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Abstract 
 
Voice quality conveys both linguistic and paralinguistic information, and can be distinguished by 
acoustic source characteristics. We label objective voice quality categories based on the spectral 
and temporal structure of speech sounds, specifically the harmonic structure (H1-H2) and the 
mean autocorrelation ratio of each phone. Results from a classification experiment using a 
Support Vector Machine (SVM) classifier show that allophones that differ from each other 
regarding voice quality can be classified as distinct using input features in speech recognition. 
Among different possible ways to incorporate voice quality information in speech recognition, 
we demonstrate that by explicitly modeling voice quality variance in the acoustic phone models 
using hidden Markov modeling, we can improve word recognition accuracy. 
 
Keywords: ASR, Voice quality, H1-H2, Autocorrelation ratio, SVM, HMM. 
 
1. Introduction 
 
The acoustic source of speech sounds, especially the source of voiced speech sounds, is defined 
as the airflow through the glottis. Quasi-periodic vibration of the vocal folds results in a volume 
velocity waveform. The source signal is modulated in the vocal tract, which functions as a 
resonator or a filter (Fant 1960). The term “voice quality” refers to the quality of sound produced 
with a particular setting of the vocal folds, and includes breathy, creaky and modal voices. Voice 
quality provides information at multiple levels of linguistic organization, and manifests itself 
through acoustic cues including F0, and information in spectral and temporal structures. If we 
can reliably extract acoustic features that differentiate phones on the basis of voice quality, then 
voice quality differences can be modeled in an Automatic Speech Recognition system (ASR), 
improving recognition performance. 

Fundamental frequency (F0) and harmonic structure are acoustic parameters that signal 
voice quality. Particularly, they are shown to be important factors in encoding lexical contrast 
and allophonic variation related to laryngeal features (Maddieson and Hess 1987; Gordon and 
Ladefoged 2001). For example, Maddieson and Hess (1987) observe significantly higher F0 for 
tense vowels in languages that distinguish three phonation types (tense, lax, and modal) with 
varying voice quality (Jingpho, Lahu and Yi). However, F0 is not always a reliable indicator of 
voice quality. Studies of English have failed to show a strong correlation between any glottal 
parameters and F0 (Epstein 2002). On the other hand, information obtained from harmonic 
structure has been shown to be more reliable for the discrimination of non-modal from modal 
phonation. For example, Gordon and Ladefoged (2001) describe the characteristics of creaky 
phonation as producing non-periodic glottal pulses, lower power, lower spectral slope, and low 
F0. Among these acoustic features, they report that spectral slope is the most important feature 
for discrimination among different phonation types.  

The observation of voice quality differences, even non-phonemic differences as in 
English, raises a research question: Will the incorporation of voice quality into a speech 
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recognition system result in improved performance? We hypothesize that the spectral 
characteristics of phones produced with creaky voice are so different from those produced with 
modal voice that direct modeling of voice quality will result in improved word recognition 
accuracy. We test that hypothesis in the present study by labeling the voice quality of 
spontaneous connected speech using both harmonic structure (a spectral measure) and mean 
autocorrelation ratio (a temporal measure), which have been identified to be reliable indicators of 
voice quality. 
 Speech is usually parameterized as perceptual linear prediction (PLP) coefficients in 
speech recognition systems, to reflect human auditory characteristics. An important question is 
whether these parameters used in ASR also reflect voice quality variation. We answer this 
question by showing that the phone-level voice quality labels automatically generated according 
to a spectral measure taken from harmonic structure and a temporal measure of mean 
autocorrelation ratio are predictive of their PLP coefficients. We further show that a PLP-
coefficients-based automatic speech recognizer that incorporates voice quality information in the 
acoustic models performs better than a complexity-matched baseline system that does not 
consider the voice quality distinction.  

The paper is organized as follows. Section 2 illustrates linguistic and paralinguistic 
functions of voice quality (subsection 2.1) and presents acoustic cues for the voice quality 
identification (subsection 2.2). Section 3 introduces our method of voice quality decision on the 
corpus of telephone conversation speech. Section 4 reports a classification result that shows the 
voice quality distinctions are reflected in PLP coefficients. Section 5 presents an HMM-based 
speech recognition system that incorporates voice quality knowledge. Section 6 compares the 
performance of the voice quality dependent recognizer against a baseline system that doesn’t 
distinguish different voice qualities. Section 7 concludes the paper with discussion of the source 
of the ASR improvement in the increased precision of the phone models that are specified for 
different voice qualities.  
 
2. Voice Quality 
 
Among numerous types of voice quality (e.g., see Gerratt and Kreiman 2001), the most 
frequently utilized cross-linguistically are modal, creaky, and breathy voices. In this section, we 
briefly illustrate the characteristic of voice qualities, and present uses and functions of voice 
quality (subsection 2.1) and acoustic correlates of the types of voice quality (subsection 2.2).  

