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Standard measures of productivity display enormous dispersion across
farms in Africa. Crop yields and input intensities appear to vary greatly,
seemingly in conflict with a model of efficient allocation across farms.
In this paper, we present a theoretical framework for distinguishing
between measurement error, unobserved heterogeneity, and poten-
tial misallocation. Using rich panel data from farms in Tanzania and
Uganda, we estimate our model using a flexible specification in which
we allow for several kinds of measurement error and heterogeneity.
We find that measurement error and heterogeneity together account
for a large fraction of the dispersion in measured productivity.

I. Introduction

How important is misallocation in explaining the income differences
acrosscountries?Arecent literature indevelopmentandgrowtheconomics
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has focused on misallocation across sectors, firms, and plants.1 This liter-
ature has found evidence that the dispersion of total factor productivity
(TFP) across production units seems to be consistently higher in poor
countries than in rich ones. In an aggregate sense, misallocation across
sectors or firms can significantly reduceTFP. Suchproductivity differences
have the potential to account for a large fraction of the cross-country in-
come differences.
A challenge in this literature is to distinguish misallocation from other

sources of dispersion in productivity, such as technology shocks,measure-
ment error, and adjustment costs of various kinds. Several recent papers
have takenup this issue in relation to data from themanufacturing sector:
for example, Rotemberg and White (2017), Haltiwanger, Kulick, and Sy-
verson (2018), Pellegrino and Zheng (2018), White, Reiter, and Petrin
(2018), and Bils, Klenow, and Ruane (2020). These papers all point out
that measurement error can lead to problems in identifying the extent
and severity of misallocation.
In this paper, we seek to disentangle these different sources of produc-

tivity dispersion in an environment where measured cross-firm dispersion
is very large, aggregateproductivity is low, andmarket failuresundoubtedly
contribute to cross-firm frictions in the allocationof resources. Specifically,
we take advantage of extraordinarily rich data from farms in two countries
in Africa, for which we have detailed panel observations on individual
farms. Many of these farms produce identical and homogeneous outputs
on different plots within each growing season. This allows us to observe
within-season variation across plots for a given farmer in the input intensity
and output of the same crop. We cannot interpret this variation as the re-
sult of misallocation, since farmers presumably face no market imperfec-
tions in allocating resources across their own plots. As a result, these data
allow us to identify and quantifymisallocationmore precisely. Our strategy
allows us to disentangle the productivity dispersion that arises from mis-
allocation from that stemming frommeasurement error or heterogeneity
in technology and inputs (including production shocks).
The agricultural sector provides a valuable window through which to

study firm-level misallocation. Most firm surveys have relatively few obser-
vations on different plants or establishments operated by the same firm,
and thismakes it difficult todisentanglefirmmanagement fromanyunob-
servable characteristics of the plant or factory; in contrast, we observe far-
mers concurrently operating multiple plots.2 Another advantage we have,

1 See, e.g., Restuccia and Rogerson (2008, 2013), Hsieh and Klenow (2009), McMillan,
Rodrik, and Verduzco-Gallo (2014), Porzio (2016), Bento and Restuccia (2017), Hicks et al.
(2017), and Restuccia (2018).

2 Recent literature offers several interesting exceptions, with a number of papers look-
ing at productivity differences across divisions of industrial conglomerates or across plants
of manufacturing firms: e.g., Maksimovic and Phillips (2001), Matvos and Seru (2014), and
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relative to firm surveys, is that our firms are producing highly homoge-
neous products, with little market power. Consequently, we can compare
the output of different firms (farms) without worrying about markups
andpricing strategies. Thus, inour context, there is noneed todistinguish
between revenue-basedTFPmeasures (TFPR)andquantity-basedTFPmea-
sures (TFPQ). To use the terminology ofHsieh andKlenow (2009), in our
setting, TFPR 5 TFPQ 5 TFP.
The agricultural sector is also an interesting context for studying mis-

allocation because of evidence that low agricultural productivity can ex-
plain—at least in a mechanical sense—a large fraction of the cross-
country dispersion of output per worker (Caselli 2005; Restuccia, Yang,
and Zhu 2008; Restuccia and Rogerson 2017). A cluster of recent papers
has suggested that theremay be very large dispersion in productivity at the
level of farms and farmers, potentially indicative of misallocation.3 These
papers point out that in poor economies, large fractions of the workforce
are employed in agriculture. In economies where two-thirds of the people
are farmers, such as those of sub-Saharan Africa, it is reasonable to ask
whether they are all good at farming—and whether market failures of var-
ious kindsmay induce toomany low-skill farmers to remain in agriculture.
Restuccia and Santaeulalia-Llopis (2017), in particular, have raised the

intriguing possibility thatmuch of Africa’s productivity deficit might be at-
tributable tomisallocationwithin the agricultural sector. They find sugges-
tive evidence, in data fromMalawi, that toomuch farmland is managed by
low-skill farmers. If true, this finding might offer an explanation for sub-
Saharan Africa’s low productivity in agriculture. By extension, misalloca-
tion might thus help explain the region’s low levels of income per capita.
The finding also suggests a relatively straightforward solution—albeit one
with great political complexity—namely, the liberalization of land and in-
put markets, so that the best farmers can eventually buy out those farmers
who lack the skill to farm productively. Restuccia and Santaeulalia-Llopis
calculate that reassigning land from low-productivity establishments to
high-productivity establishments (or equivalently from bad farmers to
good farmers) could result inmore than a threefold increase in aggregate
agricultural output.

3 See, e.g., Adamopoulos and Restuccia (2014, 2015), Adamopoulos et al. (2017), Bento
and Restuccia (2017), and Restuccia and Santaeulalia-Llopis (2017).

Ševčík (2015). However, these comparisons are complicated by the difficulty of comparing
productivity differences across different outputs, especially in an environment with imper-
fect competition, where firms have some market power in setting prices. An interesting pa-
per, directly relevant for ours, is Kehrig and Vincent (2019), which looks at firms that op-
erate multiple plants (establishments) producing the same good. Because of lumpiness in
investment at the plant level, Kehrig and Vincent point out that efficient internal alloca-
tion of capital may lead firms not to equalize revenue measures of productivity (TFPR,
to use the Hsieh-Klenow terminology) across plants. The authors revisit the cross-country
comparisons of Hsieh and Klenow (2009) and estimate the gains from reallocation after
accounting for the role of multiplant firms.
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A number of other studies explore the potential importance ofmisallo-
cation across farms in the developing world: for example, Emran and
Shilpi (2015), Chen (2016), Adamopoulos et al. (2017), Foster and Ro-
senzweig (2017), Shenoy (2017), and Gottlieb and Grobovšek (2018).
A paper close to ours in approach—in that it seeks to distinguish mis-
allocation from measurement error—is Esfahani (2018). These papers
build on a broader literature that has looked at productivity differences
outside agriculture—typically across firms and plants in advanced coun-
tries. Key works include Syverson (2004, 2011), Petrin, White, and Reiter
(2011), and Petrin and Sivadasan (2013).
Abroader literature inmacroandgrowtheconomics emphasizes the im-

portance ofmisallocation for aggregate productivity: for example, Guner,
Ventura, and Yi (2008), Restuccia and Rogerson (2008, 2013), Hsieh and
Klenow (2009), Banerjee and Moll (2010), Kalemli-Ozcan and Sorensen
(2012), García-Santana and Pijoan-Mas (2014), Hopenhayn (2014), Mid-
rigan andXu (2014), Bento andRestuccia (2017), andDa-Rocha,Mendes
Tavares, and Restuccia (2017). A recurring theme in this literature is that
the misallocation of productive resources into low-productivity firms can
lead to low aggregate productivity. Empirical analysis generally supports
the idea that poor countries have many firms with low measured TFP.
The reasons for the persistence of these low-productivity firms are not al-
ways clear, but a sufficient explanation would be frictions or policies that
induce distortions to the efficient size distribution of firms.
A challenge to all this literature is the measurement of productivity at

the level of individual firms. Typically, the data used for these analyses
come fromfirm surveys that vary in quality and coverage. To calculatemea-
sures of productivity for the individual firm requires a series of strong as-
sumptions about the firm-level production function and about the quality
of data. In particular, methods used widely in the macro literature onmis-
allocation have been criticized on methodological grounds by, for exam-
ple, Asker, Collard-Wexler, and De Loecker (2014), Foster et al. (2016),
and Haltiwanger (2016). Our approach addresses some of the concerns
raised by these critiques. In particular, our approach recognizes that firm-
level productivity may vary for many reasons other than misallocation.
Our paper makes use of panel data from two countries (Tanzania and

Uganda) for which we can observe production in great detail. In these
data, we can observe the inputs and outputs for specific crops cultivated
by individual farmers—not simply households—on specific plots of land.
The data are similar to those used by Restuccia and Santaeulalia-Llopis
(2017). The rich detail of the data allows us to disentangle misallocation
from three other important sources of variation in measured productiv-
ity at the farm level. The first of these is simply the stochastic nature of
agricultural production. Farmers face large shocks to production that
are not well observed in the data, related to weather, pests, crop diseases,
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and so on. A second source of variation in productivity is measurement
error; in spite of the high quality of the data that we work with, reporting
is imperfect, and measurement is imprecise.4 Finally, the third source of
variation in productivity is heterogeneity in unobserved land quality.5 All
will give rise to dispersion in measured TFP at the farm level as well as dis-
persion in input intensity. Because of this, any estimates of the potential
gains from reallocation must account carefully for production shocks,
mismeasurement, and heterogeneity.
In this paper, we propose a theoretical framework that models the pro-

cesses by which farmers select plots, allocate inputs to individual plots,
and subsequently realize output. Our theoretical framework explicitly
recognizes the stochastic nature of agricultural production and the se-
quencing of farm decision-making. We then show how this model can
help distinguish empirically between misallocation, mismeasurement, and
heterogeneity, given plot-level data.
Drawing on the model, we assess the relative importance of different

sources of dispersion in measured productivity. Our results suggest that
idiosyncratic shocks, measurement error, and heterogeneity in land qual-
ity are important sources of dispersion in measured productivity across
farms. We find that when these are taken into account, the potential sig-
nificance of misallocation drops substantially. Late-season production
shocks, measurement error, and heterogeneity in inputs together ac-
count for asmuch as 70%of the variance inmeasured productivity.6 Since
these are not susceptible to reallocation, our estimates for the aggregate
productivity gains that could be attained from a reallocation exercise are
correspondingly smaller. Our results suggest that efficient reallocation of
land and other agricultural inputs would not dramatically close the in-
come gaps between African countries and the world’s rich economies.
An important caveat of our work is that we consider only the effects of

static misallocation. Implicitly, this holds constant the existing institu-
tions and technologies. With improved technologies and different insti-
tutions, one might expect that the efficient allocation of land and inputs
across farms and farmers would look very different. In this sense, our re-
sults are not necessarily inconsistent with those of Adamopoulos and

4 See, e.g., Beegle et al. (2012), Deininger et al. (2012), and De Nicola and Giné (2014),
although Beegle, Carletto, and Himelein (2012) offer a more positive view.

5 The problem of unobserved land quality was recognized by Benjamin (1995) and Udry
(1996). More recent surveys often collect quite detailed data on soil quality, but the dimen-
sionality of soil quality measurement can be overwhelming; see, e.g., Tittonell et al. (2008).

6 By “late-season” shocks, we mean those shocks that affect production after the farmer
has made most or all of her input choices. We implicitly (and realistically) assume a pro-
duction process in which significant amounts of labor and other inputs are applied early
in the season for land clearing and planting and then additional inputs are applied during
the growing season based on observed growing conditions, market prices, and so on. Late-
season shocks might correspond to weather, pest, or disease shocks that happen suffi-
ciently late in the growing season that farmers cannot effectively respond to them.
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Restuccia (2014), who ask how agricultural production would change if
all countries had the same size distribution of farms that is observed in
the United States. Our data include no observations on farms of this size,
making it impossible for us to discipline estimates of such a dramatic
change in farm size.
The remainder of this paper proceeds as follows. Section II provides

some descriptive background and characterizes the dispersion of partial
productivity measures (output per unit land and labor per unit land)
across farms in our data. In section III, we construct a theoretical frame-
work that models the ways in which farmers choose their plots, select
crops, apply inputs, and realize output. In section IV, we use this model
to motivate the estimation of agricultural production functions for our
two countries. Working with these estimates, we show that the measured
dispersion of TFP depends on howwe control for heterogeneity andmea-
surement error. This matters, in turn, for our understanding of the im-
portance of misallocation as a cause of low aggregate productivity. Sec-
tion V discusses these results, and section VI concludes.

II. Dispersion in Productivity across and within Farms

Our paper draws on two nationally representative multiyear panel data
sets, for Tanzania and Uganda. These data were collected by government
statistical agencies in collaboration with the World Bank’s program on
Living Standards Measurement Surveys–Integrated Surveys of Agricul-
ture (LSMS-ISA). Both surveys collected data on all plots cultivated by
the household. For each plot, the survey identifies the individual or indi-
viduals within the household who farm the plot. Detailed information
was collected at the plot level on inputs used and output harvested. De-
pending on the survey, some or all plots were measured by GPS, and data
were collected using state-of-the-art survey techniques. The data are freely
available online, and all data and documentation are available for open
access.7

The survey data include detailed descriptors of both the households
and the farms. For households, data are available on household composi-
tion and the age, education, and health characteristics of eachhousehold
member; the relationship of each member to the household head; and
the allocation of each person’s time to household production andmarket
labor, among many other variables. For the farm, data were collected at
the plot level on crops cultivated, soil characteristics, toposequence, loca-
tion, soilquality(includingmeasuresoferosionandtreecover), landrights,
and a variety of observed shocks, including rainfall.

7 For information on the LSMS-ISA project and links to the data, see https://www
.worldbank.org/en/programs/lsms/initiatives/lsms-ISA.
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An important feature of our data—and one that helps us significantly
in terms of our identification strategy—is that we have many instances in
each country in which we observe the same farmer cultivating the same
crop on multiple plots within the same season. For instance, we may ob-
serve a single farmer growing maize on each of two or three distinct plots
in the same growing season.8

The plot is the basic unit of farm operations, and we define it as a con-
tiguous area on which a specific crop (or cropmixture) is grown by a par-
ticular farmer. Consistent with the definitions in the data, we assume that
there is approximate uniformity within a plot in the timing of farm oper-
ations and the application of inputs.9

Tanzania and Uganda differ to some degree in the types of production
systems that we observe. Some crops are common to both countries (e.g.,
maize), while others (e.g.,matoke, a kind of cooking banana) are of impor-
tance in only a single country (in this case, Uganda). For most purposes,
however, the two countries are quite similar in the farming systems and
production environment. Key points to note are that these are smallholder
farming systems that use few inputs other than human labor and hand
tools. Almost none of the farms in our data use irrigation or machinery;
commercial fertilizer and other agrochemicals are each used on less than
10% of Tanzanian plots and 2% of Ugandan plots. In Uganda, most farm-
ers cultivate crops in two growing seasons per year; in Tanzania, our data
primarily reflect cultivation in the main growing season.10

Table 1 shows key descriptive statistics for our two data sets. As panel A
shows, within some households, there are multiple farmers. Individual
plots are quite small, with a median plot size of 0.20 ha in Uganda and
0.40 ha inTanzania. Themajority of farmers cultivatemultiple plots within
each season.

8 For convenience, we speak of “a farmer” as an individual. But our data sets actually dis-
tinguish the person who owns the land from the person who manages the plot and the per-
son who keeps most of the revenue from the plot. Where these differ, we define the farmer
as the person who manages the plot. An added level of complexity is that the data often
allow for up to two household members to be designated as the manager of the plot.
We use the term “farmer” to refer to distinct individuals or pairs of household members.
When we speak of a farmer cultivating the same crop on different plots, it could thus be a
husband and wife (or father and son, or two brothers, etc.) operating as a pair. (This is the
case for about 50% of the plots in both Tanzania and Uganda.)

9 This corresponds precisely to the definition of a plot in the Uganda data. The Tan-
zanian data use different terminology but are consistent with this interpretation as well.
All of the plots in Uganda and 96% of Tanzanian plots are cultivated with a single crop or
with a single intercropped mixture of crops. Tanzanian measured plot sizes are adjusted
by the share of the plot area reported as cultivated; Ugandan plot areas are defined as cul-
tivated area.

10 Tanzania also has a minor growing season, and the data for crops cultivated during
this season are somewhat inconsistently handled in the survey. We focus on the main grow-
ing season, although the data for this season appear to include some inputs and outputs
that should properly be attributed to the minor season. All our results are robust to aggre-
gation to the full year.
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Panel B shows yields (output per hectare) for each of the data sets.
These are given in value terms because of the prevalence of intercrop-
ping (i.e., several crops being cultivated at the same time on a given piece
of land). Intercropping makes it difficult (or irrelevant) to measure yield
in physical quantities. Instead, we report value per hectare, with the phys-
ical quantities of different crops priced using median values reported by

TABLE 1
Agriculture in Tanzania and Uganda

Tanzania Uganda

A. Samples

Sample size:
Households 5,832 4,997
Farmers 7,302 10,364
Plot-seasons 21,000 52,585
Seasons 4 8
Regions 25 6
Districts 125 81
Villages 633 1,147
Farmer-seasons 9,821 21,793
Farmer-crop-seasons 17,089 48,343

Size of clusters (median):
Farmer-seasons 2 3
Farmer-crop-seasons 1 1

B. Yields

Median plot size (ha) .40 .20
Yield ($/ha):
Observations 15,635 52,334
Mean 903 3,061
Median 458 182
Standard deviation 5,133 345,562

Yield on maize plots ($/ha):
Observations 7,370 10,232
Mean 812 519
Median 438 210
Standard deviation 6092 3244

Yield on groundnut/beans plots ($/ha):
Observations 988 10,760
Mean 754 6,892
Median 439 218
Standard deviation 1,035 656,396

Yield on cassava (Tanzania) or banana (Uganda) plots ($/ha):
Observations 1,172 6,083
Mean 689 565
Median 370 314
Standard deviation 974 1,317

Labor (days/ha):
Observations 18,416 52,334
Mean 225 258
Median 128 141
Standard deviation 697 1,217

Note.—All yields are winsorized at the 0.01 level.
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all farmers in a community.11 We define labor input to be all forms of la-
bor (hired and family labor) used on the plot.
It is immediately apparent from the yield data that reported yields are

wildly skewed. The mean yield is typically around twice the median, and
the large standard deviations are indicative of very long right-hand tails
of the distributions. This is true even after the data have been winsorized
at the 0.01 level. Because there are biophysical constraints on maximum
yield, we look skeptically at some of the very high reported values of yield
in these data, and we view this as prima facie evidence that measurement
error is likely to be an important feature of the data.12

A. Efficient Static Allocation

As a benchmark, we consider an efficient static allocation of inputs across
plots that are homogeneous in quality. For any efficient allocation, by the
second welfare theorem, there will be shadow prices common to all farm-
ers such that profits are maximized on each plot, and factor marginal
value products are equalized across all plots. This will be true even if farm-
ers differ in ability. For example, suppose that the physical production
function for crop output Yhit of plot i of farmer h in season t, using land
Lhit and labor Xhit, is

Yhit 5 eqh Lhitð ÞaL Xhitð ÞaX , (1)

with qh the TFP of farmer h.13 The input choices on that plot maximize
profits at shadow prices ðpYhit

, pLhit
, pXhit

Þ. In an efficient allocation, these
shadow prices are common across all farmers. In familiar Cobb-Douglas
fashion, factor demands and output are characterized by

xhit 2 lhit 2 ln aXð Þ 2 ln aLð Þð Þ 5 ln
pLhit

pXhit

� �
5 ln

pL
pX

� �
,

yhit 2 lhit 1 ln aLð Þ 5 ln
pLhit

pYhit

� �
5 ln

pL
pY

� �
,

(2)

11 Although we make use of price data in valuing joint outputs of specific plots, we note
that we are using prices here simply as aggregation weights. We do not need to worry about
the endogeneity of prices to plot-level or farm-level input choices, because the marketable
surplus of any single farmer is so small.

12 We note that these LSMS-ISA data sets rely on farmer self-reporting of yield, which
may be one source of measurement error, as suggested by Gourlay, Kilic, and Lobell
(2017). Enumerator error and data entry mistakes may also be present, even with the most
diligent efforts at quality control.

