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Abstract
Cooperative and competitive game dialogs are comparatively
examined with respect to temporal, basic text-based, and dialog
act characteristics. The condition-specific speaker strategies are
amongst others well reflected in distinct dialog act probability
distributions, which are discussed in the context of the Gricean
Cooperative Principle and of Relevance Theory. Based on the
extracted features, we trained Bayes classifiers and support vec-
tor machines to predict the dialog condition, that yielded accu-
racies from 90 to 100%. Taken together the simplicity of the
condition classification task and its probabilistic expressiveness
for dialog acts suggests a two-stage classification of condition
and dialog acts.
Index Terms: dialog acts, cooperative principle, machine
learning, Gricean maxims

1. Introduction
Cooperation can be defined as “the process of groups of organ-
isms working or acting together for their common/mutual ben-
efit, as opposed to working in competition for selfish benefit”
[1]. Grice [2] describes cooperative behavior in verbal com-
munication in terms of the cooperative principle which states
“Make your contribution such as it is required, at the stage at
which it occurs, by the accepted purpose or direction of the talk
exchange in which you are engaged” [2]. This principle can be
divided into four maxims:

• Quantity: Make your contribution as informative as is
required (neither less no more informative).

• Quality: Do not say what you believe to be false or for
which you lack adequate evidence.

• Relevance: Contribute to the ongoing conversation topic.

• Manner: Avoid obscurity of expression and ambiguity.
Be brief and orderly.

Any potential deviation from these maxims can be inter-
preted in two ways: first, assuming that the speaker follows the
cooperative principle, the deviation gives rise to conversational
implicatures [2], that is information that can be inferred from an
utterance without being expressed directly nor being logically
entailed. As an example, the utterance “it’s cold” not embed-
ded in a conversation on weather seems to violate the maxim
of relevance unless the speaker wants to imply a request to rise
temperature (close the window, turn on the heating, etc.). Sec-
ond, in competitive games [3] the speaker aims to increase the
own benefit at the cost of the opponent’s benefit by violating
the maxims and thus breaking the cooperative principle. This
includes strategies as holding back information (violating the
maxim of quantity), lying (violating the maxim of quality), and
confounding the listener (violating all four maxims).

Related to the maxim of relevance, [4, 5] developed the Rel-
evance Theory. Within this framework the relevance of an utter-
ance for the hearer is defined as a function of positive cognitive
effect and processing effort. The positive cognitive effect re-
flects the importance of the conveyed information for the hearer.
The processing effort is the needed labor for the hearer to extract
and make use of a conveyed information. Related to communi-
cation behavior, a cooperative speaker is expected to maximize
the relevance in terms of providing important information in an
easy-to-process way.

The goal of the current study is to find quantitative indi-
cations for the presence or absence of cooperative behavior and
utterance relevance in cooperative as opposed to competitive di-
alog settings. Our approach to find evidence for the Gricean
maxims is not a formal-logic [6, 7, 8] but a statistic and ma-
chine learning one. We examined several temporal and text-
based parameters and used them as features for the prediction
of the dialog condition by Bayesian classifiers and support vec-
tor machines.

2. Data
We used parts of the Illinois Game Corpus [9] that contains Tan-
gram game dialogs by American English speakers in cooper-
ative and competitive settings. The tangram is a puzzle con-
sisting of seven pieces that can be combined to various shapes.
Both dialog partners were separately presented with Tangram
silhouettes that were reciprocally hidden from the view of the
other partner. The task was to decide whether the silhouettes are
the same or different by verbally describing them to each other.
In the cooperative setting the partners solved this common goal
in a joint effort. In the competitive setting, the partners were
required to solve this task competitively, and the one solving
it first was declared to be the winner. In both settings the par-
ticipants were allowed to ask questions, but not to lie. Under-
graduate students (ages 18-29) from the University of Illinois,
all native monolingual speakers of American English, were re-
cruited as paid participants in this study. Twelve pairs of partic-
ipants took part in the experiment, some of whom were unac-
quainted as classmates prior to their participation. Participants
were prompted to engage in free conversation for a few minutes
after which they played the Tangram game together, first play-
ing cooperatively and then competitively, with different images
in each condition. Participants were seated in chairs facing one
another, with no intervening table and with the printed Tangram
silhouettes positioned off to the side, in front of each participant.
Audio and video recordings were made on separate channels for
each participant. Participants provided written consent for the
use of these recordings in research.