Ladefoged (1971) suggests that types of voice quality, or phonation types, be defined in 
terms of the aperture between the arytenoid cartilages in the larynx. The arytenoid cartilages are 
a pair of small three-sided components in the larynx. The vocal folds are attached to these 
cartilages. The degree of aperture between the arytenoid cartilages, hence between the vocal 
folds, plays a role in producing voice qualities such as modal, breathy, and creaky voices. Modal 
voice, as is illustrated in Figure (1a), refers to the phonation of speech sounds produced with 
regular vibrations of the vocal folds. The modal voice has relatively well-defined pitch pulses. In 
Figure (1a), relatively well defined striations in the formants are visible in the region where the 
vowel [oi] in the word ‘voice’ is uttered. Breathy phonation, as is shown in Figure (1b), is 
characterized by vocal cords that are fairly abducted (relative to modal and creaky voice) and 
have little longitudinal tension. The abduction and lesser tension allow some turbulence of 
airflow to flow through the glottis. In Figure (1b), turbulent noise is present across the frequency 
range. Creaky phonation, as in Figure (1c), is typically associated with vocal folds that are tightly 
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adducted but open enough along a portion of their length to allow for voicing. Due to the tight 
adduction, the creaky voice typically reveals slow and irregular vocal pulses in the spectrogram, 
as in Figure (1c), where the vocal pulses are farther apart from each other compared to those of 
modal and breathy voices in Figures (1a-b)1. 
 

(a) 

 
(b) 

 
 

(c) 

 
Figure 1: Spectrograms of the same word “voice” that are produced with different 
phonation qualities. From top to bottom, the word “voice” is produced with (a) modal 
voice, (b) breathy voice, and (c) creaky voice, respectively. The circles in the above 
figures indicate regions where different types of voice quality are observed.  
 

2.1 Functions of voice quality 
 
Functions of voice quality include the encoding of lexical contrasts, encoding of allophonic 
                                            
1 The sound files are taken from http://www.ims.uni-tuttgart.de/phonetik/EGG/ 
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variation, signaling of speaker’s emotional or attitudinal status, and socio-linguistic or extra-
linguistic indices. The utilization of the voice quality function is language-dependent. 
 The use of voice quality to encode lexical contrasts is fairly common in Southeast Asian, 
South African and Native American Languages. For example, the presence or absence of 
creakiness on the vowel a in “ja” signals difference in meaning in Jalapa Mazatec such that “ja” 
produced with creakiness means “he carries” whereas “ja” produced without creakiness means 
“tree” (Ladefoged and Maddieson 1997; Gordon and Ladefoged 2001). Gujarati speakers need 
breathy voice or murmured voice to distinguish the word /bar/ produced with murmured voice 
“outside” from the word /bar/ “twelve” (Fischer-Jørgensen 1967; Bickley 1982; Gordon and 
Ladefoged 2001)2.  
 Voice quality is also commonly used to encode allophonic variation in certain contexts. 
That is, many languages use non-modal phonation in creaky or breathy voice as variants of 
modal voice in certain contexts. For example, voiceless stop /t/ in American English is often 
realized as glottal stop []. The spectrogram in Figure 2 illustrates that the final /t/ in the word 
“cat” is produced with glottal stop [], with anticipatory non-modal phonation on the preceding 
vowel. 
 

 
Figure 2: An allophonic realization of the voiceless stop /t/ as a glottal stop [] 
(Figure taken from Epstein 2002) 

 
A particular voice quality is more likely to be associated with specific tones in tonal 

languages. Huffman (1987) observes that one of the seven tones in Hmong (a Sino-Tibetan 
language) is more likely to occur with a breathy voice quality. Jianfen and Maddieson (1989) 
describe that the yang tone in the Wu dialect of Chinese differ from the yin tone in that the yang 
tone is associated with the breathy voice.  

Voice quality can function as a marker for juncture. For example, creaky voice can be 
used to mark syllable, word, phrase, and utterance boundaries. Kushan and Slifka (2006) report 
that 5% of their 1331 hand-labeled irregular tokens in a subset of TIMIT database occur at 
syllable boundaries, and 78% of the tokens at word boundaries. For example, creakiness is 
observed at the end of a word boundary in Figure 3. 

 
 

                                            
2 For names of languages with different types of phonation contrasts, see Gordon and Ladefoged (2001). 
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Figure 3: An example of the occurrence of creakiness at a word boundary. Creakiness is 
used in the realization of the rhotic “r” at the end of the word “successor.” 

 
Fant and Kruckenberg (1989) demonstrate that creaky voice is used as a phrase boundary marker 
for speakers of Swedish. Laver (1980) states that creaky voice with a concomitant low falling 
intonation may used by speakers of English as a marker for turn taking. Dilley et al. (1996) show, 
through the analysis of a prosodically labeled speech corpus of American English, that phrasal 
boundaries of intermediate and intonational phrases influence glottalization of word-initial 
vowels. Redi and Shattuck-Hufnagel (2001) further demonstrate that glottalization is more likely 
to be observed on words at the ends of utterances than on words at the ends of utterance-medial 
intonational phrases, and that the glottalization is more likely to be observed on boundaries of 
full intonational phrases than on boundaries of intermediate phrases. 