13 The production function (eq. [1]) is a gross simplification, of course. Functional form
aside, it abstracts from the multistage process of farming, treating labor (and land) inputs
over each farming season as undifferentiated.
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yhit 2 ykit 5
qh 2 qkð Þ 1 aL ln pYhit

=pLhit
ð Þ 1 aX ln pYhit

=pXhit
ð Þ

1 2 aL 2 aX

5
qh 2 qkð Þ 1 aL ln pY=pLð Þ 1 aX ln pY=pXð Þ

1 2 aL 2 aX

:

(As is standard, lowercase variables denote log values: lhit indicates the log
of land area for plot i of farmer h in season t.) Efficiency requires that the
scale of production should vary across farmers according to their produc-
tivity, with that variation limited by decreasing returns to scale. However,
factor intensity ratios and the value of output per hectare would be iden-
tical across all plots planted with the same crop at the same date. In this
riskless world with perfect measurement, any variation across plots in fac-
tor ratios or the value of output per hectare would reflect misallocation.14

This description does not characterize the world particularly well, and
our data from Tanzania and Uganda show marked deviation from this
benchmark. There is wide dispersion in factor ratios across plots as well
as in realized output per unit land.
Figure 1 shows, in two panels (for Tanzania and Uganda), Epanech-

nikov kernel estimates of the density of the plot-level deviation of log out-
put per hectare from its sample mean. The different lines on the figure
correspond to dispersions calculatedwithdiffering controls. Figure 2 sim-
ilarly illustrates the plot-level density of the deviation of log labor perhect-
are in each country.
Consider first the raw dispersions across plots of output per hectare in

figure 1 and labor per hectare in figure 2. The variances of log output
per hectare are 1.49 for Tanzania and 1.82 for Uganda. The correspond-
ing variance of log labor input per hectare is 1.06 in Tanzania and 1.00 in
Uganda. It is noteworthy that the variance of log labor input is quite
high; yield dispersion is not coming entirely from shocks affecting final
harvest.15

The raw data on output and input do not account for variation in ob-
servable heterogeneity across plots. Land characteristics such as slope,
soil type, and location affect farmers’ optimal allocations of inputs and
their expected yields. These land characteristics are measured in each
of our data sets. Characteristics of the farmer, such as gender, education,
and experience, are also components of productivity that we observe.
Moreover, agriculture in each of our settings is almost exclusively rain
fed. Rainfall thus affects plot productivity both by affecting the overall
level of plot productivity and through unanticipated shocks to output.
The data include measurements of rainfall totals at the community level;

14 This conclusion is general to any homothetic production function.
15 As a different measure of dispersion, consider the 90-10 ratio of output per hectare

(labor per hectare), i.e., the 90th percentile of output divided by the 10th percentile.
These numbers are 16.00 (13.00) for Tanzania, and 24.13 (11.50) for Uganda.
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FIG. 1.—Dispersion of log output per hectare across plots. Plot Chars. 5 plot character-
istics; HH 5 household; Y-S-C FE 5 year-season-crop fixed effects.



FIG. 2.—Dispersion of log labor per hectare across plots. Plot Chars. 5 plot character-
istics; HH 5 household; Y-S-C FE 5 year-season-crop fixed effects.



we condition on measures of rainfall and their interactions with land
characteristics as well. If these observed characteristics fully account for
the variation in productivity, then in an efficient allocation output per
hectare and labor perhectare would not vary across plots, oncewe control
for observables.
To do so, land and labor inputs to production ( J ∈ fL, Xg) are mod-

eled as the observed quantity of that factor ( J o
hit), observed as hectares or

days of input J on plot i of household h in season t, corrected for a factor-
specific set of observables (WJhit) so that Jhit 5 J o

hit e
WJhitbJ . (In essence, this is

defining “effective labor units” and “effective land units” on the basis of
observables.) LetWYhit

be a set of observable determinants of TFP, includ-
ing detailed measures of weather shocks realized after factor inputs are
chosen, so that the production function now becomes

Yhit 5 eWYhitbY1qY h Lo
hit e

WLhitbL

� �aL X o
hit e

WXhitbX

� �aX

: (10)

Equations (2) continue to hold, with observed factor inputs and ob-
served output adjusted for these observed determinants of productivity:

xo
hit 1 WXhit

bX 2 lohit 2 WLhit
bL 2 ln aXð Þ 2 ln aLð Þð Þ 5 ln

pLhit

pXhit

� �
5 ln

pL
pX

� �
,

yhit 1 WYhit
bY 2 lhit 2 WLhit

bL 1 ln aLð Þ 5 ln
pLhit

pYhit

� �
5 ln

pL
pY

� �
,

(20)

yhit 2 ykit 1 WYhit
2 WYkit

ð ÞbY 5
qh 2 qkð Þ 1 aL ln pYhit

=pLhit
ð Þ 1 aX ln pYhit

=pXhit
ð Þ

1 2 aL 2 aX

5
qh 2 qkð Þ 1 aL ln pY=pLð Þ 1 aX ln pY=pXð Þ

1 2 aL 2 aX

:

Tables 2 and 3 report a set of regressions for each country, with output
per hectare as the dependent variable in all regressions. Observations
are for individual plots in specific years/seasons. In each of these tables,
the first column shows selected coefficients from a regression of output
per hectare on cultivated area and the large set of observable land char-
acteristics and exogenous shocks that are available in these data sets. The
estimated density of the residuals from these regressions is illustrated as
the curve labeled “Observed Plot Chars” in each of the panels of figure 1.
The plot characteristics and shock variables are highly jointly significant
in each regression, and the estimated variance of the residuals is signif-
icantly smaller than the variance of the raw data in each case. This tells us
that the observable plot characteristics are indeed explaining part of the
dispersion in yield. Nevertheless, as is apparent from figure 1, including
these observable plot characteristics does not alter the overall pattern of
dispersion in productivity.
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Thefirst columnof tables 4 and5 reports the same subset of coefficients
of the parallel regression of labor input per hectare on the observable ex-
ogenous shocks, farmer characteristics, and land characteristics. The esti-
mated density of the residuals from these regressions is illustrated as the
curve labeled “Observed Plot Chars” in each of the panels of figure 2.

TABLE 2
Log Output per Hectare in Tanzania

No Fixed
Effects

Year-Crop-
Region

Year-Crop-
Village

Year-Crop-
Household

Year-Crop-
Farmer

(1) (2) (3) (4) (5)

ln(ha) 2.49 2.52 2.48 2.51 2.5
(.009) (.011) (.012) (.030) (.031)

Female plot 2.16 2.12 2.15 2.0014
(.026) (.028) (.031) (.200)

Plot used free of
charge 2.044 2.021 2.033 .073 .099

(.029) (.032) (.034) (.095) (.098)
Shared, rent .015 2.23 2.02 2.67 2.62

(.140) (.160) (.160) (.700) (.710)
Shared, owned .14 .08 .032 2.13 2.098

(.038) (.048) (.049) (.140) (.140)
Average quality 2.16 2.17 2.15 2.054 2.074

(.018) (.020) (.021) (.070) (.072)
Poor quality 2.28 2.36 2.35 2.21 2.21

(.038) (.040) (.046) (.120) (.120)
Loam .17 .071 .14 2.051 2.063

(.024) (.027) (.029) (.081) (.084)
Clay .2 .09 .16 .012 2.013

(.030) (.033) (.036) (.095) (.099)
Distance to market .0023 .0011 .0011 .0045 .0046

(.001) (.001) (.001) (.006) (.006)
Irrigated .46 .17 .23 .69 .49

(.061) (.083) (.085) (.230) (.240)
Erosion evident 2.018 2.015 2.044 .026 .022

(.026) (.028) (.031) (.070) (.072)
Sale value 2.047 .021 2.053 .64 .62

(.076) (.087) (.077) (1.850) (2.040)
Current morbidity (z) 2.043 2.044 2.035 .22

(.010) (.010) (.011) (.140)
Morbidity missing 4.2 4.3 3.46 222.1

(.950) (1.020) (1.140) (14.000)
R 2 .29 .52 .53 .71 .71
Log variance of
residuals 1.15 .76 .73 .24 .24

F-statistic for plot
characteristics 122.8 70.8 56.1 10.5 10.3

Corresponding
p-value 0 0 0 0 0

Note.—Standard errors are in parentheses. R 2 is from the OLS dummy variable specifi-
cation. Variance of the dependent variable is 1.49. Regressions include 34 plot charac-
teristics—e.g., soil type, toposequence, boundary markers, location, rainfall, and interac-
tions with rain—and 14 household and farmer characteristics—e.g., housing, education,
and age.
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Again, the set of observable characteristics is highly jointly significant in
each regression, and the estimated variance of the residuals is signifi-
cantly smaller than that of the raw data. The variation in observable char-
acteristics, including shocks, is an important determinant of the variation

TABLE 3
Log Output per Hectare in Uganda

No Fixed
Effects

Year-Crop-
District

Year-Crop-
Village

Year-Crop-
Household

Year-Crop-
Farmer

(1) (2) (3) (4) (5)

ln(ha) 2.56 2.69 2.7 2.73 2.73
(.006) (.008) (.008) (.019) (.020)

Male plot .14 .11 .095 .33
(.024) (.026) (.029) (.170)

Leasehold plot .0001 .055 .011 2.10 2.21
(.032) (.036) (.039) (.110) (.120)

Customary plot 2.024 .04 .012 2.13 2.17
(.045) (.050) (.052) (.150) (.150)

Mailo plot 2.060 .022 .011 .0059 .046
(.030) (.036) (.042) (.16) (.18)

Plot via occupancy 2.015 .0030 2.024 2.030 2.020
(.030) (.035) (.037) (.110) (.120)

Customary 2.30 .0066 .020 2.052 .029
(.016) (.026) (.028) (.092) (.099)

No document .0046 2.019 2.029 2.0037 2.019
(.024) (.027) (.029) (.093) (.097)

Fair soil 2.033 2.024 2.015 .0048 .11
(.040) (.044) (.043) (.12) (.13)

Poor soil 2.23 2.20 2.16 2.26 2.52
(.097) (.10) (.10) (.31) (.36)

Sandy clay loam .010 2.0099 2.0020 2.015 2.010
(.014) (.016) (.016) (.048) (.051)

Black clay 2.0042 2.0001 .020 .075 .088
(.018) (.020) (.022) (.064) (.067)

Fair soil � total rain 2.15 2.15 2.18 .064 .031
(.056) (.067) (.070) (.200) (.220)

Poor soil � total rain .024 .11 .047 2.64 2.66
(.16) (.17) (.18) (.49) (.52)

Fair soil � flood
duration .016 .042 .033 .19 .25

(.029) (.032) (.033) (.11) (.15)
R 2 .33 .69 .73 .79 .79
Log variance of
residuals 1.42 .66 .52 .26 .26

F-statistic for plot
characteristics 192.5 171.0 158.3 37.5 36.6

Corresponding
p-value 0 0 0 0 0

Note.—Standard errors are in parentheses.R 2 is from theOLSdummy variable specifica-
tion. Variance of the dependent variable is 1.82. Regressions include 37 plot characteristics,
e.g.,dummies forsoil type, toposequence,boundarymarkers,andlocation;11interactionsof
plot characteristics with weather shocks; 12 household and farmer characteristics, e.g., edu-
cation, age, and dummies for morbidity, and housing; 38 household-level self-reported
shocks, e.g., drought, floods, job loss, and livestock disease; three community-level remote-
sensing rainfall variables; and annual and seasonal rainfall totals.
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in both output and labor input per hectare across plots in each of these
samples. But again, these observables do not generate much difference
in the pattern of residuals, as shown in figure 2.
Differences in technology across farming systems and crops will pre-

sumably affect yield and input intensity, even in an efficient allocation.
Similarly, variation over time in the shadow costs of factors of production

TABLE 4
Log Labor per Hectare in Tanzania

No Fixed
Effects

Year-Crop-
Region

Year-Crop-
Village

Year-Crop-
Household

Year-Crop-
Farmer

(1) (2) (3) (4) (5)

ln(ha) 2.63 2.61 2.61 2.61 2.6
(.006) (.008) (.008) (.018) (.019)

Female plot 2.12 2.12 2.12 .12
(.018) (.019) (.021) (.110)

Plot used free of
charge .066 2.016 .028 .041 .012

(.020) (.022) (.023) (.055) (.056)
Shared, rent 2.059 2.018 2.16 2.96 2.97

(.099) (.110) (.110) (.470) (.460)
Shared, owned 2.048 2.022 2.022 2.018 2.047

(.025) (.032) (.033) (.083) (.084)
Average quality 2.0053 .0079 .0071 .043 .038

(.013) (.014) (.015) (.041) (.042)
Poor quality 2.022 2.0095 2.029 .079 .1

(.025) (.027) (.031) (.070) (.072)
Loam .011 .025 .037 .027 .03

(.016) (.018) (.020) (.047) (.048)
Clay .053 .059 .074 2.015 2.0019

(.021) (.023) (.025) (.057) (.058)
Distance to market 2.00015 2.00011 2.00033 .02 .021

(.000) (.001) (.001) (.004) (.004)
Irrigated 2.075 .018 2.12 .096 .067

(.042) (.059) (.059) (.140) (.150)
Erosion evident 2.019 2.066 2.056 2.19 2.18

(.018) (.020) (.021) (.042) (.043)
Sale value 2.14 2.19 2.14 .95 1.11

(.057) (.062) (.059) (1.140) (1.230)
Current morbidity (z) 2.0052 2.0083 2.011 .14

(.007) (.007) (.008) (.078)
Morbidity missing .56 .86 1.21 213.3

(.650) (.700) (.780) 27.76
R 2 .34 .46 .46 .61 .61
Log variance of
residuals .65 .45 .44 .11 .11

F-statistic for plot
characteristics 333.8 202.7 181.4 37.6 37.6

Corresponding
p-value 0 0 0 0 0

Note.—Standard errors are in parentheses. R 2 is from the OLS dummy variable speci-
fication. Variance of the dependent variable is 1.06. Regressions include 34 plot characteris-
tics—e.g., soil type, toposequence, boundary markers, location, rainfall, and interactions
with rain—and 14 household and farmer characteristics—e.g., housing, education, and age.
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TABLE 5
Log Labor per Hectare in Uganda

No Fixed
Effects

Year-Crop-
District

Year-Crop-
Village

Year-Crop-
Household

Year-Crop-
Farmer

(1) (2) (3) (4) (5)

ln(ha) 2.72 2.77 2.78 2.79 2.79
(.004) (.005) (.006) (.012) (.012)

Male plot 2.014 .012 2.015 2.077
(.013) (.016) (.018) (.096)

Leasehold plot 2.088 2.094 2.11 .065 .15
(.019) (.024) (.027) (.066) (.075)

Customary plot 2.20 2.17 2.15 2.13 2.15
(.026) (.032) (.035) (.087) (.090)

Mailo Plot 2.10 2.12 2.081 .21 .13
(.017) (.023) (.028) (.091) (.10)

Plot via occupancy 2.14 2.16 2.12 .0096 .023
(.018) (.023) (.026) (.068) (.073)

Customary 2.12 2.12 2.12 .15 .18
(.0093) (.017) (.019) (.055) (.059)

No document 2.066 2.041 2.010 .0027 .0017
(.014) (.018) (.020) (.056) (.059)

Fair soil .060 .041 .040 2.19 2.19
(.023) (.028) (.029) (.071) (.076)

Poor soil 2.023 2.027 2.013 .11 .15
(.057) (.067) (.068) (.18) (.22)

Sandy clay loam .00054 2.0090 2.00055 .023 .033
(.0083) (.010) (.011) (.028) (.029)

Black clay 2.0040 2.014 2.0013 .019 .030
(.010) (.013) (.015) (.036) (.038)

Fair soil � total rain 2.028 2.038 2.048 .039 .13
(.033) (.044) (.048) (.12) (.13)

Poor soil � total rain 2.036 2.10 2.17 2.43 2.37
(.090) (.11) (.12) (.29) (.30)

Fair soil � flood
duration .019 .048 .033 .075 .063

(.016) (.019) (.021) (.059) (.076)
Poor soil � flood
duration .066 .10 .024

(.11) (.14) (.15)
R 2 .41 .51 .53 .60 .60
Log variance of
residuals .48 .28 .25 .09 .09

F-statistic for plot
characteristics 719.7 487.0 402.7 110.7 107.7

Corresponding
p-value 0 0 0 0 0

Note.—Standard errors are in parentheses. R 2 is from the OLS dummy variable specifi-
cation. Variance of the dependent variable is 1.00. Regressions include 37 plot characteris-
tics—e.g., dummies for soil type, toposequence, boundarymarkers, location; 11 interactions
of plot characteristics with weather shocks; 12 household and farmer characteristics, e.g.,
education, age, and dummies for morbidity and housing; 38 household-level self-reported
shocks, e.g., drought, floods, job loss, and livestock disease; three community-level remote-
sensing rainfall variables; and annual and seasonal rainfall totals.



or the shadow value of output could generate time variation in output or
labor per hectare. Therefore, column 2 in each of tables 2–5 reports co-
efficients from regressions of log output per hectare and log labor per
hectare on the same set of plot characteristics with year-season-region-
crop fixed effects. Estimates of the density of the residuals from these re-
gressions are shown as the curves labeled “Region-Y-S-C FE” in each of
the panels of figures 1 and 2.
Qualitatively speaking, these tables provide evidence that observable

characteristics of plots and shocks have a statistically meaningful effect
on input intensity and yield. However, we note that, quantitatively speak-
ing, these observables do not account for a very large fraction of the total
dispersion.
One way to see this is to note that the magnitude of the remaining var-

iation is large: the log variance of the residuals is 1.15 in Tanzania and 1.42
in Uganda. In comparison, the variance of log output per hectare for
farms in the United States is 0.05 for corn in the Corn Belt and 0.14 for
wheat in the Northern Plains (Claassen and Just 2011).16 The variance
of log labor per hectare also remains substantial: it is 0.65 in Tanzania
and 0.48 in Uganda.
It is apparent that substantial variation in output per hectare and labor

per hectare remains after we account for a rich set of observable charac-
teristics of land, including detailedmeasures of rainfall variation. The var-
iance remains large even when we add year-season-crop-region fixed ef-
fects (col. 2). This remaining variation is sometimes characterized as
reflecting the effects of factor and output market distortions that prevent
the efficient match of factor inputs to dispersion in TFP (Hsieh and
Klenow 2009; Adamopoulos et al. 2017; Restuccia and Santaeulalia-Llopis
2017). For this reason, we refer to the estimated residuals from the regres-
sions based on equations (20) and reported in column 2 of tables 2–5 as
our baseline measures of dispersion in productivity across plots.17

The variation remains substantial as we move from the baseline spec-
ification to tighter specifications, adding fixed effects at progressively
narrower geographic units. In tables 2–5, column 3 adds village fixed ef-
fects. The dispersion falls with successively narrower fixed effects, but it
remains nontrivial.

16 Claassen and Just (2011) report that for more than 500,000 observations in their US
data, the 95th percentile corn yield is 190% higher than the 5th percentile yield, a differ-
ence they view as “quite wide” (148). By contrast, we find 95-5 ratios of 9,304% for Uganda
and 2,558% for Tanzania. This reinforces our perception that the dispersion of yield across
plots is quite high.