The dialogs were manually text-transcribed and chunk-
segmented, and partly manually dialog-act annotated using the



tag set of [10, 11]. This tag set was developed to describe con-
versational moves, i.e. initiations and responses with certain
discourse purposes. For the given data, we augmented this la-
bel inventory by five additional tags, OFFTALK, COMMENT,
COMMENT-POSITIVE, COMMENT-NEGATIVE, and UN-
SPECIFIED, the latter being used e.g. for laughter. The com-
plete label set is shown in Table 4, and the description of all
labels will be provided in section 5. Please consult [10] for a
more comprehensive label introduction. The Dialog acts were
labeled in parallel by two annotators (the second and third au-
thor), and mismatches were subsequently resolved by discus-
sion among these two and if needed among all authors. For the
current study a subset of ten dialogs by five interlocutor pairs
was used, of which three were Female-Female pairs and two
were Male-Female pairs. Each interlocutor pair took part in
a cooperative and a competitive condition, thus our data com-
prises paired samples of five cooperative and competitive di-
alogs. Mean dialog duration amounts to 6.5 minutes.

3. Cooperativity features and prediction
In the following we introduce the different feature pools and
connected hypotheses about the relation between the features
and cooperative vs. competitive behavior in terms of Gricean
cooperative principle and Relevance Theory. Note that the game
participants were not allowed to lie so that in the given setting
the maxims that may be violated are quantity, relevance, and
manner. Competitive behavior is expected to be manifest pri-
marily in the failure to provide enough and relevant information,
that can be readily understood. In Relevance Theoretical terms,
competitive behavior should become manifest in increasing the
difficulty for the hearer to extract relevant information.

3.1. Temporal features

We extracted two basic temporal features calculated over an en-
tire dialog: the mean chunk duration, and its standard devia-
tion. The features are listed in Table 1. The last column in-
dicates whether the feature showed significant differences be-
tween the cooperative and competitive condition (two-sided
Wilcoxon signed rank test for paired samples). Due to the very
small sample size, weakly significant results are also presented
in brackets.

Hypotheses: Since cooperative behavior includes provid-
ing sufficient and relevant information (i.e. fulfilling the maxim
of quantity) and adapting dialog contributions to the current
needs of the dialog partner (i.e. reducing processing costs), we
expect mean chunk duration and variance to be higher in coop-
erative than in competitive settings.

3.2. Text-based features

We extracted 9 text-based features partly inspired from the
LIWC (Linguistic Inquiry and Word Count [12]) feature set and
shown in Table 2: word unigram and bigram entropies, the word
type-token ratio, the proportions of first and second person pro-
nouns, the proportions of hesitations, affirmations, and nega-
tions.

Hypotheses: Again, cooperative behavior includes provid-
ing relevant and sufficient information. This higher amount of
information we expect to be reflected very roughly in higher
word unigram and bigram entropies, as well as in higher type-
token ratios. Furthermore, we expect the proportion of personal
and possessive pronouns addressing the interlocutor (“you”)
and emphasizing the joint activity (“us”) to be higher in the

cooperative setting, whereas the self-directed pronouns (“me”)
should occur more often in the competitive setting. Further-
more, cooperative behavior is assumed to be reflected in higher
proportions of affirmations (“yes, ok, right,” etc.), first since
the interlocutors want to signal and not to hide successful steps
to each other, and second a higher amount of successful steps
should occur in cooperative settings due to a higher amount of
available useful information. In contrast, competitive behavior
should exhibit more negations, since due to the lack of provided
information the interlocutors are forced to guess and thus make
more errors reported by the dialog partner. Thus, the propor-
tions of affirmation and negation are expected to reflect the dif-
ferent amounts of success in information transmission. Finally,
in the competitive condition more hesitations might be observed
since relevance reduction includes increased processing costs
and thus a higher cognitive workload for the participants. The
relation between filled pauses and cognitive workload has been
observed by [13, 14].