In addition to the linguistically determined variation discussed above, there are 
paralinguistic functions in the use of voice qualities. Modulation of voice quality can be used to 
convey the speaker’s emotion and attitude to the listener. For example, creaky voice signals 
tiredness or boredom, at least in American English. It should be noted that the use of voice 
quality and its relation to emotional or attitudinal aspects do not seem to be universal. For many 
speakers of Swedish, creaky voice is an affectively unmarked quality, whereas the same voice 
quality is used in Tzeltal (a Mayan language) to express commiseration or complaint (Gobl 
2003) and it is use in Slovene to express indecisiveness or uncertainty3. In addition, breathy 
voice is associated with intimacy in many languages. The affect of intimacy is typically regarded 
to be a marker for female speakers rather than a marker for male speakers. For example, Gobl 
(2003) states that “gender-dependent differences, particularly increased breathiness for female 
speakers, have been observed in languages,” including English.  

Finally, it has been observed that voice quality may also have a sociolinguistic 
dimension serving to differentiate among social groups. Within a particular dialect, voice quality 
features may signal social subgroups.  Esling (1978, quoted in Gobl 2003) states that “in 
Edinburgh English, a greater incidence of creaky voice is associated with a higher social status, 
whereas whispery and harsh qualities are linked to a lower social status.”  

Among the categories of voice quality, creaky voice has been recurrently reported to 
play a role in American English in signaling linguistic information, even though the function of 
creakiness in American English is not phonemic. Creakiness in American English is related to 
prosodic structure as a frequent correlate of word, syntactic, or prosodic boundaries (Kushan and 
Slifka 2006; Dilley et al. 1996; Redi and Shattuck-Hufnagel 2001; Epstein 2002). Given the 
linguistic function of creakiness in American English, it is possible to use voice quality to 
facilitate automatic speech recognition. Information about voice quality can be used to decide 

                                            
3 http://www2.ku.edu/~slavic/sj-sls/jurgec_eng.pdf 
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between candidate analyses of an utterance by favoring analyses in which the syntactic and 
higher-level structures are consistent with the observed voice quality of a target word. In this way, 
voice quality constitutes a new channel of information to guide phrase-level analysis. An even 
more basic benefit of voice quality information is also possible: Voice quality effects condition 
substantial variation in the acoustic realization of a word or phone. Modeling that variation offers 
the possibility of improved accuracy in word or phone recognition. The next section details a 
method for reliably detecting creaky voice quality based on acoustic cues, independent of higher-
level linguistic context, for the purpose of modeling creaky voice for speech recognition.  
 
2.2 Acoustic correlates of voice quality 
 
Acoustic cues obtained from voice source analysis have been identified to be more reliable for 
voice quality identification than F0 or intensity alone. But analytic studies have largely focused 
on the more measurable parameters of F0 and intensity (cf. Gordon and Ladefoged 2001; Gobl 
2003). This can be attributed to the methodological difficulties in voice source analysis with 
features other than F0 or intensity. For example, segments with both breathy and creaky voices 
have been shown to have reduced intensity characteristics. In certain languages such as Chong 
(Thongkum 1987) and Hupa (Gordon 1996), it has been observed that phones produced with 
creakiness trigger a reduction in intensity relative to the intensity observed in phones produced 
with modal phonation. However, the intensity measurement is subject to many external factors 
such as location of the microphone and background noise, and internal factors such as the 
speaker’s loudness level. Slow and irregular vibration of the vocal folds characterizes creaky 
voice, resulting in low F0. However, F0 is not always a reliable indicator of voice quality. 
Studies of English have failed to show a strong correlation between any glottal parameters and 
F0 (Epstein 2002).  

Information obtained from spectral structure is more reliable for the voice quality 
identification. Ní Chasaide and Gobl (1997) characterize creaky phonation as having slow and 
irregular glottal pulses in addition to low F0. Specifically, they state that significant spectral cues 
to creaky phonation are i) A1 (i.e., amplitude of the strongest harmonic of the first formant) 
much higher than H1 (i.e., amplitude of the first harmonic)4, and ii) H2 (i.e., amplitude of the 
second harmonic) higher than H1.5 (See Figure 4 for an illustration.) Fisher-Jørgensen (1967) 
conducted a discrimination experiment between modal vowels and breathy vowels with Gujarati 
listeners using naturally produced Gujarati stimuli. The listeners were able to distinguish breathy 
vowels from modal ones in cases where the amplitude of the first harmonic dominates the 
spectral envelope. She observed that other cues such as F0 and duration had little importance in 
the task. Pierrehumbert (1989) investigated the interaction of prosodically prominent events such 
as pitch accents and voice source variables.  In general, the glottal pulse for high toned pitch 
                                            
4 Relative contribution of the A1 to the creaky voice is related to the increased bandwidth of the first 
formant. Hanson et al. (2001) states that “if the first-formant bandwidth (B1) increases, the amplitude A1 
of the first-formant peak in the spectrum is expected to decrease. Therefore, the relative amplitude of the 
first harmonic and the first-formant peak (H1-A1, in dB) is selected as an indicator of B1” Thus, the 
relative difference between H1-A1 is relevant to the discrimination between creaky voice and modal 
voice. 
5 Some researchers use H1 and H2 to refer to individual harmonics, not to the amplitudes of thereof. In 
this paper, H1 and H2 refer to the amplitude of each harmonic, i.e., first and second harmonics, 
respectively. 
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accents has a greater open quotient than for low toned pitch accents. The open quotient (OQ) is 
defined as the ratio of the time in which the vocal folds are open to the total length of the glottal 
cycle. But it is also occasionally observed that while higher voice level as measured by intensity 
results in a higher F0, the higher voice level corresponds to a reduced OQ. This implies again 
that the F0 and cues from voice source are largely independent of each other, and the open 
quotient, which is related to the harmonic structures of H1 and H2, provides a more reliable cue 
for the identification of non-modal phonation.  
 
