

BACKGROUND **Gradient phonotactics**

Gradient phonotactics are gradient restrictions over

- sequences and positions of speech sounds
- Segment sequences can appear in more contexts (unique words/syllables) and more frequently (more instances)

syllable-final [s] > [z]

ki[s] creal ma[<mark>s</mark>] sa[s] noo[s] bu[<mark>s</mark>]

fi[<mark>z</mark>] bree[z] tea[z]

What factors play a role in the acquisition of gradient phonotactics?

Contextual Variability

- Variability of contexts surrounding a pattern High contextual variability draws learner's attention to
- invariant aspects of the input
- Measured by # of <u>unique lexical/syllabic contexts</u> in which phonotactic constraint appears

Exemplar Strength

- Strength/activation of individual items making up pattern affects strength of pattern as a whole
 - Frequency effects ubiquitous in language processing
- Measured by # of instances in which phonotactic constraint appears

How does this further our understanding of phonotactic learning?

- Contextual variability and exemplar strength are highly correlated in natural language phonotactics¹ Most models of phonotactic learning do not
 - differentiate between the two^{2,3}
- By using artificial language experiments, we can decorrelate and deconfound the influence of these factors

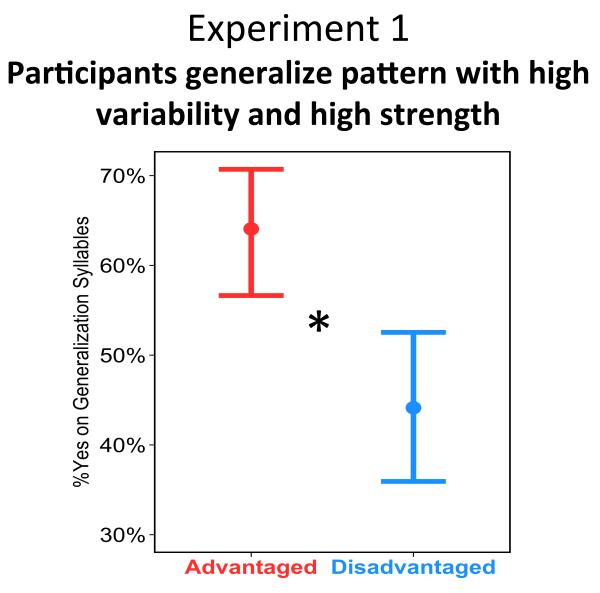
EXPERIMENT DETAILS

- 32 participants/experiment
- All participants recruited through Amazon Mechanical Turk
- Significance measured using logistic mixed-effects regression models and χ^2 model comparisons All error bars are 95% bootstrapped CIs \bullet

3 Experiments

Input statistics per block

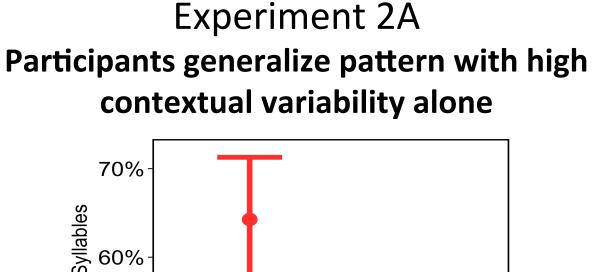
Experiment	# of Unique Syllables			# of Instances		
	Pattern	Pattern	Ratio	Pattern	Pattern	Ratio
	A	В		A	В	
Experiment 1 Correlated	16	4	4:1	64	16	4:1
Experiment 2A Variability	16	4	4:1	40	40	1:1
Experiment 2B Strength	16	16	1:1	64	16	4:1
Experiment 3 Anti-correlated	16	4	4:1	16	64	1:4

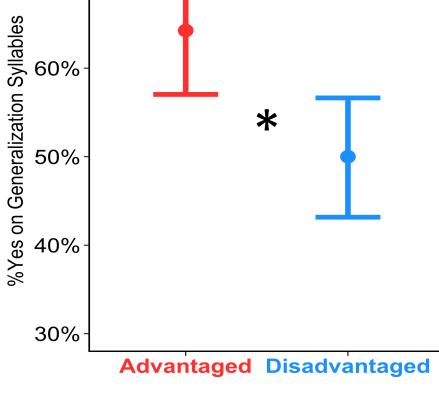

Prompt after each stimulus: "Have you heard this syllable before?" Participants respond **YES** or **NO**

Variability and Strength in Gradient Phonotactic Generalization Thomas Denby and Matt Goldrick

*Continuous recognition memory task*⁴ Stimuli presented auditorily, one at a time

