
 

 

 

 

 

External Validity in a Stochastic World: Evidence from Low-Income Countries 

 

MARK R. ROSENZWEIG 

Yale University 

CHRISTOPHER UDRY 

Northwestern University 

First version received July 2017; Final version accepted February 2019 (Eds.) 

 

We examine empirically the generalizability of internally valid micro estimates of causal effects 

in a fixed population over time when that population is subject to aggregate shocks. Using panel 

data we show that the returns to investments in agriculture in India and Ghana, small and 

medium non-farm enterprises in Sri Lanka, and schooling in Indonesia fluctuate significantly 

across time periods. We show how the returns to these investments interact with specific, 

measurable and economically-relevant aggregate shocks, focusing on rainfall and price 

fluctuations. We also obtain lower-bound estimates of confidence intervals of the returns based 

on estimates of the parameters of the distributions of rainfall shocks in our two agricultural 

samples. We find that even these lower-bound confidence intervals are substantially wider than 

those based solely on sampling error that are commonly provided in studies, most of which are 

based on single-year samples. We also find that cross-sectional variation in rainfall cannot be 

confidently used to replicate within-population rainfall variability. Based on our findings, we 

discuss methods for incorporating information on external shocks into evaluations of the returns 

to policy. 
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1. INTRODUCTION 

 A large proportion of empirical work in economics is concerned with estimating causal 

effects. These causal estimates are often used as the basis for policy recommendations and 

sometimes even policy initiatives. As empirical methods improve, most markedly with the rapid 

adoption of RCTs, it is appropriate to shift our focus of concern from issues of internal validity 

(e.g., identification) towards the external validity of estimates of causal effects. What can we 

learn from internally valid estimates of a causal effect of a treatment or action in a particular 

population in a specific set of circumstances about the effect of that same treatment or action in 

other populations and circumstances?  

 A common feature of studies that focus on causal estimates is that the estimates are 

obtained at one point in time. A small set of examples (that are either influential and/or by one 

of us) includes Duflo et al. (2011), Banerjee and Duflo (2008), Banerjee et al. (2013), Bloom et al. 

(2013), de Mel et al. (2008, 2009), Foster and Rosenzweig (1995), Hanna et al. (2014), Karlan et 

al. (2013), Fafchamps et al. (2011), Udry and Anagol (2006), Suri (2011). A potential shortcoming 

of such studies is that the influence of aggregate shocks cannot be identified. If these shocks  

importantly affect the estimates obtained, these single-year estimates are valid only for the 

specific time-period in which they are obtained, potentially severely limiting their external 

validity to the extent that aggregate shocks are highly variable. 

While not all studies have ignored changing responses over time, papers that exploit 

multiperiod post-intervention data typically focus solely on the dynamics of responses to the 

intervention. If aggregate shocks affect the returns to the intervention, however, it can be 

difficult to identify true response dynamics. A number of studies have tracked the effectiveness 

of "Graduation" programs designed to improve the welfare of the very poor in developing 

countries (Bandiera et al., forthcoming; Banerjee et al., 2015; Blattman et al, 2016)) without 

careful attention to the evolution of aggregate conditions. Tjernström et al. (2013) exploits the 

timing of the rollout of a program to distinguish the dynamic program effect from aggregate 

shocks, but identification relies on the assumption that the dynamic effect is additively separable 

from the effect of the aggregate shocks. 
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Another common feature of existing studies is that standard errors are computed based 

on sampling error exclusively. It is well-known in the econometrics literature, however, that the 

confidence intervals around single-period cross-sectional parameters estimates are too 

conservative in the presence of time-varying stochastic shocks that are common across cross-

sectional units and that alter the parameter estimates themselves (Andrews, 2005). The 

literature, however, contains few if any estimates of confidence intervals that incorporate the 

effects of macro variability, as such estimates at a minimum require knowledge of the influence 

of macro shocks on the estimated treatment effects of interest. These are typically unattainable 

in a single year study. Thus we lack evidence on the quantitative importance of aggregate shocks 

for computing confidence intervals and for the assessing the external validity of any single-year 

estimates. 

 The issue of the consequences of stochastic variability for gaging external validity may be 

of particular importance for populations in developing economies, which typically face large 

exogenous macro shocks. One reason is that a substantial proportion of the labor force in low-

income countries is engaged in agriculture, for which weather shocks are very important. This 

also means that fluctuations in weather in such countries potentially spillover to the non-

agricultural sector via product demand and factor price variation. Many developing countries are 

also single-commodity exporters (e.g., tin, petroleum) and thus are heavily exposed to external 

price and demand shocks. Populations in these macro environments thus may face very different 

conditions from year to year. 

 Recently there have been studies that have examined how a particular estimated 

relationship varies across different samples of the same population (Allcott, 2015) or across 

different populations (Dehejia et al., 2016; Meager, 2016). These show that generalization of 

treatment effects across populations can be difficult: in the first case because of the potential for 

systematic selection bias in the populations that are studied; in the second because of limited 

information about the underlying heterogeneity across populations and the absence of models 

that are informative about the factors affecting the behavior under study. 

 A few recent studies have identified the existence of time-varying returns due to rainfall 

and seasonality. Attanasio and Augsburg (forthcoming) compare the single-year estimates from 
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an RCT in Anagol et al. (2013) to those from additional years to show that returns vary by drought 

and non-drought years.  And Beegle et al. (forthcoming) report on findings from an RCT design 

incorporating interventions in lean and harvest seasons, anticipating that returns will be different 

in the two seasons. But there is a dearth of studies that have provided estimates of the full inter-

temporal distribution of treatment effects or investment returns that are required to inform the 

decisions of entrepreneurs or policy-makers in a stochastic world.  One exception is a recent 

paper by Zhang (2016), who shows that the estimates of the effects of de-worming in Miguel and 

Kremer (2004), based on a 38-year distribution of rainfall in the project area, may be as much as 

twice as high as those that would be obtained in a typical rainfall year, when worm loads would 

be much lower than those experienced at the time of the experiments. 

 In the macro literature (e.g., Kroft and Notowidigdo (2016)) it is established that 

behavioral responses to programs vary over the business cycle, although there is little consensus 

on the forces that drive business cycles. Hahn et al. (2016) distinguish between two types of 

interactions between the behavior of individuals and aggregate shocks - one in which the shocks 

are exogenous to agents' behavior and the other in which there is feedback between the choices 

of agents and the aggregate economic shocks (e.g., changes in unemployment rates). In 

developing countries, shocks exogenous to individuals, firms and farms are a salient feature of 

everyday life, and are often readily measurable. Inter-annual and intra-annual (seasonal) 

variability in weather, variation in international commodity prices, the introduction of new 

technologies, and even large changes in policies impact decisions and decision outcomes with 

little or no feedback to the time path of aggregate shocks.  