   (a) 

 
 
 

(b) 

 
Figure 4: Spectral slices taken from the vowel ‘oi’ in the word “voice” (a) when the 
vowel is produced with creaky voice, and (b) when the vowel is produced with modal 
voice. In (a), both H2 and A1 are relatively higher than H1. In (b), H2 is approximately 
the same as H1, and A1 is relatively higher than H1.  

  
H1 and H2 are related to the open quotient (OQ) (Fant 1997; Hanson and Chuang 1999; 

Hanson et al. 2001). The numerical relationship between H1-H2 and OQ is reported in Fant 
(1997) as in (1):6 

                                            
6 In the literature, H1*-H2* is sometimes used instead of H1-H2. H1*-H2* is a modification of H1-H2 
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In creaky voicing, the vocal folds are held tightly together (though often with low internal 
tension), resulting in a low OQ. That is, the more the amplitude of the second harmonic relative 
to that of the first harmonic, the lesser is OQ. In breathy voicing, the vocal folds vibrate without 
much contact, thus the glottis is open for a relatively longer portion of each glottal cycle, 
resulting in a high OQ. In modal voicing, the vocal folds are open during part of each glottal 
cycle, resulting in the OQ between those for the creaky voicing and for the breathy voicing. 

Other relevant cues for the identification of voice quality, especially creaky voice, 
include aperiodicity, due to the slow and aperiodic glottal pulses in creaky phonation. A couple 
of measures can be used to quantify the degree of aperiodicity in the glottal source. One is 
“jitter”, which quantifies the variation in the duration of successive fundamental frequency 
cycles. Jitter values are higher during creaky phonation than other phonation types. The other is 
mean autocorrelation ratio. Mean autocorrelation ratio is a temporal measure that quantifies the 
periodicity of the glottal pulses, which is used in our experiment, as will be detailed in section 
3.2. 
 
3. Voice quality decision 
 
3.1 Corpus 
 
Switchboard is a corpus of orthographically transcribed spontaneous telephone conversations 
between strangers (Godfrey et al. 1992). The corpus is designed mainly to be used in developing 
robust Automatic Speech Recognition. The corpus consists of more than 300 hours of recorded 
speech spoken by more than 500 speakers of both genders over the phone. Our analysis is based 
on a subset of the Switchboard files (12 hours) containing one or more utterance units (10-50 
words) from each talker in the corpus. Phone transcriptions are obtained by forced alignment 
using the word transcription and dictionary. In general, the quality of the recorded speech, which 
is sampled at 8kHz, is much inferior to speech samples recorded in the phonetics laboratory. 
Although ITU (International Telecommunication Union) standards only require the telephone 
network to reproduce speech faithfully between 300Hz and 3500Hz (e.g., ITU Standard 1993), 
our observations indicate that most signals in Switchboard reproduce harmonics of the 
fundamental frequency faithfully at frequencies as low as 120Hz. This conclusion is supported 
by the results of Yoon et al. (2005), who demonstrated that measures of H1-H2 acquired from 
telephone-band speech are predictive of subjective voice quality measures at a significance level 
of p < 0.001. Post-hoc analysis of Yoon et al.’s results suggests that H1-H2 is an accurate 
measure of glottalization for female talkers in Switchboard, but is less accurate for male talkers, 
who often produce speech with F0 < 120Hz. The low quality of telephone-band speech is also 
known to affect pitch tracking; as noted in Taylor (2000), pitch tracking algorithms known to be 
reliable for laboratory-recorded speech often fail to extract an F0 during regions perceived as 
voiced from the Switchboard corpus.  

 

proposed by Hanson (1997), and denotes the measure H1-H2 is corrected for the effects of the first 
formant (F1). See Hanson (1997) and Hanson and Chuang(1999) for the rationale and procedure of 
obtaining H1*-H2*. 

 8



 
3.2 Feature extraction and voice quality decision 
 
As mentioned above, the Switchboard corpus has the drawback that the recordings are band-
limited signals. The voice quality of creakiness is correlated with low F0, which hinders accurate 
extraction of harmonic structure if the F0 falls below 120Hz. This is because harmonics are any 
whole-number multiple of F0. To enable a voice quality decision for signals with F0 below 
120Hz, we use a combination of two measures: H1-H2 (a spectral measure, occasionally 
corrupted by the telephone channel) and mean autocorrelation ratio (a temporal measure, 
relatively uncorrupted by the telephone channel) in the decision algorithm for voice quality.  

We use Praat (Boersma and Weenink 2005) to extract the spectral and temporal features 
that serve as cues to voice quality. First, intensity normalization is applied to each wave file. 
Following intensity normalization, inverse LPC filtering (Markel 1972) is applied to remove 
effects of the vocal tract on source spectrum and waveform.  

