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Features as an emergent product of perceptual parsing: 

Evidence from vowel-to-vowel coarticulation. 

 

Introduction 

 Phonological features encode dimensions of lexical contrast among the sounds of a 

language, indexing the phonetic properties of speech sounds that can be used to distinguish 

words from one another. These phonetic properties can be quantified as continuous acoustic 

variables, but there are several indications that they function as discrete features in the 

phonological system. For example, plosive voicing in English (distinguishing  word pairs like 

bin and pin) can be quantified as a continuous acoustic variable, Voice Onset Time (or VOT: the 

time difference between the release of the stop closure and the onset of laryngeal vibration).  

However, cross-linguistic studies of voicing (e.g. Lisker & Abramson, 1964; Keating 1984; Cho 

& Ladefoged 1999; Möbius 2004; Helgason & Ringen, in press) suggest that languages don’t use 

the entire VOT continuum for the placement of voicing categories.  Rather, languages exhibit 

clusters of VOT values that suggests two discrete features: something resembling [+/- voice] to 

handle pre-voicing contrasts, and something resembling [+/- spread glottis] to handle long-lag 

VOTs.   

Sound change provides further evidence for discrete phonological features. A well-

known example is German umlaut (Hock 1991:66). Umlaut arguably originates in a process of 

coarticulation in which a front suffix vowel alters the preceding vowel,  causing a phonological 

sequence such as /u…i/ to be phonetically realized as [ui … i] (where [ui] represents a slightly 

fronted back vowel). At some point in the transmission of this pattern across speakers, it became 

codified as an alternation of the initial stem vowel:  Instead of a fronted back vowel ([ui]), the 

listener encodes a phonologically contrastive front vowel ([y]).  Thus, the effect of coarticulation 
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shifts from that of variation along a continuous dimension to a discrete feature change.  As this 

example illustrates, languages often change in a way that suggests a discrete feature system, 

despite the underlying gradient nature of the phonetic material through which words are realized. 

 Perhaps the most compelling evidence for discrete phonological features lies in their 

function as the units that encode contrast in lexical meaning. While the sound-meaning mapping 

is not entirely arbitrary (e.g. Monaghan, Chater & Christiansen, 2005), there is no debate about 

the fact that continuous gradations in acoustic cues or articulatory gestures do not map onto 

gradation of lexical meaning.1  As any sports fan will tell you, there is nothing in between a bunt 

and a punt, no matter the VOT.   This raises a fundamental question: how does the gradient 

nature of the articulatory and acoustic realization of language give way to the kind of discrete 

behaviors we see in phenomena like sound change and the encoding of lexical contrasts? If such 

discreteness is a defining property of phonological features, then in order to determine where 

features come from, we must first determine where discreteness comes from.  

 Although ultimately this question must be addressed with respect to both speech 

production (the ability to communicate lexical contrast) and speech perception (the ability to 

comprehend it), the present paper focuses exclusively on issues related to the mappings of 

acoustic form onto perception, asking how discrete phonological features can be perceived on the 

basis of speech input that exhibits variation along continuous phonetic dimensions.   Perception 

poses a unique problem in that while discreteness would seem to be a necessary property for 

phonology, a growing body of work in online speech perception argues the opposite—that 

listeners are incredibly sensitive to fine-grained detail (Andruski, Blumstein & Burton, 1994; 

Utman, Blumstein & Burton, 2000; McMurray, Tanenhaus & Aslin, 2002; McMurray, Aslin, 

Tanenhaus, Spivey & Subik, in press) and that this sensitivity can facilitate online perception by 
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allowing the system to anticipate future material (Martin & Bunnel, 1981, 1982; Gow, 2001, 

2003; Gow & McMurray, 2007), make use of non-contrastive detail (Salverda, Dahan & 

McQueen, 2003; Gow & Gordon, 1995; McLennan, Luce & Charles-Luce, 2003; Connine, 

2004) and resolve prior ambiguity (Gow, 2002; McMurray, Tanenhaus & Aslin, under review).  

Thus, whatever mechanisms give rise to the discreteness necessary for phonology, the system 

must also preserve fine-grained or gradient detail for use in online perception. 

We propose that discrete features emerge from a processing mechanism that parses the 

set of auditory cues that comprise the acoustic signal. Parsing effectively reduces the variation in 

the acoustic signal by attributing portions of the variation to properties of the context (broadly 

construed), and partialing out the continuous variation (sometimes described as “noise” in the 

signal) so that underlying features can be revealed (Fowler, 1984; Gow, 2003). We argue that 

parsing allows listeners to identify target sounds in the face of highly variable acoustic input, 

while simultaneously preserving fine-grained detail to aid in online perception. After the parsing 

process subtracts the effects of context from a particular acoustic cue, what remains is a more 

unambiguous encoding of the discrete phonological feature, while the portion subtracted away 

provides direct evidence for the context element and can contribute to its own featural 

representation. In this account, phonological features are revealed through the mechanism of 

parsing as it attributes specific qualities of the target sound to elements of the context.  

 This paper demonstrates the emergence of discrete features through parsing of fine-

grained acoustic detail with a case study of vowel-to-vowel (V-to-V) coarticulation.  In this 

demonstration, the acoustic parameters that encode the phonological height and backness 

features of a vowel are influenced by factors related to both the speaker and the local 

phonological context. We show that through the process of parsing, the highly variable acoustic 
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formant measures give way to discrete phonological features which allow correct identification 

of the phonologically contrastive vowel, while preserving sufficient acoustic detail to predict the 

context vowel in the next syllable with a high degree of accuracy. 

  The parsing approach developed here is not the first to address the question of how 

discrete features are obtained from the highly variable acoustic input nor is it the dominant 

paradigm for understanding the use of fine-grained detail. Section 1 discusses two historical 

approaches to discreteness in speech perception, as well as contemporary exemplar models as an 

alternative approach in which discrete elements are viewed as emergent properties of a richly 

detailed phonetic encoding of word forms. In Section 2, we describe parsing and our 

formalization of it as a simple linear model that can be applied to a concrete dataset.   This model 

will be tested experimentally with an analysis of a dataset on vowel-to-vowel coarticulation, 

which is introduced in Section 3 as a prime example of context-induced variation.  Section 4 

presents our analyses of this dataset using our model of parsing. Finally, we return in Section 5 

to the question of how features emerge, and conclude that not only does parsing result in better 

identification of the target sound, but also that features encoding the phonologically contrastive 

dimensions of a context vowel (e.g., height and backness) emerge from the same parsing process. 

 

1.  The search for discreteness in perception 

With respect to perception, researchers have looked for the source of discreteness in phonology 

in two ways, seeking discreteness in either the acoustic signal itself (the search for acoustic 

invariance), or suggesting that perceptual processes impose it on the signal. 

 The search for acoustic invariance is perhaps the oldest question in psycholinguistics (e.g. 

Cooper, Liberman & Borst, 1951).  Acoustic cues to phonological features, such as formants, F0, 
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and VOT, tend to vary as a function of neighboring sounds, prosodic context, speaker, speaking 

rate and social factors, yet the premise of this undertaking was that if one looks closely enough, 

invariant acoustic cues can be seen amidst the noise of these extraneous factors.    

Early approaches based on spectra at word onsets, for example (Stevens & Blumstein; 

1978; Blumstein & Stevens, 1981; Kewley-Port & Luce, 1984) could discriminate place of 

articulation but could not handle positional variance (e.g. word-final vs. word-initial phonemes).  