 In this paper we obtain estimates of the determinants of the inter-temporal variation in 

returns to investments in agriculture, in non-farm enterprises, and in human capital from panel 

data sets from India, Ghana, Sri Lanka and Indonesia to assess the quantitative importance of the 

influence of exogenous macro shocks, to compare the theoretically appropriate confidence 

intervals to those based only on cross-sectional sampling variability, and to evaluate the 

intertemporal external validity of single-year estimates. We focus on investment returns because 

these are critical parameters for diagnosing the barriers to economic development and thus are 

essential for policy.  For three of our data sets, we are able to quantify a lower bound of the 
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extent of inter-temporal variability in investment returns that is not limited to the time period of 

the study by identifying important exogenous determinants of inter-temporal investment return 

variability, including intra- and inter-seasonal variability in rainfall and global price shocks.1  

Small-scale agriculture is the dominant economic activity of the poorest countries. 

Agricultural production has an important temporal component, typically requiring up front 

investment of substantial resources in exchange for an uncertain harvest months in the future. 

There is a substantial literature that describes and models the costly efforts of farmers to reduce 

this risk or to mitigate its consequences. Despite the centrality of risk to our understanding of the 

economics of agricultural organization, little attention has been paid to its consequences for the 

external validity of estimates of the productivity of investments in agriculture. We examine data 

from Ghana and India in which we can estimate the consequences of variation in aggregate 

shocks for the external validity of estimates of the return to investment. A primary advantage of 

starting with agriculture is that we have good a priori reasons to believe that the important 

dimensions of the shocks affecting agrarian returns are measurable. 

Based on our estimates of the sensitivity of the investment returns to the realization of 

rainfall shocks in our agricultural data sets and long time-series of rainfall we also derive lower-

bounds on the true confidence intervals of the returns that incorporate the complete distribution 

of the stochastic shocks and compare them to the standard confidence intervals that are based 

solely on sampling variability typically reported in single-year studies. We also assess the spatial 

validity of our estimates of the sensitivity of returns to weather variation and consider whether 

the realization of macro shocks across spatial units in a single year can be used to identify the 

effects of intertemporal variations in shocks, exploiting rainfall variation across villages. We also 

test whether seasonality in rainfall affects the variability in profits for non-farm enterprises, using 

panel data from an RCT carried out in Sri Lanka, where a large fraction of the labor force is 

                                                           
1 Banerjee et al. (2014, 2016) provide a general framework for considering the external validity of causal estimates, 
arguing that researchers should explicitly provide "structured speculation" regarding the scope and degree of 
external validity of their estimates. Deaton and Cartwright (2016; p.14) focus on RCTs, but acknowledge that the 
point is general when they argue similarly that causal estimates "must be integrated with other knowledge … if they 
are to be useable outside the context in which they were constructed." We implement these suggestions and 
develop an approach that specifies the relevant heterogeneity for generalizing causal estimates in one population 
at one time to other populations or circumstances, and set down a model of the interactions between those 
dimensions of heterogeneity and the causal effect under consideration. 
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engaged in agriculture. Finally, we quantify the importance of macro price shocks on the returns 

to schooling using panel data from Indonesia and use our methods and findings to assess ex post 

the external validity of the returns to schooling in Duflo (2000), which were obtained for a single 

year.  

In section 2 we present a simple model of the investment decisions of agents in a 

stochastic environment in which the return to investment is subject to aggregate shocks. The 

model motivates the IV strategies we and others employ to estimate investment returns and also 

identifies the information needed to generate decision-relevant confidence intervals.  

In section 3 we present estimates of how rainfall variability affects estimates of the 

returns to agricultural investments from panel data describing farmers in India and Ghana. We 

find that in both agricultural settings, the returns to planting stage investments are very sensitive 

to rainfall realizations and that rainfall realizations are themselves quite variable. Therefore, 

agricultural profits are highly variable over time in both contexts. Our calculations of lower-bound 

confidence intervals based on both our parameter estimates of rainfall sensitivity and the actual 

distribution of rainfall, based on a long time-series of rainfall outcomes, are substantially larger 

than the standard confidence intervals computed from any single year realization that are based 

solely on population sampling variability. The lower-bound estimates of the true confidence 

intervals are in fact quite wide, so that the computed probability that any single year estimate is 

within a reasonable bound of the expected return facing the farmers is low. We find, for example, 

that the probability that any single year estimate of the rate of return is within 30 percentage 

points (on either side) of the expected value of the rate of return is only 5% in both Ghana and 

India.  

Using the Ghana data, where we have rainfall information for 75 villages, we also find that 

using the cross-sectional variation in rainfall realizations in any one year does not replicate 

estimates obtained using farmer fixed effects, indicating the necessity of having panel data to 

identify the influence of rainfall variability on returns, at least in the setting we analyze. We 

investigate one potential source underlying the discrepancy between the cross-sectional and 

panel estimates using information on the baseline wealth of the farmers and a 16-year time-

series of rainfall. We find that wealth levels are higher in areas with higher mean levels of rainfall, 
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and that in the three panel years after baseline wealth is measured, wealth is significantly 

correlated with the future weather outcomes in the cross-section. This can generate a positive 

bias in the Karlan et al. (2014) estimates of the consequences of insurance for risk-taking if 

wealthier households respond more to insurance via a liquidity effect.  In the final subsection, 

we also quantify the extent to which inter-annual output price variation affects estimates of 

agricultural investment returns. Fluctuations in world commodity prices evidently impact the 

returns estimates in similar magnitudes to those caused by rainfall variability. 

 To demonstrate that the sensitivity of returns to investment to aggregate shocks is not 

limited to the agricultural sector, in Section 4 we examine the returns to investment in small non-

farm service and manufacturing enterprises in Sri Lanka, using the quarterly panel data on micro-

enterprises collected by De Mel et al. (2008). As we found for farmers, there is significant 

variation over time in the profits realized by each entrepreneur (cv=0.5), and these fluctuations 

are consistent with respondents' subjective expectations of profit variability. We estimate a 

strong seasonal pattern in the returns to investment by these entrepreneurs net of individual 

illness shocks. This pattern is consistent with respondents' reports that cite aggregate demand 

fluctuations as an important source of profit variation and are also consistent with the specific 

seasonality of rainfall in the study area, still highly agricultural, that would alter the intra-annual 

demand by rural households for non-agricultural products and services. 

 Although the aggregate shocks driving variation in returns to investment in Sri Lanka are 

consistent with the seasonality of rainfall in the relevant study areas, we cannot precisely identify 

the source of demand variation. In section 5, we examine the specific macro factors that drive 

inter-annual fluctuations in short-run measures of the returns to urban schooling in Indonesia, 

namely fluctuations in the international price of oil and in the rupiah exchange rate. An object of 

interest in many studies in developed and developing countries is the rate of return to schooling. 