17 An alternative baseline could be provided by examining the residuals from a similar
regression with village-crop-year fixed effects. This would absorb the effects of unobserved
village-level shocks that might otherwise be misinterpreted as misallocation, but it would
also absorb any real misallocation of resources across villages. As can be seen in figs. 1
and 2, the estimated dispersion of the residuals from these two specifications is similar.
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This baseline dispersion could be attributed to misallocation. How-
ever, even if factors of production are allocated with full efficiency, out-
put shocks and measurement error generate output dispersion across
farms. Consider three components of TFP. The first is the set of observ-
able characteristics of the plot, farmer, or community,WYhit

, which may in-
clude both permanent and transitory components. These transitory com-
ponents may be realized either before or after factor inputs are chosen
for the plot. The second is a component that is unobserved in the data
but known to the farmer at the time factor inputs are chosen, qYhit

. Finally,
there is a component that is unobserved in the data and unknown to the
farmer at the time of input application, eYhit

. This final component could
be an actual output shock that is realized late in the season, or it could be
puremeasurement error in output. (From the production function alone,
these cannot be distinguished.)

qhit 5 WYhit
bY 1 qYhit

1 eYhit
: (3)

Baseline dispersion in factor ratios could reflect unobserved characteris-
tics of land or labor, or measurement error in either input. Land and la-
bor inputs to production ( J ∈ fL, Xg) aremodeled as the observed quan-
tity of that factor ( J o

hit), observed as hectares or days of input J on plot i of
household h in season t, corrected for a factor-specific set of observables
(WJhit) and subject to classical measurement error eJhit :

Jhit 5 J o
hit e

WJhit bJ2eJhit : (4)

Using equations (3) and (4) in equations (2), effective units of labor to
land remain equal to the common ratio of factor prices:

xo
hit 1 WXhit

bX 2 l ohit 2 WLhit
bL 2 ln aXð Þ 2 ln aLð Þð Þ 5 ln

pLhit

pXhit

� �
1 eXhit

2 eLhit

5 ln
pL
pX

� �
1 eXhit

2 eLhit
,

(200a)

but measurement error implies that observed ratios of labor to land vary.
Similarly, for output per land,

yhit 1 WYhit
bY 2 lohit 2 WLhit

bL 1 ln aLð Þ 5 ln
pLhit

pYhit

� �
1 eYhit

2 eLhit

5 ln
pL
pY

� �
1 eYhit

2 eLhit
:

(200b)

Output ratios across plots vary with TFP and with risk and measurement
error:

(200a)
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yhit 2 ykit 1 WYhit
2 WYkit

ð ÞbY

5
qh 2 qkð Þ 1 aL ln pYhit

=pLhit
ð Þ 1 aX ln pYhit

=pXhit
ð Þ

1 2 aL 2 aX

1 eYhit
2 eYkit

5
qh 2 qkð Þ 1 aL ln pY=pLð Þ 1 aX ln pY=pXð Þ

1 2 aL 2 aX

1 eYhit

2 eYkit
:

(200c)

In an efficient allocation, the variance of shadow prices is zero; but it is
also true that any amount of observed dispersion in residuals is consistent
with an efficient allocation when there is measurement error or risk.
In order to draw useful conclusions regarding the extent of factor mis-

allocation and its implications for aggregate output loss, it is necessary to
disentangle the effects of measurement error and stochastic output from
variation due to factor misallocation. To do so, we rely on an assumption
that within a farm, the allocation of resources across plots is efficient.
We define a farm as the set of plots cultivated under the management

of a single farmer in a single season. Any reallocation of factors across
plots within a farm requires no market intermediation or other ex-
change, only rational decision-making by the farmer. While we acknowl-
edge that theremay in fact be behavioral limits on the rationality of input
decisions by farmers, we abstract away from these sources of efficiency
loss for this paper and maintain the Schultzian “poor but efficient” as-
sumption (Schultz 1964). This assumption does not imply that all farm-
ers are equally productive or knowledgeable. One farmer may have supe-
rior technical knowledge relative to another; this difference would be
reflected in higher TFP.
If the allocation of factors across plots within a farm (during a single

season) is efficient, then the dispersion of factor intensities and output-
factor ratios across plots within a farm is generated by (1) imperfect mea-
surement of factor inputs, (2) imperfect measurement of output, or
(3) varying realizations of risk.18

The final two columns of tables 2–5 show coefficients from regressions
of log output per hectare and log labor per hectare with the same set of
plot characteristics and within-farm fixed effects. To be precise, column 4
reports the regressions with crop-season-household fixed effects, and col-
umn 5 is based on crop-season-farmer fixed effects, where we are now

18 It is of course possible that some farmers are systematically worse than others at allo-
cating efficiently across plots. But it is not obvious that this should have a strong correlation
with productivity levels. A bad farmer is arguably one who realizes equally poor yields
across all plots, on the basis of allocating inputs with the same (improper) intensity across
all plots.
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looking at variation across plots farmed by the same individual within the
households. The residuals from these regressions are again shown in each
of the panels of figures 1 and 2.19

In each country, when we consider either the yield regressions of ta-
bles 2 and 3 or the labor intensity regressions of tables 4 and 5, approxi-
mately one-fifth of the baseline dispersion reported in column 2 remains
after we focus attention on variation in output per hectare across plots
within a farm.
Given our assumption of efficient within-farm allocation, we conclude

that this residual variation is evidence for significant heterogeneity or
measurement error in factors of production or output. Alternatively, it
could reflect unobserved shocks to output that do not affect themarginal
product of factor inputs or that occur after the application of inputs to
different plots within a farm. If the variance of these errors of measure-
ment, or of shocks to output, is at least as large across farmers as it is across
plots of a given farmer, then interpreting the residuals of the equations
estimated in columns (2) of tables 2–5 as misallocation would result in
an overestimate of the importance of misallocation.
To estimate the magnitude of misallocation, we need to know more

about the production function and the magnitude of measurement er-
ror in factor inputs, which we address in section III.

B. Plot Size, Yield, and Factor Intensity

We observe a strong and consistent negative relationship between output
per hectare and plot size. While this pattern is reminiscent of the long-
standing discussion of an inverse farm size–yield correlation, we find in
the final columnof tables 2–5 that this pattern holds across plots (planted
with the same crop in the same season) within a farm. Across farms, factor
market imperfections might explain an inverse relationship between
land area and yield, but these market imperfections cannot explain this
relationship across plots within a farm. Both Tanzania and Uganda ex-
hibit fairly extreme negative relationships between log yield and log plot
size within a farm; the estimated elasticity is 20.73 (SE 5 0:02) for
Uganda and 20.50 (SE 5 0:03) for Tanzania.
This pattern of a strong negative relationship between crop yields and

plot size within a farmhas been observed inmultiple data sets fromAfrica
(Carletto, Gourlay, and Winters 2015; Bevis and Barrett 2017; Carletto
et al. 2017). One source of this estimated inverse relationship might
be measurement error in plot size. Kilic et al. (2016) provide a careful

19 There is no evidence of systematic differences in yield and labor intensity on the plots
of men and women farmers within the same household in Uganda or Tanzania. Even in
Burkina Faso, where there is such evidence, Udry (1996) finds that the magnitude of the
dispersion generated by this difference is very small relative to other sources of variation.
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account of the role of this kind of measurement error, using these same
Uganda and Tanzania data sets. They show that whilemeasurement error
does contribute to the estimated inverse plot size relationship, the rela-
tionship remains strong after using objective GPS measures of plot area
and correcting for selection bias in the subset of plots measured with
GPS. A number of other studies consider other reasons why yield might
be negatively related to plot size, for example, Bevis and Barrett (2017).
Most relevant for us, Gourlay, Kilic, and Lobell (2017) report the results
of a methodological experiment, using different data from Uganda, that
carefully examined the reporting of output data from farmers. Their
findings suggest that self-reported yields are biased upward compared
to measurement of crop cuts at harvest—and that this effect is stronger
on smaller plots, perhaps fully explaining the observed relationship.
We find, however, that labor per hectare is also strongly declining in

plot size within a farm (col. 5 of tables 4 and 5). The decline in both yield
and labor per hectare with plot size suggests a different interpretation:
namely, that smaller plots have higher unmeasured land quality.20

These correlations lead us to hypothesize that there is a substantial de-
gree of unmeasured heterogeneity in land quality across the land of a
given farmer. This is consistent with the patterns in figures 1 and 2 doc-
umenting important dispersion in yield and factor intensity across the
plots of an individual farmer. It may plausibly play a role in the strong
inverse relationship observed between cultivation intensity and plot size
across the plots of a farmer.

III. Theoretical Framework

Our central argument is that heterogeneity in land quality and growing
conditions plays an important role in explaining the dispersion of pro-
ductivity at the level of plots and farms. This heterogeneity is unobserv-
able to the econometrician but may be well recognized by farmers. Some
of the unobservables involve intrinsic properties of the soil or land, such
as the physical and chemical properties of the soil or the slope and topog-
raphy. Other unobservables relate to highly localized shocks—such as
hail that strikes one plot on a farm but spares another. Still others may
involve complex interactions between shocks and plot characteristics: a

20 Barrett, Bellemare, and Hou (2010), using data from Madagascar, argue against this
hypothesis, showing that the introduction of a vector of objective measures of soil quality
from soil tests has no effect on the estimated inverse yield–plot size relationship. However,
in their data, the measures of land quality are not jointly significant predictors of yield, nor
are they jointly significant in the production function estimated. This is a frequent charac-
teristic of observed measures of land quality. In our data, however, the land quality mea-
sures are strongly jointly significant, perhaps reflecting the high quality of data collection
in the LSMS-ISA data. This encourages us to think that land quality may have some role to
play in the relationship between plot size and observed yield.
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heavy early-season rain makes one low-lying plot unworkable at the start
of the season because of mud, but the same rainstorm is actually benefi-
cial for another plot that is well drained.
The importance of this kind of heterogeneity, often at a very fine-

grained spatial level, is well documented in agronomic and economic
studies.21 Farmers can and do modify their practices to reflect heteroge-
neity of this kind; for example, choosing plot boundaries that reflect spa-
tial differences in soil type. But even in detailed household surveys such
as the LSMS-ISA data, the available measures of plot-level land quality do
not adequately capture these dimensions of heterogeneity.
To help us understand the significance of this kind of location speci-

ficity, we develop a model of agricultural production on heterogeneous
land in which farmers can endogenously choose plot sizes and bound-
aries. This proves to be a good description of the realities of agriculture
in our two countries. In the Uganda data, 62% of plots are subdivided
from larger parcels of contiguous land controlled by an individual farmer,
implying that these plots are literally or approximately adjacent.22

A. Agricultural Production with Continuous Variation
in Land Quality

The farmer, indexed by h, holds a fixed endowment of land denoted by
Lh. This land parcel consists of a continuum of locations that can be in-
dexed by k on the interval [0, Lh].
At a location k, the quality of the land in effective units is denoted by

z(k). For simplicity, assume that the function z(⋅) is continuous and inte-
grable. Land is used for producing an agricultural good. The production

21 The importance of heterogeneity in agricultural systems at highly localized spatial
scale has been shown previously in numerous contexts, e.g., by Hanna, Mullainathan, and
Schwartzstein (2014). A data collection experiment conducted in Uganda (Lobell et al.
2018, 13) found that the yields on randomly chosen 8 � 8-m squares within typical maize
plots correlated only weakly with the yields on the entire plots (which had a median size
of 0.11 ha) because of “substantial intra-plot heterogeneity of yields in these systems.” For
African crop agriculture, see the work on agronomy by Tittonell et al. (2005, 2007, 2008),
Vanlauwe, Tittonell, and Mukalama (2006), and Vanlauwe et al. (2015), along with papers
in economics such as those by Suri (2011) and Tjernstrom, Carter, and Lybbert (2015). For
US crop agriculture, Hurley, Malzer, and Kilian (2004) document high levels of agronomic
heterogeneity within farmers’ fields. This indeed is the premise for the emergence of “pre-
cision agriculture” technologies, as discussed by Stoorvogel, Kooistra, and Bouma (2015).
Recent empirical work on precision agriculture in the United States shows the profitability
of fine-tuning inputs to within-plot variation in land quality (Schimmelpfennig 2016). Com-
mercial systems typically fine-tune applications of chemicals at a spatial resolution of less
than 1.0 m2, reflecting meaningful differences in soil properties at that scale.

22 A parcel is defined as a contiguous area under uniform land tenure held by a given
farmer. Not all parcels are subdivided into plots; some are farmed as single plots. But just
around one-third of parcels are subdivided into plots, with an average of 2.8 plots per
multiplot parcel.
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process uses a bundle of inputs that, in principle, could be applied on a
location-specific basis. We denote the inputs used at a particular location
y(k). Output is also affected by a location-specific productivity shock that
depends on the state of the world, which we denote g(k, s). The state of
the world s is distributed according to D(s) over support S. This shock is
observed by the farmer before she chooses the input bundle. For exam-
ple, this shock could consist of early-season rain—or perhaps the timing
of the onset of the rainy season. A given state of the world may have dif-
ferent productivity implications for different locations on the farmer’s
land and for different farmers.
Given this notation, we define a simple production technology in

which the output obtained by farmer h at location k conditional on the
shock s having been realized will be given by

qh k, sð Þ 5 gh k, sð Þzh kð Þ yh k, sð Þð Þv: (5)

If a profit-maximizing farmer were to farm only this single point, facing a
farmer-specific shadow price wh for inputs, the farmer would solve

max
yh k,sð Þ

gh k, sð Þzh kð Þ yh k, sð Þð Þv 2 whyh k, sð Þ� �
: (6)

As an elementary optimality condition, this would give an optimum of
y*h ðk, sÞ 5 ðvghðk, sÞzhðkÞ=whÞ1=ð12vÞ. The corresponding profit-maximizing
output at that location would be

q*h k, sð Þ 5 zh kð Þgh k, sð Þ vgh k, sð Þzh kð Þ
wh

� �v= 12vð Þ
: (7)

B. Plot-Level Production with Continuous Variation
in Land Quality

Production could, in principle, be fine-tuned in this fashion tomatch the
precise characteristics of each location, with inputs varying continuously
across space. However, farming takes place at the level of a plot. A gar-
dener nurtures each plant; a farmer has a goal of routinizing operations
across the plot, transforming artisanal attention to each plant into sys-
tematic tasks that can be performed across the mass of plants growing to-
gether. Therefore, a plot is characterized by synchronicity of a sequence
of tasks: land preparation, sowing, thinning, applying inputs, successive
rounds of weeding, harvesting, processing, and so on. We define a plot
as a set of contiguous locations that are managed uniformly.
For a farmer in our model, a plot will be defined as a contiguous inter-

val ½k, �k�⊆½0, Lh�. The farmer faces a fixed cost c to create and farm a plot
of land within its overall landholding. Because of this fixed cost, there
will be finitely many plots per farm. On a previously defined plot i, the
farmer h now applies inputs with the same intensity across every location
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on the plot. The intensity at each location can be written as yhi(s). Define
the size of the plot to be the distance between its two end points; that is,
Lhi 5 �k 2 k. Define the aggregate inputs used on the plot as Xhi 5
ðyhiðsÞÞð�k 2 kÞ.23 Then, output at any point on that plot is given by

qh k, sð Þ 5 gh k, sð Þzh kð Þ Xhi

Lhi

� �v

: (8)

Without loss of generality, assume that k 5 0 and �k 5 Lhi . Total output
on the plot is thus

Yhi sð Þ 5

ðLhi

0

gh k, sð Þzh kð Þ Xhi

Lhi

� �v

dk

5
Xhi

Lhi

� �vðLhi

0

gh k, sð Þzh kð Þ dk:
(9)

Defining average land quality as zhiðsÞ 5 ð1=LhiÞ
Ð Lhi

0 ghiðk, sÞzhiðkÞ dk and
substituting into equation (9) gives the production function

Yhi sð Þ 5 Lhizhi sð Þ Xhi

Lhi

� �v

5 zhi sð ÞL12v
hi Xhið Þv: (10)

The corresponding profit maximization problem involves a trade-off be-
tween the fixed cost of creating a plot (which incentivizes larger plot
sizes) and the fine-tuning of inputs that is possible on a smaller plot. This
trade-off is clearly visible when the profit maximization problem is given
in terms of input intensity:

max
yhi sð Þ

�k 2 k
� �

yhi sð Þð Þv
ð�k
k

ghi k, sð Þzhi kð Þ dk 2 wh yhi sð Þð Þ �k 2 k
� �

2 c

� �
: (11)

Note that in equation (11), the bluntness of input use means that the
profit-maximizing input bundle y*hiðsÞ differs from the “precision agricul-
ture” levels that would be chosen if the farmer were maximizing at each
location separately. Output will differ correspondingly. The lone excep-
tion is the case in which the fixed cost c → 0, in which case ð�k 2 kÞ→ 0
and Y *

hi 2
Ð �k
k q

*
h ðkÞ dk→ 0. With c > 0, the farmer chooses to divide the

land into a finite number of plots. Section A1 describes the problem
of endogenous plot selection. For the moment, we simply note that un-
der quite general conditions, a farmer will choose a determinate num-
ber of plots, with the size and location of these plots reflecting the level
and variability of land quality.

23 We note that as a simple extension of the analysis, we can let the input vector y be a
Cobb-Douglas composite of two or more other inputs; e.g., labor N and chemicals V, such
that y 5 N aV 12a. The analysis will go through unchanged.

productivity measurement in african agriculture 25



C. Land Quality and Plot Size

Without imposing some further restrictions on the patterns of land qual-
ity, we cannot make any statements about the relationship between land
quality and plot size. But we can offer a few relevant observations. First, we
show in section A1 that the maximum number of plots that could be cul-
tivated profitably by a farmer depends inversely on the fixed cost and is
also positively related to the average land quality across the farm. A farmer
with very poor average land quality will ceteris paribus have a smallermax-
imum number of plots than a farmer with the same total land area but
better-quality land. This does not necessarily give rise to an empirical pre-
diction, because farms will not in general cultivate themaximumpossible
number of plots. But it does point to an underlying pattern that holds
more generally: everything else equal, poor-quality plots must be suffi-
ciently large that they will earn positive profits.
Consider the profit maximization for the ith plot cultivated by farmer

h. The size of this plot is ~Lhi , with its boundaries at Lhi21 and Lhi. The av-
erage productivity of this plot, conditional on the realization of the
shock gh(k, s), is zhi 5 ð1=~LhiÞ

Ð Lhi

Lhi21
ghðk, sÞzhðkÞ dk. We can solve the profit

maximization problem and then ask, for a given value of zhi, what is the
smallest plot size that will yield nonnegative profits—in other words,
what threshold plot size will be needed to cover the fixed cost c. We
can then ask how this plot size threshold changes in relation to zhi.
The formulation of this is straightforward. Substituting the optimized
value of X * 5 ~Lhiðvzhi=whÞ1=ð12vÞ into the zero-profit condition and setting
zhiðsÞ~L12v

hi ðXhiÞv 2 whXhi 5 c, we get a relationship between the threshold
plot size and land quality that will sustain nonnegative profits:

Lmin
hi 5

cwv= 12vð Þ

zhi sð Þð Þ1= 12vð Þ
vv= 12vð Þ 2 v1= 12vð Þ� � : (12)

Within a farm, the optimal size of a plot depends on both the average
quality of the land and the heterogeneity of the land quality. Holding av-
erage quality constant, the size of the plot will be decreasing in heteroge-
neity. Holding heterogeneity constant, the size of the plot will be decreas-
ing in average quality (or put differently, it will increase on poorer land).
The underlying logic is that there is a trade-off between the benefits
gained by fine-tuning the inputs used on a plot, which tends to drive plot
size smaller, and the fixed cost, which tends to drive plot size larger. On
high-quality land, the fixed cost is a relatively smaller burden, and so plot
size will be smaller, ceteris paribus. On low-quality land, the fixed cost
poses a heavier burden, and so plot size will tend to be larger. We show
in section A1 that for any given fixed cost, a farmer will partition a given
parcel of heterogeneous land into two plots if the parcel is sufficiently
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productive and not if productivity is lower. At the same time, however, the
more heterogeneous a plot is in terms of land quality, the more costly it
will be to have a large plot; a homogeneous plot can be large. In the ex-
treme case of a farm that is entirely uniform in terms of land quality, there
is no reason to subdivide this into plots, regardless of the quality.
A farm of given area and heterogeneity with sufficiently high average

land quality will be divided into more plots. Table 6 shows direct evi-
dence of this pattern in Uganda, where we can identify the specific par-
cel of land to which each cultivated plot belongs. Labor intensity and
output per acre over the entire parcel are higher on parcels that have
been divided into more plots, as shown in column 1. In column 2, we
condition on all of the measures of land quality, farmer characteristics,

TABLE 6
Intensity of Cultivation and Parcel Subdivision in Uganda

No Plot
Characteristics

No Fixed
Effects

Year-
District

Year-
Village

Year-
Household

Year-
Farmer

(1) (2) (3) (4) (5) (6)

A. Log Output per Hectare

Log parcel area 2.60 2.75 2.75 2.74 2.80 2.81
(.0068) (.010) (.011) (.011) (.017) (.018)

No. of plots in
parcel .30 .36 .36 .36 .42 .41

(.0066) (.0075) (.0078) (.0080) (.014) (.015)
R 2 .24 .34 .45 .49 .65 .65
Log variance of
residuals 1.34 1.20 1.01 .93 .57 .55

F-statistic for plot
characteristics 23.4 13.4 12.3 8.22 7.18

Corresponding
p -value 0 0 0 0 0

B. Log Labor per Hectare

Log parcel area 2.87 2.83 2.84 2.83 2.85 2.86
(.0044) (.0062) (.0064) (.0066) (.0084) (.0087)

No. of plots in
parcel .43 .41 .39 .39 .46 .46

(.0043) (.0046) (.0047) (.0048) (.0067) (.0072)
R 2 .51 .57 .61 .62 .69 .69
Log variance of
residuals .59 .45 .37 .34 .14 .14

F-statistic for plot
characteristics 17.0 11.4 10.6 11.4 9.97

Corresponding
p -value 0 0 0 0 0

Note.—Standard errors are in parentheses. R 2 is from the OLS dummy variable specifi-
cation. Regressions include 37 plot characteristics, e.g., dummies for soil type, toposequence,
boundary markers, location; 12 interactions of plot characteristics with weather shocks;
12 household and farmer characteristics, e.g., education, age, dummies for morbidity, hous-
ing; 38 household-level self-reported shocks, e.g., drought, floods, job loss, livestock disease;
three community-level remote-sensing rainfall variables; and annual and seasonal rainfall totals.

productivity measurement in african agriculture 27



and weather shocks used in tables 3 and 5; again we find that parcels that
have been divided into more plots are cultivated with higher intensity
and achieve greater yields. Columns 3–6 repeat this exercise with succes-
sively finer fixed effects, at the district-season, village-season, household-
season, and farmer-season levels, and in each case we observe the same
strong positive correlation between the number of plots into which a
parcel has been divided and both input intensity and yield at the parcel
level. This is consistent with the model that, conditional on parcel area
and our rich set of observed characteristics of parcel land quality, there is
important unobserved variation in land productivity across parcels, such
that farmers subdivide higher-quality parcels into more plots.