Sussman and colleagues’ work on locus equations (e.g. Sussman, Hilbert, Fruchter and Sirosh, 

1998) also uncovered some invariant structure in the encoding of place of articulation in word-

initial stops, but the equations show considerable overlap, suggesting that they may not be 

sufficient to distinguish place of articulation for an individual stop token (i.e., to serve as a 

feature).  Vowels, in particular, present a problem for approaches to discreteness based on 

acoustic invariance.  Studies like Hillenbrand, Getty, Clark & Wheeler (1995) and Hillenbrand, 

Clark & Nearey (2001) show quite clearly that the formant frequencies that distinguish vowels 

are heavily dependent on speaker and context, and that individual vowel categories overlap 

substantially.  Thus, there is an emerging opinion that there may be no underlying invariant cues 

in the speech signal for certain contrasts (e.g., Lindblöm, 1996; Ohala, 1996).  

Even approaches that maintain invariance have generally backed off from the strong 

claim that all phonological features have invariant acoustic cues. For instance, Stevens (2002) 

and Keyser & Stevens (2006) propose stable acoustic landmarks for major class features 

(“articulator-free” features) that signal the onsets or offsets of plosives, strident and non-strident 

fricatives, nasals, glides and vowels. Other contrasts (like place of articulation or voicing) 

however, are marked by “articulator-bound” features, which have a more complex set of acoustic 
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correlates, and which are acknowledged not to be invariant with respect to phonetic and prosodic 

context.   

If discreteness is not to be found in the acoustic signal itself, it is possible that perceptual 

processes impose it on such a signal. One such process is categorical perception (reviewed in 

Liberman, Harris, Hoffman & Griffith, 1957; Repp, 1984; McMurray et al, in press).  This 

perceptual process was suggested by the finding that listeners are unable to discriminate small 

acoustic differences that lie within a phonetic category (e.g. two /b/’s with different VOTs) while 

they are quite good at discriminating equivalently small differences that cross a boundary.  This 

finding was taken to imply that early perceptual processing was finely tuned to discrete 

categories and was able to strip away unnecessary within-category variation. 

While categorical perception is an attractive account of discreteness in perceptual 

processing, subsequent work has shown that it fails at multiple levels.  First, it turns out that 

under many testing conditions listeners can discriminate within-category variants (Pisoni & 

Tash, 1974; Pisoni & Lazarus, 1974; Carney, Widen & Viemeister, 1977; Samuel, 1977; 

Massaro & Cohen, 1983; Gerrits & Schouten, 2004) and prior findings of poor within-category 

discrimination may have been the results of memory demands or biasing tasks.  Second, vowels 

(Fry, Abramson, Eimas & Liberman, 1962) and to a lesser extent, fricatives (Healy & Repp, 

1982) do not show categorical perception, even when tested under conditions that yield 

categorical perception in stop consonants.  Finally, a host of more recent studies demonstrate that 

higher levels of processing (word recognition) are in fact sensitive to gradations within a 

category (Andruski, et al., 1994; Utman, et al., 2000; McMurray, et al., 2002; McMurray, et al., 

in press) so it cannot be the case that lower-level processes irretrievably eliminate a gradient 

representation of the signal.   
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Moreover, models of perceptual processing, such as categorical perception, that resolve 

the variability of the speech signal by discarding continuous variability are fundamentally at 

odds with a growing body of research suggesting that fine-grained gradient properties of the 

signal may facilitate upcoming processing (Gow, 2001, 2003; Gow & McMurray, 2007; Martin 

& Bunnell, 1981, 1982), or help resolve ambiguity that occurred in the past (Gow, 2002; 

McMurray, Tanenhaus & Aslin, under review).  For at least some purposes, then, a discrete 

representation stripped of “low-level” detail may be suboptimal for perception.  Any perceptual 

imposition of discreteness on the acoustic signal must do so in a way that also preserves fine-

grained detail for this sort of processing. 

Exemplar models (e.g. Goldinger, 1998; Pierrehumbert, 2003) offer a solution to the 

problem of deriving discrete categories while preserving phonetic detail.  Such models posit that 

the system veridically stores (in memory) vast numbers of exemplars of the words it has been 

exposed to.  These exemplars are stored with a very fine level of detail, and there is nothing in 

the encoding that differentiates non-contrastive detail (e.g. cues indexing speaker identity) from 

detail that cues phonological contrast.  Despite this level of detail, discrete elements can emerge 

in these models in the form of generalization across this massively redundant set of exemplars 

(e.g., Lindblom, 2000). The question for exemplar models, then, is similar to the question posed 

in this paper: what are the perceptual or memory processes that perform this generalization?  

How do these processes both take into account the contextually-conditioned phonetic detail and 

also result in the identification of discrete phonological categories, such as segments or 

phonological features?  

Despite the importance of this question, there have been surprisingly few formal 

approaches.  The process of recognizing words in an exemplar system has been reasonably 
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spelled out (Goldinger, 1998), and there are suggestions that statistical or distributional learning 

mechanisms may give rise to categories in exemplar models (Pierrehumbert, 2003).  However, 

there are no formal models that make specific claims about the origins of contrastive, discrete 

features from speech input containing contextual variation.  Parsing, then may then offer such a 

mechanism, though as we will discuss in the conclusion it does not require an exemplar-based 

representation for words. 

An additional challenge for exemplar models is to cope with patterned variation that 

arises from context that lies outside of the word.  It is quite simple to see how variation that is 

conditioned by within-word context (e.g., coarticulation between vowels and consonants), would 

get encoded in the exemplars stored in long-term memory. But phonetic variation is often 

conditioned by elements beyond the word boundary. Phonetic detail conditioned by material 

beyond the word can not be associated with its triggering context (if the word is the unit of long-

term storage), and so if left unparsed, such phonetic variability may actually compromise the 

contrast between the target word and its close lexical neighbors. An alternative model would be 

to encode words in long-term memory as underspecified along the dimensions affected by 

context outside the word. Such a model may not be able to harness such detail to its full 

advantage, and may even be unable to make lexical contrasts in some cases. However, work by 

Gow (2001, 2003; see also Gow & McMurray, 2007) demonstrates that listeners can take 

advantage of coarticulation involving place features to facilitate the perception of upcoming 

segments, even when the coarticulation occurs across a word boundary. Cross-word 

coarticulation may thus be a limiting case for exemplar models of perception, and so we focus on 

that pattern in the demonstration of the parsing model presented below. 
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In sum, the acoustic signal does not appear to cue a sufficient set of discrete features to 

support lexical contrast, nor does the perceptual system impose discreteness upon it by 

eliminating phonetic detail not relevant to making categorical distinctions. If discrete 

phonological features are to emerge from perceptual processes, we must look beyond acoustic 

invariance or categorical perception as the underlying mechanisms.  Whatever perceptual process 

imposes discreteness, however, must also preserve a representation of the signal that includes 

fine-grained detail to facilitate on-line processing.  Moreover, such a process must be able to 

cope with overlapping sources of variation in the signal, related to the phonological or phonetic 

context (e.g., coarticulation) and non-phonological sources (e.g., speaker), and including sources 

that lie outside the boundaries of the target word.  While exemplar or episodic models can 

achieve this sensitivity to phonetic detail, it is not clear how discreteness emerges in the 

definition of a system of phonological contrasts, nor how such systems cope with variability 

across word boundaries.  Parsing is a promising approach that may offer the ability to deal with 

all of these issues. 

 

2.  Parsing 

Parsing is a perceptual process first proposed by Fowler (1984; Fowler & Smith, 1986) to deal 

with overlapping sources of variance in the speech signal, such as overlapping articulatory 

gestures.  The idea is very simple: at any given point in the signal, the system assigns acoustic 

cues to causes. Fowler assumes these causes to be gestural; however, later instantiations of 

parsing (Gow, 2003) take a less specific stance, arguing simply that similar acoustic cues (e.g. 

lowered F1) are grouped via association with features like labiality or coronality.  However, in 

both cases, because the causes can originate in the past or future (i.e., can precede or follow the 
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target sound), parsing can have very powerful results for speech perception.   