In the macro growth literature, differences in the rates of return to schooling across countries 

have been used to quantify the role of schooling in growth (Bils and Klenow, 2000) and to identify 

skill bias differences in technologies across countries (Caselli and Coleman, 2006). The principal 

source of data on returns to schooling are from Psacharopolous (1994). This study, however, 

provides single-year estimates of rates of returns from micro studies by country. To the extent 
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that schooling returns are sensitive to macro shocks, the global variance in these return estimates 

will overstate the true inter-country variance in expected returns. And estimates of the 

determinants of cross-country differences in growth or technology choice based on the set of 

single-year estimates thus may lead to incorrect inferences.2 

The most influential micro studies recognize the existence of individual-specific 

unobservables that jointly affect schooling and earnings, just as for agricultural and enterprise 

investments, and attempt to estimate the returns to schooling exploiting policy variation relevant 

to schooling attainment choices as instruments (e.g., Angrist and Krueger, 1991; Angrist and 

Krueger, 1992; Card and Lemieux, 2001; Card, 1995; Duflo, 2001). These studies too, however, 

ignore stochastic variation in earnings returns associated with aggregate shocks. For example, 

Angrist and Krueger (1991) use variation in the timing of births combined with variation in 

compulsory schooling laws in the United States as instruments determining schooling and then 

look at earnings outcomes separately from the 1970 and 1980 Censuses. The differences 

between the estimated returns to schooling across the two Census years are comparable to or 

much larger than (in the most complete specification) the difference between the IV and OLS 

estimates within the same year that is the focus of the study.    

 There is evidence that aggregate factors have persistent effects on schooling returns. For 

example, macro shocks, measured by rates of unemployment occurring at the time of labor 

market entry, evidently affect the returns to schooling, since such shocks differentially affect the 

initial earnings of college and high-school graduates (Oreopoulos et al., 2012). There is also a 

literature that attempts to identify the sources of longer-term trends in the returns to schooling, 

but sorting out the causal effects of longer-term economy-wide supply and demand factors has 

proved difficult in these studies due to the difficulty of identifying the underlying exogenous 

factors driving fluctuations in the aggregate economy, as is implied by Hahn et al. (2016).  

 We focus on short-term changes in the return to schooling, driven by price and exchange 

rate fluctuations, since most estimates of schooling returns and studies of their cross-country 

variation rely on data from a single year. We use panel data on urban wage and salary workers 

                                                           
2 For example, a regression of the rates of return on GDP will be biased to the extent that macro shocks both affect 
GDP and alter schooling returns (as we show).  
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in Indonesia over the period 1993-2008, during which time there were dramatic changes in the 

world price of oil and a rapid depreciation of the Rupiah as a consequence of the 1998 global 

financial crisis.  We combine data on these shocks with information on industry-specific skill 

intensity, openness to trade, and the distribution of industries across provinces to estimate the 

effects of these shocks on the returns to schooling in each year. We find that these external 

macroeconomic shocks had important effects on the return to schooling as estimated in any year, 

in line with our expectations of how these shocks affect the relative demand for skilled and 

unskilled workers. Based on our estimates of the determinants of variation in the returns to 

schooling and our ability to measure the potentially relevant exogenous macro shocks in 

Indonesia over a long time period, we revisit in Section 6 Esther Duflo’s (2000) study of the effects 

of the 1973-78 Indonesian school building program and her estimate of the return to schooling. 

We show that her estimate of the return to schooling based on a single Census year is close to 

the mean return over the relevant decade, although had she chosen to use another census year 

the return estimate would have been considerably higher. 

 In the conclusion, we provide recommendations for the use of theory and external data 

to improve, or at a minimum assess, the temporal external validity of planned or existing causal 

estimates.  

2. MODEL 

We consider a population of agents indexed by 𝑖 who each year 𝑡 (= 1, … 𝑇) make 

investments whose outcomes are realized subsequently and are uncertain. For simplicty, we 

divide up each year into an investment period 0 and a realization period 1. Agents invest an 

amount (𝑎𝑖0) in the first period and realize proceeds of the investment (𝑦𝑖1) in the subsequent 

period. For agriculture, the first period would correspond to planting, and the second the harvest 

period. For business owners, the first period may be capital investments or inventory investments 

and the second the realized demand for the firm’s products. For single, one-time investments 

like schooling, the second period would consist of the post-schooling career with the outcomes 

(earnings), but not investments, varying year to year, with corresponding changes in the notation.  
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We focus our initial attention on the repeated investments of agents who operate farms 

and firms. In any year, the observable second-period profit of the of the agent is given by the 

function 

 𝜋(𝑎𝑖0, 𝑠1, 𝜆𝑖, 𝜖𝑖)=𝜖𝑖𝑦1(𝑎𝑖0, 𝑠1) + 𝜆𝑖 − 𝑎𝑖0. (1) 

Profits are determined by first-period investments, an aggregate shock 𝑠1, an agent fixed effect 

𝜆𝑖 that reflects unobserved variation in the level of output (harvests, sales) across agents, and an 

unobserved idiosyncratic agent or firm characteristic 𝜖𝑖 that we assume has distribution 𝑔(𝜖) 

independent of both 𝑠1 and observed agent characteristics, but which is known to the agent. We 

omit other observed characteristics of the agent or firm for notational convenience. The standard 

evaluation problem is that, of course, we can never simultaneously observe different levels of 

investment for the same agent i.  That is not our focus in this paper, so we will assume that we 

have (a) panel data with 𝑇 ≥ 2; and (b) an appropriate instrument (𝜁𝑖𝑡 , as discussed below) to 

disentangle any endogeneity of first-period investment (𝑎𝑖0) due to the idiosyncratic variation 

𝜖𝑖, which is unobserved by the analyst.   

The problematic source of uncertainty for the agent in the model is the random vector 𝑠1, 

the state of nature in the second period, which has distribution 𝑓(𝑠1|Ω𝑖0), where Ω𝑖0 is the 

agent’s information set at the time of the choice of 𝑎𝑖0. While s may be multidimensional, we will 

initially restrict our attention to a single dimension. For agriculture, this could be the total rainfall 

received during the growing period; for firms the number of product buyers or the output price.  

The agent chooses her investment to solve 

 max
𝑎𝑖0∈𝐴

𝐸𝑠1
[𝑉𝑖1(𝜋(𝑎𝑖0, 𝑠1, 𝜆𝑖, 𝜖𝑖), 𝑧𝑖)|Ω𝑖0] (2) 

𝑉𝑖1 is an increasing and concave function of 𝜋𝑖  and 𝑧𝑖 ∈ 𝜁𝑖  is a characteristic of i that might affect 

that agent’s valuation of a realization of profits in a particular state.  If the agent is risk neutral, 

then decisions depend only on the expected value of the return to first-period investment 

 0 = ∫ 𝜖𝑖

𝜕𝑦1(𝑎𝑖0, 𝑠1)

𝜕𝑎𝑖0
𝑓(𝑠1|Ω𝑖0)𝑑𝑠1 − 1 (3) 

More generally, however, a risk-averse or credit-constrained agent will base decisions on the 

expected marginal utility of profits,  
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 0 = ∫
∂𝑉𝑖1(𝜋, 𝑧𝑖)

𝜕𝜋
(𝜖𝑖

𝜕𝑦1(𝑎𝑖0, 𝑠1)

𝜕𝑎𝑖0
− 1) 𝑓(𝑠1|Ω𝑖0)𝑑𝑠1 (4) 

and therefore on the complete distribution of profits over aggregate shocks. If 
𝜕2𝑉𝑖1(𝜋,𝑧𝑖)

𝜕𝜋𝜕𝑧𝑖
≠ 0, 

then by the implicit function theorem we can define the function 𝑎𝑖0(𝜁𝑖, 𝜖𝑖) describing 𝑖’s choice 

of the first-period level investment to satisfy (2). 