D. Empirical Framework

This theoretical framework allows us to structure an empirical analysis of
the patterns of factor intensities and yields across plots within and across
farms described in section II, based on the plot-level production func-
tion derived in equation (10). The structure of our data corresponds
quite closely to the theoretical framework, with a few modifications.
First, farmers in our model grow a single crop—so that output is homo-
geneous. In the data, farmers grow many crops and intercropped mixes
(e.g., maize, beans, and cassava grown together on the same plot). As we
did in our analysis of productivity dispersion in section II, we aggregate
these by value for simplicity. Second, in our model, farmers have a single
parcel, which they divide into multiple plots, each of which is cultivated
with uniform input intensity. In the data, farmers may have more than
one parcel. Since we observe inputs at the plot level, we can observe dif-
ferences in input intensity across plots; but we cannot rule out the very
real possibility that input use varies within the plot. Third, in our model
different plots differ only in the intensity of input use, since output is ho-
mogeneous; in the data, different plots are almost always allocated to dif-
ferent crops or crop mixtures, so there is a crop choice dimension to the
farmer’s decision that is absent from our model.24

24 Our reason for abstracting from crop choice is not simply convenience. In our data,
because of the ubiquity of intercropping, it is not sensible to think of farmers making a
discrete crop choice. Instead, they are frequently choosing complex intercropped mix-
tures. In the Uganda data, we observe 428 distinct crops and crop mixes across farmers’
plots; in Tanzania, the intercropping permutations give us an even higher number, with
853 distinct crops and crop mixes. Many of these crop mixtures are derived from variations
on a much smaller set of distinct commodities. For instance, a farmer might grow maize by
itself on one plot and a maize-cassava mix on another plot, with maize-beans-cassava on a
third plot. In Tanzania, 43% of plots have somemaize on them. InUganda, 63% of plots are
planted with one ormore ofmaize, beans, cassava, and cooking bananas. Even beyond that,
a maize-cassava intercrop could be 90%maize and 10% cassava, or the opposite. Given this
complexity, we find it simpler to carry out our analysis in terms of a composite agricultural
output, which then corresponds very closely to our model.
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Accepting these slight departures from our model, we rewrite the pro-
duction function (10), adding an index t to denote the season and year
in which production takes place, because we are working with panel data
in which farmers are observed in multiple seasons. Thus, output of plot i
of farmer h in season t is Yhit 5 zhitL12v

hit ðXhitÞv. The productivity term
zhit 5 ð1=LhitÞ

Ð Lhit

0 ghitðk, sðtÞÞzhiðkÞ dk incorporates the plot average of land
quality at each point, denoted zhi(k), and the plot average effect of
shocks received in season t at each point ghi(k, s(t)). Both land quality
and the effects of shocks may vary across plots and across households
in ways that we do not observe but that our model implies will potentially
be correlated with plot size. To account for the possible dependence of
average plot productivity on plot size, we parameterize productivity as
ð1=LhitÞ

Ð
Lhit

0 ghiðk, sðtÞÞzhiðkÞ dk 5 eqhitðLhitÞJLhit .
Our model implies that JLhit

< 0; in other words, larger plots will have
lower average productivity. However, we do not impose this assumption
in the estimation below. The parameter JLhit

varies across plots because
the rate at which productivity falls with plot size depends on the variabil-
ity in land quality over space, which need not be uniform. The produc-
tion function, therefore, becomes

Yhit 5 eqhit Lhitð ÞJLhit Lhitð Þ12v Xhitð Þv

5 eqhit Lhitð ÞaLhit Xhitð ÞaXhit :
(13)

The parameter qhit is TFP, which is at least partially known to the farmer.
However, at least some of what is known to the farmer is unobserved to us.
Given this structure, factor demands are subject to the classic production
function endogeneity concern.25 In addition, unobserved heterogeneity
in factor productivity implies that aLhit

and aXhit
may be heterogeneous

across plots. We use equations (3) and (4) to rewrite equation (13) in
terms of observable inputs and observed shocks and take logs:

yhit 5 aLhit
lohit 1 aXhit

xo
hit 1 WYhit

bY

1 o
J ∈ L,Xf g

aJhit WJhitbJ 2 eJhit
� �

1 qYhit
1 eYhit

:
(14)

The vector of observable determinants of TFP (WYhit
5 ðWEhit

,WHhit
Þ) in-

cludes a rich set of indicators of shocks to productivity; most importantly,
we have measures of the amount and timing of local rainfall interacted
with characteristics of the plot and indicators of specific shocks (fire,
flooding) on particular plots. We denote WEhit

the subset of those shock

25 For a recent discussion, see Ackerberg, Caves, and Frazer (2015), which in turn builds
on Olley and Pakes (1992) and Levinsohn and Petrin (2003).
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indicators that occur before the early harvest season begins, sufficiently
early that farmers may be able to adjust factor inputs in response. Simi-
larly,WHhit

is the subset of those shock indicators that occur at harvest sea-
son, too late for farmers to adjust factor inputs in response.
We assume that farmers know the productivity of the factors they are

using in cultivation, so factor demands will in general be correlated with
the realizations of the factor productivities.

E. Identification of the Production Function

Our strategy for identification of the farm production function rests on
the shadow price framework of Singh, Squire, and Strauss (1986) and the
subsequent approach of Benjamin (1992). In our setting, we observe many
firms (farms) producing essentially identical outputs in close geographic
proximity, subject to numerous idiosyncratic production shocks. Because of
spatial frictions and other market imperfections, the production shock of
one farmer, on one plot, will affect shadow factor prices on that farmer’s
other plots and can feed through to the factor prices faced by other farmers
in the same community. However, because output is undifferentiated and
typically tradable beyond the community, output prices are not affected.
These characteristics of the setting allow us to use observed shocks as instru-
ments in a way that might not be appropriate for, say, manufacturing firms
producing differentiated products in rich countries.
We use variation in input demand at the plot level, driven by variation

across farmers in the shadow prices of inputs, to estimate the plot-level
production function.Observed shocks to factor productivity—and hence
factor demand—on one plot affect the shadow cost of factors on other
plots of the same farmer and on the plots of other farmers in the same
community. The substantive assumption we require is that, conditional
on the observed shocks affecting a given plot i, the observed shocks affect-
ing a different plot j are not correlated with unobserved determinants of
factor demand on plot i.
To bemore precise, if factor markets are imperfect, then conditional on

the realization ofWEhit
on plot i, the realizations ofWEh,2i,t

on plots –i ≠ i of
farmer h in season t provide variation in the shadow value of factors of pro-
duction on plot i of farmer h in season t. Similarly, if there is some within-
village exchange of labor or land but intervillage factor markets are imper-
fect, realizations ofWE2h,j,t

on the plots of farmer 2h ≠ h within the village
of farmer h alsoprovide variation in the shadow value factors of production
on all the plots of farmer h. Accordingly,WEh,2i,t

andWE2h,j,t
, along with more

conventionalmeasures of householdwealth and demographics, constitute
a set of potential instruments Ghit for factor inputs on plot i.
A typical element of WEhit

is a village- or household-level report of a
shock interacted with observed characteristics of plot i. (An example
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might be village-level peak-season rainfall interacted with an indicator
that the soil on plot i is clay.) The identification assumption is that, con-
ditional on the observed set of shocks on plot i of farmer h in season t, a
similar shock on plot j of the same farmer in the same season (e.g., the
same village-level peak-season rainfall interacted with an indicator that
the soil on plot j is loamy) affects the demand for inputs on plot i only
through the shadow value of inputs for the farmer. At the village level,
the assumption is again that conditional on observed shocks at the plot
level (e.g., a self-report of drought at the farmer level interacted with a
plot soil quality indicator), average shocks on other farmers’ plots in the
village affect the plot-level demand for inputs only through the shadow
value of inputs for the farmer. These are substantive assumptions, violated
if there are components of qYhit

that are correlated withWEh,2i,t
orWE2h,j ,t

(con-
ditional, of course, onWEhit

). More concretely, we require that conditional
on a plot’s observed characteristics, its unobserved characteristics are un-
correlated with the observed characteristics of land on other plots in the
village. For example, the fact that a large proportion of the land in a vil-
lage not controlled by a farmer is categorized as “loam” is not systematically
correlatedwith theunobserved characteristics of the landof the farmer that
is categorized as “loam.” It is clear that these shocks will drive variation in
farmer-specific shadow costs of inputs, and therefore if these assumptions
are correct, this is a useful approach to identifying an agricultural produc-
tion function.

F. Correcting Productivity Estimates for Measurement
Error, Risk, and Heterogeneity

With estimates of the deterministic production function parameters b̂Y ,
b̂L, and b̂X and estimates âL and âX of the expected values of the random
factor productivities aLhit

and aXhit
, a first approximation to the distribu-

tion of log TFP across plots might simply be the residual

dln TFPA
hit 5 yhit 2 âLl

o
hit 2 âX x

o
hit 2 WYhit

b̂Y

2 âLWLhit
b̂L 2 âXWXhit

b̂X :

(15)

Equating TFP to the difference between observed output and output pre-
dicted by substituting observed factor use (and observed enterprise char-
acteristics) into an estimated production function, as is common in the
macro literature, attributes all unexplained variation in output to varia-
tion in TFP. This approach overstates the variation in TFP if there is mea-
surement error, and it is further misleading in the presence of shocks to
output or unobserved variation in factor productivity. Both of these are
surely present in our data.
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From equations (14) and (15), we observe

dln TFPA
hit 5 qYhit|{z}

unobserved TFP

1 o
J ∈ L,Xf g

aJhit 2 âJ

� �
WJhit b̂J

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

unobserved productivity of

observed characteristics

1 o
J ∈ L,Xf g

aJhit 2 âJ

� �
ln J o

hitð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
unobserved productivity

of factors

2 o
J ∈ L,Xf g

aJhit 2 âJ

� �
eJhit|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

unobserved productivity of

factor measurement error

2 o
J ∈ L,Xf g

âJ eJhit|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
factor

measurement error

1 eYhit|{z} :
postinput shocks and

measurement error in y

(16)

The final three terms are sources of variation in measured productivity
(i.e.,dln TFPA

hit), but they do not give rise to actual productivity variation.
The dispersion in measured productivity arising from these three terms
cannot be remedied through reallocation. Reallocation cannot “solve”
measurement error, nor can reallocation “solve” late-season idiosyncratic
shocks that affect yield.
The variance of the production function residualdln TFPA

hit is

Var dln TFPA
hit

	 

5 Var qYhit

1 o
J ∈ L,Xf g

aJhit 2 âJ

� �
WJhit b̂J 1 ln J o

hitð Þ� � !

1 â2
LVar eLhit

ð Þ 1 â2
XVar exhitð Þ 1 Var eYhit

ð Þ:
(17)

Only the first term of equation (17) represents cross-farm variation in
productivity that is relevant for any assessment of allocative efficiency;
we would like to disentangle it from the final three terms, which are the
variation due to measurement error and late-season shocks. To do so,
we use the observed allocation of factors across the plots of a given farmer
in a season as a benchmark. The efficient allocation of factors across the
plots cultivated by the same farmer implies patterns of behavior that can
identify the variances of these late-season productivity shocks and mea-
surement errors. For example, observed variation in labor inputs across
the plots of a single farmer that is not correlated with either output or other
inputs is attributable to measurement error in labor.
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In what follows, we maintain the assumption that the allocation of fac-
tors within a farm is efficient, at least in the narrow sense that market fail-
ures do not affect farmers’ ability to make allocative decisions across
their plots. Uninsured risk, imperfect financial markets, labor market
frictions, and missing markets for land all assuredly influence a farmer’s
overall choice set—but not their allocation decisions across plots. Within
a farm, shadow factor prices are constant across plots.26 Within-farm vari-
ation in observed output and observed inputs depends only on (1) unob-
served dimensions of risk or measurement error in output (eYhit

), (2) mea-
surement error in factor inputs (eLhit

, eXhit
), or (3) unobserved heterogeneity

in factor-specific productivity (aLhit
, aXhit

) or TFP (qYhit
).

We show in section A2 that the observed covariances of factor demands
and output across plots within a farm (along with a normalization dis-
cussed below) provide us with sufficient information to identify the aver-
age within-farm variances of plot-level TFP (j2

z ), factor-specific productiv-
ity and their covariance (j2

L, j
2
X , jLX), factor measurement error (j2

eL, j
2
eX )

and output measurement error and postinput risk (j2
eY ), as well as the co-

variance of plot-level TFP and factor-specific productivity (jzL, jzX).
We do not separately identify variation in all three types of unobserved

heterogeneity in factor-specific productivity (qLhit
, qXhit

) and TFP (qYhit
): a

parallel increase in qLhit
and qXhit

is equivalent to an increase in qYhit
.

Hence, we normalize qLhit
1 qXhit

5 0. Intuitively, a change in qLhit
relative

to qXhit
is a change in the slope of an isoquant; a change in qYhit

is a shift in
or out of an isoquant. This normalization implies j2

L 5 j2
X , jLX 5 2j2

L,
and jzL 5 2jzX .
The assumption of an efficient allocation across plots within a farm,

therefore, permits us to calculate the parameters ĵ2 5 ðĵ2
z , ĵ2

L, ĵ
2
X , ĵ

2
eY , ĵ

2
eL,

ĵ2
eX , ĵLX , ĵzL, ĵzX Þ that are consistent with the observed covariance of plot--

level output and inputs across plots within farms, given an estimate of the
production function parameters.
The estimated values of ĵ2 reflect the mean, across farmers, of the

within-farm variances of measurement error, late-season risk, and unob-
served productivity. If we maintain the assumption of classical measure-
ment error, then the variance of that measurement error is the same
across all plots as it is, on average, across plots within a farm. Similarly,
if late-season risk is independently and identically distributed across
plots, then its variance across all plots is the same as it is, on average,
across plots within a farm. If there are farmer-specific components to ei-
ther late-season risk or measurement error, then we can expect (as shown
in sec. A3) that our estimate of the variance of unexplained output attrib-
utable to late-season risk and measurement error in output and factor

26 This could, of course, be a problematic assumption if plots are far apart. In sec. A5, we
report a set of robustness checks that address this assumption.
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inputs (ĵ2
eY 1 â2

Lĵ
2
eL 1 â2

X ĵ
2
eX ) is a lower-bound estimate of the variance in

the final three terms of equation (15). Subtracting ĵ2
eY 1 â2

Lĵ
2
eL 1 â2

X ĵ
2
eX

from Varðdln TFPA
hitÞ, therefore, provides an upper-bound estimate of

VarðqYhit
1 oJ ∈fL,XgðaJhit 2 âJ ÞðWJhit b̂J 1 lnð J o

hitÞÞÞ. This gives the variation in
productivity that is relevant for any assessment of allocative efficiency.
We therefore proceed by beginning with the naïve production function

residual,dln TFPA
hit , and shrinking it toward its mean mA to account for the

variances of the measurement errors and late-season shocks we can mea-
sure within the farm. Our revised estimate of unobserved productivity is

dln TFPB
hit 5 mA 1 dln TFPA

hit 2 mA
	 


�
Var dln TFPA

hit

	 

2 j2

eY 2o J ∈ L,Xf ga
2
J j

2
eJ

Var dln TFPA
hit

	 

0B@

1CA
1=2

:

(18)

If there are aggregate late-season shocks, or farmer- orhousehold-specific
components to measurement error, then

Var dln TFPB
hit

	 

> Var qYhit

1 o
J ∈ L,Xf g

aJhit 2 âJ

� �
WJhit b̂J 1 ln J o

hitð Þ� � !
, (19)

and our revised estimate of the dispersion of unobserved productivity re-
mains an overestimate of the true variation.

IV. Empirical Analysis

A. Estimation Procedure

We estimate the agricultural production functions, the implied residualsdln TFPA
hit , the associated variances of unobserved heterogeneity and mea-

surement error, and the revised estimates of unobserved productivitydln TFPB
hit both by 2SLS (two-stage least squares) and by using Masten and

Torgovitsky’s (2016) IVCRC (instrumental variables correlated random
coefficients) estimator.
Heckman and Vytlacil (1998) and Wooldridge (2008) show that 2SLS

provides consistent estimates of EðaLhit
Þ and EðaXhit

Þ if the effects of the
instruments on factor demands are homogeneous; that is, if the coeffi-
cients of the first-stage equations are not random. However, if farmers
have knowledge of the heterogeneity in productivity across their plots,
then the effects of the instruments on factor demands are also heteroge-
neous across plots because the effect of a change in the opportunity cost
of an input on the demand for that input will vary, depending on the
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marginal product of that factor. In this case, 2SLS is inconsistent for the
expected values of the production function parameters.
Building on Florens et al. (2008), Masten and Torgovitsky (2016) sug-

gest an IVCRC estimator, which allows for heterogeneity in the first-stage
regressions of the instruments on the endogenous factor demands. The
IVCRC estimator is a control function approach and therefore relies
on an assumption of single-dimensional heterogeneity in the first-stage
equations. As in any control function estimator, the idea is that it is pos-
sible to invert the first-stage factor demands to reveal the problematic
heterogeneity. In the second-stage production function, factor inputs
are orthogonal to the heterogeneity in productivity, conditional on this
control function. The IVCRC estimator uses a sequence of quantile re-
gressions in the first stage to generate conditional (on the instruments)
ranks for each observation; in the second stage, OLS (ordinary least
squares) estimation of equation (14) conditional on the estimated rank
equal to r identifies EðaLhit

jRank 5 r Þ and EðaXhit
jRank 5 r Þ, and then av-

eraging over ranks provides EðaLhit
Þ and EðaXhit

Þ.
The IVCRC estimator relies on the assumption of single-dimensional

unobserved heterogeneity in factor demands, which is equivalent to the
assumption of rank invariance. Rank invariance means that the ordinal
ranking of the demand for a factor on any two plots would be the same if
both plots had the same realization of the instruments, for any realiza-
tion of the instruments. However, we show in section A4 that the factor
demands implied by equation (14) have two dimensions of heterogene-
ity, one generated by unobserved variation in qLhit

and the other by a real-
valued function of all the unobserved productivity variation and mea-
surement error in the model. Therefore, in our setting, rank reversals
are possible, and the assumptions required for the consistency of the
IVCRC estimator are not strictly met. We show in appendix A4, however,
that the assumption of rank invariance holds approximately. Given the
estimates generated by either the IVCRC or 2SLS estimators, in either
Tanzania or Uganda, rank reversals occur in fewer than 1% of pairwise
comparisons of observations. Therefore, the assumptions required for
the consistency of the IVCRC estimator are approximately satisfied in
our data. This finding is a consequence of the much smaller variation in
one dimension of the unobserved heterogeneity (that driven by factor-
specific productivity) than in the second (generated by measurement er-
ror, risk, and productivity).