For example, consider anticipatory vowel nasalization in English.  Since English does not 

have contrastive vowel nasalization, oral vowels are often nasalized when they precede a nasal 

consonant.  When the parsing process encounters a nasalized vowel, the nasal cues can be 

unambiguously assigned to an upcoming nasal gesture because they could not have arisen from 

the vowel itself (given the absence of nasal vowels in English).  This has two useful 

consequences.  First, it provides information that a nasal consonant is upcoming.  Second, by 

assigning these cues to the nasal gesture, it removes them from consideration as part of the 

vowel, allowing the vowel to be perceived (correctly) as oral.  This was indeed demonstrated by 

Fowler and Brown (2000) in their finding that nasal vowels sound more oral prior to a nasal 

consonant. 

Parsing thus has the necessary properties to create discreteness while preserving 

gradiency.  First, by removing the effects of nasalization from the vowel, it creates a more 

prototypical vowel with much of the “noise” removed.  However, by assigning this gesture to a 

future segment it simultaneously is able to use the gradient coarticulation to do useful work.  In a 

sense, by partialing out the variability in the input into a discrete category and a residual (the 

difference between the abstract category and the observed input), the underlying feature in the 

target emerges and the residual can then be used to identify other events.   

This reframes the fundamental issue in speech perception.  If we examined only a single 

feature at a time (e.g. the orality of the target vowel), we’d be faced with ambiguity and noise.  

However, by trying to identify both the target vowel and the subsequent context at the same time, 

we can simultaneously remove the nasality from the vowel (allowing its oral feature to emerge), 

and build evidence for a consonant (contributing to its nasal feature).  Thus, while ostensibly 
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making the problem more difficult (by introducing simultaneous extraction of multiple features), 

parsing may actually solve problems that were previously insoluble. 

Given its power, parsing has been proposed as a general process of speech perception that 

provides an explicit treatment of a number of coarticulatory phenomena: vowel-consonant 

coarticulation (Fowler, 1984), vowel-to-vowel coarticulation (Fowler & Smith, 1986), vowel 

nasalization (Fowler & Brown, 2000), F0 effects on vowels (Pardo & Fowler, 1997) as well as 

place and voicing assimilation (Gow, 2003; Gow & Im, 2002).  However, these studies are all 

experimental studies of perception.  At this point, there have been no systematic phonetic 

investigations examining whether parsing would in fact be a useful mechanism for coping with 

the variability actually found in large speech databases, particularly when we consider more than 

one source of variability simultaneously.  This is in large part because of the lack of a formal or 

computational model of parsing—it would be difficult to answer this question without it.  

 We have developed a formal model of parsing using hierarchical linear regression.  This 

model allows us to ask whether parsing processes can explain the emergence of features over a 

large and highly variable set of vowel productions.  This surprisingly simple approach can ably 

model the two operations of parsing: feature identification and prediction of nearby context.  

Moreover, its generality allows us to ask whether similar processes could be useful for coping 

with variability due to non-phonological causes (e.g. speaker) and to examine the interaction of 

multiple sources of covariation simultaneously.   

 Linear regression assumes that the variability in a dependent variable (DV) can be 

described as simply the weighted sum of a set of independent factors.  When these factors are 

dichotomous (e.g. if a vowel is high or not), then the weighting reflects the contribution of that 
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category to the continuous dependent measure.  For example, if the DV is F1, the weighting on 

the factor (feature), high, would be the average change in F1 for high vowels vs. other vowels. 

 To use this to model features, we use the continuous acoustic cue (e.g. F1 frequency) as 

the dependent variable, and generate an equation that predicts its value as the sum of the 

contributions of a set of discrete features.  F1, for example, will be affected by the speaker, the 

height of the vowel, the voicing of neighboring consonant and so on.  Linear regression can 

easily compute the weighting for multiple sources of variance in a given dataset, as long as these 

features are known for each cue. 

 Linear regression can be used hierarchically, to systematically exclude the effects of one 

source of variance on a DV, and analyze the left over variability in the DV after the first source 

of variability has been removed (the residual).  In a hierarchical regression, an initial simple 

model with only a few factors is first fit to the data.  The residuals are then computed, and 

additional factors are added to determine if they are able to account for any additional variance, 

over and above the original model.  In this way, we can first partial out the effects of speaker 

from a measure like F1.  We can then analyze the residual and determine what other features 

affect the remaining variance.  Importantly, we can also use the residual to identify features such 

as the target vowel, or features of the upcoming context. 

 Parsing predicts that as we partial out factors from the signal, the residual should contain 

a clearer and clearer instantiation of other underlying cues.  These may be cues to the current 

segment (e.g. revealing a feature masked by variability) or cues to upcoming segments (making 

use of fine-grained detail to anticipate material).  Thus, as variance is removed from the signal, 

the discrete underlying features are revealed. 
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 This model assumes that sources of variability are additive and that the effect of features 

on an acoustic cues can be neatly described by this linear system.  While more complex 

conceptualizations are clearly possible, the simpler model has some advantages.  To the extent 

that a simple model like this can provide an appropriate characterization of the perceptual 

process, we may not want to posit anything more complex.  Most importantly, this model can be 

quite straightforwardly implemented using standard statistical techniques to allow a 

comprehensive analysis over a corpus of data.  

 Given a regression implementation of this parsing model, testing is straightforward.  We 

can apply the model to a body of phonetic measurements and make two specific predictions. 

1) Identification of a target feature in the acoustic signal should be better after other 

sources of variation have been partialed out.   

2) Partialing out some sources of variation should also improve the model’s ability to 

make predictions about other sources of context, and ultimately to identify their 

underlying features. 

For this initial foray into testing these ideas we chose to examine vowels, since (as 

discussed above) they present one of the most challenging domains in which to extract discrete 

features.  Vowel-to-vowel coarticulation, in particular, offers an ideal domain for this 

undertaking.  In V-to-V coarticulation, the height or backness of a vowel is influenced by a 

subsequent (or prior) vowel, typically across one or more consonants.  Thus, vowel perception in 

the context of V-to-V coarticulation offers numerous sources of variability: speaker variability 

affects F1, the place and voicing of the following consonant will affect both F1 and F2, and the 

subsequent vowel will play a role.  In this context, we can examine whether the parsing 

processes that cope with these sources of variation improve the ability to identify the features of 
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the target (first) vowel, and simultaneously leave enough information to predict its identity (or 

whether they improve the prediction).  These factors allow us to test both aspects of the parsing 

process.  

In addition, we examined V-to-V coarticulation across a word boundary, since in that 

context the coarticulation pattern is not part of the phonetic detail of an individual word form. 

Without an active process of perceptual parsing, simply lexicalizing this detail in an episodic 

representation would not permit either the use of context (outside the word) to recover the 

underlying feature, nor the use of the residuals to predict the next features.   

While validating this broader undertaking requires both production and perceptual 

studies, this initial work focused on the production data alone.  In particular, this provides the 

opportunity to ask whether parsing (instantiated in our model), in principle, can improve on the 

identification of underlying features and prediction of upcoming material, given a variable set of 

input in which multiple sources of variance are available.  If this was not found to be the case (in 

this context), there would be no need to test actual listeners.  Thus, in the next section, we offer a 

short discussion of the facts of V-to-V coarticulation, followed by a description of the dataset on 

which we base our analyses. 

 

3.  Vowel-to-vowel coarticulation as a test case for the parsing hypothesis 

The present study applied a parsing analysis to vowel-to-vowel (V-to-V) coarticulation to test the 

hypothesis that parsing reduces variability in order to reveal the discrete units of lexical contrast.  