To an analyst attempting to estimate the profit function, variation in investment choice 

by otherwise similar agents is required in order to measure the return to investment. The 

estimation problem is that optimal investment of any agent i will be related to 𝜖𝑖, which is not 

observed by the analyst.  𝑧𝑖 is a candidate for an instrumental variable, or for an intervention that 

induces a change in 𝑎𝑖0 if 𝑧𝑖 is uncorrelated with all unobserved individual agent characteristics. 

This will be the case, for example, where 𝑧𝑖 is a vector of randomized assignments to treatment 

groups receiving varying grants of cash, as is used in two of our examples below. 

Similarly, if 𝜔𝑖0 ∈ 𝜁𝑖  represents an informative signal regarding 𝑓(𝑠1|Ω𝑖0) that varies 

across areas, then 𝜔𝑖0 is another candidate for an instrumental variable that generates variation 

in 𝑎𝑖0 if the signal is independent of unobserved agent characteristics. This will be the case in the 

first example below, where 𝜁𝑖  contains an informative forecast of seasonal rainfall.  

The marginal return to investment for agent 𝑖 in aggregate state 𝑠1 at investment 𝑎𝑖0 is 

 𝛽𝑖(𝑎𝑖0, 𝜖𝑖, 𝑠1) ≡
𝜕𝜋(𝑎𝑖0, 𝑠1, 𝜆𝑖, 𝜖𝑖)

𝜕𝑎𝑖0
= 𝜖𝑖

𝜕𝑦1(𝑎𝑖0, 𝑠1)

𝜕𝑎𝑖0
− 1. (5) 

We typically have data on {𝑎𝑖0, 𝑦𝑖1, 𝜁𝑖 , 𝑠1}𝑖∈𝐼 .  Suppose that there is variation in 𝜁𝑖  sufficient to 

generate variation in {𝑎𝑖0(𝜁𝑖 , 𝜖𝑖)}  across the observed agents such that we observe investments 

over the full range 𝑎𝑖0 ∈ 𝐴 and a sufficiently large cross sectional sample that for each value 𝜁𝑖  

we observe  

 

𝛽̂(𝑎̂0(𝜁𝑖)̂, 𝑠̂1) ≈ 𝛽(𝑎̂0, 𝑠̂1) = 𝐸𝜖𝑖
𝛽𝑖(𝑎𝑖0(𝜁𝑖, 𝜖𝑖), 𝜖𝑖, 𝑠1̂)

≡ ∫ 𝜖
𝜕𝑦𝑖1(𝑎𝑖0(𝜁𝑖, 𝜖), 𝑠1)

𝜕𝑎𝑖0
𝑔(𝜖)𝑑𝜖 − 1 

(6) 

for 𝑠1 = 𝑠̂1, the aggregate shock realized in our data. 

Even in this benign scenario, in which we can identify the expected return (over agents) 

to investment 𝛽(𝑎̂0, 𝑠̂1)  for any level of investment, it remains the case that we observe this 



11 
 

return function at only a single value of the aggregate shock 𝑠1. This information may be of 

relatively limited value because it is typically the entire distribution of returns across possible 

aggregate states that is relevant for policy decisions or for agent investment choice.   

 Two aspects of the random vector 𝑠1 are particularly important for assessing the 

intertemporal external validity of single-year estimates and the bias in standard errors based 

solely on population sampling variability. First, the variability in 𝑠1. A single estimate of the 

average rate of return to an action is more informative in an environment in which the variability 

of 𝑠1 is more limited. Second, the responsiveness to realizations of 𝑠1 of the marginal value of 

increasing 𝑎𝑖0. For given variability of 𝑠1, the larger is this responsiveness, the less informative a 

single estimate of the average rate of return.  

One approach to quantifying the importance of aggregate shocks for external validity is 

to calculate the probability that any particular point estimate of the returns to investment is 

within a pre-specified interval around the expected value of that return. Consider a 

unidimensional continuous shock. We observe 𝛽(𝑎0, 𝑠1), asymptotically without error, for 𝑎0 ∈

𝐴0, but only for 𝑠1 = 𝑠̂1. For any particular value of 𝑎0 = 𝑎̂0, how likely is it that our estimate of 

the return to 𝑎0 is within 𝛿 of 𝐸𝑠1
𝛽(𝑎̂0, 𝑠1)? To simplify notation, define 

 
𝜕2𝜋(𝑎̂0, 𝑠1)

𝜕𝑎0𝜕𝑠1
=

𝜕𝛽(𝑎̂0, 𝑠1)

𝜕𝑠1
= 𝛼(𝑎0, 𝑠1) (7) 

If 𝛼(𝑎0, 𝑠1) is a constant (so 𝛽(𝑎0, 𝑠1) is linear in 𝑠1), then we write it as 𝛼 and 

𝑝𝑟𝑜𝑏[(𝐸(𝛽(𝑎̂0, 𝑠1)) − 𝛿) ≤ 𝛽(𝑎̂0, 𝑠1) ≤ (𝐸(𝛽(𝑎̂0, 𝑠1)) + 𝛿)]

= 𝑝𝑟𝑜𝑏[(𝐸(𝛽(𝑎̂0, 𝑠1)) − 𝛿) ≤ 𝐸(𝛽(𝑎̂0, 𝑠1)) + 𝛼(𝑠1 − 𝐸(𝑠1))

≤ (𝐸(𝛽(𝑎̂0, 𝑠1)) + 𝛿)]. 

Therefore, 

 

𝑝𝑟𝑜𝑏[(𝐸(𝛽(𝑎̂0, 𝑠1)) − 𝛿) ≤ 𝛽(𝑎̂0, 𝑠1) ≤ (𝐸(𝛽(𝑎̂0, 𝑠1)) + 𝛿)]

= 𝑝𝑟𝑜𝑏 [−
𝛿

𝛼
≤ (𝑠1 − 𝐸(𝑠1)) ≤

𝛿

𝛼
] 

(8) 

For any given value of 𝛿, a larger standard deviation of s or a larger cross derivative 
𝜕2𝑌1(𝑎̂0,𝑠1)

𝜕𝑎0𝜕𝑠1
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reduces the probability that a given observation of the return to an action is near the expected 

value of that return. If 𝑠 is normally distributed, then the probability of estimating a return to a 

that is within 𝛼𝜎𝑠 of its expected value is approximately 68%.    