3.3. Dialog acts

From the time-aligned dialog act annotation we derived the fol-
lowing three global features measured over an entire dialog: the
unigram and bigram dialog act entropies, and the mutual infor-
mation of subsequent dialog acts at turn transitions. Further-
more, we calculated maximum likelihood estimates for dialog
act unigram probabilities separately for each dialog.

Hypotheses: Since in the cooperative setting the game par-
ticipants are willing to adjust the presentation of information to
the current situational needs to reduce processing costs, we ex-
pect the dialog act entropies to be higher. Furthermore, this mu-
tual accommodation to each others’ needs should be reflected
in higher mutual information values of dialog act pairs at turn
transitions.

3.4. Classification

Based on the dialog act probabilities and on the three feature
sets introduced above we subsequently trained Bayes classifier
and support vector machines for cooperativity prediction.

The Bayes classifier predicts dialog condition C (coopera-
tive vs. competitive) from the dialog act sequence D by maxi-
mizing:

Ĉ = argmax
C

[P (D|C) · P (C)] (1)

The prior P (C) is uniformly set to 0.5. The conditional
probability P (D|C) is estimated in terms of dialog act n-gram
models trained on the cooperative and competitive dialogs, re-
spectively. For this purpose we used linear interpolated bi- and
unigram models and Good-Turing smoothing [15] in the form
proposed in [16]. A dialog is then classified as cooperative or
competitive with respect to under which of these conditions the
observed dialog act sequence receives a higher probability.

Furthermore, we trained support vector machines (SVM,
[17]) with a linear Kernel function on the feature pools TEMP
(cf. Table 1), TEXT (cf. Table 2), and DA (cf. Table 3). The
separating hyperplane was derived by sequential minimal opti-
mization.

4. Results
Cooperativity features. For the features introduced in section
3 significant differences between the cooperative and compet-
itive condition are indicated in the third column of Tables 1,



2, and 3 (two-sided Wilcoxon signed rank test for paired sam-
ples, α = 0.05). Because of the small sample size 5 also weak
significances at α = 0.07 are indicated, which might turn out
to become more prominent with more data. For the temporal
features both hypotheses have been weakly confirmed. For the
text-based features 5 out of 9 hypotheses were confirmed, and
for the dialog act features none of the hypotheses.

Table 1: Feature pool TEMP. Temporal features. The two last
columns indicate the hypothesized and the observed direction
of significant differences, two-sided Wilcoxon signed rank test
for paired samples, p < 0.05, (p < 0.07). (Weakly) confirmed
hypotheses are checkmarked.

Feature Description coop vs. comp
hypothesis result

dMean mean chunk duration > (>) X
dStd its standard deviation > (>) X

Table 2: Feature pool TEXT. Text-based features. The two last
columns indicate the hypothesized and the observed direction
of significant differences, two-sided Wilcoxon signed rank test
for paired samples, p < 0.05, (p < 0.07). (Weakly) confirmed
hypotheses are checkmarked.

Feature Description coop vs. comp
hyp. result

hWrdUg word unigram entropy > (>) X
hWrdBg word bigram entropy > >X
ratTyptok word type-token ratio > (>) X
pMe prop. “me”-type pronouns < –
pUs prop. “us”-type pronouns > (<)
pYou prop. “you”-type pronouns > (<)
pHes prop. hesitations < (<) X
pAffirm prop. affirmations > –
pNegate prop. negations < (<) X

Table 3: Feature pool DA. Dialog act features. The last col-
umn indicates the direction of significant differences, two-sided
Wilcoxon signed rank test for paired samples, p < 0.05, (p <
0.07).