This represents a particularly challenging problem for parsing in that vowels exhibit variation 

due to coarticulation with the vowel in the following syllable as well as with the intervening 

consonant. 
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 It is well known that vowel sounds exhibit a complex pattern of coarticulation, with local 

effects triggered by a neighboring consonant or vowel (Hillenbrand, Clark & Nearey, 2001) and 

long-distance effects from a vowel in an adjacent syllable, across an intervening consonant in 

VCV sequences (Öhman, 1966, Magen, 1997). In both cases, such coarticulation can be seen as a 

source of noise for vowel identification: when formant measures for a vowel phoneme are pooled 

across a variety of coarticulatory contexts, there is an increased variance in the formant values of 

the vowel (Manuel, 1990; Megan, 1997; Öhman, 1966; Recasens & Pallarès, 2000).  

The increased acoustic variability of a vowel, when considered independent of its 

context, might be expected to contribute to an increase in perceptual confusion among 

contrastive vowels, especially in a language like English with a large vowel inventory and thus a 

densely populated vowel space. Yet there is evidence that listeners are able to compensate for the 

effects of coarticulation, parsing out the influence of coarticulation from the acoustic properties 

that cue distinctive vowel place features (Fowler, 1981, 1984; Fowler & Smith, 1986; Beddor et 

al., 2002). For example, Fowler & Smith (1986) show that when presented with pairs of CV1CV2 

stimuli, listeners judge the two tokens of V1 as similar even when they exhibit subtle 

coarticulatory differences, as long as the coarticulatory effect on each V2 is appropriate for the 

given V1 context vowel. In other words, in the appropriate contexts, listeners seem to parse out 

the portion of the variance in F1 and F2 (and possibly other acoustic parameters) that is due to 

coarticulation, and base their perception of the target vowel on the residual values.  

However, V-to-V coarticulation does more than create ambiguity in the signal.  In the 

case of anticipatory (i.e., regressive) coarticulation, the vowel in the earlier syllable shifts to 

become more similar to the vowel in the later syllable, and this shift  provides a potential source 

of information that listeners use to infer upcoming material (Martin & Bunnell, 1982).   Thus, 
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not only can parsing facilitate identification of the target vowel, but parsing also facilitates the 

prediction of the upcoming context vowel (Fowler, 1984). The strength of the prediction, and 

thus the potential usefulness of the parsed variance for predicting upcoming context, depends on 

the magnitude and consistency of anticipatory coarticulation in the language.  

 V-to-V coarticulation causes a shift in both the articulation and acoustic form of a vowel 

and is bidirectional, though the relative strength of carryover versus anticipatory effects vary in 

different languages (Beddor et al., 2002; Manuel, 1990; Öhman, 1966). Focusing now on 

anticipatory V-to-V coarticulation, prior studies on English show that coarticulation affects 

acoustic measures of F1 and F2, cues to vowel height and backness/roundness, respectively, 

which are shifted in the direction of the context vowel. Both stressed and unstressed vowels 

undergo coarticulation, though the effect on unstressed vowels is typically greater (Alfonso & 

Baer, 1982; Beddor et al., 2002; Fowler, 1981, 2005; Magen, 1997; Öhman, 1966; among 

others). And while V-to-V coarticulation is a significant source of variability for vowels, it is not 

the only source. There is also evidence of variation in vowel formants due to coarticulation with 

an upcoming consonant (e.g., Hillenbrand, et al., 2001; Öhman, 1966), and due to individual 

speaker characteristics (e.g., Hillenbrand et al., 1995). The interaction among these various 

sources of coarticulation has not been widely investigated.   

 Furthermore, while coarticulation is seen to be pervasive within syllables and words, 

none of these prior studies have assessed the form of V-to-V coarticulation across word 

boundaries.   As discussed earlier, if coarticulatory variation effects only arise within words, 

mechanisms like parsing may be unnecessary to cope with the variability as well as take 

advantage of it.  However, recent work that forms the basis for the present study (Cole et al, 

under review) shows that V-to-V coarticulation can be seen across word boundaries. 
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To summarize, there is ample evidence of vowel variability due to coarticulation, 

including anticipatory V-to-V coarticulation. Listeners appear to parse this variability, 

compensating for the influence of upcoming context, while at the same time using the parsed 

variance to predict that context. To better understand the potential benefit of parsing for speech 

perception, we turn now to our test case, applying parsing to the analysis of vowels that are 

coarticulated with the following C (within-word) and V (across a word boundary). We pose three 

questions. First, to what extent can variability of the F1 and F2 measures of vowels be reliably 

attributed to the upcoming phonological context, or to speaker voice characteristics?  Second, is 

there a systematic pattern variation due to coarticulation from an upcoming source that crosses a 

word boundary? Third, can the variability of the target vowel that is due to coarticulation be used 

to make predictions about the upcoming vowel, in the following word?  

 We demonstrate the parsing analysis using a database from our previous acoustic 

investigation of V-to-V coarticulation (Cole et al., in review).  This experiment was designed to 

test for effects of anticipatory coarticulation on vowels separated by a consonant and word 

boundary, using measures of the first two formants of naturally produced vowels in VC#V 

contexts across a variety of speakers.  The data was collected from five males and five females 

(graduate or undergraduate students at the University of Illinois), all native speakers of English 

under 30 years old. The speakers produced carrier sentences that contained two-word test phrases 

with the target vowels (which we define as the vowel undergoing coarticulation) in the first word 

and the context vowel (the vowel triggering the coarticulation) in the second word. The vowels 

were separated by an intervening consonant at the end of the first word. For example, in the 

phrase wet oxen the /ɛ/ in wet was the target vowel and the initial /ɑ/ in oxen was the context 

vowel.  
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The target vowels were the two unrounded, central vowels (/ʌ/ and /ɛ/), which have the 

potential to show both height and front/back effects due to coarticulation. The context vowels 

were the three point vowels (/æ/, /ɑ/, /i/), which are maximally likely to induce coarticulation, 

and the matched target vowel (/ʌ/ or /ɛ/), which was expected to be neutral as a coarticulation 

trigger.  The point vowel /u/ was excluded to avoid introducing rounding coarticulation into the 

design. 

Test words were chosen that end in a plosive consonant. There were six plosives, 

combining voiced and voiceless features with three places of articulation (labial, alveolar, velar). 

These six consonants were combined with each target vowel in the first word2.  There were a 

total of 48 phrases recorded by each speaker (2 target vowels × 4 context vowels × 6 

consonants).  These phrases are listed in Table 1. Each of the 48 phrases was repeated three 

times for a total of 144 trials.  

For each of the target and context vowels F1 and F2 were measured at the midpoint with 

an LPC analysis and outliers were corrected based on visual examination of the spectrogram. 

Formant frequencies were coded in units of bark.  22 trials (out of 1440) were eliminated 

because of speech errors. An additional 18 trials were eliminated because participants 

pronounced ecologist with a schwa rather than the desired context vowel /i/. A total of 1400 

trials were included in the analysis.  

    

4. Testing the Parsing Model 

As it has been described, parsing offers two operations during speech perception.  First, by 

partialing out the effects of sources of variation (e.g. coarticulation), it can reveal underlying 
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features in the signal.  Second, the residuals of this process can then be used to predict upcoming 

material.  Thus, our analysis proceeds in two steps.  First, we illustrate parsing’s ability to 

uncover features by applying our model to the problem of identifying the target vowel. This is 

described in some detail in order to demonstrate the operation of the model.  Next, we show that 

the ability of the exact same model to account for overlapping variance dramatically improves 

the prediction of the upcoming context vowel.    