There are multiple dimensions of aggregate uncertainty that potentially influence the 

returns to investment. For 𝑘-dimensional 𝒔, (8) generalizes with  𝜶(𝑎̂0, 𝒔1) ≡ 𝐷𝑠1
𝛽(𝑎0, 𝒔𝟏)  to 

 
𝑝𝑟𝑜𝑏[(𝐸(𝛽(𝑎̂0, 𝒔1)) − 𝛿) ≤ 𝛽(𝑎̂0, 𝒔1) ≤ (𝐸(𝛽(𝑎̂0, 𝒔1)) + 𝛿)]

= 𝑝𝑟𝑜𝑏[−𝛿 ≤ 𝜶′(𝒔1 − 𝐸(𝒔1)) ≤ 𝛿] 
(9) 

What if, as is likely, some dimensions of the aggregate state vector 𝑠 are unobserved or are 

ignored? Then it is straightforward to show that the confidence interval estimated based on the 

variation in any subset of 𝑠 always understates the confidence interval that would be calculated 

incorporating all 𝑘 dimensions. This is true regardless of the sign of the correlation between the 

omitted and included macro shocks. We illustrate this point with a two-dimensional example. 

Normalize the two-dimensional state vector 𝒔1 = (𝑠𝑎, 𝑠𝑏)′ so that the measure 𝑠𝑖 of each 

dimension’s realization has mean 0 and variance 1. The correlation between the two is 𝜌. 

Equation (9) describes the probability that the estimate of the return to investment in a given 

realization of the aggregate state lies within 𝛿 of the expected value over states of the return. 

The variance of 𝜶′(𝒔1 − 𝐸(𝒔1)) = 𝜶′𝒔1 is 𝛼𝑎
2 + 𝛼𝑏

2 + 2𝛼𝑎𝛼𝑏𝜌 = 𝜎𝑇
2.  

 Suppose, however, that we do not observe 𝑠𝑏. We therefore estimate  

 𝛼̃𝑎 = 𝛼𝑎 + 𝛼𝑏𝜌 (10) 

and calculate 

 𝑝𝑟𝑜𝑏[−𝛿 ≤  𝛼̃𝑎𝑠𝑎 ≤ 𝛿] = 𝑝𝑟𝑜𝑏[−𝛿 ≤ (𝛼𝑎 + 𝛼𝑏𝜌)𝑠𝑎 ≤ 𝛿]. (11) 

While 𝛼̃𝑎𝑠𝑎 has the (correct) mean of 0, it’s variance is only 𝛼𝑎
2 + 𝛼𝑏

2𝜌2 + 2𝛼𝑎𝛼𝑏𝜌 = 𝜎𝑀
2 . The 

difference between the true and estimated variance in this case is 

 𝜎𝑇
2 − 𝜎𝑀

2 = 𝛼𝑏
2(1 − 𝜌2). (12) 

Thus, the omission of the unobserved dimension of aggregate variation always causes us to 

overestimate the probability that any estimate of 𝛽, given a particular realization of the 

aggregate shocks, is near the expected value of 𝛽. Our corrections of confidence intervals around 

estimates of the returns to investment to account for some dimensions of aggregate variation, 

therefore, are always lower bounds to the true confidence intervals if there remain any 
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unobserved sources of aggregate variation in the returns to investment that are not perfectly 

correlated with the dimensions we observe. 

 We need not restrict our attention to the expected value of the return to investment 

across aggregate states. Provided we have a credible estimate of 𝛼 in the linear case, or more 

ambitiously of 𝛼(𝑠) in the more general case, these estimates can be combined with estimates 

of the distribution of states to provide an estimate of the full distribution of returns to 

investment. For agriculture, a key risk element is rainfall, for which in many countries there are 

multiple observations over time and space. For this sector therefore, given the stationarity of 

rainfall realizations, we can plausibly characterize the full distribution of returns due to this 

source of stochastic variation that face farmers and to calculate lower-bounds on confidence 

intervals that take into account stochastic variation in investment outcomes. In particular, we 

observe the realization 𝒔̂1 of 𝒔𝟏 (total rainfall and an index of its distribution over the season for 

Ghana; and total rainfall in India) over many years, and thus have an estimate 𝑓(𝒔𝟏). 3 We use 

repeated draws of 𝒔̂1 from 𝑓(𝒔𝟏) and 𝜶̂ to simulate the distribution of returns to investment, 𝜶̂ ∙

𝒔𝟏̂. Because we are observing only a subset of the dimensions of aggregate uncertainty, as noted 

the simulated distribution of returns to investment will provide a lower bound to the true 

variance of returns.  

Finally, another source of aggregate variation in investment returns is price variability. 

Appendix A discusses output prices. The effect of variation in output prices on the returns to 

investment has a simple, linear form that we use to discuss its effect on the temporal external 

validity of estimates of the return to investment in agriculture in India and Ghana. 

 

3. RETURNS TO AGRICULTURAL INVESTMENT 

3.1 The return to investment in Indian ICRISAT Villages 2005-2011 

We begin by using seven years of panel data on farmers from the ICRISAT Village Dynamics in 

South Asia (VDSA) surveys for the years 2005-2011 to estimate the returns to planting-stage 

investments, their sensitivity to rainfall realizations, and the corrected shock-inclusive confidence 

                                                           
3 The distribution of total rainfall in the semi-arid tropics of India and West Africa is well characterized as iid over 
years (e.g., Manzanas et al. 2015)) 
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intervals. Here we use the insight that exogenous changes in expectations can be used to identify 

investment returns and exploit information on the official annual forecasts of monsoon rainfall 

issued by the India Meteorological Department (IMD). Suppose that 𝜔𝑖0 contains information 

about 𝑠1; for example, that increases in 𝜔𝑖0 are associated with a first order stochastic dominant 

shift in the distribution of 𝑠1 and that 𝑠1 and 𝑎𝑖0 are complements in production (as for example 

in a model with multiplicative shocks). A risk-neutral farmer increases investment upon receipt 

of a forecast of good weather: 

 
𝑑𝑎𝑖0

𝑑𝜔𝑖0
= −

𝜕𝐸𝑠1
(𝛽(𝑎0, 𝜁𝑖 , 𝑠1)|Ω𝑖0(𝜔𝑖0))

𝜕𝜔𝑖0

𝜕𝐸𝑠1
(𝛽(𝑎0, 𝜁𝑖 , 𝑠1)|Ω𝑖0(𝜔𝑖0))

𝜕𝑎𝑖0

. (13) 

The denominator is negative, so 𝑠𝑖𝑔𝑛 (
𝑑𝑎𝑖0

𝑑𝜔𝑖0
) = 𝑠𝑖𝑔𝑛 (

𝜕𝛽𝑖

𝜕𝜔𝑖𝑜
). As we would expect, an informative 

signal that the realization of the aggregate shock is likely to be larger leads to greater (less) 

investment if the shock and investment are complements (substitutes).   