Feature Description coop vs. comp
hypothesis result

hDaUg DA unigram entropy > (<)
hDaBg DA bigram entropy > –
daMi DA mutual information > –

Dialog act probabilities. We calculated the maximum like-
lihood estimates of dialog act unigrams separately for each dia-
log. In Table 4 the mean values over cooperative, resp. compet-
itive dialogs are shown. This table clearly indicates that most
dialog acts show a sizable distributional preference for one of
the two conditions, which will be discussed in section 5.

On the global level, we measured the pairwise dissimilarity
among dialogs in terms of the probabilities of the dialog acts
observed in them. To calculate the dissimilarity between two
dialogs their dialog act probability models P and Q are com-
pared by their information radius R(P ||Q), which is given as
follows:

Table 4: Dialog act mean probabilities in cooperative and com-
petitive settings. Distributional dialog condition preference is
marked by bold face.

Dialog act P cooperative P competitive
ACKNOWLEDGE 0.1867 0.1330
ALIGN 0.0026 0.0008
CHECK 0.0552 0.0215
CLARIFY 0.0278 0.0138
COMMENT 0.0407 0.0752
COMMENT-NEGATIVE 0.0114 0.0264
COMMENT-POSITIVE 0.0512 0.0146
EXPLAIN 0.3234 0.1560
INSTRUCT 0.0161 0.0725
OBJECT 0.0008 0.0057
OFFTALK 0.0099 0.0121
QUERY-WH 0.0199 0.0460
QUERY-YES/NO 0.0330 0.1273
READY 0.1282 0.1526
REPLY-NO 0.0059 0.0444
REPLY-WH 0.0198 0.0419
REPLY-YES 0.0611 0.0495
UNSPEC 0.0063 0.0066

R(P ||Q) =
D(P ||P+Q

2
) +D(Q||P+Q

2
)

2
(2)

P and Q denote the dialog act unigram probabilities of any
two dialogs from the full set of ten. The information radius dis-
tance measure fulfilling the symmetry criterion is a symmetric
version of the Kullback-Leibler divergenceD(P ||Q), which is:

D(P ||Q) =
∑
x∈X

P (x) log2
P (x)

Q(x)
(3)

Thus R(P ||Q) quantifies the difference between the prob-
abilities P and Q of the dialog acts x in dialog pairs.

As shown in Figure 1 the probability models are most simi-
lar among cooperative dialogs, and least similar among dialogs
of opposite condition. The distance differences are significant
for the within cooperative condition comparison opposed to
the other two combinations (Kruskal-Wallis test, χ2

2 = 46.3,
p < 0.0001, Scheffé post-hoc test, α = 0.05) These findings
indicate that speaker strategies are represented in the dialog act
sequences. For dialog bigram probabilities analogous results
were obtained.

Classification. We evaluated the Bayesian and support vec-
tor machine classifiers by leaving-one-out cross validation. The
mean performances ranging from 90 to 100% are presented in
Table 5

5. Discussion
Feature interpretation. For the temporal features, our hy-
potheses have been weakly confirmed. Thus in the given data,
cooperation is already reflected in chunk durations. For the
feature pool TEXT, however, results are less clear. The usage
of pronouns and affirmations does not give any indication of
cooperativity. But word token entropies and type-token ratio
behaved as expected, supporting our expectation that coopera-
tive behavior is positively correlated to the mutually submitted



Figure 1: Information radius between dialog act unigram prob-
ability models of dialog pairs. coop coop, comp comp: within
condition pairings of cooperative and of competitive dialogs,
respectively; coop comp: across condition pairings.

Table 5: Mean classification performance by leaving-one-out
cross validation in dependence on classifier and feature set. The
feature sets are described in tables 1, 2, and 3.