 

4.1 Uncovering Features of the Target Vowel.   

The first analysis examined F1 and F2 and their ability to discriminate the target vowel as /ʌ/ or 

/ɛ/.  We compared three different models.  The first modeled the case of no parsing 

whatsoever—a sort of baseline upon which to evaluate the subsequent models.  The second 

parsed out the effects of speaker gender from F1 and F2 before using these cues to categorize the 

target vowel.  The third parsed out speaker gender as well as the specific speaker prior to 

categorizing the target vowel. 

In the baseline model, raw F1 and F2 values (and an interaction term) were entered into a 

linear regression with target vowel (/ʌ/ or /ɛ/) as the sole predictor.  Target vowel significantly 

affected F1 (F(1, 473)=4.8, p=.029) but only accounted for 1.0% of its variance.  There was a 

much larger affect on F2 (F(1, 473)=323.9, p<.0001), with target vowel accounting for about 

40.6% of the variance.  This tells us that the two target vowels differ in terms of both F1 and F2 

(and much more so for F2).  However, it does not tell us how useful these raw formant values 

would be for identifying the vowel.  That is, given the pattern of variability in F1 and F2, how 

many of the tokens in our dataset could be correctly identified? 
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To solve this problem, we used logistic regression as a simple model that maps F1 and F2 

jointly onto a discrete categorical output (the correct vowel). This is similar to the approach of 

Jiang, Chen and Alwan (2004) who used logistic regression to determine the sufficiency of 

single cues to voicing.  We adopt the same approach to look at both cues (and their interaction) 

simultaneously.  The logistic regression model, in particular, allows us to compute percent 

correct, as well as whether each cue was used to make a given distinction.  For the present 

analysis (the base model), the predictors are raw F1 and F2 and the dependent measure is a 

dichotomous /ʌ/ or /ɛ/ decision.  However, in the subsequent models we will also use the parsed 

values (residuals from the linear regression) as input to this logistic regression.  We can then 

evaluate the percentage of correct identifications of the model as a function of what was parsed.   

To evaluate the baseline model, we used logistic regression alone on unparsed formant 

values (i.e., the linear parsing model was not used).  Raw F1 and F2 values were entered directly 

into a logistic regression as predictors, with the target vowel’s identity as the dependent variable.  

Overall, the model performed quite well, with classification accuracy at 90.5% correct.  Each 

term significantly contributed to the classification individually: F1 (Wald(1)=18.2, p<.001), F2 

(Wald(1)=4.1, p=.042) and the interaction (Wald(1)=13.1, p<.001).  This high performance was 

expected – the model only had to make a two-alternative decision, and it was basing this decision 

on the strongest cues available (unlike the predictive task in the next mode, in which it must use 

formant-cues that occur prior the vowel being predicted).   

Given this baseline level of performance, the next model asked if parsing variance due to 

the gender of the speaker could improve the model.  First, we used ordinary linear regression to 

parse out the effects of gender on F1 and F2.  This single factor significantly accounted for 

63.2% of the variance in F1 (Fchange(1,473)=811.5, p<.0001) and 35.9% of the variance in F2 
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(Fchange(1,473)=264.7, p<.0001)  (see Tables 2 and 3).  In order to parse out this factor from the 

continuous cues, we simply computed the difference between each F1 or F2 value from the F1 or 

F2 predicted by the linear regression line.  Since the predictor in this case is categorical, this is 

equivalent to simply subtracting the mean F1 or F2 for each group (male and female) from each 

value.  For example, the mean F1 (across vowels and contexts) for females was 6.41 bark 

(SD=.42 across speakers) and 5.28 bark (SD=.25) for males.  Thus, if a given data point had a 

raw F1 of 6.0 bark, if it came from a female it was recoded as -.41 bark (low for a female), but if 

it was generated by a male it was recoded as +.72 (high for a male).  These differences were the 

residuals, after the effect of gender on F1 and F2 had been removed.   

These residuals were then entered as the independent variables in the logistic regression 

described above.  This model was somewhat better, averaging 91.4% correct.  As before all three 

covariates significantly contributed to the classification (F1: Wald(1)=12.6, p<.001; F2: 

Wald(1)=77.0, p<.001; F1 x F2: Wald(1)=14.2), only this time, F2 was a much stronger 

contributor than before (as evidenced by its increased Wald statistic). 

If simply partialing out gender could improve performance, we next asked if knowing the 

individual speaker could further improve this. Thus, we added individual speaker codes to the 

linear regression model above (which already included gender).  For F1, these accounted for an 

additional 19% of the variance (Fchange(8,465)=63.5, p<.001), allowing the model to account for 

82.4% of the total variance in F1 using only information about the speaker.  For F2, individual 

speaker accounted for an additional 4.9% of the variance (Fchange(8,465)=4.8, p<.001), for a total 

R2 of 40.8%.  The residuals were computed in the same was as before (only now these residuals 

included F1 and F2 values for which both the effects of gender and speaker were removed).  

These residuals were entered into the logistic regression model which now averaged 92.8% 
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correct, an improvement of 2.3% over the baseline model.  Interestingly, while F1 and F2 were 

still significant (F1: Wald(1)=9.1, p<.001; F2: Wald(1)=77.7, p<.001), the interaction was less so 

(Wald(1)=4.4, p=.037), suggesting that progressively parsing out data reduces the need to keep 

track of higher order dependencies between cues.   

Further parsing of the neighboring consonant can yield even better performance Here, 

place and voicing of the intervening consonant significantly accounts for an additional 1.6% of 

the variance in F1, over and above speaker (Fchange(3,462)=15.8, p<.0001) and an additional 

14.5% of the variance in F2 (Fchange(3,462)=49.9, p<.0001).  When these are entered into the 

logistic regression model the model averaged 95.2% correct.  In fact, additional analyses suggest 

that further parsing out the influence of the context vowel can increase this to 96.2%.   

This initial model illustrates that parsing out speaker-related variance (both gender and 

individual speaker) may yield modest improvements in the ability to classify the target vowel 

and parsing out the effects of the consonant (and context vowel) can have larger effects.  Figure 

1 illustrates this quite clearly showing a series of scatter plots of the F1 and F2 values for each 

measured token at each step of the foregoing analysis.  Panel A shows the unparsed values: there 

is substantial overlap between the vowel categories, and a number of sub-clusters present.  In 

Panel B, the effect of vowel is removed and only two clusters remain (one for each vowel).  In 

Panels C and D the effects of individual speaker and consonant (in addition to gender) are parsed 

from the raw values, and by the time context vowel is added to the model (in Panel E) there is 

virtually no overlap between the two categories at all.  Thus, by gradually removing these simple 

sources of variance, discrete, non-overlapping target vowel categories can be seen quite clearly. 
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This is a somewhat easy classification problem (as we’ve modeled it here): the model has 

the two primary cues to the contrast, and we’ve artificially restricted the decision space to two 

alternatives.  Thus, it is not surprising that the base model did so well.  Nonetheless, it makes a 

case that parsing just a few factors can improve even this simple categorization.  By removing 

known sources of variation (speaker, and consonant) we can improve the ability of the model to 

reveal the underlying (discrete) vowel category.  Thus, we now turn to the more complex 

problem: harnessing V-to-V coarticulation to facilitate perception. 