The semi-arid tropics where the ICRISAT villages are located are one of the most difficult 

environments to farm, as rainfall is both relatively low on average and highly variable. The data 

we use are based on surveys of farmers in each of the six villages from the first generation ICRISAT 

VLS (1975-1984) but over the years 2005-2011. The villages are in the states of Maharashtra 

(four) and Andhra Pradesh (two). The ICRISAT data set contains farmer-level investment and 

profit data for seven consecutive years, permitting us to quantify the sensitivity of investment 

returns to aggregate shocks.  

There are three additional features of the ICRISAT data relevant to our investigation. First, 

input and output information is provided in approximately three-week intervals collected by 

resident investigators. This enables us to precisely measure investments made within a season 

prior to the realization of rainfall (s1 in the model) as well as the season-specific profits associated 

with those investments. Second, there are data on daily rainfall for each of the six villages for as 

long as 26 years. This enables us to both estimate the influence of rainfall realizations on 

investment returns and to characterize the distribution of rainfall states f(s) faced by farmers so 

that we can compute confidence intervals that take into account stochastic outcomes as well as 
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population sampling variability. Rainfall and thus profit variability in the ICRISAT villages is high.4 

The average coefficient of variation in profits over the period experienced by the ICRISAT farmers 

is 1.4.  

 The third feature of the ICRISAT data that we exploit is that for the four villages in 

Maharashtra, the forecasts of monsoon rainfall issued by the India Meteorological Department 

(IMD) in late June have been moderately successful in predicting kharif-season (July-September) 

rainfall and, most importantly, significantly influence the planting-stage decisions of the ICRISAT 

farmers (Rosenzweig and Udry, 2014) in the July-August planting stage. We use the IMD forecast 

for the southern peninsula as an instrument in an IV strategy for estimating the net returns to 

planting-stage investments (the value of labor used in plowing, seeding and fertilizing plus the 

costs of the material inputs) and their sensitivity to rainfall variation when such investments are 

endogenous. In the context of the model, the IMD forecast is a signal to farmers (𝜔𝑖0) that affects 

their expectations of seasonal rainfall and thus profitability but, for given investments, rainfall 

realization and prices, should have no direct effect on profitability.  We estimate a conditional 

profit function using the ICRISAT panel data, treating planting-stage investments as an 

endogenous choice that responds to the rainfall forecast.   

To identify investment returns, we first have to consider how a forecast that is common 

to all farmers in a given year affects investment decisions differentially across farmers. We take 

advantage of the fact that the ICRISAT data set has detailed information on soil properties – soli 

color, depth, etc. - that not only affect agricultural profits directly but also mediate how rainfall 

variation affects profits. Therefore, we follow the literature (e.g., Carter and Lyybert, 2012) and 

permit interactions between rainfall and soil characteristics to affect profits. If soil characteristics 

affect how rainfall impacts on profitability, then farmers’ investment decisions will also respond 

differentially to a rainfall forecast depending on their soil characteristics.  

We impose additional structure to ensure that the forecast instruments satisfy the 

exclusion restriction. Agricultural profits depend on investments in planting-stage inputs and on 

the realization of rainfall, and as our model has emphasized, on the interaction between these.  

                                                           
4 Our measure of profits is the value of agricultural output minus the value of all agricultural inputs, including the 
value of family labor and other owned input services.   
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There is also good evidence (Sharma and Acharya 2000) that profits depend as well on lagged 

rainfall (differentially depending upon farm characteristics, particularly soil depth) through the 

soil moisture overhang effect. Hence we specify a linearized version of the farm profits of 

household h in village v in year t that is quadratic in planting-stage investments and includes 

interactions between current-season rainfall and rainfall in the prior year with a set of farm-

specific land characteristics, a farmer fixed effect, and village-year fixed effects that absorb time-

varying village-specific input prices (particularly wages) that could be correlated with rainfall 

forecasts. A key feature of our specification is that it also allows the effects of planting-stage 

investments on profits to depend on the realization of rainfall. Excluded from the profit 

specification are the rainfall forecast and its interactions with exogenous fixed land 

characteristics. 5 

 Table 1 reports fixed-effects instrumental variable (FE-IV) estimates of the profit function, 

with the FE at the farmer and village-year levels. The IMD forecast interacted with the 

characteristics of the farm and farmer are the instruments for planting-stage investments. All 

profit function specifications include the rainfall variables interacted with total landholdings, 

irrigated landholdings, soil depth, and four soil types (red, black, sandy, loam).  The first column 

of Table 1 reports estimates from the profit specification that is linear and quadratic in 

investment. Based on those estimates we can strongly reject the hypothesis that larger planting-

stage investments do not increase profits over almost the full range of the investment 

distribution in the sample. In the second column we add rainfall interactions with the investment 

variables and the interactions of investments with rainfall and rainfall with four soil types (two 

indicator variables for depth, loam and sandy (left out are black and red soil). We can also reject 

that investment returns do not depend on rainfall (p=.031) and that the effects of rainfall on 

investment returns do not depend on soil characteristics (p=.032). These estimates thus imply 

that ex-post optimal investments depend on realized rainfall outcomes, or, put differently, how 

much under-investment one would infer from profit function estimates depends on what is 

                                                           
5 This omission is the primary identification assumption required to estimate the returns to planting-stage 
investments. That is, conditional on realized rainfall (or village-year fixed effects) the forecast of total rainfall in the 
monsoon affects profits only through its effect on investments. Additional details are provided in Appendix B. 
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assumed to be the typical rainfall outcome. The estimates in column 2 imply that at mean levels 

of investment in the ICRISAT sample, returns to planting-stage investment are positive over the 

full range of rainfall realizations observed in the data, as shown in Figure 1.  

 The point-wise confidence intervals depicted in Figure 1 for the rainfall-specific returns to 

agricultural investment assume that the only source of variation in the estimates is sampling 

error. However, our estimates suggest that variability in rainfall also strongly affects returns.  Our 

primary goal is to understand the degree to which an estimate of the return to agricultural 

investment in a particular season, conditional on a particular aggregate weather realization, 

provides information about the expected value of this return. We do this first assuming that we 

know α exactly, using our estimate of alpha from column 2 of Table 1 so that we observe the rate 

of return precisely given any specific weather realization. Thus the confidence interval for any 

estimate obtained for a given rainfall realization 𝑠1𝑡 will reflect only the variability in the 

distribution of 𝑠1, that is, 𝑓(𝑠1). To construct the confidence interval based solely on the 

exogenous variation in rainfall, and to assess the probability that any one estimate is within pre-

specified interval around expected profitability (profit at mean rainfall) we use the rainfall time 

series from Kinkheda, the ICRISAT village with the longest continuous history - 26 years.  Standard 

tests of normality indicate non-rejection of the null (e.g., Shapiro-Wilk W test [p=.28]). We thus 

use the standard deviation and mean of the rainfall distribution to assess the confidence interval 

inclusive of rainfall variability. Based on the actual rainfall distribution parameters and α, we draw 

1000 profit returns estimates. The distribution of profit returns, taking into account rainfall 

variability, is shown by the line in Figure 2. 

