability alone

Experiment 2b

Exemplar strength alone

- Advantaged pattern: 16 syllables x 4 reps
 - 64 tokens/block

VS.

- Disadvantaged pattern: 16 syllables x 1 rep
 - 16 tokens/block

Example set

```
{baf, ban, buf, bun, fef, fen, fuf, fun, naf, nan, nif, nin, sef, sen, sif, sin} x 4 reps
```

```
{bas, fub, nis, seb...}
x 1 rep
```

Experiment 2b

 Exemplar strength effect on generalization not significant

- Exemplar strength
 - Not powerful enough on its own to induce generalization
 - Can still modulate generalization?
- Experiment 3

- Exemplar strength
- Experiment 3
 - Contextual variability, exemplar strength anticorrelated
 - Not found in natural language

 Variability/strength anticorrelated

• Var-advantaged pattern:

16 syllables x 1 rep

- 16 tokens/block

VS.

Example set

```
{baf, ban, buf, bun, fef, fen, fuf, fun, naf, nan, nif, nin, sef, sen, sif, sin} x 1 rep
```

Strength-advantaged pattern:

4 syllables x 16 reps

– 64 tokens/block

```
{bas, fub, nis, seb}
x 16 reps
```

Participants
 generalize pattern
 with high contextual
 variability, not high
 exemplar strength

Experiment comparison

Is effect of contextual variability modulated by exemplar strength?

Experiment comparison

No significant difference whether contextual variability is correlated, isolated, or anti-correlated

CONCLUSION

- Other experiments
 - Acoustic variability
 - Input statistics
- Future directions

- Other experiments
- Future directions
 - Lexical items
 - Instead of nonce words
 - Consolidation
 - How long do these effects last?
 - How do patterns change after consolidation?

- Contextual variability
 - Enhances phonotactic learning
 - Learners home in on invariant features of input
 - Consistent with evidence from other domains
- Exemplar strength

- Contextual variability
- Exemplar strength
 - Not significant for phonotactic learning?
 - Beyond some minimum threshold, strength of members of pattern doesn't modulate strength of pattern as a whole

Thank you!

Thanks, first and foremost, to Matt Goldrick, as well as our other contributors, Jeff Schecter, Sean Arn, and Svetlin Dimov. Thanks as well to Ann Bradlow; Chun Chan; Robert Daland, Rebecca Scarborough; Phonatics; and the NU Sound Lab for their help and feedback!

tdenby [at] u.northwestern.edu sites.northwestern.edu/denby Northwestern University

Appendix *Acoustic variability*

Relevance

- All variability not created equal
 - Only relevant variability facilitates learning
 - Gomez (2002); Rost & McMurray (2009)
 - Irrelevant variability: whether chair is displayed on computer screen, piece of paper, or projected

– What constitutes relevant variability for phonotactics?

Acoustic variability

- If phonotactic representations...
 - Contain phonetically fine-grained information
 - Acoustic variability relevant, enhances generalization
 - Represented at more abstract level
 - Acoustic variability irrelevant, no generalization
 - Duration variability
 - Stimuli manipulated from 70% 130% of baseline duration

Acoustic variability alone

Example set

- Advantaged pattern: 16 syllables x 2 or 3 reps
 - Duration variability
 - 40 tokens/block

{baf, ban, buf, bun...} X 2 or 3 reps

VS.

- Disadvantaged pattern: 16 syllables x 2 or 3 reps
 - No duration variability
 - 40 tokens/block

{bas, fub, nis, seb...}
X 2 or 3 reps

- Logistic regression and subsequent χ² model comparison—not significant
 - $\beta = 0.14$, s.e. $\beta = 0.15$, $\chi^2(1)$ = 0.82, p > .05
- Acoustic variability has no effect on generalization
- Phonotactics are represented abstractly

Experiment 3b

- Acoustic variability (anti-correlated)
 - Confound: contextual variability → acoustic variability
 - Exemplar strength + acoustic variability
 - Stronger effect than exemplar strength alone?
 - More naturalistic
 - Add duration variability to both patterns
 - 70% 130% of baseline stimulus duration
 - Linguistically meaningful/relevant, can enhance L2 word learning (Sommers & Barcroft, 2007)

Experiment 3b

 Var/strength anticorrelated, variability

Var-advantaged pattern:

16 syllables x 1 rep

16 tokens/block

VS.

Example set

```
{baf, ban, buf, bun, fef, fen, fuf, fun, naf, nan, nif, nin, sef, sen, sif, sin} x 1 rep
```

Strength-advantaged pattern:
 4 syllables x 16 reps

– 64 tokens/block

{bas, fub, nis, seb} x 16 reps

Experiment 3b

- Participants
 generalize pattern
 with high contextual
 variability, not high
 exemplar strength
- Difference from XP 3
 not significant

Appendix *Input statistics*

Input statistics

- Narrow slice of parameter space
 - All advantages have been 4:1 ratio

- Experiment 5
 - Cut ratio to 2:1
 - Half as many unique syllables
 - More stringent test of variability advantage
 - N.B. Duration variability added

 Var/strength anticorrelated, short

Example set

• Var-advantaged pattern:

8 syllables x 2 rep

16 tokens/block

VS.

{buf, bun, fuf, fun, nif, nin, sif, sin} x 2 reps

Strength-advantaged pattern:

4 syllables x 8 reps

32 tokens/block

{bas, fub, nis, seb} x 8 reps

- Participants
 generalize pattern
 with high contextual
 variability, not high
 exemplar strength
- No difference from XP 3a, 3b

AppendixDetailed results

 Logistic regression and subsequent χ² model comparison—significant

•
$$\beta = 1.07$$
, s.e. $\beta = 0.19$, $\chi^2(1) \frac{8}{9}$ 60% = 23.75, p < .05

• No significant difference vs. in-lab result

Experiment 2a

 Logistic regression and subsequent χ² model comparison—significant

• $\beta = 0.75$, s.e. $\beta = 0.15$, $\chi^2(1)^{\frac{80}{9}}$ = 21.92, p < .05

Experiment 2b

Logistic regression and equent χ^2 much apprison—not gnificant

• $\beta = 0.09$, s.e. $\beta = 0.17$, $\chi^2(1)$ where χ^2 much approximately χ^2 m

Logistic regression and subsequent χ^2 mode.

comparison—significant 60%.

• $\beta = 0.65$, s.e. $\beta = 0.18$, $\chi^2(1)$ $\frac{1}{80}$ $\frac{1}$

vs. anti-correlated without acoustic variability