 

4.2 Anticipating the Context Vowel 

The goal of these analyses was to predict the identity of the upcoming vowel based solely on the 

formant cues of the target vowel. This is a much more difficult task as illustrated by our baseline 

model.  This model used raw (unparsed) F1 and F2 values of the target vowel along with an 

interaction term to predict the upcoming vowel (/i/, /æ/, /ɑ/, or the “same” vowel /ʌ/ or /ɛ/) in a 

multinomial logistic regression.  The model averaged only 28.6% correct (chance is 25%).  It did 

better than expected when the prediction was for an upcoming /i/ (51.3%) or /ɑ/ (37.5), but it was 

much lower for /æ/ (21.7%) and virtually never identified a non-coarticulated, “same” segment 

(5%).  The model fit as a whole was barely significant (χ2(9)=17.6, p=.04), and none of the 

individual terms (F1, F2 or the interaction) contributed significantly.  Thus, this is clearly a 

situation in which parsing out variance has much to offer. 

Our investigations of the benefits of parsing look at a number of factors which influence 

variability in the target vowel: speaker, the target vowel identity, and place and voicing of the 

neighboring consonant.  We first ran complete hierarchical regression analyses examining the 
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effects of these factors on F1 and F2 (while simultaneously recording the residuals at each step).  

This linear regressions is identical to the ones on which the prior parsing model was based—

parsing the effect of consonant is the same whether you are using the residuals to identify the 

target vowel or predict the context vowel.  However, to put these factors in perspective we will 

briefly summarize the linear regression as a whole so that we can adequately describe the relative 

size of the different sources of variation in F1 and F2. Having done that, we will next evaluate 

the effects of parsing these factors from the speech signal prior to predicting the context vowel. 

Table 2 provides a summary of the regression analysis examining F1. As we described, 

gender is an important factor, accounting for 63.2% of the variance, and individual speakers for 

an additional 19.2%.  In addition, the identity of the target vowel (/ʌ/ or /ɛ/) accounted for .9% of 

the variance.  Voicing accounted for almost double that (R2=.018), and place, though small was 

also significant (R2=.003, p=.006).  While it is not surprising that these known sources of 

variation and coarticulation were significantly related to F1, the total amount of variation that 

this model explained is somewhat surprising.  The total R2 for the model was 85.5% (which 

increases slightly with interaction terms not reported here). Thus, there is significant variation in 

F1 that could be effectively dealt with by a parsing model. 

The second analysis examined F2 (Table 3). Gender and speaker accounted for much less 

variance associated with indexical factors (Gender: R2
change=.359, Speaker, R

2
change=.049), and 

gender was the bulk of this.  However, target vowel was associated with substantially more 

variation (R2
change=.413), due to the fact that the /ʌ/~/ɛ/ distinction is primarily one of frontness 

and thus carried in F2. Voicing and place also accounted for more variance in F2 (than F1), with 

voicing accounting for 3.4% of the variance, and place accounting for 5.0%.  Finally, as before, 
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these five factors together did surprisingly well—the model overall accounted for 90.2% of the 

variance (and the addition of other factors can increase this to 94.0%). 

Given these models, we next examined the performance of the logistic regression 

classifier using F1 and F2 values from which various (interesting) combinations of factors had 

been partialed out.  Each of these models used a multinomial logistic regression to predict the 

context vowel (/i/, /æ/, /ɑ/, or “same”) on the basis of F1, F2 and an interaction term.  F1 and F2 

were the residuals from the appropriate step of the linear regressions detailed above.   

 We examined five different models (see Table 4, and Figure 2 for a summary).  The first 

(GENDER) assumed only that the model could parse out the effects of gender—no detailed 

representation of speaker was available, nor could the model cope with coarticulation from the 

consonant.  The second (SPEAKER), had more detailed normalization and parsed out individual 

speaker means in addition to gender.  The third model (VOWEL) normalized for speaker, and 

also accounted for the target vowels.  From the perspective of online processing, this represents 

the degree of prediction that can be made at the target vowel (without any subsequent context to 

provide a regressive “cleaning up” of the signal).  The fourth model (FULL) parsed out speaker, 

vowel and the place and voicing of the neighboring consonant.  Finally, the fifth model 

(NOSPKR) represented a rather special case in which the model could only parse out 

coarticulation, but could not normalize for speaker factors. 

 The GENDER model did somewhat better than baseline, averaging 30.1% correct, and 

the model fit was good (χ2(9)=20.24, p=.016).  While its performance for /i/ was reduced (44.3% 

compared to 51.3% at baseline) this increase came from the fact that now /æ/ was above chance 

(35% correct).  Where the prior model tended to assign all front vowels to /i/ (a high false-alarm 
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rate), this model began to differentiate by height. Thus, unlike the baseline model, simply 

knowing the gender of the speaker allows all of the positive predictions (/i/, /æ/, /ɑ/, but not 

same) to be above chance.  In addition, this was the first model in which F1 was significant 

(χ2(3)=14.0, p=.003), although F2 and the interaction were not. 

 Adding a more detailed representation of speaker added an additional 2.5% to the 

performance, with the SPEAKER model averaging 32.6% correct.  Other than this, this model 

was quite similar to the GENDER model.  Its pattern of performance across vowels was similar, 

and F1 was the only significant covariate. 

 Parsing out variability due to target vowel (the VOWEL model) improved the model 

further.  This model averaged 35.2% correct and was above chance on all of the positive 

predictions.  While “same” predictions were still below chance (12.5%) these were higher than 

prior models.  Moreover, unlike prior models, this model appeared to make use of both F1 and 

F2 (F1: χ2(3)=40.3, p<.001; F2: χ2(3)=27.7, p<.001) and the interaction was not significant. 

 The FULL model performed best averaging 39.4% correct.  Performance on /i/ was quite 

good (58.3% correct), and /ɑ/ (48.3%) and /æ/ (37.5) were well above chance.  Even “same” 

responding, though below chance was markedly improved (14.2%).  As in the VOWEL model, 

both F1 and F2 contributed significantly (F1: χ2(3)=48.0, p<.001; F2: χ2(3)=44.9, p<.001).  

Thus, when all sources of variance on F1 and F2 in the target vowel are accounted for, the model 

can predict an upcoming vowel at well above chance levels.  Moreover, analyses reported in 

Cole et al (under review) suggest that after parsing F1 exclusively codes the height of the 

upcoming vowel (it is not influenced by backness) and F2 codes primarily backness (with a 

small influence of height). 
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 The final model (NOSPKR) asked if speaker normalization of some kind is required to 

attain this sort of performance.  Here, only consonant and target-vowel variation were partialed 

out of F1 and F2.  This model suggests that accounting for speaker variation can play an 

important role in leveraging V-to-V coarticulation.  It averaged 34.1% correct and though it did 

well on /i/ and /ɑ/ (50.4% and 52.5% correct, respectively) it was below chance on /æ/ (19.2%).  

Across these analyses, a couple of key findings can be seen.  First, none of the models did 

well predicting that the context vowel was the “same” as the target vowel.  This suggests that at 

some level, the absence of coarticulation can not be interpreted as evidence that there is a neutral 

context coming up.  Second, parsing out variability from raw values adds significantly to their 

predictive power.  While the baseline model is barely above chance, the FULL model improves 

upon this by over 10%.    Finally, no single source of variability is essential—even as simple a 

factor as gender can play a role.  We’ve assumed that all of these sources of variability are 

equally easy to compute and use, however, some may be more difficult than other for the 

learner/perceiver.  For example, keeping track of individual speaker’s mean formant values may 

require the listener to store many more values than keeping track of means associated with a 

dichotomous variable like voicing (although speakers could be quickly learned).  While future 

work should consider the processing implications when deciding whether or not to include a 

factor, this makes it clear that even in the absence of the FULL model, one can do quite well by 

parsing. 

 

5. Discussion and Conclusions 

This study offers a simple formal approach to parsing that can be applied to real speech data.  

However, despite this simplicity, it suggests that even the most rudimentary parsing can offer 
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significant power to the perceptual system.  A few known sources of variability (speaker, vowel, 

consonant, and V-to-V coarticulation) accounts for upwards of 85% of the variance in F1 and F2.  