 The solid line characterizing the distribution of profit returns does not take into account 

sampling variability, that α is an estimate. We thus computed the distribution of returns 

combining the standard deviation of our estimates (due to sampling variability) and rainfall 

variability, assuming that the two errors are independent. That distribution is depicted by the 

cross-hatched line in Figure 2. We contrast these with the distribution of estimates implied by 

sampling variability alone, as reported in all studies, for two returns estimates, at the 25th and 

75th percentile of the rainfall distribution. As can be seen, the confidence intervals based solely 

on sampling variation again severely understate the confidence interval constructed from the 
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distribution of estimates incorporating both sampling variation and stochastic variability in 

rainfall. And, as we have shown, our rainfall-inclusive confidence-interval estimate is itself a 

lower bound of the true confidence interval incorporating all of the macro shocks facing farmers. 

Based on the estimated distribution of returns, we can compute, based on (3), the 

probabilities that any one estimate of returns obtained in a random, single year lies within some 

interval around the true expected (over the rainfall distribution) investment return. The first 

column of Table 2 reports these probabilities for the Indian village, for intervals ranging from 10 

percentage points to 50 percentage points on either side of the mean.  Note that these 

probabilities represent upper bounds for two reasons. First, to emphasize the role of aggregate 

shocks we have assumed that there is no sampling error in this table, unlike for Figure 2. Second, 

these probabilities are solely based on rainfall variability; we have shown that the incorporation 

of any other aggregate shocks would reduce these probabilities further.6 

3.2 The return to investment in Northern Ghana, 2009-2012 

We use three years of panel data from 1,352 households in 75 communities in the Northern 

Region of Ghana to examine the variability in the returns to planting stage investments as a 

function of weather realizations over these three years across this region. The large number of 

communities and their broad spatial extent raises the possibility of using cross-sectional variation 

in weather realizations to estimate 𝛼; we can thus use these data to compare cross-sectional and 

fixed effect estimates of the responsiveness of returns to weather shocks. This data set contains 

detailed plot level information on inputs at each stage of production and seasonal output, along 

with geographical information on the location of each plot that can be combined with data on 

weather realizations over the season. An important advantage of these data is that they were 

collected in the context of a randomized controlled trial that varied the availability of rainfall 

index insurance and substantial grants of cash across the sample of farmers and over time.7  

                                                           
6 To the extent that rainfall variability is correlated with other shocks that impinge on profits (e.g. pests, temperature, 
price), we cannot say that we have identified that part of returns variation due solely to rainfall. That fact is 
immaterial for the current investigation, but it affects the interpretation of the 𝜶̂ coefficients, which could be salient 
for other purposes. 
7 See Karlan et al. (2014), section III and online appendix 1 for a detailed description of the sample, data collection 
procedures, index insurance and cash grants interventions and the randomization. 



19 
 

Randomized grants of insurance or cash (𝑧𝑖0) affect the choice of 𝑎 through their effect on 

𝑉𝑖1( ). In this experiment, grants of cash or (especially) insurance reduced marginal utility in 

states with low returns to investment relative to states with high returns on investment, so 

 
𝑑𝑎0𝑖

𝑑𝑧𝑖0
= −

∫
𝜕2𝑉i1(𝜋, 𝑧𝑖0)

𝜕𝜋𝜕𝑧0

𝜕𝜋
𝜕𝑎i0

𝑓(𝑠1|Ω𝑖0)𝑑𝑠1

∫ [
𝜕2𝑉𝑖1(𝜋, 𝑧𝑖0)

𝜕𝜋2
𝜕𝜋

𝜕𝑎i0
+

𝜕𝑉𝑖1(𝜋, 𝑧𝑖0)
𝜕𝜋

𝜕2𝜋
𝜕𝑎i0

2 ] 𝑓(𝑠1|Ω𝑖0)𝑑𝑠1

≥ 0 (14) 

for risk-averse farmers. 

Karlan et al. (2014) found that the randomized availability of rainfall index insurance to 

farmers and the randomized receipt of a cash grant in the sample generated a strong investment 

response.8 The randomized allocation of this sample into a variety of subsamples facing 

exogenously varying budget constraints provides us with exogenous variation in planting season 

investments which we use to estimate the return to these investments across varying realizations 

of weather.  

There is a great deal of variability in rainfall and thus profits in northern Ghana, as in the 

ICRISAT sample of farmers. The average standard deviation of profits (the value of harvest minus 

the cost of all purchased inputs and the value of family labor) for each farmer over the three 

years is $450, while mean profits over the three years is $121.9 We create a two-dimensional 

indicator of the weather shock in each community in each year 𝒔𝟏𝒗𝒕 = (𝑅𝑣𝑡, 𝐼𝑣𝑡) using 

information on the total rainfall (in millimeters) received that year and by the index designed for 

rainfall insurance.  The insurance product provides an index (𝐼𝑣𝑡) of the weather realization that 

combines information on the amounts and timing of daily rainfall to predict harvest for the most 

important single crop in the region, which is maize. The index is constructed from daily rainfall 

data available over the period 1983 – 2013 that we obtained from the Ghana Agricultural 

                                                           
8 Farmers who were insured with rainfall index insurance increased their investment in cultivation by an average of 
$266 (s.e. $134) over a baseline expenditure of approximately $2058. Expenditure on fertilizer increased by $56 (s.e. 
$17) upon receipt before the cultivation season began of a cash grant averaging $420. 
9 The fact that Karlan et al. find strong responses of investment to access to rainfall index insurance provides a priori 
evidence that investment returns vary by rainfall. They find in addition that the treatment effect in a given year of 
having access to insurance on harvest values is higher for households in areas that receive higher rainfall in that year. 
Karlan et al., however, do not directly investigate the effect of weather realizations on the rate of return to 
investment, nor do they explore the implications of the sensitivity of investment returns to weather for the 
distribution of expected returns. 
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Insurance Pool (who have developed and market the successor rainfall index insurance 

product).10  

Plot profits depend on planting season investments, on the realization of 𝑠1𝑣𝑡, and on 

their interaction. The planting season investments we examine include clearing, field preparation 

and fertilizer application. We use the random assignment of households to varying treatments of 

cash grants and grants of or subsidies to rainfall index insurance, and interactions of these 

treatments with baseline plot area and land characteristics as instruments for plot level 

investment. Appendix B contains additional discussion of the estimation procedure. 