From the intensity-normalized, inverse-filtered signal, minimum F0, mean F0, and 
maximum F0 are derived over each file. These three values are used to set ceiling and floor 
thresholds for short-term autocorrelation F0 extraction, and to set a window that is dynamically 
sized to contain at least four glottal pulses. F0 and mean autocorrelation ratio are calculated on 
the intensity-normalized, inverse-filtered signal, using the autocorrelation method developed by 
Boersma (1993). The unbiased autocorrelation function rx(τ) of a speech signal x(t) over a 
window w(t) is defined as in (2): 
 

 
( ) ( )

( )
( ) ( )x

x t x t dt
r

w t w t dt

τ
τ

τ

+
≈

+
∫
∫

 (2) 

 

where τ is a time lag. The mean autocorrelation ratio is obtained by the following formula (3): 
 

 ( )max
(0)

x
x

x

rr
rτ

τ
=  (3) 

 
where the angle brackets indicate averaging over all windowed segments, which are extracted at 
a timestep of 10ms. The range of the mean autocorrelation ratio is from 0 to 1, where 1 indicates 
a perfect match, and 0 indicates no match of the windowed signal and any shifted version. 
Harmonic structure is determined through spectral analysis using FFT and long term average 
spectrum (LTAS) analyses applied to the intensity-normalized, inverse filtered signal.  

H1 and H2 are estimated by taking the maximum amplitudes of the spectrum within 60 
Hz windows centered at F0 and 2×F0, respectively, as in (4):7 
 
 

1 2
10 0 1 10 0 260 60 60 60

1 2 max 20log | ( ) | max 20log | (2 ) |H H X F X F
δ δ

δ δ
− < < − < <

− = + − +  (4) 

 
                                            
7 Because the input speech is inverse filtered so that the effect of resonant frequencies are minimized, if 
not completely eliminated, we didn’t apply any correction regarding formants to H1-H2, as is suggested 
in Hanson (1997) (cf. H1*-H2*) 
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where X(f) is the FFT spectrum at frequency f.  
Yoon et al. (2005) previously used spectral features including H1-H2 to classify 

subjective voice quality with 75% accuracy. Subjective voice quality labels used in that 
experiment are not available for the research reported in this paper. In the current work, 
interactively-determined thresholds are used to divide the two-dimensional feature space [rx; H1-
H2] into a set of voice-quality-related objective categories, as follows.  

For each 10ms frame, the “voiceless” category includes all frames for which no pitch 
can be detected. The “creaky” category includes all frames for which H1-H2 < -15dB, or for 
which H1 - H2 < 0 and rx < 0.7. All other frames are labeled with an objective category label 
called “modal.” Figure 5 illustrates an example of objectively labeled creaky voice on the 
sonorant [er]. The waveform in the top tier is divided into 10ms intervals in the bottom tier. The 
voiceless, non-creaky, or creaky label is assigned to each 10ms frame based on the above-
mentioned criteria. Within each sonorant phone, whose boundaries we obtained through forced 
alignment, if more frames indicate creaky category than any other category, the phone itself is 
assigned creaky label (“_cr”). For our experiment, we do not consider the voice quality variation 
for obstruents such as stops and fricatives, and only sonorants are eligible to be assigned the 
creaky label. 
 

 
Figure 5: Example of a sonorant /er/with objective creaky label  

 
4. Voice quality distinction reflected in PLP coefficients 
 
As discussed in Section 2, the acoustic measures we extracted (see Section 3) are correlated with 
the voice quality of creakiness. These features (i.e., H1-H2 and mean autocorrelation ratio) are 
not a standard input to speech recognition systems. Instead, PLP (Perceptual Linear Predictive) 
coefficients are usually used as standard input features. There are two ways of incorporating the 
features related to the voice quality into a speech recognition system: (1) appending the voice 
quality related features to the standard PLP coefficients, or (2) modeling phones of different 
voice qualities separately as allophonic variants, while not modifying standard feature vectors. In 
order to justify the latter approach, it is necessary first to determine whether the voice quality 
categories are predictive of the standard speech recognition feature vectors such as PLP. This 
section describes an experiment designed to determine whether or not PLP coefficients are 
sufficient to distinguish between creaky and non-creaky examples of any given sonorant phone. 

The PLP (Perceptual Linear Predictive) cepstrum is an auditory-like cepstrum that 
combines the frequency-dependent smoothing of MFCC (mel-frequency cepstral coefficients) 
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with the peak-focused smoothing of LPC (Hermansky 1990). In our work, thirty-nine PLP 
coefficients are extracted over a window size of 25ms with a timestep of 10ms. PLP coefficients, 
as shown in the second figure in Figure 6, typically perform well for speech recognition purposes, 
even with noisy (low SNR) signals. In order to show that the voice quality distinction based on 
H1-H2 and the mean autocorrelation ratio is also reflected in the acoustic features used in speech 
recognition, such as PLP coefficients, this section reports the results of a validation test using 
SVM (Support Vector Machine) classification. 
 

 
Figure 6: An example of spectrogram and graphical representation of the PLP 
coefficients. In the spectrogram shown in the first figure, the rectangular region between 
0.6 and 0.7 in the x-axis of the upper figure indicates that the speech corresponding to 
[ei] in the word Association is produced with creakiness. This paper investigates whether 
the creakiness characteristic is reflected in the input feature vectors of PLP coefficients, 
which is graphically represented in the second figure. 