By parsing only these factors identification of the target vowel was improved by 6% (to 96%), 

and prediction for the subsequent vowel improved from near chance (28%) to 39.4%.  This 

speaks to the power of attempting to account for (and exploit) multiple sources of variability 

simultaneously. 

This approach allowed us to ask concrete questions about the benefits of parsing various 

elements from the speech stream, given the statistical structure present in a set of cues.  For 

example, the improvements in identification (in terms of percentage correct) that can be had by 

parsing out gender (about 1.5% for anticipating the context vowel, 0.9% for the target) are 

similar to the improvements to be had by parsing the differences in individual speakers, over and 

above gender (1.5% for context vowels, 1.4% for target).  Thus, some mechanism for tracking 

the way individual speakers use particular cues may be helpful for perception.  This may even 

extend to relatively speaker-invariant cues such as voicing. Allen, Miller and DeSteno (2003; 

Allen & Miller, 2004), for example, demonstrated significant differences between speakers of 

the same language and dialect in their use of VOT, and that listeners were sensitive to these 

differences.  Thus, it is possible that this parsing approach to speaker normalization may apply to 

many phonetic cues. 

Variation due to the neighboring consonant may play an equally important role as 

variation due to speaker.  Parsing out the consonant’s effects on the target vowel improved the 

model’s performance by 2.4% over speaker factors for target vowel identification, and by 4.2% 

for the context vowel.  Given that speech unfolds temporally, this suggests an interesting model 

(Figure 3).  As the utterance unfolds, the listener starts to identify the speaker (or minimally, 
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speaker’s gender).  When the target vowel arrives, the listener first parses speaker factors from 

the target vowel (Figure 4, Step 1). At this point the target vowel can largely be identified (Step 

2), with an accuracy of 92.8%.  This identification allows it to parse further variance from F1 and 

F2 (step 3) and start to anticipate the context vowels (Step 4) with an accuracy of 35.2%.  Once 

the consonant is heard (Step 5), the listener can revise its decision about the target vowel, or 

confirm the earlier choice (since its accuracy will now be up to 95.2%), and simultaneously parse 

out the variance in F1 and F2 that is associated with the consonant (Step 6).  This in turn allows 

fairly useful prediction about the consonant (Step 7) with a likely accuracy of 39.4%.  Thus, 

parsing represents a continual interplay between anticipating the next sound, cleaning up 

variance in the current or prior segments and then looking forward again, and the online nature 

of the problem can dictate what is parsed when.  Realistically, such a system is most likely not 

the stage-like serial process we have caricatured here.  As Fowler (1984) suggests, interactive 

activation type architectures would seem to implement something like this quite capably.  

 These are just examples of the kind of findings that can be achieved with this model.  In 

the domain of vowel perception, it leads to the somewhat obvious conclusion that virtually every 

source of variation can help in some way (though the timecourse over which such cues are 

available may affect the results).  However, the results we obtain here for parsing vowel variance 

may not be matched in parsing other cues for other types of sounds.  For example, McMurray, 

Jongman & Wang (in preparation) suggest that parsing the effects of voicing on a fricative offers 

no improvement in identifying its place of articulation. 

This model has its limitations, however, as a complete treatment of parsing.  In particular, 

it makes two assumptions which at face value may be questionable.  First, parsing is only as 

good as the model’s ability to unambiguously identify the category or feature of each source of 
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variance.  For example, if the target vowel was identified incorrectly as an /ɛ/, what would 

appear to be a low F2 (for an /ɛ/) may in fact be a high F2 for an /ʌ/.  This in turn could lead it to 

favor an /ɑ/ for the next vowel over an /æ/.  Thus, miscategorizing a single feature would have 

ramifications downstream.  However, while this may seem a challenge in the context of single 

feature identification, it is important to note that the system is identifying multiple sources of 

variation simultaneously.  Thus, the ability to identify one feature (e.g. speaker), improves the 

ability to identify the next (e.g. vowel), which then provides information for further features (e.g. 

the next vowel).  Here, a few stable features (e.g. landmarks: Stevens, 2002) may provide the 

necessary entry points.  Alternatively, one could imagine the system making a preliminary 

decision and using that simultaneously to identify future material, and using this future material 

to subsequently revise the initial decision (as in Fowler’s, 1984, discussion of the similarities 

between interactive activation models and parsing).  Thus, when the consonant and context 

vowels are perceived, this can in turn correct ambiguous or misleading interpretations for the 

target vowel (or even the speaker).   Under our view, the goal of the system is not just to 

determine a single feature, but to arrive at an optimal parse that accounts for all of the various 

cues and causes.  Given this, there may be very few parses satisfying this constraint for a given 

utterance. 

Second, this model assumes that during online perception, the listener has access to the 

mean cue values corresponding to various features (e.g. the mean F1 for high and low vowels).  

This is also not so unreasonable.  There is clear evidence that listeners can learn the means of 

various categories in a brief period, via simple statistical learning mechanisms (Maye, Werker & 

Gerken, 2002; Maye, Weiss & Aslin, 2008), and that the structure of adult speech categories 
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closely resembles the statistical structure of the input cues (Miller & Volaitis, 1989).  While 

there is clearly a great deal more to the developmental story (in particular the way that lexically 

contrastive meaning may help with this acquisition process), it seems clear that the relevant 

statistics could conceivably be extracted over the lifespan, or even in a few minutes of exposure.  

In fact, a number of computational models of statistical learning are based on explicitly 

extracting means and variances from the distribution of the input (e.g. McMurray, Aslin & 

Toscano, in press; Toscano & McMurray, 2007, in press), and may offer a formal platform in 

which to integrate statistical learning and parsing. 

Beyond these limitations however, this model provides a fairly direct answer to the 

question of where does discreteness in phonology come from.  In short, the ability to discretely 

identify a category from a variable signal emerges during online perception over the course of 

progressively parsing out sources of variation.  As we’ve discussed, this can only happen when 

you attempt to identify all of the sources of variations simultaneously.  If you treat the problem 

as identifying a single feature in a sea of noise, such operations (and their power) are not 

available. Only by considering everything together (as the perceptual system surely must do) can 

such discreteness emerge. 

This has a number of important implications for speech perception.  Work on the 

perceptual processes that cope with coarticulation has generally divided the processes into 

progressive effects which anticipate future material and regressive effects which resolve 

ambiguity in the past.  However, our model suggests that these are the same thing.  The same 

regression model was used to partial out variance for identifying the target vowels as well as for 

anticipating the upcoming vowel.  The only differences between the analysis of anticipatory and 
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regressive effects are the stage at which parsing stops and the choice of which residuals are used 

to identify the vowel.   

Moreover, this model shows that parsing is not just useful for identifying contrastive 

phonological features (although this paper clearly shows that it is).  It can also account for other 

sources of variation such as speaker and gender.  In this way, it is consistent with exemplar based 

approaches to normalization, in that it would be straightforward to extract a speaker’s mean 

value for a cue from a set of indexically coded exemplars.  However, this is not the only way to 

obtain such values.  Speaker means can be rapidly learned (McMurray, Horst, Toscano & 

Samuelson, in press), or extracted as prototypes without episodically retaining the full set of 

exemplars.   Either way, it suggests that parsing is just a generic process for dealing with 

variation of any kind.   

This approach shares much with the gestural approaches to phonology (Browman & 

Goldstein, 1992; Goldstein & Fowler, 2003), but it is also distinct.  Parsing originated in the 

gestural tradition (Fowler, 1984; Fowler & Smith, 1986) and was originally intended for 

interpreting overlapping gestures.  Our work strongly supports this as a mechanism.  However, it 

also points out that other sources of variance can be parsed as well.  We’ve discussed speaker 

normalization, but there is also emerging evidence that the structure of the lexicon can be another 

source of information for parsing during the processing of place assimilated speech (Munson & 

McMurray, 2007; Gow & McMurray, 2007).   