B. Estimation Results

Tables 7 and 8 present OLS and quantile regression estimates of the de-
terminants of land and labor inputs into production in Tanzania and
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TABLE 7
OLS and Quantile Regression Determinants of Log Land and Log Labor Inputs in Tanzania

OLS 25th percentile 50th percentile 75th percentile

Interquartile

Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

Male manager .35 .23 .37 .28 .32 .22 .33 .22 2.034 2.069
(.02) (.02) (.02) (.03) (.02) (.02) (.02) (.02) (.03) (.03)

Land value .21 .1 .19 .11 .2 .1 .24 .1 .044 2.006
(.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01)

Drought/flood � good soil .096 .024 .14 .011 .045 2.03 .045 .0023 2.091 2.009
(.03) (.03) (.04) (.04) (.04) (.04) (.04) (.04) (.04) (.05)

Drought/flood � average (avg.) soil .073 .035 .12 2.004 2.004 .055 .025 .036 2.1 .04
(.03) (.03) (.04) (.04) (.04) (.04) (.04) (.04) (.04) (.07)

Drought/flood � poor soil 2.027 2.035 2.014 2.083 2.031 2.082 2.006 2.016 .0083 .067
(.08) (.07) (.08) (.09) (.09) (.10) (.07) (.08) (.10) (.11)

Illness/accident of HH member .035 2.039 .042 2.075 .056 2.010 .0073 .018 2.035 .093
(.03) (.03) (.05) (.04) (.03) (.03) (.04) (.04) (.06) (.04)

GS rain � good soil in HH (�1,000)a 2.038 2.004 .042 .037 2.045 2.007 2.059 2.03 2.1 2.067
(.03) (.03) (.03) (.04) (.03) (.03) (.02) (.02) (.04) (.03)

GS rain � avg. soil in HH (�1,000)a 2.006 .017 .078 .032 2.027 .011 2.025 .015 2.1 2.017
(.03) (.02) (.03) (.04) (.03) (.02) (.02) (.02) (.04) (.04)

GS rain � poor soil in HH (�1,000)a 2.061 2.05 2.093 2.081 2.11 2.065 2.019 .028 .075 .11
(.05) (.05) (.06) (.07) (.04) (.06) (.04) (.04) (.09) (.08)

36



Drought/flood � good soil in HHa .0053 .038 .02 .046 .011 .051 .0067 .032 2.014 2.014
(.02) (.02) (.02) (.03) (.02) (.01) (.02) (.02) (.02) (.03)

Drought/flood � avg. soil in HHa 2.009 .02 2.029 .04 .019 .026 .0011 .011 .03 2.029
(.02) (.02) (.02) (.03) (.02) (.02) (.02) (.02) (.03) (.03)

Drought/flood � poor soil in HHa .11 .1 .11 .097 .08 .17 .072 .025 2.042 2.072
(.05) (.04) (.04) (.05) (.08) (.05) (.03) (.04) (.07) (.05)

Adverse shock to HH plotsa 2.089 2.032 2.11 2.046 2.081 2.032 2.061 2.022 .052 .023
(.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) (.02) (.01)

Pseudo R 2 .13 .09 .07 .05 .06 .05 .08 .05
F-statistics:
For joint significance of instruments 17.1 11.5 13.7 7.32 24.4 11.3 19.4 11.2
p -value 0 0 0 0 0 0 0 0

For h0
b 14.8 16.0

p -value 0 0

Note.—Bootstrapped (500 samples) standard errors, clustered at the household level, are in parentheses. The full sets of coefficients are reported in
table B1. These include the sale value of land; distances of the plot from home and from the nearest road; three levels of soil quality; four soil types; the
gender, health status, literacy, and age of the plot manager; indicator variables for household (HH)-level drought or floods, crop disease or pests, severe
water shortage or other shocks that led to crop loss, and growing-season (GS) rainfall, interacted with soil type and soil quality dummies.

a Variable serves as instrument in table 9.
b h0: coefficients are equal for 25th and 75th percentiles.
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TABLE 8
OLS and Quantile Regression Determinants of Log Land and Log Labor Inputs in Uganda

OLS 25th percentile 50th percentile 75th percentile

Interquartile

Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

Male plot .14 .062 .13 .044 .14 .066 .14 .083 .014 .039
(.009) (.0071) (.010) (.0092) (.009) (.008) (.009) (.0074) (.010) (.011)

Fair soil 2.091 2.078 2.10 2.079 2.14 2.096 2.099 2.12 2.0031 2.036
(.024) (.021) (.031) (.028) (.027) (.018) (.023) (.023) (.038) (.034)

Poor soil 2.20 2.11 2.18 2.19 2.33 2.18 2.13 2.020 .056 .17
(.067) (.062) (.076) (.048) (.044) (.066) (.062) (.044) (.12) (.074)

Fair soil � drought duration .026 .024 .032 .021 .032 .024 .025 .035 2.0077 .013
(.005) (.005) (.006) (.006) (.006) (.005) (.005) (.005) (.0059) (.007)

Poor soil � drought duration .036 .027 .033 .026 .039 .024 .038 .0050 .0048 2.021
(.012) (.0093) (.015) (.010) (.012) (.011) (.011) (.0049) (.024) (.011)

Illness incidence in HHa .0016 2.051 2.0018 2.066 .013 2.066 2.0082 2.064 2.0064 .0026
(.013) (.0098) (.015) (.013) (.014) (.011) (.012) (.010) (.018) (.016)

HH fair soil � peak rain (�1,000)a .082 2.074 .1 2.074 .047 2.07 .046 2.031 2.055 .042
(.023) (.019) (.023) (.025) (.027) (.020) (.027) (.017) (.032) (.025)

HH poor soil � peak rain (�1,000)a .210 2.053 .220 2.035 .250 2.120 .230 2.035 .011 .000
(.073) (.053) (.088) (.087) (.064) (.081) (.055) (.056) (.092) (.086)

HH fair soil � drought durationa 2.005 2.007 2.007 2.008 2.006 2.008 2.007 2.008 2.0004 2.0007
(.002) (.002) (.002) (.002) (.002) (.001) (.002) (.002) (.003) (.002)
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HH fair soil � total raina 2.048 .017 2.053 .018 2.045 .012 2.042 2.0003 .011 2.018
(.008) (.007) (.008) (.009) (.010) (.007) (.010) (.006) (.013) (.008)

HH poor soil � total raina 2.083 .023 2.069 .018 2.097 .042 2.093 2.0036 2.023 2.022
(.025) (.020) (.032) (.031) (.022) (.029) (.018) (.019) (.029) (.028)

Shocks on HH plotsa .021 2.0005 .017 2.0012 .062 .0005 .10 2.0013 .085 2.0001
(.003) (.001) (.001) (.003) (.007) (.001) (.009) (.001) (.008) (.003)

Pseudo R 2 .08 .02 .038 .013 .048 .013 .052 .015
F-statistics:
For joint significance

of instruments 37.1 14.7 33.0 12.6 33.5 14.8 33.6 12.1
p -value .00 .00 .00 .00 .00 .00 .00 .00

For h0
b 65.2 57.1

p -value .00 .00

Note.—Bootstrapped (500 samples) standard errors, clustered at the household level, in parentheses. The full sets of coefficients are reported in
table B2. These include four categories of soil quality; three sources of water; six indicators of plot toposequence; the level of erosion; indicators of
the gender, literacy, and access to agricultural advice of the plot manager; household (HH)-level indicators of drought and flood and their interactions
with plot level soil quality and village level seasonal and annual rain; and their interactions with plot-level soil quality.

a Variable serves as instrument in table 9.
b h0: coefficients are equal for 25th and 75th percentiles.
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Uganda, respectively.27 These estimates serve as the first stages of the 2SLS
and IVCRCproduction functionestimates providedbelow.Thefirst pair of
columns in each table reports selected coefficients of the OLS regression
of log land area and log labor use on each plot; the second through fourth
pairs of columns report the same set of coefficients for the 25th, 50th, and
75thquantile regressions.Thefinalpairof columns reports thedifferences
of these coefficients in the 75th and 25th quantile regressions.
The penultimate row of tables 7 and 8 shows that the instruments are

strong predictors of plot-level land and labor demand. For example, in
both Tanzania andUganda, illness in the household reduces labor use in
household plots. In Tanzania, when there is abundant growing-season
rain, farmers reduce labor on a given plot when a higher fraction of that
household’s other plots have good soil. In Uganda, when peak-season
rainfall is higher, farmers reduce labor on a given plot when a higher
fraction of that household’s other plots have fair or poor soil.
In both Tanzania and Uganda, plots controlled by male farmers are

larger and use more labor. In Tanzania, farmers reduce the allocation of
land to poor-quality plots when they experience drought or flood condi-
tions (the questionnaire does not distinguish). In Uganda, farmers in-
crease the allocation of land to poor-quality plots when they experience
droughts.
If the production function has random coefficients, then the associ-

ated input demand functions will have heterogeneous coefficients as
well. The IVCRC estimator was developed to allow for heterogeneity in
the first-stage regressions. The final pair of columns reports the differ-
ence in coefficients at the 75th and 25th percentiles of the factor demand
quantile regressions and the F-test that these differences are jointly zero
for the instrumental variables. We strongly reject that these differences
are zero. For example, in Tanzania, at the 25th percentile of the demand
for land, the effect of more growing-season rain when the household has
more plots with good soil is positive, while at the 75th percentile, the ef-
fect is negative. Nevertheless, we present 2SLS estimates of the produc-
tion function and their implications for estimates of the dispersion of un-
observed productivities for comparison.
The 2SLS and IVCRC estimates of EðaLhit

Þ and EðaXhit
Þ in the production

function for agricultural plots in Tanzania and Uganda are presented in
panel A of table 9.
Columns 1 and 3 present 2SLS estimates of the Cobb-Douglas factor

coefficients for Tanzania and Uganda, respectively; columns 2 and 4 pro-
vide the corresponding IVCRC estimates, with the log total value of crop
output as the dependent variable. Crop-year-season-region fixed effects
are included, as are a rich set of observable characteristics of land and

27 Bootstrapped standard errors, clustered at the household-season level, are reported.
The respective full sets of coefficient estimates are presented in tables B1 and B2.
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labor, as well as plot-level observable shocks.28 Reflecting the simple tech-
nology of Tanzanian and Ugandan smallholder agriculture, these coeffi-
cients imply a much larger share of income for land than is observed in
typical macroeconomic data and a much smaller share for labor.29 The
preferred IVCRC estimates imply a larger share for labor and a smaller
share for land than the 2SLS estimates.
With estimates âL 5 EðaLhit

Þ, âX 5 EðaXhit
Þ, b̂Y , b̂L, and b̂X in hand, we

generate a first approximation,dln TFPA
hit , to the distribution of log TFP

TABLE 9
Production Function and Variance Components

Tanzania Uganda

2SLS IVCRC 2SLS IVCRC

A. Cobb-Douglas Factor Coefficients

Land .73 .61 .69 .53
(.17) (.01) (.05) (.00)

Labor .28 .26 .22 .43
(.23) (.02) (.12) (.01)

B. Implied Plot-Level Variances of Productivity, Risk,
and Measurement Errors

Plot TFP .35 .38 .18 .19
(.01) (.02) (.00) (.01)

Land/labor productivity .07 .10 .07 .05
(.01) (.02) (.01) (.01)

Late-season risk and output
measurement error .65 .70 .67 .84

(.02) (.02) (.01) (.01)
Land measurement error .08 .03 .13 .16

(.02) (.02) (.01) (.01)
Labor measurement error .27 .32 .18 .39

(.02) (.02) (.01) (.01)
Covariance of TFP and land/
labor productivity .06 .09 .05 .09

(.01) (.02) (.00) (.01)
Observations 14,535 14,535 43,187 43,187

Note.—Bootstrapped (500 samples) standard errors, clustered at the household level,
are in parentheses. Full production function results shown in tables A1 and A2.

28 Bootstrapped standard errors are reported. The full sets of coefficients are reported in
tables A1 and A2. For Tanzania, these include the sale value of land; distances of the plot
fromhome and from the nearest road; three levels of soil quality; four soil types; the gender,
health status, literacy, and age of the plot manager; indicator variables for household-level
drought or floods, crop disease or pests, severe water shortage, or other shocks that led to
crop loss; and growing-season rainfall, interacted with soil type and soil quality dummies.
For Uganda, they include four categories of soil quality; three sources of water; six indica-
tors of plot toposequence; the level of erosion; indicators of the gender, literacy, and access
to agricultural advice of the plot manager; household-level indicators of drought and flood
and their interactions with plot-level soil quality; and village-level seasonal and annual rain
and their interactions with plot-level soil quality.

29 In the United States, the labor share in agriculture is often taken to be about 50%,
with land perhaps 15% and capital about 35% (e.g., Valentinyi and Herrendorf 2008).
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across plots. Our measure of TFP is the usual production function resid-
ual, as in equation (13). Figure 3 provides the empirical distribution ofdln TFPA

hit in Tanzania and Uganda, using both the IVCRC and 2SLS es-
timates. The apparent dispersion is high: in Tanzania (Uganda) the

FIG. 3.—Log productivity dispersion.
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variance based on the IVCRC estimates is 1.29 (1.25); the 90-10 log differ-
ence in TFP is 2.72 (2.67), corresponding to a 90-10 ratio of 15 (14) in
TFP levels.30

Equations (16) and (17), however, clarified thatdln TFPA
hit incorporates

the effects of late-season agricultural shocks and measurement error in
output and factors of production, and thus its dispersion is greater than
the dispersion of unobserved TFP.
Maintaining the assumption of within-farm efficient factor allocation,

table 9 presents the estimates of within-farm variation generated by risk,
measurement error, and heterogeneous productivity in the Tanzania and
Uganda samples. Themost striking feature of the table is the remarkable
importance of late-season risk and measurement error in output in driv-
ing the apparent variation in output across plots within a farm. In both
Tanzania and Uganda, using both the 2SLS and IVCRC production func-
tion estimates, this is the largest component of the unobserved variation
in productivity across plots. In Uganda this component is especially dom-
inant. There is important measurement error in land and labor inputs as
well. Variation in plot-level productivity observed by the farmer but unob-
served to us (j2

z ) is also important, though less so in Uganda, where, as
noted above,most plots of a given farmer are spatially contiguous or nearly
so.Across-plot, within-farm variation in factor-specific productivity also ex-
ists but is relatively less important. The results are similar whether they are
based on production function parameters estimated with 2SLS or IVCRC
techniques, with the exception that the IVCRC estimates in Tanzania do
not show any significant role for land measurement error in explaining
apparent productivity variation intensity.
Table 9, panel B, provides evidence on the across-plot distributions of

productivity shocks and measurement errors within farms. We use these
estimates in equation (18) to calculate a revised estimate of plot-level TFP
based on the assumption that the overall variances of oJ ∈fL,XgaJ eJhit and eYhit

across all farms are no smaller than these within-farm variances. The var-
iance ofdln TFPB

hit is an upper bound on the dispersion of unobserved TFP
across plots more generally.31

In both Tanzania and Uganda, accounting for measurement error in
factors of production and output and for late-season shocks dramatically
reduces the apparent dispersion of TFP across plots. In Tanzania, the
variance of the naïve log residual of the production function is 1.29.

30 With the 2SLS estimates of the production function, the variance for Tanzania
(Uganda) is 1.27 (1.26) and the 90-10 log difference in TFP is 2.72 (2.69).

31 It is of course possible that a single farmer may, for a variety of reasons, pursue an op-
timization strategy that would lead to very different outcomes on different plots and thus to
a high within-farm variance. But other farmers will then face similar problems and will re-
alize similarly disparate outcomes. Across all farms, this variation will be amplified by the
differing location-specific factors that affect production, so that the aggregate variation is
higher than the average within-farm variation. This intuition is formalized in sec. A3.
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The variance of the estimate corrected for measurement error and late-
season risk falls to 0.55. The 90-10 log difference in estimated TFP falls
from 2.72 to 1.78, corresponding to a drop in the 90-10 ratio of TFP from
14.8 to 5.9. In Uganda, the correction is even more dramatic. The vari-
ance of the log production function residual is 1.25, falling to 0.29 when
corrected. The 90-10 log difference in estimated TFP falls from 2.67 to
1.29, corresponding to a correction in the 90-10 ratio of TFPs from
14.4 to 3.6.32

The effect of correcting the estimates of unobserved TFP for measure-
ment error and late-season risk is visually apparent in figure 3. These fig-
ures provide kernel estimates of the densities ofdln TFPA

hit anddln TFPB
hit

for Tanzania and Uganda, for both the IVCRC and 2SLS estimates of
the production function. We note that the patterns of dispersion are ro-
bust to the choice of estimation method.
We have examined three within-farmer frictions that could restrict the

efficient reallocation of factors across plots within farms. First, a farmer
cultivating widely dispersed plots could face varying input costs across
these plots. When we repeat the estimation procedure restricting atten-
tion to close-by plots, however, our results change little, as reported in
section A5.33 The IVCRC estimate of the dispersion ofdln TFPB

hit is actually
larger when attention is restricted to nearby plots. Second, land tenure
restrictions across physical space could interfere with the smooth reallo-
cation of land across plots of a farmer. We repeat the procedure, using
only plots contained within a single parcel of each farmer, and again find
very similar results. Finally, some of the “farmers” are instead particular
pairs of individuals farming jointly; there may be inefficiencies in the al-
location of resources in such circumstances. The results, however, are ro-
bust to restricting attention to single-person “farmers,” except again that
the IVCRC estimate of the dispersion ofdln TFPB

hit increases.

C. Implications for Characterizing Misallocation

Late-season production shocks and measurement error in factors of pro-
duction and output together account for about half to two-thirds of the
variance in log productivity residuals. Since these are not susceptible
to reallocation, the aggregate productivity gains that could be attained

32 The corrections are similarly dramatic using 2SLS estimates of the production func-
tion. Using these estimates in Tanzania, the variance of unobserved log TFP falls from
1.27 to 0.47, and the 90-10 difference falls from 2.66 to 1.68, corresponding to a fall in
the 90-10 ratio of TFP from 14.4 to 5.3. Using the 2SLS estimates in Uganda, the variance
of unobserved log TFP falls from 1.27 to 0.53. The 90-10 log difference falls from 2.69 to
1.74, corresponding to a fall in the 90-10 ratio of TFP from 14.8 to 5.7.

33 Close-by plots in Tanzania are defined as plots within 1 km, or alternatively 100 m, of
the home. In Uganda, they are plots within a 15-minute walk of home, or alternatively plots
within the same parcel of contiguous land.
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from a hypothetical reallocation exercise are correspondingly smaller.
The effect of our adjustments on estimates of themagnitude ofmisalloca-
tion in an economy depend, of course, on the specifics of the reallocation
exercise. Any reallocation exercise must impose a great deal of structure
on what is ultimately an artificial exercise. For example, results will be sen-
sitive to whether land alone is reallocated to the best farmers or whether
labor is allowed to move along with land. If land is to be reallocated, is it
limited to within-village or within-region reallocation? The exact magni-
tude of the reallocation gains will depend on the extent to which misallo-
cationgives rise to systematic rank reversals, as shown inHopenhayn (2014).
Any of these calculations can be carried out with our estimates in hand, but
there is no real discipline on the exercise from either theory or practice. As
an alternative approach, in what follows, we have preferred to impose less
structure and simply to focus on the dispersion of productivity.
A simple calculation serves to illustrate the order of magnitude of this

effect. Consider a Cobb-Douglas production function without factor-
specific productivity heterogeneity or measurement error in factors of
production,

Yi 5 eqi1ei Lið ÞaL Xið ÞaX , (20)

where qi is TFP, known to the producer, and ei is measurement error in
output or output risk that is realized after factors are committed.
Relative to an existing baseline allocation, the gains to efficient reallo-

cation are proportional to j2
q=e2ð12aL2aX Þ2 , as shown in section A6, and

therefore depend on the dispersion of TFP and the concavity of the pro-
duction function. An overestimate of the variance of TFP across produc-
ers, caused, for example, by misinterpreting measurement error or pure
risk as variation in TFP, leads directly to an overestimate of the potential
gain from reallocation.
Let j2

A 5 Varðdln TFPA
hitÞ > Varðdln TFPB

hitÞ 5 j2
B. The overstatement of

the potential gains from reallocating resources from an existing baseline
to the efficient allocation from assuming that the variance of TFP is j2

A

rather than j2
B is

Y e j2
Að Þ= 1=Nð ÞoiYi

Y e j2
Bð Þ= 1=Nð ÞoiYi

5 ej
2
A2j2

B : (21)

In Tanzania, this ratio is 2.1. In Uganda, the overstatement of the gains
to correcting misallocation is 2.6. The extent of misallocation is substan-
tially overstated if the contributions of risk and measurement error to
the apparent dispersion of TFP are neglected. This calculation is inde-
pendent of the particular estimate of the production function: the
amount of gain from a hypothesized reallocation depends on concavity,
but the relative overstatement generated by overestimating the variance
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of TFP is independent of the production function parameters. Similarly,
the degree of overstatement is independent of many of the particulars of
the hypothesized reallocation. For example, if the thought experiment is
to leave one factor in its current (mis)allocation and optimally reallocate
the other, the conclusion of equation (21) remains unchanged.