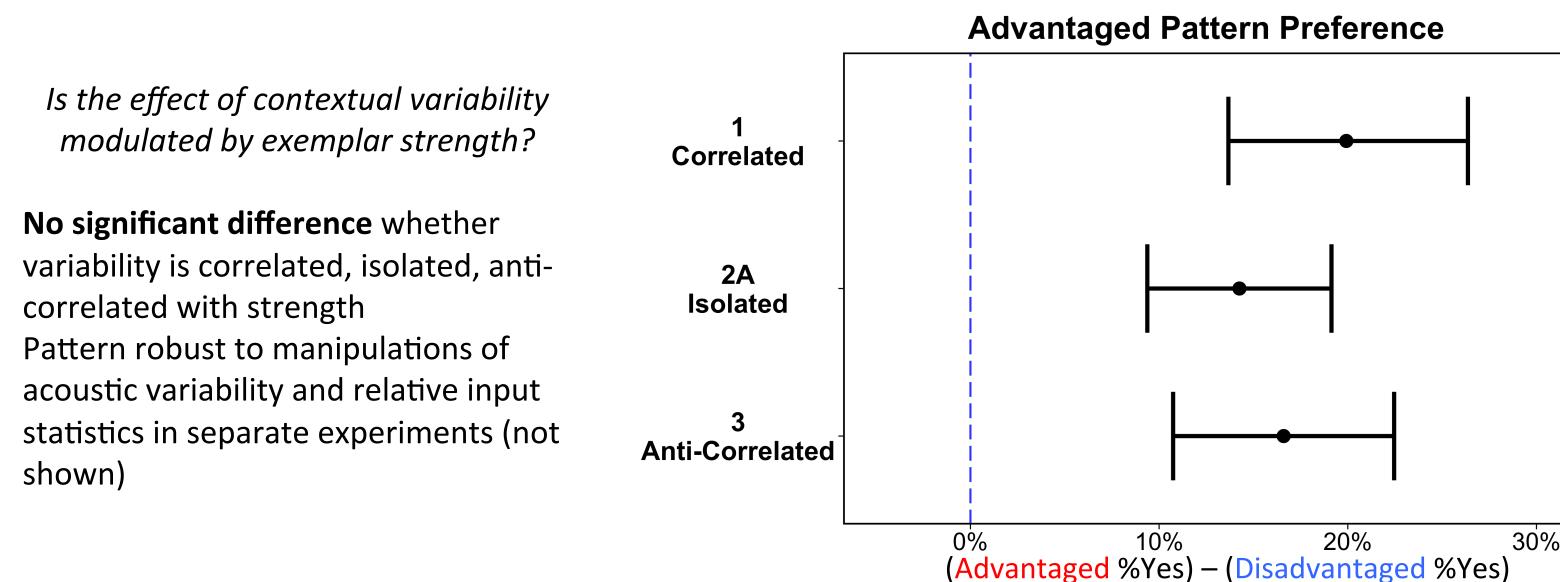
Materials


- 64 total CVC nonsense syllables • Syllables divided into two patterns based on arbitrary phonotactic constraint
 - Coda pattern: /n,f/ vs. /s,b/



Participants generalize pattern that appears in more contexts, instances to novel items (simulates phonotactic constraints in natural language) • $\beta = 1.07$, s.e. $\beta = 0.19$, $\chi^2(1) = 23.8$, p < .05

correlated with strength


shown)

- Participants generalize pattern that appears in **more contexts, but same #** of instances
- $\beta = 0.75$, s.e. $\beta = 0.15$, $\chi^2(1) = 21.9$, p < .05

Experiment Comparison

DISCUSSION

Why does variability enhance generalization?

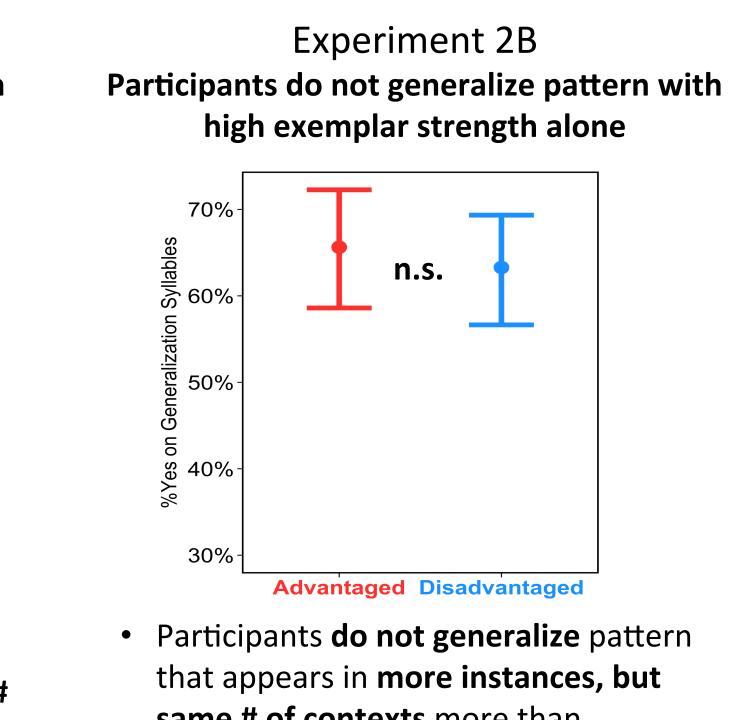
- Variability in the context surrounding the pattern allows learners to home in on invariant features of the input
- Consistent with evidence from visual pattern learning for adults⁵ and toddlers⁶, acquisition of non-native phonemes⁷, words for infants⁸, stress patterns⁹, morphemes¹⁰, and syntactic dependencies¹¹

Why doesn't strength modulate generalization?