 
SVM is a machine learning algorithm that seeks to find the optimal mapping function  

y = f (x, α), where y is an output category (e.g., either modal or creaky phones), x is an input 
feature vector (e.g., PLP coefficients), and α is a set of adjustable model parameters. The 
optimality is defined by minimizing the structural error of the classification. We use SVM with a 
non-linear kernel because we assume that the category boundary between model and creaky 
phones is nonlinear in the feature space of PLP coefficients. 

We conduct an experiment to classify non-creaky phonation versus creaky phonation for 
each sonorant (i.e., vowel, semi-vowel, nasal or lateral). The phone-aligned transcription for each 
file is obtained using HTK (Young et al. 2005), and aligned against the voice quality label 
sequences given by the frame-level voice quality decisions described before. For each sonorant 
segment, if more frames indicate creakiness than the other voice qualities (i.e., modal or 
voiceless), the phone is labeled as creaky. We divide the 12 hour Switchboard subset into a 
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training candidate pool (90%) and a testing candidate pool (10%). Then for each sonorant phone 
from the training candidate pool, we extract a subset of the non-creaky tokens that is equal in 
size to the creaky tokens for the same phone, based on the creakiness label resulting from the 
decision scheme. These non-creaky and creaky tokens compose the training data for each 
sonorant. The testing data for each sonorant are similarly generated from the testing candidate 
pool, which also have equal numbers of creaky and non-creaky tokens and no overlap with the 
training data. We use the SVM toolkit LibSVM (Chang and Lin 2004) to train separate binary 
classifiers for each sonorant; each classifier distinguishes between creaky and non-creaky 
examples of the phone. Classifiers are tested using the testing data, for each sonorant separately. 
The classification accuracies obtained from the testing data for each sonorant are reported in 
Table 1. 
 

Table 1: SVM classification of voice qualities for each phone: The first and third 
columns list the creaky (indicated by cr) versus non-creaky phone labels, in ARPABET 
notation. The second and fourth columns list the accuracy of a classifier trained to 
distinguish between creaky and non-creaky examples of the specified phone. 

Phones Accuracy Phones Accuracy 
uh uh_cr 74.47% w w cr 69.91% 
dr er_cr 73.26% ih ih cr 69.75% 
aw aw cr 73.26% ow ow cr 69.09% 
eh eh cr 71.93% y y cr 68.45 % 
ae ae cr 71.52% l l_cr 68.23 % 
uw uw_cr 71.42% ao ao_cr 68.04 % 
iy iy_cr 70.51% m m_cr 67.79 % 
ey ey_cr 70.50 % ax ax_cr 67.24 % 
ay ay_cr 70.37 % el el_cr 66.85 % 
ah ah_cr 70.14 % r r_cr 66.36 % 
aa aa_cr 70.13 % oy oy_cr 63.24 % 
ng ng_cr 70.05 % en en_cr 58.19 % 
n n_cr 70.03 %    

 
As shown in Table 1, the PLP coefficients are correctly classified with an overall accuracy of 
58% to 74% (with an average overall accuracy of 69.23%). Chance performance is 50%. An 
average of 19.23% improvement, relative to chance, suggests that the voice quality decision is 
reflected to some degree in the PLP coefficients. Based on this finding, we conclude that it 
should be possible to design a speech recognition system that distinguishes between creaky and 
non-creaky examples of each sonorant phone using only PLP coefficients as an acoustic 
observation. 
 
5. Voice quality dependent speech recognition 
 
The goal of a speech recognition system is to find the word sequence that maximizes the 
posterior probability of the word sequence 1 2( , , , ),Mw w w=W  given the observations 

: 1 2( , , , )To o o=O
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  (5) ˆ arg max ( | )W p=
W

W O

 
Using Bayes rule and the fact that  is not affected by ,  ( )p O W
 

 

( | ) ( )ˆ arg max
( )

   arg max ( | ) ( )

p pW
p

p p

=

=
W

W

O W W
O

O W W
 (6) 

 
Sub-word units , such as phones, are usually essential to large vocabulary 
speech recognition, therefore we can rewrite formula (7) as:  

1 2( , , , )Lq q q=Q

 

  (7) 
ˆ arg max ( | ) ( )

   arg max[max ( | ) ( | ) ( )]
Q

W p p

p p p

=

≈
W

W

O W W

O Q Q W W

 
The general automatic speech recognition architecture is shown in Figure 7. The post probability 
of each word sequence hypothesis  is calculated according to three components: the acoustic 
model , the pronunciation model  and the language model . 

W
( | )p O Q ( | )p Q W ( )p W

 

 
Figure 7: General automatic speech recognition architecture  

 
In a typical speech recognition system, the observation vectors O  are PLP (Perceptual 

Linear Predictive) coefficients or MFCC (Mel Frequency Cepstral Coefficients), plus their 
energy, all computed over a window size of 25ms at a time step of 10ms, and their first order and 
second order regression coefficients, referred to as delta and delta-delta (or acceleration)  
coefficients. 

The acoustic model  is usually a set of left-to-right hidden Markov models 
(HMMs), each modeling the acoustics of a particular sub-word unit such as a phone, as in Figure 
8:  

( | )P O Q
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Figure 8: Left-to-right hidden Markov model 

 
 
In a left-to-right HMM, state transitions occur from a state either to itself or to the following state. 
These state transition probabilities describe, from a probabilistic point of view, how long each 
part of the sub-word unit q should be. For each of the states, there is one Gaussian-mixture 
distribution describing the state-conditioned observation distributions. 