V. Discussion

The results from Tanzania and Uganda show the importance of account-
ing carefully for measurement error, shocks, and heterogeneity in tech-
nology (including input quality) in measuring productivity at the level of
individual production units. These issues have previously been raised in
critiques of the literature on misallocation, but the data from African
farms provide sufficiently rich detail that we can begin to disentangle
the different sources of productivity dispersion. Our analysis suggests
that previous estimates of misallocation have probably overestimated
the potential productivity losses due to misallocation (or, equivalently,
the gains from efficient reallocation). The macro significance of any po-
tential gains from reallocation should be reconsidered accordingly.
Given that reallocation would also entail massive costs—not least, in

terms of the social welfare implications of reallocating land away from
many poor smallholders in Africa—we believe that these findings are im-
portant for their own sake. But in addition, we believe that there are ad-
ditional implications for the broader literature that has grown up around
the topic of misallocation in development and growth. Much of this liter-
ature has relied on cross-section data and has assumed that firms are ob-
served without error. The literature has also tended to assume that all
firms operate precisely the same technology, with all parameters of the
production function known exactly. In our context, these assumptions
would lead to flawed conclusions. Even though our data have been care-
fully collected with highly trained enumerators—and although they are
often characterized as “state-of-the-art” surveys—measurement error is
pronounced, and shocks are quantitatively important.
There are limits to our analysis. As noted in section I, we cannot rule

out the importance of misallocation in a dynamic sense. The current al-
location of land and labor across farmsmay be relatively efficient in a static
sense, but improved technologies might be well suited to very different al-
locations. For instance, mechanization and tractor use might increase ef-
ficiency in these countries, but it is possible that the current distribution
of landmightmake it unprofitable to use tractors andmight thus slow the
diffusion of the new technologies. Thus, one could think about a dynam-
ically optimal allocation, which would raise issues different from those we
have addressed here.
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We also emphasize that our paper does not argue that the current
scale of farming is optimal. Our analysis has nothing to say about the ef-
ficient allocation of resources across sectors. For example, we cannot say
whether there are toomany people working in agriculture. It seems plau-
sible that some of the resources currently deployed in agriculture could
be productively reallocated to other sectors; however, we cannot assess
this proposition with our data.
This paper also suggests that within the literature on agriculture and

development, there is a need to pay close attention to heterogeneity in
unobservable characteristics of plots. These may be linked to soil and
land quality, which vary in quantitatively significant ways at very fine geo-
graphic scale. But there may also be a high degree of spatial variation in
shadow prices (reflecting, e.g., within-farm transport costs). For instance,
the distances from one end of a plot to anothermay create consequential
transport and transaction costs for the application of organic fertilizers or
for the shadow price of output that must be carried to the household or
to market. The importance of heterogeneity has been emphasized in re-
cent work on technology adoption (e.g., Suri 2011), and it is surely im-
portant for other issues in agricultural development.
In further work, an interesting area to explore is the trade-off between

farm scale and the precision of input application. Because input use is
(optimally) calibrated to the average quality of a plot, there is a trade-
off between increasing the size of the plot (which reduces the fixed cost
per unit output) and the loss of profits that comes from applying inputs
more crudely. This trade-off may have some power in explaining the ten-
dency of smallholder agriculture in the developing world to rely so heavily
on very small plots, finely tuned in terms of crop choice and input use. Pre-
vious explanations of small plot size have tended to focus on risk and di-
versification, but our analysis suggests that there may also be important ef-
ficiency arguments.

VI. Conclusions

This paper has examined the importance of misallocation across firms as
an explanation for low aggregate productivity in developing countries,
using data from agriculture in Tanzania and Uganda. A challenge in this
kind of analysis is that misallocation is not the only potential source of
dispersion in productivity. Some of the other sources of dispersion are
not susceptible to improvement through efficient reallocation. In partic-
ular, reallocation will not lead to increases in output if dispersion is pri-
marily an artifact of measurement error. Reallocation will also prove fu-
tile to the extent that dispersion results from idiosyncratic shocks that
occur after inputs have been (efficiently) applied.
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Our paper takes advantage of rich data at the plot level to disentangle
the different sources of productivity dispersion. We begin by showing
that dispersion in productivity is not simply a feature of the cross-farm
data; perhaps surprisingly, within-farm dispersion is quite large. This sug-
gests that differences in farmer quality are not sufficient to account for
the patterns of dispersion that we observe in the data.
Weestimateagriculturalproduction functions forTanzaniaandUganda,

with a framework that draws on the sequential nature of production de-
cisions. The estimated production functions can be used to assess the po-
tential gains from reallocation. Our finding is that misallocation does in-
deed affect aggregate agricultural output in these countries but that
commonly used approaches in the literature overstate the dispersion of
log TFP by about 100%. The gains from a hypothetical reallocation are
thus correspondingly overstated by a factor of two or three. On the basis
of our estimates, reallocation can generate nontrivial gains in aggregate
output, but not enough to narrow significantly the large cross-country in-
come differences.
Beyond the rather special case of African agriculture, this research

points to the need for caution in estimating the impact of misallocation.
Not all dispersion in productivity at the firm level reflects misallocation.
It is important, too, for researchers to consider other sources of produc-
tivity dispersion, including heterogeneity and measurement error.

Appendix A

Model Detail and Extensions

A1. Endogenous Plot Selection

This appendix describes the process throughwhich a farmer (household) chooses
the number and locations of its plots.

Consider first the household’s option of producing on a single plot, [0, Lh],
making use of the entire land endowment. The profit maximization problem
is then given by

max
Xh

Xh

Lh

� �vðLh

0

gh k, sð Þzh kð Þ dk 2 whXh 2 c

� �
: (A1)

As an alternative to the single plot, the household could instead farm multiple
plots. We assume that the household divides its landholding into plots at the start
of the season, before inputs are chosen and—crucially—before the realization of
the productivity shock. In modeling the farm in this way, we seek to capture the
notion that inputs can be adjusted through most of the growing season, so that
the total input vector responds to the shocks. But plot boundaries cannot nor-
mally be adjusted once planting has taken place—and indeed, plot boundaries
are often set even before planting, with a series of decisions that commit the
household to planting certain crops at certain moments. For instance, the timing
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and techniques of land preparation will be linked to decisions about plot bound-
aries and potentially also crop choice.

Consider first the problem of a household that is choosing a single boundary
that will define two plots. Denote the threshold location between the two plots
Lh1, so that the two plots are [0, Lh1] and [Lh1, Lh]. In this case, an interior solution
for the size of the two plots must hold; expected total profits could not be in-
creased by moving this location either to the left or to the right on the number
line.

The profit maximization problem can be written as

max
Lh1

ð
s ∈S

max
Xh1,Xh2

Xh1

Lh1

� �vðLh1

0

gh k, sð Þzh kð Þ dk
��

1
Xh1

Lh 2 Lh1

� �vðLh

Lh1

gh k, sð Þzh kð Þ dk

  2 whXh1 2 whXh2 2 2cÞ
i
dD sð Þ:

(A2)

In effect, the household chooses the plot boundary Lh1 to maximize expected
profits, knowing what input bundle it would choose for each plot for every real-
ization of the productivity shock gh(k, s). The problem is well defined.

Now consider a household that farms I plots, I > 2. We use the notation that
Lhi denotes the right-hand boundary of the ith plot; that is, the boundary be-
tween plot i and plot i 1 1. For notational convenience, we set Lh0 5 0 and
LhI 5 Lh . Then fLhigI

i50 is the sequence of plot boundaries. The first plot is given
by the interval [0, Lh1], and the ith plot covers the interval ½Lhi21, Lhi �, continuing
to the Ith plot, which covers ½LhI21, Lh�.

We assume for convenience in what follows that all the plots are of sufficient
quality that they will be actively farmed, allowing for an interior solution. The
logic of the analysis would extend, however, to a situation in which the house-
hold chooses not to cultivate some portion of its land.

For notational convenience, let the size of the ith plot be denoted ~Lhi ;
ðLhi21 2 LhiÞ. As before, the average productivity of plot i, conditional on the re-
alization of the shock gh(k, s), can be written as zhi 5 ð1=~LhiÞ

Ð Lhi

Lhi21
giðk, sÞz iðkÞ dk.

Then the household’s problem of choosing the boundaries of I plots can be
written as

E p̂ Ið Þ 5 max
Lhif gI

i51

ð
s ∈ S

s max
Xhif gI

i51

zhi
~LijX

v
hi 2o

I

i51

whXhi
~Lhi 2 cI

� �� �
dD sð Þ: (A3)

How many plots might the household farm? We can identify a finite maximum
number of plots for any household. Because the problem in equation (7) is well
defined for any number of plots I, we use this to define an upper bound for I.
Recall that for a single location k, the household can maximize profits condi-
tional on the shock s, by choosing a point-specific input bundle. This gives out-
put q*h ðk, sÞ 5 zhðkÞghðk, sÞðvghðk, sÞzhðkÞ=whÞv=ð12vÞ, with corresponding profits of
p*h ðk, sÞ 5 q*h ðk, sÞ 2 why

*
h ðk, sÞ. Across the entire landholding of the household,

this gives rise to an expression for the maximum profits that can be earned, con-
ditional on the shock s, with c 5 0: p*h ðsÞ 5

Ð Lh

0 p*h ðk, sÞ dk. This expression can be
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understood as the “precision agriculture profits” in which every location on the
household’s landholdings is farmed with optimal point-specific inputs. Integrating
over possible realizations of the shock s, then p*h 5

Ð
s ∈ Sp

*
h ðk, sÞ dDðsÞ is the ex-

pected maximum profits. Given this, I * 5 ðp*h =cÞ 1 1 is an upper bound for the
number of plots that can be profitably cultivated.

With this upper bound defined, the household’s choice of its optimal number
of plots reduces to a discrete optimization, with Î 5 argmaxjfE p̂ð jÞgI*

j51.
We now consider the relationship between plot quality and plot size within a

farm. A simple illustration is provided by the special case of a farmer who has ac-
cess to multiple physical parcels, each of unit size. Parcel i has average produc-
tivity zhi 5

Ð 1
0 giðk, sÞz iðkÞ dk. If that parcel can be partitioned into two plots

(A and B) of any size such that zA
hi ≠ zB

hi , then there exists a scalar z* ≥ 0 such that
8 z ≥ z*, if we replace zi(k) with z ziðkÞ 5 zz iðkÞ, it is optimal to split the parcel
into more than one plot. Therefore, if a parcel is divided into multiple plots,
then a more productive parcel is also divided, and a sufficiently less productive
parcel will not be.

Define p1i 5 zhiðzhiv=whÞv=ð12vÞ 2 whðzhiv=whÞ1=ð12vÞ as the profit from farming
the parcel as a unit. Let LA

hi and LB
hi 5 1 2 LA

hi be the areas of the two plots that
optimally divide parcel i (the solution to [A2]). So pA

1i 5 LA
hiz

A
hiðzA

hiv=whÞv=ð12vÞ2
whLA

hiðzA
hiv=whÞ1=ð12vÞ and pB

1i 5 LB
hiz

B
hiðzB

hiv=whÞv=ð12vÞ 2 whLB
hiðzB

hiv=whÞ1=ð12vÞ. Define
z zi 5

Ð 1
0 giðk, sÞz ziðkÞ dk 5 zzhi as the average productivity of the z-transformed

parcel, and pzi, pA
zi , and pB

zi as the profits from farming the full parcel and the opti-
mally divided plots if the productivity process is zzi(k). Finally, define ~pA

zi 5
LA

hiz
A
ziðzA

ziv=whÞv=ð12vÞ 2 whLA
hiðzA

ziv=whÞ1=ð12vÞ and similarly ~pB
zi as themaximized profits

generated on plots A and B of the z-transformed parcel, where plots A and B are
defined by the optimal partition of the parcel, given its original productivity.

By construction, zA
hi ≠ zB

hi , so that X A
1i=L

A
1i ≠ X B

1i=L
B
1i , so for v < 1,

p1i 5 LA
hip1i 1 LB

hip1i < pA
1i 1 pB

1i :

Suppose that pA
1i 1 pB

1i 2 c > p1i . Then for all z ≥ 1,

pA
zi 1 pB

zi 2 c ≥ ~pA
zi 1 ~pB

zi 2 c 5 z1= 12vð Þ pA
1i 1 pB

1ið Þ 2 c

> z1= 12vð Þp1i 5 pzi :
(A4)

Therefore, if a parcel is divided into more than one plot, then any more produc-
tive parcel is also divided. Conversely, for a sufficiently low value of z, pA

zi 1 pB
zi < c,

and it is not feasible to divide the parcel.

A2. Estimating the Within-Farm Variances of Measurement Error, Late-Season Risk,
and Unobserved Productivity

We consider a plot i farmed by household (farmer) h in season t. We define log
TFP for the plot, inclusive of the plot-specific factor productivities, as

zhit ;
1

1 2o J ∈ L,Xf gaJhit

WEhit
bE 1 qYhit

1 aLhit
ln

aLhit

pLht

� �
1 aXhit

ln
aXhit

pXht

� �� �
: (A5)

We write log output and (actual, not observed) factor demand on the plot as
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yhit 5 WHhit
bH 1 eYhit

1 zhit ,

lhit 5 ln aLhit
ð Þ 2 ln pLht

ð Þ 1 zhit ,

xhit 5 ln aXhit
ð Þ 2 ln pXht

ð Þ 1 zhit :

(A6)

The IVCRC procedure provides us with an estimate of the means of the distri-
bution of the factor productivity coefficients, âL and âX . We work in terms of
observable inputs, and output, adjusted for the estimated effects of observed
characteristics

yhit 2 WHhit
b̂H 5 eYhit

1 zhit ,

l ohit 1 WLhit
b̂L 5 âL 1 qLhit

2 ln pLht
ð Þ 1 eLhit

1 zhit ,

xo
hit 1 WXhit

b̂X 5 âX 1 qXhit
2 ln pXht

ð Þ 1 eXhit
1 zhit ;

(A7)

qLhit
and qXhit

are plot-level productivities of land and labor, respectively, and zhit is
plot-level total productivity. We examine deviations of log output, log land, and
log labor from their within-farmer-season averages (e.g., ȳh.t is mean log output
over the plots cultivated by farmer h in season t).

~yhit ; yhit 2 �yh:t 2 WHhit
2 �WHh:t

ð Þb̂H 5 eYhit
2 �eYh:t

1 zhit 2 �zh:t ,

~lhit ; lohit 2 �loh:t 1 WLhit
2 �WLh:t

ð Þb̂L 5 qLhit
2 �qLh:t

1 eLhit
2 �eLh:t

1 zhit 2 �zh:t ,

~xhit ; xo
hit 2 �xo

h:t 1 WXhit
2 �WXh:t

ð Þb̂X 5 qXhit
2 �qXh:t

1 eXhit
2 �eXh:t

1 zhit 2 �zh:t :

(A8)

The left-hand sides of these are observable. Their covariances (and a normali-
zation discussed below) provide us with sufficient information to identify the
within-farm variances of plot-level TFP (j2

z Þ, factor-specific productivity and their
covariance (j2

L , j
2
X , jLX), factor measurement error (j2

eL , j
2
eX ), and output mea-

surement error and postinput risk (j2
ey), as well as the covariance of plot-level

TFP and factor-specific productivity (jzL, jzX):

Var ~yhitð Þ 5 j2
z 1 j2

eyhit ,

Var ~lhit
� �

5 j2
L 1 j2

eL 1 j2
z 1 2jzL ,

Var ~xhitð Þ 5 j2
X 1 j2

eX 1 j2
Q 1 2jzX ,

Cov ~yhit ,~lhit
� �

5 jzL 1 j2
z ,

Cov ~yhit , ~xhitð Þ 5 jzX 1 j2
z ,

Cov ~lhit , ~xhit
� �

5 jLX 1 jzL 1 jzX 1 j2
z :

(A9)

We do not separately identify variation in all three types of unobserved hetero-
geneity in factor-specific productivity (qLhit

, qXhit
) or TFP (zhit): a parallel increase

in qLhit
and qXhit

is equivalent to an increase in zhit. Hence, we normalize qLhit
1

qXhit
5 0. Intuitively, a change in qLhit

relative to qXhit
is a change in the slope of

an isoquant; a change in zhit is a shift in or out of an isoquant. The normalization
of factor-specific productivities distinguishes these from TFP shocks; this normal-
ization adds the restrictions
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j2
L 5 j2

X ,

jLX 5 2j2
L ,

jzL 5 2jzX :

(A10)

From equations (A9) and (A10) we calculate the parameters ðĵ2
z , ĵ2

L , ĵ
2
X , ĵ

2
eY , ĵ

2
eL,

ĵ2
eX , ĵLX , ĵzL , ĵzX Þ that are consistent with the observed covariance of plot-level out-

put and inputs across plots within farms, given an estimate of the production
function parameters and the assumption of efficient allocation across plots within
a farm.

TABLE A1
Tanzania Production Function Estimates (N 5 14,535)

2SLS IVCRC

Land .73 .61
(.17) (.01)

Labor .28 .26
(.23) (.02)

Land value .04 .07
(.03) (.01)

Land value missing .41 .91
(.26) (.33)

Distance home .00 .00
(.00) (.00)

Distance to road 2.01 2.01
(.00) (.00)

Good soil .35 1.56
(.12) (3.41)

Average soil .20 1.39
(.12) (3.43)

Sandy soil 2.06 22.37
(.21) (4.55)

Loamy soil .02 22.27
(.21) (4.53)

Clay soil .06 22.28
(.21) (4.54)

Single manager .02 .04
(.04) (.02)

Poor health 2.03 2.03
(.01) (.00)

Missing health 2.12 2.17
(.05) (.09)

Illiterate 2.06 2.09
(.04) (.08)

Literacy missing .07 26.23
(.33) (6.34)

Male manager .02 .07
(.04) (.02)

Manager age .00 .00
(.00) (.00)

Age missing 3.70 4.26
(1.45) (6.75)

Crop shock 2.02 2.02
(.04) (.01)
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TABLE A1 (Continued)

2SLS IVCRC

Drought � good soil 2.07 2.06
(.04) (.04)

Drought � average soil 2.07 2.07
(.04) (.07)

Drought � poor soil .01 .34
(.09) (3.39)

Crop disease � good soil .02 .01
(.04) (.06)

Crop disease � average soil 2.05 2.06
(.04) (.03)

Crop disease � poor soil .17 21.54
(.09) (2.65)

GS rainfall � good soil .00 .00
(.00) (.00)

GS rainfall � average soil .00 .00
(.00) (.00)

GS rainfall � poor soil .00 .00
(.00) (.00)

GS rainfall � loamy soil .00 .00
(.00) (.00)

GS rainfall � clay soil .00 .00
(.00) (.00)

GS rainfall � other soil .00 2.01
(.00) (.01)

Water shortage .00 .01
(.03) (.03)

Constant .00 .01
(.00) (.24)

Note.—Standard errors are in parentheses. GS 5 growing season.

TABLE A2
Uganda Production Function Estimates (N 5 43,187)

2SLS IVCRC

Land .69 .53
(.05) (.01)

Labor .22 .43
(.12) (.01)

Fair soil � drought duration 2.03 2.03
(.01) (.00)

Poor soil � drought duration 2.03 2.03
(.02) (.01)

Missing soil � drought duration .00 2.17
(.03) (.06)

Fair soil � flood duration .02 .07
(.02) (.02)

Poor soil � flood duration .22 .43
(.17) (.57)

Missing soil � flood duration 2.23 22.16
(.31) (.68)

Fair soil � total rain (�10) .00 .00
(.00) (.00)



TABLE A2 (Continued)

2SLS IVCRC

Poor soil � total rain (�10) .03 .02
(.01) (.01)

Missing soil � total rain (�10) .04 .03
(.03) (.08)

Fair soil � peak rain (�10) .00 .01
(.01) (.00)

Poor soil � peak rain (�10) 2.07 2.05
(.02) (.01)

Missing soil � peak rain (�10) .06 .01
(.02) (.01)

Fair soil 2.09 2.07
(.04) (.01)

Poor soil 2.23 2.17
(.10) (.04)

Missing soil 21.02 .52
(.50) (1.38)

Rainfed .19 .18
(.06) (.02)

Wetland .35 .27
(.08) (.04)

Missing water .51 1.22
(.23) (.77)

Flat land .03 .02
(.03) (.00)

Gentle slope .08 .07
(.03) (.01)

Steep slope .10 .08
(.04) (.01)

Valley 2.01 .02
(.05) (.02)

Other slope .28 1.43
(.28) (1.33)

Missing toposequence 2.20 21.62
(.25) (1.01)

No erosion .07 .07
(.02) (.00)

Missing erosion .53 .34
(.17) (.28)

Male plot .10 .11
(.01) (.00)

Agricultural advice .09 .11
(.02) (.00)

Constant .00 2.02
(.00) (.01)

Note.—Standard errors are in parentheses.