Exemplar approaches also overlap with our approach, in large part due to the fact that, 

like the exemplar approach, we stress the importance of fine-grained, continuous detail in the 

speech signal, and we take pains to deal with the problem posed by speaker-variability.   

However, unlike exemplar models in which the word is the unit that is stored, parsing can work 
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across word boundaries.  Moreover, in order to realize the effects of fine-grained detail for 

anticipating future material, our model uses speech input that has been processed through 

parsing, rather than the raw (unprocessed) acoustic cues used in exemplar models. Furthermore, 

the parsing approach does not require the storage of multiple complete words in memory—

means and variations of these cues (a prototype model of sorts) are sufficient to do the job.  

Thus, parsing represents a somewhat novel synthesis of both gestural and exemplar-based 

theories. It offers a unique explanation for the origin of discreteness in perception.  Features are 

an emergent property of a perceptual process that copes with the redundant variability in the 

speech signal.  When gradient detail in the input is treated as signal to be accounted for and 

exploited, rather than noise to be ignored, perceptual processing is facilitated, and discrete 

features as cues to meaning can emerge. 
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Tables 

bed actor tech afternoon web addict 
 eagle  evening  ecologist 
 evergreen  elevator  educator 
 ostrich  oxygen  offer 
      
wet afro deck alligator step admiral 
 Easter Bunny  easter basket  east 
 Eskimo  elephant  exit 
 oxen  octopus  obstacle 
      
mud apple bug astronaut pub advertisement 
 eater  evil  easel 
 umpire  underwear  undergrad 
 observation  optician  operator 
      
cut abdomen duck athlete cup appetizer 
 evenly  eating  eavesdropping 
 onion  usher  oven 
 olive  officer  occupant 

 

Table 1: Test phrases used in the experiment. 
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Step Variables R
2
change Fchange P 

1 Gender .632 F(1,473)=811.5 .0001 
2 Subjects (10) .192 F(8,465)=63.5 .0001 
3 Vowel .009 F(1,464)=25.5 .0001 
4 Voicing .018 F(1,463)=56.5 .0001 
5 Place (2) .003 F(2,461)=5.1 .006 
 Total R

2
 .855   

 

Table 2: Results of a regression analysis examining all sources of variation on F1. 
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Step Variables R
2
change Fchange P 

1 Gender .359 F(1,473)=264.7 .0001 
2 Subjects (10) .049 F(8,465)=4.8 .0001 
3 Vowel .413 F(1,464)=1066.8 .0001 
4 Voicing .034 F(1,463)=107.0 .0001 
5 Place (2) .05 F(2,461)=120.9 .0001 
 Total R

2
 .902   

 

Table 3: Results of a regression analysis examining all sources of variation on F2. 
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Model Parsed Out % Correct  i ɑɑɑɑ ææææ same 

BASELINE - 28.6  51.3 37.5 21.7 5.0 
GENDER Gender 30.1  44.3 31.7 35.0 10.0 
SPEAKER Gender 

Speaker 
32.6  49.6 33.3 40.0 8.3 

VOWEL Gender 
Speaker 
Target Vowel 

35.2  49.6 47.5 31.7 12.5 

FULL Gender 
Speaker 
Target Vowel 
Consonant 

39.4  58.3 48.3 37.5 14.2 

NOSPKR Target Vowel 
Consonant 

34.1  50.4 52.5 19.2 15.0 

 

Table 4: Percent correct for multinomial logistic regression models predicting the context vowel 

from various sets of F1 and F2. 
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Figure 1: F1 and F2 for all tokens as a function of target vowel.   Panel A shows raw values in 

Hz (note: regression analyses reported here were conducted on data transformed to Bark).  Panel 

B: raw F1 and F2 frequencies after effect of gender is eliminated. Panel C: F1 and F2 after both 

gender and individual speaker are parsed from dataset. Panel D: Gender, speaker and now 

consonant have now been parsed out.  Panel E: With the addition of context vowel to the parsing 

model there is virtually no overlap in the vowel categories. 

 



Feature emergence by parsing processes 

50 

25

27

29

31

33

35

37

39

41

B
A
S
E
L
IN
E

G
E
N
D
E
R

S
P
E
A
K
E
R

V
O
W
E
L

F
U
L
L

N
O
S
P
K
R

chance

P
er
ce
n
ta
g
e 
C
o
rr
ec
t

0

10

20

30

40

50

60

B
A
S
E
L
IN
E

G
E
N
D
E
R

S
P
E
A
K
E
R

V
O
W
E
L

F
U
L
L

N
O
S
P
K
R

Model

i

ɑ

æ

same

chance

P
er
ce
n
ta
g
e 
C
o
rr
ec
t

B

A

25

27

29

31

33

35

37

39

41

B
A
S
E
L
IN
E

G
E
N
D
E
R

S
P
E
A
K
E
R

V
O
W
E
L

F
U
L
L

N
O
S
P
K
R

chance

P
er
ce
n
ta
g
e 
C
o
rr
ec
t

25

27

29

31

33

35

37

39

41

B
A
S
E
L
IN
E

G
E
N
D
E
R

S
P
E
A
K
E
R

V
O
W
E
L

F
U
L
L

N
O
S
P
K
R

chance

P
er
ce
n
ta
g
e 
C
o
rr
ec
t

0

10

20

30

40

50

60

B
A
S
E
L
IN
E

G
E
N
D
E
R

S
P
E
A
K
E
R

V
O
W
E
L

F
U
L
L

N
O
S
P
K
R

Model

i

ɑ

æ

same

chance

P
er
ce
n
ta
g
e 
C
o
rr
ec
t

B

0

10

20

30

40

50

60

B
A
S
E
L
IN
E

G
E
N
D
E
R

S
P
E
A
K
E
R

V
O
W
E
L

F
U
L
L

N
O
S
P
K
R

Model

i

ɑ

æ

same

chance

P
er
ce
n
ta
g
e 
C
o
rr
ec
t

0

10

20

30

40

50

60

B
A
S
E
L
IN
E

G
E
N
D
E
R

S
P
E
A
K
E
R

V
O
W
E
L

F
U
L
L

N
O
S
P
K
R

Model

i

ɑ

æ

same

chance

0

10

20

30

40

50

60

B
A
S
E
L
IN
E

G
E
N
D
E
R

S
P
E
A
K
E
R

V
O
W
E
L

F
U
L
L

N
O
S
P
K
R

Model

i

ɑ

æ

same

chance

P
er
ce
n
ta
g
e 
C
o
rr
ec
t

B

A

 

Figure 2: Summary of performance of six different parsing models on the problem of 

anticipating the context vowel.  Panel A: overall performance averaged across all four contexts.  

Panel B: performance for each model, for each vowel.  A clear pattern can be seen in which /i/ 
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and /ɑ/ are consistently above chance, “same” responding is below chance for all models, and /æ/ 

is above only one speaker factors have been parsed from the signal. 
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Figure 3: Some hypothesized directions of parsing for target and context vowel identification.
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Notes 

 

1  Leaving aside F0 as a feature encoding pragmatic meaning. 

 

2  /ɛ/ was excluded as a target in front of /g/, as speakers often produce vowels that are higher 

and tenser than usual in this particular context (Hartman, 1985; Kurath & McDavid, 1961: 

102, 132-133). To compensate for this elimination, /ɛ/ was recorded in the context of a 

second /k/ word, keeping the number of labial, velar, and alveolar contexts the same across 

the two target vowels.  

 