The pronunciation model  typically maps a word to either phones or triphones 
(allophones in particular contexts). In this paper, we are using a deterministic pronunciation 
model, i.e. mapping each word to a fixed sequence of triphones. 

( | )p Q W

 The language model  is usually the n-gram model: the probability of a particular 
word in the word sequence is conditioned on the previous n-1 words.  

( )p W

 

 1 2 1 1 1 1( ) ( ) ( ) ( |
m

m n i i n
i n

p w w w p w p w p w w w )i− − + −
=

= ∏  (8) 

 
For example, the simple bigram language model is as follows: 
 

 1 2 1 1
2

( ) ( ) ( |
m

m
i

p w w w p w p w w )i i−
=

= ∏  (9) 

 
5.1 Baseline system 
 
We build a triphone-clustered HMM-based speech recognition system as the baseline system 
using HTK (Young et al. 2005). This system uses a deterministic pronunciation model, also 
called dictionary, and a bigram language model, but a sophisticated acoustic model, which will 
be detailed in the following paragraphs.  

Every phone is represented by a large number of partially independent triphone models.  
All triphones that represent the same base phoneme use the same transition probability matrix; 
we say that their transition probability matrices are “tied.” The observation probability density 
functions associated with the first, second, or third state of any given pair of triphones may also 
be tied together, as shown in Figure 9. 
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Figure 9: Tying options of counterpart states in HMMs representing allophones of the 
same base phoneme. 

 
Allophones of the same base phoneme are tied together in allophone sets. Each allophone set 
corresponds to one of the leaves in a binary tree. The phonetic binary clustering tree (Figure 10) 
begins with a root node comprising all allophones of a given base phoneme label. At each level 
of the tree, the allophones belonging to the next higher level are split into two categories based 
on a question about the phonological features of the left context phone or the right context phone. 
The tree is grown from root to leaf (or from top down in Figure 10), with all corresponding states 
of allophones placed at the root node initially. At each non-leaf node, the splitting question is 
selected from a pool of binary questions to maximize the increase in the likelihood of training 
data given the model. In this way, phonetic contexts that induce the most allophonic variation are 
placed nearest to the tree root. Once the maximum likelihood increase at a particular node is 
smaller than a threshold, this node will not be further split and all states in that node will be tied 
together. 
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Figure 10: Binary clustering tree (an example of the near-root part of the binary 
clustering tree for the third emitting state of vowel /ae/) 

 
It is necessary to deal with triphones unseen in the training data but maybe existing in 

testing data. These triphone models are synthesized, after the model is fully trained, by tying the 
states of the HMM to three particular states from seen allophones, chosen according to the 
unseen triphone’s answer to binary questions in the clustering tree. In other words, a synthesized 
state is tied to all the states in a particular leaf node of the clustering tree. 
 After state tying is completed, the number of Gaussians in each mixture Gaussian 
observation distribution is repeatedly incremented, with further mean and variance estimation 
following each increment, thus achieving observation distributions that better reflect the 
characteristics of the allophones. 
 
5.2 VQ-ASR system 
 
The Voice Quality Automatic Speech Recognition (VQ-ASR) system incorporates into the 
baseline system binary voice quality information (creaky or non-creaky) for every sonorant 
phone. 
Inclusion of Voice Quality Information: We use forced alignment to obtain phone boundaries 
for the phonemes specified in the canonical dictionary entry for each word listed in the 
Switchboard word transcription. This phone-aligned transcription is aligned against the voice 
quality label sequences given by the frame-level voice quality decisions described in subsection 
3.2. For a vowel, semi-vowel or nasal, if more frames indicate creakiness than the other voice 
qualities (i.e., modal or voiceless), a “creakiness label” is attached to this phonation (See Figure 
5). 

Given these creakiness-labeled phone transcriptions and corresponding wave files, we 
use the Baum-Welch algorithm to do an embedded estimation of all the allophone HMMs 
involved in these transcriptions. For every training utterance, the HMMs corresponding to 
phones present in that utterance are concatenated according to the transcription, and estimated 
together instead of separately. Thus, we can get one HMM for each allophone, defined on its own 
phone identity and its context, both in terms of phonetics and voice quality. The creakiness of a 
phone is modeled as part of the phone’s context, rather than being part of the base phoneme label, 

 16



thus creaky and non-creaky versions of the same phoneme are eligible to be clustered together by 
the triphone clustering algorithm exemplified in Figure 10. Figure 11 illustrates how voice 
quality knowledge is incorporated in the training transcription. 

  
 

Figure 11: Conversion from the word transcription to the transcription of allophones 
defined on phone identify and phonetic/voice quality context. (“_cr” represents the 
“creakiness label”.) 