A3. Measurement Error/Shock Variances across All Plots and Average
across Farmers of Within-Farmer Variances

We estimate the mean, across farmers, of the within-farm, cross-plot variance of
measurement errors in factor inputs and of measurement error and late-season
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shocks to output. How does this compare with the overall variance, across all
plots, of these measurement errors/random shocks?

Denote yfi the realization of any of these errors/shocks (eYhit
, eLhit

, eXhit
).34 Let N

be the total number of plots, N f the number of farmers and N i
f be the number of

plots of farmer f. The average across farmers of the cross-plot within-farmer vari-
ance of y is j2

F ; ð1=N fÞoN f

f51ð1=N i
f ÞoN i

f

i51ðyfi 2 �yf Þ2. The variance of y across plots in
the sample is j2 ; ð1=N ÞoN f

f51o
N i

f

i51ðyfi 2 �yÞ2. If there are no farmer effects in mea-
surement error or the late-season shock to output, then �yf 5 �y 8 f and j2

F 5 j2.
However, if there is variation across farmers in the mean level of measurement

error or the late-season shock, then the average across farmers of the within-
farmer variance may differ from the variance across all plots. The largest number
of plots cultivated by a single farmer is �k. We partition the sample of farmers into
sets fM1,M2, ::: ,M�kg such that each farmer f ∈ Mk has k plots. With some abuse
of notation we denote the cardinality of each set Mk as Mk. Then we have

j2
Fk 5

1

Mk
o
f ∈Mk

1

ko
k

i51

yfi 2 �yf
� �2

,

j2
k 5

1

kMk
o
f ∈Mk

o
k

i51

yfi 2 �yk
� �2

:

With these sets defined, the overall variance of y can be defined as

j2 5
1

N o
�k

k51
o
f ∈Mk

o
k

i51

y2fi 2
1

N o
�k

k51

kMkyk

� �2

≥
1

N o
�k

k51
o
f ∈Mk

o
k

i51

y2fi 2
1

N o
�k

k51

Mkk ykð Þ2

5
1

N o
�k

k51

Mkkj
2
k ,

(A11)

where the inequality follows from convexity (and is a strict equality if �yf 5 �y 8 f ).
The average across farmers of the variance of y is

j2
F 5

1

NF
o
�k

k51

Mkj
2
Fk :

So

j2 2 j2
F ≥ o

�k

k51

k

N
2

1

NF

� �
Mkj

2
Fk : (A12)

If each farmer has the same number of plots, then the weak inequality in equa-
tion (A12) is an equality, o�k

k51½ðk=N Þ 2 ð1=NFÞ�Mkj
2
Fk 5 0, and the average across

farmers of the within-farmer variance of plot yield is the same as the overall var-
iance of plot yields.

34 We drop the t subscript for this section; the calculations should be understood as oc-
curring within any season.
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Note that ðk=N Þ 2 ð1=NFÞ is increasing in k. If the average number of plots per
farmer is less than or equal to 2, then ðk=N Þ 2 ð1=NFÞ ≥ 0 for all k and
j2 2 j2

F ≥ 0. The average number of plots per farmer in Tanzania is 1.95. There-
fore, the average across farmers of the within-farmer variance of y is less than the
overall variance of y in Tanzania.

In Uganda, the average number of plots per farmer is 2.7. If the average var-
iance of y across plots of farmers who have only two plots is much larger than the
average variance of y across plots of farmers who have many more plots, than it is
possible that the right-hand side of equation (A12) is negative. Given the ob-
served number of plots (N), number of farmers (NF) and numbers of farmers cul-
tivating k plots (Mk), then we can calculate that if j2

F2 ≤ 3:82 � j2
Fk for k > 2, then

o�k
k51½ðk=N Þ 2 ð1=NFÞ�Mkj

2
Fk > 0: That is, as long as the average variance across

plots of y of farmers cultivating two plots is no more than about four times as
large as the average variance across plots of y of farmers cultivating more than
two plots, then the overall variance of y across plots is larger than the average
across farmers of within-farmer cross-plot variance of y.

It should noted that the variance across farmers of themean farmer-level shock
�yf , which is relevant if one were to conduct the analysis at the farm level, can be
either larger or smaller than j2, depending on the covariance of yfi within f. For
example, if measurement error in plot size resulted largely frommistakes regard-
ing the boundaries between plots within a parcel, so that land used on one plot
was mistakenly attributed to another, then the negative covariance of lfi within
farmers would imply that the variance of land measurement area across farms
might be less than its variance across plots.

A4. Consistency of the IVCRC Estimator

Assumption I2 of Masten and Torgovitsky (2016) requires that the unobserved
heterogeneity in any of the endogenous variables be single dimensional. This
is equivalent to the assumption of rank invariance, which “means that the ordi-
nal ranking of any two agents in terms of . . . [land or labor demand] would be
the same if both agents received the same realization of [the instrument set] Z,
for any realization of Z” (Masten and Torgovitsky 2016, 1003).

Our instruments Zi are determinants of the shadow prices of labor and land.

ln pXht
5 aXi

1 ZibpX 1 gpXWi ,

ln pLht
5 aLi

1 ZibpL 1 gpLWi :

Substituting the factor demands (eq. [A7]) yields first-stage factor demand func-
tions of the form

l oi 5 fl1 eY i
, eLi

, eXi
, qYi

, qLi
;Wið Þ 1 fl2 Zið Þ 1 qLi

Zi bpX 2 bpL

� �
1 2 aX 2 aL

,

xo
i 5 fx1 eY i

, eLi
, eXi

, qYi
, qLi

;Wið Þ 1 fx2 Zið Þ 1 qLi

Zi bpX 2 bpL

� �
1 2 aX 2 aL

,

(A13)

where eYi
, eLi

, eXi
, qYi

, and qLi
are unobserved productivities, shocks, and measure-

ment errors; Wi are observed characteristics that affect both factor demand and
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enter the production function; bpX , bpL , aX, and aL are estimated parameters; and
Zi is our vector of instruments.35

For example, fi1(⋅) is a scalar random variable. So is qL. So the unobserved het-
erogeneity in the demand for land is two-dimensional, violating assumption I2.
The same is true for the heterogeneity in the demand for labor.

Define

loi Zð Þ ; fl1 eYi
, eLi

, eXi
, qYi

, qLi
;Wið Þ 1 fl2 Zð Þ 1 qLi

Z bpX 2 bpL

� �
1 2 aX 2 aL

which defines land demand given ðeY i
, eLi

, eXi
, qYi

, qLi
;WiÞ for any value of the in-

strument vector Z. The estimation procedure requires rank invariance, which is
the requirement that

loi Z 0ð Þ 2 loj Z 0ð Þ� � � l oi Z 00ð Þ 2 loj Z 00ð Þ� �
> 0

for any values of the instrument vector {Z 0, Z 00} and any values of ðeY i
, eLi

, eXi
, qYi

,
qLi

;WiÞ and ðeY j
, eLj

, eXj
, qYj

, qLj
;WjÞ.

Rank invariance does not hold for equation (A13) in general. However, given
our estimates, we show that violations are rare. We proceed in two steps. First, we
randomly assign values of the instrumental variables (drawn from the sample dis-
tribution) to randomly chosen pairs of plots (drawn from the sample distribu-
tion and estimated distribution of unobserved heterogeneity) to quantify the fre-
quency of rank reversals. For Tanzania, rank reversals occur in less than 0.0004 of
cases for labor and less than 0.0004 cases for land. For Uganda, they occur in less
than 0.006 cases for either land or labor.

Note as well that if a rank reversal ever occurs for a given pair of plots, it always
occurs at the extreme values of ZiðbpX 2 bpLÞ. So we couple this analysis with a cal-
culation of the frequency of violations of rank invariance when pairs of plots are
assigned values of the instruments that correspond to extreme values of bpX 2 bpL .
Even in this case, rank reversals are rare. For Tanzania, they occur in 0.001 of
cases; for Uganda, the reversal rate is 0.051 for land and 0.055 for labor.

A5. Robustness Checks on Restricted Samples

We relax the assumption that the allocation of factors across plots within a farm
is efficient. We replace this assumption with the assumption that

1. the allocation of factors is efficient across “nearby” plots within a farm; or
2. the allocation of factors is efficient across plots within a given contiguous

parcel of a farm; or
3. the allocation of factors is efficient across plots within a farm cultivated

by a single individual (rather than jointly cultivated by a specific pair of
individuals).

Table A3 reports the consequences of these relaxations on our estimates of the
variances and covariances of measurement error, late-season risk, and unobserved

35 For this section, we replace the plot-individual-year subscripts with single-plot sub-
scripts (e.g., loi instead of lohit) because the distinctions between farmers and time are not
relevant to the discussion.
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heterogeneity. Results are reported for samples restricted to plots in Tanzania
within 1 km of the respondent’s home, within 100 m of the respondent’s home,
or cultivated by a single individual. The baseline estimates are in column 1 for com-
parison. Results are reported for Uganda restricting attention to plots within a
15-minute walk of the respondent’s home, to plots within contiguous parcel culti-
vated by a specific farmer, or to plots that are cultivated by a single individual. The
baseline estimates for the full sample are provided in the initial columns for com-
parison. The bottom panel of table A3 reports the consequences of the same set of
relaxations for our estimates of the variances ofTFPA andTFPB. FigureA1 shows the
implications for productivity dispersion of assumption 1 in Tanzania. Figure A2
shows the implications for productivity dispersion of assumptions 1 (A) and 2 (B)
in Uganda. Figure A3 shows the implication of assumption 3 in both Tanzania and
Uganda.

In all cases, comparison with figure 3 shows that the changes to the estimates
are minor, with the exception that the IVCRC estimate of the variance of TFPB is
lower in the base estimates than in the alternatives.

TABLE A3
Variance Components and Productivity Dispersion for Restricted Samples

Tanzania

Base 1 km 100 m
Single

Manager

2SLS IVCRC 2SLS IVCRC 2SLS IVCRC 2SLS IVCRC

A. Variance Components

Plot TFP .35 .38 .36 .39 .36 .39 .35 .39
Land/labor productivity .07 .10 .07 .10 .08 .10 .06 .10
Late-season risk and output
measurement error .65 .70 .67 .71 .67 .71 .68 .73

Land measurement error .08 .03 .08 .03 .08 .03 .13 .07
Labor measurement error .27 .32 .27 .34 .27 .33 .31 .31
Covariance of TFP and land/
labor productivity .06 .09 .06 .09 .06 .09 .07 .10

B. Productivity Dispersion

Var(TFPA) 1.27 1.29 1.13 1.29 1.13 1.29 1.17 1.29
Var(TFPB) .47 .55 .40 .54 .39 .54 .39 .51
Implied share of measurement
error/unobserved heteroge-
neity in Var(TFPA) .61 .57 .65 .58 .65 .58 .67 .60

Uganda

Base
15-Minute

Walk
Within
Parcel

Single
Manager

2SLS IVCRC 2SLS IVCRC 2SLS IVCRC 2SLS IVCRC

A. Variance Components

Plot TFP .18 .18 .18 .18 .18 .18 .17 .17
Land/labor productivity .07 .07 .08 .08 .08 .08 .06 .06
Late-season risk and output
measurement error .67 .67 .69 .69 .71 .71 .63 .63
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TABLE A3 (Continued)

Tanzania

Base 1 km 100 m
Single

Manager

2SLS IVCRC 2SLS IVCRC 2SLS IVCRC 2SLS IVCRC

Land measurement error .13 .13 .16 .16 .18 .18 .14 .14
Labor measurement error .18 .18 .20 .20 .18 .18 .20 .20
Covariance of TFP and land/
labor productivity .05 .05 .06 .06 .05 .05 .06 .06

B. Productivity Dispersion

Var(TFPA) 1.26 1.25 1.34 1.31 1.38 1.35 1.21 1.22
Var(TFPB) .52 .29 .56 .54 .58 .56 .51 .52
Implied share of measurement
error/unobserved heteroge-
neity in Var(TFPA) .59 .77 .58 .59 .58 .59 .58 .57

Uganda

Base
15-Minute

Walk
Within
Parcel

Single
Manager

2SLS IVCRC 2SLS IVCRC 2SLS IVCRC 2SLS IVCRC



FIG. A1.—Tanzania distance effects on log productivity dispersion. prod func5 produc-
tion function.
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FIG. A2.—Uganda distance and parcel effects on log productivity dispersion.
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FIG. A3.—Single-managers-only log productivity dispersion.



A6. Gains from Reallocation

An efficient allocation of factors across plots requires Le
i 5 sei �L and X e

i 5 sei �X ,
where

sei 5
exp 1= 1 2 aL 2 aXð Þ½ �qið Þ

�q
,

�L and �X are, respectively, aggregate endowments of land and labor, and �q 5
oi e ½1=ð12aL2aX Þ�qi . Measured output of producer i in an efficient allocation is

Y e
i 5

1

�q

� �aL1aX

e qi= 12aL2aXð Þ½ �1ei �Lð ÞaL �Xð ÞaX : (A14)

Ifqi and ei are normally distributed and independent of each other, then expected
output is

E Y e
ið Þ 5

1

�q

� �aL1aX

�Lð ÞaL �Xð ÞaX E e eið ÞE eqi= 12aL2aXð Þ� �
5

1

�q

� �aL1aX

�Lð ÞaL �Xð ÞaX E e eið ÞeE qið Þ= 12aL2aXð Þej
2
q=2 12aL2aXð Þ2

; Y e j2
qð Þ,

(A15)

where j2
q is the variance of TFP. The notation Y eðj2

qÞ emphasizes the dependence
of the average output in the efficient allocation on the variance of TFP.
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Appendix B

Coefficient Estimates: Full Sets

TABLE B1
OLS and Quantile Regression Determinants of Log Land and Log Labor Inputs in Tanzania

OLS 25th percentile 50th percentile 75th percentile Interquartile Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

Male manager .35 .23 .37 .28 .32 .22 .33 .22 2.034 2.069
(.019) (.018) (.023) (.025) (.023) (.021) (.023) (.020) (.028) (.031)

Land value .21 .1 .19 .11 .2 .1 .24 .1 .044 2.0056
.009) (.008) .010) (.010) (.010) .009) .010) .009) (.014) (.011)

Drought/ flood �
good soil .096 .024 .14 .011 .045 2.03 .045 .0023 2.091 2.0085

(.034) .031) (.040) (.040) (.041) (.036) (.044) (.036) (.044) (.048)
Drought/ flood �
average (avg.) soil .073 .035 .12 2.0043 2.0038 .055 .025 .036 2.1 .04

(.033) (.031) (.039) (.043) (.042) (.036) (.039) (.036) (.040) (.067)
Drought/ flood �
poor soil 2.027 2.035 2.014 2.083 2.031 2.082 2.0056 2.016 .0083 .067

(.077) (.072) (.078) (.085) (.089) (.098) (.065) (.080) (.095) (.110)
Illness/ accident of
HH member .035 2.039 .042 2.075 .056 2.0095 .0073 .018 2.035 .093

(.031) (.029) (.046) (.040) (.031) (.034) (.036) (.036) (.056) (.043)
GS rain � good soil
in HHa 24E205 24E206 4E205 4E205 25E205 27E206 26E205 23E205 2.0001 27E205

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
GS rain � avg soil in
HHa 26E206 2E205 8E205 3E205 23E205 1E205 23E205 2E205 2.0001 22E205

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
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GS rain � poor soil
in HHa 26E205 25E205 29E205 28E205 2.0001 27E205 22E205 3E205 8E205 .0001

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
Drought/ flood �
good soil in HHa .0053 .038 .02 .046 .011 .051 .0067 .032 2.014 2.014

(.017) (.016) (.017) (.025) (.018) (.014) (.016) (.019) (.022) (.025)
Drought/ flood �
avg. soil in HHa 2.009 .02 2.029 .04 .019 .026 .0011 .011 .03 2.029

(.017) (.016) (.015) (.025) (.020) (.019) (.019) (.016) (.025) (.033)
Drought/ flood �
poor soil in HHa .11 .1 .11 .097 .08 .17 .072 .025 2.042 2.072

(.045) (.042) (.038) (.047) (.075) (.051) (.028) (.040) (.072) (.045)
Adverse shock to
HH plotsa 2.089 2.032 2.11 2.046 2.081 2.032 2.061 2.022 .052 .023

(.011) (.010) (.012) (.013) (.011) (.010) (.012) (.011) (.016) (.013)
Land value missing 1.87 .87 1.72 .93 1.82 .86 2.2 .93 .48 2.0055

(.099) (.092) (.110) (.120) (.110) (.100) (.120) (.092) (.130) (.140)
Distance home .0017 8E205 .0021 .0001 .0017 1E204 .0019 2.0003 2.0002 2.0004

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.001) (.000)
Distance to road .021 .018 .024 .021 .023 .02 .024 .018 .0007 2.0026

(.002) (.002) (.002) (.002) (.002) (.001) (.002) (.001) (.003) (.002)
Good soil 2.093 2.12 2.14 2.19 2.067 2.18 2.17 2.18 2.029 .0096

(.100) (.097) (.120) (.120) (.091) (.120) (.110) (.094) (.160) (.180)
Avg. soil 2.19 2.22 2.28 2.29 2.23 2.32 2.24 2.25 .036 .038

(.110) (.098) (.120) (.120) (.093) (.120) (.110) (.095) (.160) (.160)
Sandy soil 2.38 2.4 2.43 2.36 2.38 2.54 2.5 2.51 2.069 2.15

(.150) (.140) (.110) (.130) (.220) (.230) (.110) (.100) (.220) (.200)
Loamy soil 2.3 2.44 2.34 2.36 2.33 2.48 2.26 2.45 .077 2.091

(.140) (.130) (.089) (.120) (.210) (.220) (.110) (.094) (.230) (.200)
Clay soil 2.27 2.3 2.26 2.24 2.35 2.32 2.23 2.31 .026 2.068

(.150) (.140) (.100) (.130) (.210) (.220) (.120) (.100) (.240) (.200)
Single manager 2.037 2.13 2.02 2.13 2.044 2.15 2.045 2.15 2.025 2.029

(.018) (.017) (.023) (.022) (.022) (.020) (.022) (.019) (.026) (.023)
Poor healtha 2.017 2.0056 2.022 .0017 2.016 2.0011 2.019 2.0047 .0031 2.0064

(.005) (.005) (.006) (.007) (.006) (.006) (.006) (.005) (.010) (.009)
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TABLE B1 (Continued)

OLS 25th percentile 50th percentile 75th percentile Interquartile Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

Missing healtha 2.038 .06 2.049 .079 2.086 .077 2.031 .027 .018 2.052
(.030) (.028) (.038) (.032) (.034) (.033) (.038) (.033) (.054) (.055)

Illiteratea .057 .1 .088 .13 .067 .085 .056 .083 2.032 2.042
(.026) (.024) (.036) (.034) (.030) (.028) (.030) (.027) (.051) (.036)

Literacy missinga 2.22 .022 .028 .093 2.33 2.23 2.11 2.13 2.14 2.22
(.220) (.200) (.160) (.089) (.095) (.190) (.300) (.110) (.450) (.320)

Manager agea .0041 .0077 .0037 .0077 .0033 .0084 .0053 .0083 .0015 .0005
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001) (.001)

Age missinga 24.150 27.490 24.010 27.390 23.340 28.100 25.380 28.120 21.370 2.730
(.560) (.520) (.690) (.670) (.660) (.610) (.700) (.550) (.800) (.930)

Crop shock .08 .14 .14 .17 .058 .17 .053 .096 2.083 2.079
(.017) (.015) (.021) (.021) (.019) (.018) (.020) (.017) (.019) (.021)

Crop disease �
good soil 2.027 .077 2.033 .067 .034 .096 2.0063 .065 .026 2.0014

(.036) (.033) (.052) (.043) (.043) (.038) (.043) (.038) (.055) (.048)
Crop disease �
avg. soil .039 .12 .11 .091 .061 .077 .021 .12 2.086 .032

(.035) (.032) (.048) (.047) (.042) (.036) (.040) (.036) (.051) (.045)
Crop disease �
poor soil 2.16 2.054 2.2 2.036 2.12 2.03 2.14 2.095 .054 2.059

(.078) (.072) (.077) (.100) (.067) (.087) (.061) (.074) (.110) (.130)
(soil_quality 5 1) �
wetQ 2.0002 2.0002 2.0002 2.0003 2.0002 23E205 .0002 2E205 .0004 .0003

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
(soil_quality 5 2) �
wetQ 21E204 21E204 2.0002 2.0001 22E205 .0001 .0002 4E205 .0004 .0001

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
(soil_quality 5 3) �
wetQ 2.0003 2.0004 2.0005 2.0007 2.0004 2.0003 2.0001 2.0003 .0003 .0004