Classifier Feature set Performance (in %)
Bayes DA n-gram model 100
SVM TEMP 100
SVM TEXT 100
SVM DA 90

amount of information. Furthermore, an increased proportion
of hesitations in the competitive dialogs supports the hypothesis
that non-cooperative behavior increases processing costs as pre-
dicted from Relevance Theory. Also the increased proportion
of negations in competitive settings as feedback to uninformed
questions, is in line with our hypothesis to be a consequence of
the shortage of provided information. For the feature pool DA
none of the three hypothesis could be confirmed. Looking at
Table 4 the lower dialog act unigram entropies are likely to be a
consequence of the more unevenly distributed dialog act proba-
bilities in cooperative settings. The dialog act most strongly re-
lated to providing information and thus to the maxim of quantity
is EXPLAIN, which receives a huge amount of the total prob-
ability mass in the cooperative behavior (mean p=0.32). Since
such an uneven probability distribution lowers entropy and thus
works against the assumed effect of cooperative communication
flexibility, it can be concluded, that for the given data dialog
act entropies are not appropriate to quantify cooperativity. The
same holds for the mutual information between dialog acts at
turn transitions, since in cooperation EXPLAIN due to its high
prior is likely to co-occur with any other dialog act, which low-
ers mutual information.

Selectional dialog act preferences. From the dialog act
probabilities in Table 4 it can be seen that dialog acts are un-
evenly selected by the interlocutors across cooperative and com-
petitive settings. In the following all quotations mark citations
of the dialog act definitions given in [11].

By EXPLAIN the speaker “states information which has
not directly elicited by the partner”, as opposed to REPLY-*.
Thus the high EXPLAIN probability in cooperative dialogs to-

gether with CLARIFY for information augmentation indicates
that the speakers follow the maxim of quantity while the higher
amount of REPLYs shows that the speakers do not give infor-
mation deliberately and thus violate this maxim. These differ-
ences are mirrored in the differences between the CHECK and
QUERY-* probabilities. Whereas CHECK refers to given or
inferable information, by QUERY additional information is re-
quired. Thus the violation of the quantity maxim in competitive
dialogs requires more QUERYs and less CHECKs.

COMMENTs are defined as remarks that do not add infor-
mation relevant for the given task. Thus the higher amount of
COMMENTs in competitive dialogs indicates violations of the
maxim of relevance. The COMMENT-subclasses NEGATIVE
and POSITIVE represent an online evaluation of communica-
tion situation, which is as to be expected predominantly positive
for cooperative and negative for competitive dialogs.

ALIGN “checks the attention or agreement of the partner,
or his readiness for the next move”. The speaker thus makes
sure, that the maxim of manner is not violated, and, in terms
of Relevance Theory, the processing costs are low. Thus align
occurs more often in cooperative dialogs.

ACKNOWLEDGE is a hearer feedback such as backchan-
neling, that “often . . . demonstrates that the move was under-
stood”. Thus it can be used by the hearer to signal that no max-
ims were violated and processing cost is acceptably low. Thus
as expected, its probability is higher in cooperative dialogs.

By INSTRUCT the speaker “commands the partner to carry
out an action”. Its higher probability in competitive dialogs
might be attributed to the higher time-pressure in this condi-
tion that requires more compact command-like turns. But it can
also at least partially be explained by the artifact, that the word
Tangram, used by the speakers as an INSTRUCT move, only
occurs in competitive dialogs.

Classification. Generally, dialog condition prediction
turned out to be a feasible task already for basic easy-to-extract
temporal and text features and for very little training data.

The high information radius values for dialog act n-gram
probabilities across different dialog conditions suggest the ap-
plication of dialog act probability models in Bayesian dialog
condition classification which again yielded high accuracies.
Conversely, this finding indicates that probabilistic approaches
for dialog act tagging, as e.g. the application of Hidden Markov
models [18, 19], could be improved if one trains separate n-
gram models for different dialog conditions. In a two-stage
classification task the appropriate dialog act probability model
would then be chosen according to the dialog condition classi-
fication.

6. Conclusion
We found quantitative evidence on the temporal, text-based, and
dialog act level for differences in cooperative and competitive
behavior in dialogs. These differences can be theoretically an-
chored in terms of the Gricean cooperative principle and of Rel-
evance Theory. For a practical application in probabilistic dia-
log act tagging the distinct condition-dependent probability dis-
tributions suggest the feasibility of training probability models
separately for each condition, and applying the appropriate one
after condition classification.
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