 
Recognition Dictionary with Voice Quality Information: To perform speech recognition using 
voice quality information, we need to map the voice quality dependent allophone sequences to 
word sequences. While we wish to take advantage of explicit acoustic modeling of voice quality 
variation, such variation does not impact word identity (in English). Therefore, we need a new 
dictionary containing all possible pronunciations of the same word, with all of the different 
possible voice quality settings. For example, for “bat b+ae b-ae+t ae-t” in the baseline system 
dictionary, as in Figure 12(a), the dictionary in a VQ-ASR system should have two entries “bat 
b+ae b-ae+t ae-t” and “bat b+ae_cr b_cr-ae+t_cr ae_cr-t”, as in Figure 12(c). 
 

 
 

Figure 12: Recognition dictionary with voice quality information (example: the word 
“bat”) 
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Reduction of the Number of Parameters: The number of triphones increases dramatically, as 
the creakiness label can be attached to one or both of the neighboring phones for each triphone. 
To reduce the number of parameters, we include allophones with different phonetic/voice quality 
context in the same binary decision tree in the triphone clustering process (Figure 13). By tying 
transition matrices of all allophones, tying states of some allophones using a tree-based 
clustering technique, and synthesizing unseen triphones in the same way as the baseline system, 
we build the VQ-ASR system with an almost identical number of parameters to that in the 
baseline system, despite the increase in the number of triphones. This is necessary, because any 
increase in the number of model parameters will have a tendency to improve recognition 
performance, which would make the comparison between the VQ-ASR system and the baseline 
system less accurate. 
 
 

 
Figure 13: Binary clustering tree showing the effect of creakiness. (an example of the 
near root part of the binary clustering tree for the third emitting state of vowel /ae/, 
showing that creakiness context is more salient than most phonetic context) 

 
6 Experimental results 
 
Word recognition accuracies of the voice quality dependent and voice quality independent 
speech recognition systems are shown in Table (2). In our experiment, both systems are 
prototype ASR systems, trained and tested on the 12 hour subset of Switchboard8. The 
comparison of the results in Table (2) is made under the condition of (i) tied transition 
probabilities for all allophones and (ii) an almost identical number of states for both systems. 
This allows for a stringent comparison between systems with a nearly equal number of 
parameters.  
 
                                            
8 The two systems are designed to identify the impact of voice quality dependence, therefore not 
comparable to systems trained on much larger amounts of data (e.g., Luo and Jelinek 1999; Sundaram et 
al. 2000). 
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Table 2: Word recognition accuracy for the voice quality dependent and voice quality 
independent recognizers. The number of Gaussians in each Gaussian mixture is given in 
the first column. %Correctness is equal to the percentage of the reference labels that 
were correctly recognized. %Accuracy is a more comprehensive measure of recognizer 
quality that penalizes insertion errors.  
 

Baseline VQ-ASR Mixture 
% Correctness %Accuracy % Correctness %Accuracy 

3 45.81 39.28 46.42 39.35
9 52.77 45.31 52.77 46.01

19 52.88 46.82 55.41 48.63
 
 
Two evaluation metrics are used: %Correctness and %Accuracy, defined as 
 

 

- -%Correctness= 100

- - -%Accuracy= 100

N D S
N

N D S I
N

×

×
 (10) 

 
where N is the number of tokens (i.e. words) in the reference transcriptions that have been 
reserved as a test dataset for the evaluation purpose, D, the number of deletion errors, S, the 
number of substitution errors, and I, the number of insertion errors. The %Correctness penalizes 
deletion errors and substitution errors deviating from the reference transcriptions; %Accuracy 
also penalizes insertion errors. Word error rate (WER), another widely used evaluation metric, is 
equal to 100-%Accuracy. 

As seen in Table 2, when voice quality information is incorporated in the speech 
recognition system, the percentage of words correctly recognized by the system increases by 
approximately 0.86% on average and the word accuracy increases by approximately 1.05% on 
average. It is worth noting that as the number of Gaussians per mixture increases to 19, the 
improvement in the percentage of words correctly recognized increases to 2.53%, and the 
improvement in the word accuracy increases to 1.81%. 
 
7 Discussion and conclusion 
 
In this paper, we have shown that a voice quality decision based on H1-H2 as a measure of 
harmonic structure, and the mean autocorrelation ratio as a measure of temporal periodicity, 
provides useful allophonic information to an automatic speech recognizer. Such voice quality 
information can be effectively incorporated into an HMM-based automatic speech recognition 
system, resulting in improved word recognition accuracy.  
 As the number of Gaussian components per state of the HMM increases, the VQ-ASR 
system surpasses the baseline system by an increasingly greater extent. Given that the number of 
untied states and the number of transition probabilities in the HMMs in both systems are 
identical, it follows that the VQ-ASR system benefits more from an increasingly precise 
observation PDF (probability density function), compared to the baseline system. Although we 
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don’t know why added mixtures might help the VQ-ASR more than the baseline, we speculate 
that there must be an interaction between the phonetic information provided by voice quality 
labels, and the phonetic information provided by triphone context. Perhaps the acoustic region 
represented by each VQ-ASR allophone is fully mapped out by a precise observation PDF to an 
extent not possible with standard triphones.  
 Similar word recognition accuracy improvements have been shown for allophone 
models dependent on prosodic context (Borys 2003). Glottalization has been shown to be 
correlated with prosodic context (e.g., Redi and Shattuck-Hufnagel 2001), thus there is reason to 
believe that an ASR trained to be sensitive to both glottalization and prosodic context may have 
super-additive word recognition accuracy improvements. 
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