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
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GS rainfall � loamy
soil 2E206 .0003 .0001 .0003 26E206 7E205 2.0004 6E205 2.0005 2.0002

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
GS rainfall � clay
soil 24E205 .0002 3E205 .0002 24E207 24E205 2.0005 27E205 2.0005 2.0003

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
GS rainfall � other
soil 2.0006 2.0006 2.0006 2.0005 2.0008 2.0009 2.001 2.0008 2.0004 2.0003

(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)
Water shortage .12 .049 .099 .078 .14 .045 .14 .065 .043 2.013

(.018) (.017) (.026) (.024) (.022) (.019) (.022) (.019) (.028) (.034)
Livestock death
or stolena .065 .055 .039 .028 .082 .038 .075 .088 .037 .06

(.020) (.018) (.027) (.023) (.024) (.021) (.022) (.023) (.039) (.037)
Death of HH
membera .1 .099 .09 .12 .075 .12 .061 .091 2.029 2.029

(.026) (.024) (.024) (.039) (.031) (.027) (.032) (.022) (.034) (.048)
Property crime
in HHa 2.002 2.055 .008 2.095 2.019 2.038 2.013 2.047 2.021 .048

(.032) (.030) (.034) (.048) (.040) (.034) (.029) (.027) (.036) (.051)
HH good soil �
shock on plots
in HHa .0015 2.044 2.031 2.074 2.022 2.045 .0072 2.024 .038 .05

(.017) (.015) (.023) (.025) (.021) (.014) (.017) (.020) (.035) (.020)
HH avg. soil �
shock on plots
in HHa

2.0052 2.0072 .0003 2.0021 2.011 .011 2.01 2.0062 2.011 2.0041

(.017) (.016) (.019) (.023) (.015) (.017) (.019) (.015) (.025) (.023)
HH poor soil �
shock on plots
in HHa

2.086 2.045 2.034 2.017 2.082 2.05 2.12 2.07 2.09 2.052

(.046) (.043) (.043) (.050) (.053) (.041) (.030) (.048) (.090) (.060)
HH loamy soil � GS
raina

27E205 2.0001 2.0001 2.0001 26E205 2.0001 21E204 2.0001 2E205 21E205
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

HH clay soil � GS
raina

26E205 27E205 2.0001 2.0001 26E205 28E205 26E205 28E205 4E205 2E205
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

HH other soil � GS
raina

2.0001 29E205 2.0002 28E205 2.0001 27E205 2.0002 2.0001 2E205 23E205
(.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000) (.000)

continued on next page
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TABLE B1 (Continued)

OLS 25th percentile 50th percentile 75th percentile Interquartile Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

Constant 22E208 29E209 2.58 2.55 .028 .062 .62 .61 1.19 1.16
(.008) (.007) (.011) (.011) (.010) (.009) (.010) (.009) (.013) (.011)

F-statistics:
For joint signi-

ficance of
instruments 17.1 11.5 13.7 7.32 24.4 11.3 19.4 11.2

p-value 0 0 0 0 0 0 0 0
For h0

b 30.1 5.46
p-value 0 0

Note.—N 5 14,535. Bootstrapped (500 samples) standard errors, clustered at the household level, in parentheses. HH 5 household; GS 5 growing
season.

a Variable serves as instrument in table 9.
b h0: coefficients are equal for 25th and 75th percentiles.
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TABLE B2
OLS and Quantile Regression Determinants of Log Land and Log Labor Inputs in Uganda

OLS 25th percentile 50th percentile 75th percentile Interquartile Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

Male plot .14 .062 .13 .044 .14 .067 .14 .083 .015 .039
(.0086) (.0071) (.0097) (.0093) (.0093) (.0075) (.0093) (.0075) (.014) (.011)

Fair soil 2.092 2.078 2.100 2.080 2.14 2.098 2.10 2.12 2.0045 2.036
(.024) (.021) (.030) (.029) (.027) (.018) (.024) (.023) (.025) (.024)

Poor soil 2.20 2.11 2.19 2.19 2.31 2.18 2.13 2.022 .064 .17
(.067) (.062) (.082) (.046) (.056) (.066) (.060) (.047) (.14) (.065)

Fair soil � drought
duration .026 .024 .032 .021 .032 .024 .025 .035 2.0071 .013

(.0052) (.0046) (.0056) (.0060) (.0057) (.0048) (.0052) (.0050) (.0081) (.0059)
Poor soil � drought
duration .035 .027 .035 .027 .036 .021 .040 .0044 .0049 2.023

(.012) (.0092) (.015) (.010) (.012) (.0097) (.010) (.0040) (.018) (.013)
Illness incidence
in HHa .0027 2.051 2.0019 2.067 .013 2.066 2.0078 2.064 2.0059 .0027

(.013) (.0098) (.015) (.013) (.014) (.011) (.012) (.010) (.016) (.013)
HH fair soil � peak
raina .000082 2.000074 .00010 2.000073 .000045 2.000070 .000045 2.000032 2.000058 .000042

(.000023) (.000019) (.000023) (.000024) (.000026) (.000020) (.000027) (.000018) (.000035) (.000027)
HH poor soil �
peak raina .00021 2.000053 .00022 2.000037 .00025 2.00011 .00022 2.000036 .0000057 .000000075

(.000073) (.000055) (.000086) (.000087) (.000058) (.000081) (.000067) (.000055) (.00010) (.00011)
HH fair soil �
drought
durationa 2.0053 2.0069 2.0067 2.0076 2.0061 2.0078 2.0074 2.0083 2.00062 2.00073

(.0018) (.0015) (.0018) (.0017) (.0019) (.0014) (.0015) (.0017) (.0026) (.0027)

continued on next page
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TABLE B2 (Continued)

OLS 25th percentile 50th percentile 75th percentile Interquartile Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

HH fair soil � total
raina 2.048 .017 2.053 .018 2.045 .012 2.041 2.00038 .012 2.018

(.0083) (.0069) (.0082) (.0086) (.0097) (.0071) (.0098) (.0059) (.011) (.0092)
HH poor soil� total
raina 2.083 .023 2.070 .018 2.097 .037 2.091 2.0038 2.020 2.022

(.025) (.020) (.031) (.031) (.019) (.029) (.022) (.018) (.027) (.036)
Shocks on HH plotsa .023 2.00034 .017 2.0011 .069 .00065 .10 2.00049 .087 .00065

(.0032) (.0013) (.0018) (.0035) (.0072) (.0012) (.0080) (.0022) (.0090) (.0029)
HH non-agricultural
shocka .084 2.0063 .083 2.0067 .059 2.020 .093 2.024 .010 2.018

(.026) (.021) (.019) (.026) (.030) (.021) (.032) (.022) (.031) (.030)
Value of HH assetsa 1.6E209 1.5E210 1.7E209 1.0E210 1.6E209 2.8E210 1.5E209 2.9E210 22.4E210 1.9E210

(1.4E210) (1.3E210) (1.5E210) (1.5E210) (1.5E210) (1.2E210) (1.1E210) (1.5E210) (2.7E210) (1.7E210)
Cement
constructiona .068 .023 .059 .019 .052 .0052 .054 .027 2.0051 .0077

(.012) (.0097) (.013) (.013) (.013) (.010) (.013) (.010) (.017) (.017)
No. of HH
membersa .025 .010 .023 .014 .022 .011 .022 .010 2.00035 2.0041

(.0020) (.0017) (.0024) (.0022) (.0022) (.0018) (.0022) (.0018) (.0027) (.0026)
No. of adults in HHa .017 .0081 .018 .0054 .018 .0078 .016 .0075 2.0022 .0022

(.0029) (.0025) (.0036) (.0031) (.0031) (.0026) (.0033) (.0026) (.0043) (.0041)
Every member of
HH has ≥1 pair
of shoesa 2.0074 2.070 2.017 2.094 .0014 2.058 .018 2.034 .035 .060

(.0092) (.0078) (.010) (.010) (.0099) (.0080) (.0098) (.0081) (.012) (.013)
Does this house
have electricity?a .078 .053 .12 .044 .054 .021 .026 .038 2.094 2.0062

(.020) (.016) (.022) (.019) (.021) (.015) (.023) (.017) (.033) (.027)
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Literacy of plot
managersa .062 .042 .054 .049 .069 .039 .063 .025 .0081 2.024

(.012) (.011) (.015) (.013) (.013) (.011) (.014) (.011) (.017) (.019)
Schooling level of
plot managersa 2.0016 2.00099 2.021 .0025 .0016 2.0050 2.0061 2.012 .015 2.014

(.013) (.011) (.014) (.015) (.014) (.011) (.012) (.012) (.019) (.012)
Plot manager is re-
cent residenta .015 .074 .022 .076 .038 .077 .045 .069 .023 2.0064

(.019) (.016) (.020) (.023) (.018) (.017) (.018) (.016) (.024) (.022)
One or both man-
agers serve on
committeea .022 .013 .0092 2.0048 .0047 .029 2.024 .025 2.034 .029

(.014) (.011) (.016) (.014) (.015) (.012) (.015) (.012) (.019) (.015)
HH adult equiva-
lence scalea .000025 .000091 .000012 .000099 2.000063 .000065 2.000014 .000045 2.000026 2.000054

(.000048) (.000038) (.000044) (.000065) (.000058) (.000058) (.000081) (.000024) (.000074) (.000045)
V fair soil� drought
durationa .0031 .00047 .0024 .00067 .0030 .00053 .0027 .00030 .00030 2.00037

(.00037) (.00030) (.00041) (.00040) (.00039) (.00033) (.00036) (.00034) (.00051) (.00031)
HH poor soil �
drought
durationa 2.0029 2.0035 2.0024 2.0039 2.0057 2.0042 2.0070 .0033 2.0046 .0072

(.0043) (.0037) (.0053) (.0041) (.0038) (.0043) (.0049) (.0035) (.0068) (.0056)
V poor soil �
drought
durationa .0066 2.0012 .0050 2.00063 .0019 2.0012 .0031 2.0024 2.0019 2.0018

(.0013) (.00100) (.0012) (.0013) (.0011) (.00098) (.0012) (.0011) (.0018) (.0020)
HH missing soil �
drought
durationa 2.028 .019 2.036 .0044 2.023 .013 2.010 .027 .026 .023

(.0099) (.0061) (.0094) (.0063) (.0081) (.0058) (.0078) (.011) (.018) (.011)
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TABLE B2 (Continued)

OLS 25th percentile 50th percentile 75th percentile Interquartile Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

V missing soil �
drought
durationa 2.0020 .00061 2.0023 .0044 2.0016 2.00083 2.0033 2.00075 2.0010 2.0052

(.0022) (.0017) (.0019) (.0019) (.0020) (.0015) (.0013) (.0015) (.0034) (.0022)
HH fair soil � flood
durationa .016 .0088 .025 .0083 .016 .011 .0067 .0032 2.019 2.0052

(.0054) (.0056) (.012) (.0091) (.0056) (.0031) (.0060) (.0068) (.012) (.012)
V fair soil � flood
durationa 2.0037 2.0017 2.0035 2.0025 2.0052 2.0017 2.0038 2.0010 2.00034 .0015

(.0013) (.0011) (.0022) (.00041) (.0022) (.0012) (.0018) (.0013) (.0021) (.0020)
HH poor soil �
flood durationa .056 .022 .028 .054 .069 .029 .019 .00091 2.0090 2.053

(.043) (.027) (.17) (.023) (.23) (.020) (.044) (.031) (.12) (.029)
V poor soil � flood
durationa .0029 .018 .0031 .026 .011 .022 .016 .013 .013 2.013

(.012) (.0094) (.0075) (.022) (.0054) (.0099) (.013) (.013) (.015) (.019)
HH missing soil �
flood durationa .14 .079 .15 .096 .12 .11 .16 .074 .015 2.022

(.037) (.028) (.083) (.071) (.28) (.042) (.074) (.093) (.079) (.075)
V missing soil �
flood durationa 2.077 2.018 2.035 2.016 2.068 2.019 2.058 2.0079 2.023 .0085

(.020) (.015) (.0098) (.017) (.018) (.016) (.0078) (.011) (.030) (.026)
V fair soil � total
raina 2.0047 2.00077 2.0054 2.00017 2.0065 2.00019 2.0055 2.00051 2.000097 2.00034

(.0010) (.00089) (.0013) (.0011) (.0011) (.00084) (.0010) (.00087) (.0018) (.0012)
V poor soil � total
raina 2.036 2.0030 2.030 .0017 2.030 2.0076 2.031 2.0063 2.00094 2.0080

(.0059) (.0044) (.0069) (.0060) (.0061) (.0053) (.0068) (.0046) (.0093) (.0083)
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HH missing soil �
total raina 2.00011 2.0000067 2.00012 .000066 2.000075 2.000021 2.00019 2.000085 2.000067 2.00015

(.000056) (.000040) (.000068) (.000063) (.000081) (.000036) (.00006) (.00004) (.00009) (.000078)
V missing soil �
total raina .000025 .0000059 .000034 2.000014 .000036 .000010 .000028 .000012 2.000006 .000026

(.000008) (.000006) (.000010) (.000008) (.000009) (.000007) (.00001) (.00001) (.00001) (.000007)
V fair soil � peak
raina .000004 .0000040 .000008 .0000031 .000010 .000002 .000002 .000000 2.000006 2.0000030

(.000003) (.000002) (.000004) (.0000030) (.000003) (.000002) (.000003) (.00000) (.000004) (.000003)
V poor soil � peak
raina .000044 2.000027 .000032 2.000042 .000044 2.000021 .000047 2.000012 .000016 .000031

(.000016) (.000012) (.000019) (.000017) (.000017) (.000015) (.000020) (.000013) (.000026) (.000022)
HH missing soil �
peak raina .00038 2.00015 .00045 2.00028 .00027 2.00012 .00041 .000087 2.000042 .00036

(.00016) (.00012) (.00021) (.00016) (.00023) (.00010) (.00016) (.00012) (.00019) (.00025)
V missing soil �
peak raina 2.000040 .0000024 2.000060 .000018 2.000070 .0000082 2.000039 .0000042 .000022 2.000014

(.000017) (.000013) (.000020) (.000016) (.000017) (.000013) (.000018) (.000013) (.000017) (.000018)
Shocks on village
plotsa .0025 .00067 .0026 .00091 .0025 .00075 .0039 .00084 .0013 2.000066

(.00044) (.00029) (.00055) (.00045) (.00029) (.00027) (.00054) (.00029) (.00071) (.00045)
Missing soil �
drought duration .028 2.017 .013 2.032 .012 .000006 .026 .0022 .014 .034

(.027) (.020) (.023) (.018) (.021) (.015) (.038) (.027) (.044) (.031)
Fair soil � flood
duration 2.021 2.024 2.057 2.024 2.0082 2.023 2.0023 2.0095 .055 .015

(.019) (.018) (.026) (.011) (.029) (.015) (.012) (.021) (.034) (.034)
Poor soil � flood
duration 2.12 .10 .047 .091 2.14 2.0021 2.18 .016 2.23 2.075

(.084) (.078) (.94) (.22) (.47) (.025) (.092) (.061) (.25) (.19)
Missing soil � flood
duration 2.46 2.22 2.63 2.21 2.31 2.39 2.59 2.45 .042 2.25

(.17) (.12) (.48) (.42) (.53) (.25) (.48) (.50) (.52) (.29)
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TABLE B2 (Continued)

OLS 25th percentile 50th percentile 75th percentile Interquartile Range

Log Land
(1)

Log Labor
(2)

Log Land
(3)

Log Labor
(4)

Log Land
(5)

Log Labor
(6)

Log Land
(7)

Log Labor
(8)

Log Land
(9)

Log Labor
(10)

Fair soil � total rain .087 2.0070 .15 2.013 .12 .037 .10 .083 2.045 .095
(.029) (.027) (.036) (.035) (.032) (.026) (.034) (.028) (.043) (.037)

Poor soil � total
rain .087 2.027 .12 .031 .15 .060 .060 2.015 2.058 2.046

(.079) (.068) (.089) (.062) (.071) (.068) (.085) (.073) (.13) (.084)
Missing soil � total
rain 2.0011 .00012 2.0014 2.00016 2.00064 .000064 2.00069 .00047 .00067 .00063

(.00026) (.00020) (.00022) (.00024) (.00021) (.00018) (.00029) (.00021) (.00033) (.00042)
Fair soil � peak rain 2.00011 .00013 2.00025 .00016 2.000075 .000071 2.000086 2.000083 .00016 2.00024

(.00006) (.00006) (.00008) (.00008) (.00007) (.00006) (.00008) (.00006) (.00011) (.000073)
Poor soil � peak
rain 2.00020 .000014 2.00039 2.000000070 2.000059 .000016 2.00019 2.00013 .00020 2.00013

(.00017) (.00013) (.00018) (.00016) (.00017) (.00013) (.00021) (.00017) (.00025) (.00025)
Missing soil � peak
rain 2.00029 .00011 2.000047 .00018 2.00020 .00021 2.00016 .00017 2.00011 2.000014

(.00022) (.00018) (.00024) (.00023) (.00025) (.00018) (.00025) (.00021) (.00034) (.00043)
Missing soil 1.48 .24 1.54 .56 .82 .16 1.52 2.55 2.024 21.11

(.41) (.26) (.33) (.22) (1.34) (.26) (.41) (.96) (.69) (.56)
Rainfed 2.15 2.062 2.14 2.14 2.14 2.057 2.23 2.030 2.083 .11

(.038) (.027) (.050) (.033) (.040) (.020) (.049) (.020) (.063) (.036)
Wetland 2.20 2.047 2.18 2.13 2.18 2.083 2.26 2.035 2.079 .097

(.049) (.038) (.068) (.047) (.048) (.038) (.065) (.036) (.083) (.062)
Missing water 2.55 2.51 2.75 2.45 2.80 2.48 2.89 2.20 2.14 .25

(.22) (.18) (.055) (.11) (1.46) (.072) (.052) (.95) (.41) (.27)
Flat land 2.025 2.036 2.020 2.043 2.0083 2.012 .027 2.019 .048 .025

(.018) (.013) (.021) (.019) (.018) (.014) (.019) (.014) (.022) (.026)
Gentle slope 2.066 2.0087 2.091 2.020 2.078 .0035 2.026 2.010 .065 .010

(.017) (.013) (.020) (.018) (.017) (.014) (.019) (.014) (.023) (.023)
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Steep slope 2.072 2.029 2.100 2.055 2.051 2.0031 2.038 .015 .062 .070
(.027) (.022) (.034) (.029) (.028) (.021) (.032) (.023) (.041) (.034)

Valley 2.024 2.0051 2.064 2.023 2.058 .00070 2.032 .0067 .032 .029
(.035) (.025) (.035) (.034) (.041) (.029) (.049) (.026) (.054) (.047)

Other slope 2.33 .29 2.56 .14 2.15 .53 2.27 .43 .29 .29
(.24) (.23) (.51) (.95) (.15) (.051) (.60) (.17) (.45) (.42)

Missing
toposequence .31 .035 .54 2.12 .50 .12 .16 .082 2.38 .20

(.22) (.16) (.25) (.20) (.22) (.17) (.047) (.051) (.43) (.33)
No erosion .013 2.021 .018 2.031 .026 2.023 2.022 2.021 2.041 .0096

(.012) (.0093) (.013) (.012) (.012) (.0095) (.014) (.010) (.013) (.010)
Missing erosion 2.12 2.0047 2.0054 .00078 2.0038 .037 2.25 .078 2.24 .077

(.11) (.088) (.13) (.086) (.098) (.17) (.23) (.034) (.23) (.13)
HH received advice
on agricultural
production
(AGSEC9) .13 .043 .14 .051 .13 .041 .090 .027 2.048 2.024

(.0098) (.0085) (.012) (.011) (.011) (.0088) (.010) (.0093) (.014) (.011)
Constant 27.3E209 1.0E209 2.52 2.38 .012 .059 .54 .45 1.06 .83

(.0041) (.0034) (.0051) (.0047) (.0048) (.0037) (.0051) (.0038) (.0052) (.0044)
F-statistics:
For joint

significance
of instruments 37.1 14.7 30.4 20.9 34.6 14.6 34.9 11.6

p-value .00 .00 .00 .00 .00 .00 .00 .00
For h0

b 71.2 36
p-value .00 .00

Note.—N 5 43,187. Bootstrapped (500 samples) standard errors, clustered at the household (HH) level, are in parentheses. V5 village with; e.g., “V
poor soil” means “village with poor soil.”

a Variable serves as instrument in table 9.
b h0: coefficients are equal for 25th and 75th percentiles.
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