- High strength items may become exceptional
 - Learners attribute features as idiosyncratic to particular item, not generalizable to novel items
 - e.g. high token frequency morphemes often exceptional¹² (e.g. *go/went*)

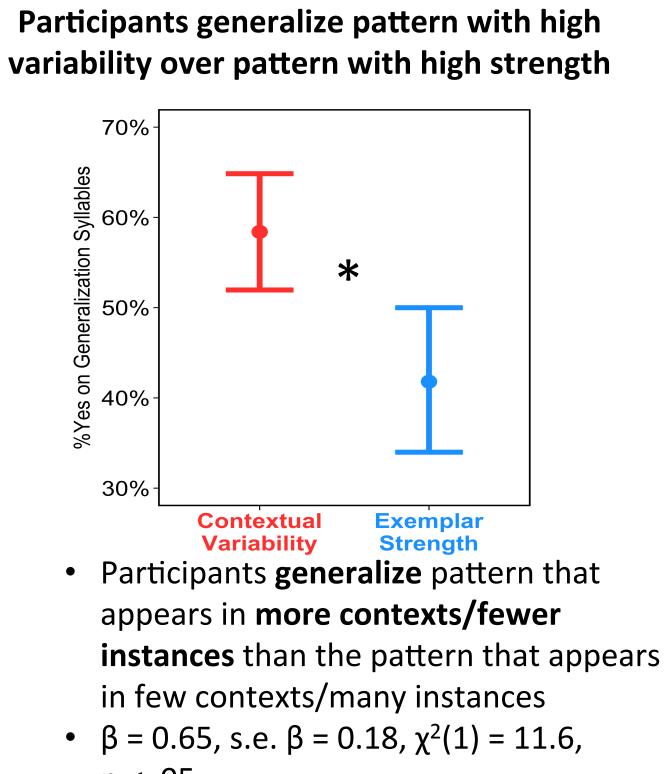
METHODS

Design


- Familiarization phase
- > 2 repetitions of set of *familiarization* syllables Generalization phase
 - > 4 additional repetitions of *familiarization* set
 - > Intermixed with novel *generalization* syllables (¹/₂ follow each coda pattern)

Measure

How often participants incorrectly respond yes on novel generalization syllables > Measures pattern generalization


By manipulating the variability and strength of each pattern, we can compare their effects on learning

RESULTS

- same # of contexts more than disadvantaged pattern
- $\beta = 0.09$, s.e. $\beta = 0.17$, $\chi^2(1) = 0.3$, p > .05

Experiment 3

- p < .05

Contextual variability enhances generalization

Exemplar strength does not modulate generalization

ACKNOWLEDGEMENTS Thanks to our collaborators Sean Arn, Svetlin Dimov, and Jeffrey Schecter. Thanks also to Ann Bradlow, Chun Chan, and the NU Soundlab.

SELECTED REFERENCES [1] Schecter, J. (2011). Effects of Type and Token Frequency on Phonotactic Learning. Undergraduate Honor's Thesis. Northwestern University. [2] Hayes, B., & Wilson, C. (2008). A Maximum Entropy Model of Phonotactics and Phonotactic Learning. Linguistic Inquiry, 39(3) [3] Warker, J. a, & Dell, G. S. (2006). Speech errors reflect newly learned phonotactic constraints. Journal of Experimental Psychology. Learning, Memory, and Cognition, 32(2) [4] Bernard, A. (2015). An onset is an onset: Evidence from abstraction of newly-learned phonotactic constraints. Journal of Memory and Language, 78 [5] Posner, M., & Keele, S. (1968). On the genesis of abstract ideas. Journal of *Experimental Psychology*, 77 [6] Quinn, P. C., & Bhatt, R. S. (2006). Are some Gestalt principles deployed more readily than others during early development? The case of lightness versus form similarity. Journal of Experimental Psychology: Human Perception and Performance, 32(5) [7] Bradlow, A. R., Pisoni, D. B., Akahane-Yamada, R., & Tohkura, Y. I. (1997). Training Japanese listeners to identify English/r/and/I: IV. Some effects of perceptual learning on speech production. The Journal of the Acoustical Society of America, 101(4) [8] Twomey, K. E., Ranson, S. L., & Horst, J. S. (2014). That's More Like It: Multiple Exemplars Facilitate Word Learning. Infant and Child Development [9] Gerken, L., & Bollt, A. (2008). Three Exemplars Allow at Least Some Linguistic Generalizations: Implications for Generalization Mechanisms and Constraints. Language Learning and Development, 4(3) [10] Endress, A. D., & Hauser, M. D. (2011). The influence of type and token frequency on the acquisition of affixation patterns: implications for language processing. Journal of Experimental Psychology. Learning, Memory, and Cognition, 37(1) [11] Gómez, R. L. (2002). Variability and detection of invariant structure. *Psychological Science : A Journal of the* American Psychological Society / APS, 13(5) [12] Bybee, J. L. (1988). Morphology as Lexical Organization. In Theoretical Approaches to Morphology