We begin by characterizing the variation in the returns to planting season investment over 

both time and across space in northern Ghana. We divide the 75 communities in the sample into 

11 geographic clusters based on their proximity to a TRMM grid point and estimate the returns 

to planting season investment separately for each cluster-year, with no effort to associate any 

variation in the return to investment with weather realizations in that cluster-year: for farmer i 

in cluster v in year t, 

 𝜋𝑖𝑣𝑡=𝛽𝑣𝑡𝑎𝑖𝑣𝑡 + 𝜆𝑖𝑣 + 𝜖𝑖𝑣𝑡. (15) 

The results (𝛽̂𝑣𝑡)are reported in Figure 3 as diamonds.  The community clusters are 

identified by the integers on the horizontal axis, and there is a separate estimate of the return to 

investment for each year and each cluster. The black lines show 95% confidence intervals around 

each estimate based solely on sampling variation. The return to investment is 34%, averaged 

across cluster years. However, it is immediately apparent that the estimated return to planting 

season investment varies dramatically both across and within clusters over time, and we can 

resoundingly reject the hypothesis that the returns are equal across all 32 cluster-years (χ2(31) = 

101.1, p=0.000).  

Because these are (unbiased) estimates of the returns to investment in their individual 

cluster-years, the variance across them overstates the true variance in mean investment returns 

                                                           
10 We verify the accuracy of these data for the second half of this period using the Tropical Rainfall Measurement 

Mission at a 0.25 x 0 .25 degree resolution “The TRMM and Other Data Precipitation Data Set, TRMM 3B42,” Huffman 

and Bolvin (2015). 
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across cluster-years (James and Stein (1961)).11 The variance across cluster-years of our estimates 

of the return to investment is 4.71 (implying a coefficient of variation of 609%), but the average 

sampling variation of our estimates is 2.48. An unbiased estimate of the true variance in mean 

investment returns across cluster-years, then, is 2.24 (coefficient of variation =420%).  

Accordingly, we implement a pair of empirical Bayesian shrinkage estimators to move the 

individual estimates of cluster-year returns towards their grand mean, reducing 𝐸(𝛽̂𝑣𝑡 − 𝛽0)
2

at 

the cost of biasing the estimates of returns. The simple James-Stein shrinkage estimates (Efron 

(2012)) appear as green circles in Figure 3.12 The Hudson-Berger extension of the shrinkage 

estimator to account for unequal variances of the estimated returns (Morris and Lysy (2012)) are 

reported as red triangles.13 These shrinkage estimators provide conservative estimates of the 

degree of variation in returns across cluster-years – the variances of these estimates of the 

returns are, respectively, 1.63 and 1.14 – but the variation remains large (coefficients of variation 

of 373% and 311%).  

 To take a typical example, in community cluster 2 the unbiased estimates of the return 

to planting season investment over the three years are  54%, -192%, and +248%. The James-Stein 

estimates of the same sequence are 32%, -112% and +146%; the Hudson-Berger estimates are 

51%, -166% and 229%. Importantly, the magnitude of the variation in returns to planting season 

investment over time within a cluster appears to be larger than the variation over clusters within 

a year, for each of the three estimators. The mean across clusters of the standard deviation of 

                                                           
11 Let 𝑣 denote a cluster of villages and 𝑡 identify the year. Define the cluster-year return to investment as 𝛽𝑣𝑡 ≡

1

𝑁𝑣𝑡
∑ 𝛽(𝛼𝑖, 𝑠𝑣𝑡)𝑖 = 𝛽0 + 𝑧𝑣𝑡 where 𝑖 indexes the 𝑁𝑣𝑡 farmers cultivating in cluster 𝑣 at year 𝑡. 𝛼𝑖  is investment by 

farmer 𝑖 and 𝑠𝑣𝑡 is the rainfall realization in cluster 𝑣 during year 𝑡. 𝛽0 is the mean return to investment in the 
population. The mean zero random variable 𝑧𝑣𝑡 summarizes the variation across cluster-years in average returns to 

investment. The estimates plotted in Figure 3 are 𝛽̂𝑣𝑡 = 𝛽0 + 𝑧𝑣𝑡 + 𝜐𝑣𝑡  where 𝜐𝑣𝑡 is sampling error. The variance in 

investment returns across cluster years is 𝐸(𝑧𝑣𝑡
2 ) = 𝐸 (𝛽̂𝑣𝑡 − 𝐸(𝛽̂𝑣𝑡))

2

− 𝐸(𝜐𝑣𝑡
2 ), where the expectation is taken 

across cluster-years. Thus the observed variation in returns to investment across cluster-years overstates the 
underlying variance of returns. 

12 𝛽̂𝑣𝑡
𝐽𝑆 = 𝛽̅ + (1 −

𝑐

𝐹̂
) (𝛽̂𝑣𝑡 − 𝛽̅) with 𝛽̅ =

∑ 𝛽̂𝑣𝑡

𝑉𝑇
 , 𝐹̂=

(𝑁−𝑉𝑇) ∑(𝛽̂𝑣𝑡−𝛽̅)
2

𝑆𝑉𝑇
 and 𝑐 is the value of 𝐹(𝑁, 𝑉𝑇 − 𝑁) that sets a 

significance level of 0.05, N is the sample size, VT is the number of cluster-year returns estimated, and S is the total 

sum of squared errors.   

13 𝛽̂𝑣𝑡
𝐽𝑆 = 𝛽̅ + (1 − 𝜆̂𝑣𝑡)(𝛽̂𝑣𝑡 − 𝛽̅) where 𝜆̂𝑣𝑡 =

(𝑉𝑇−2)𝜎̂𝑣𝑡
2

∑ (
𝛽̂𝑣𝑡

𝜎̂𝑣𝑡
2 )

2

𝑣𝑡

.  Where 𝜎̂𝑣𝑡
2  is the sampling variance of 𝛽̂𝑣𝑡 . 
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returns over time within each cluster is 1.21, 1.14 or 0.93 while the standard deviation across 

clusters of the mean (over time) of returns within each cluster is 0.58, 0.21 or 0.35 and (unbiased, 

James-Stein, Hudson-Berger estimates, respectively).   

What drives this dramatic variation in estimated returns to investment across these 

cluster-years? We examine the influence of our two measured dimensions of weather 

realizations on realized returns to planting season investments in Table 3. Table 3 reports the 

results from household fixed effects instrumental variable estimates of the profit function using 

all three years of the panel and the randomized treatments as instruments. The first column 

estimates the average effect of planting-stage investments on profits, and shows that the 

average return to planting-stage investment is approximately 100%. In column 2, we report 

estimates from a specification that permits interactions between planting-stage investments and 

the vector of weather realizations; these are our estimates of 𝜶. These interactions are jointly 

significantly different from zero (𝜒2(2) = 6.32 𝑝 = 0.04) and imply that the returns to planting-

stage investments at the sample mean weather realization are imprecisely measured but quite 

high (𝑟 = 0.96 s.e. 0.72), and that returns are strongly positively affected by improvements in the 

timing (𝑟 = 0.12, s.e.= .06) and amount (𝑟 = 0.03; s.e.= 0.01) of rainfall during the growing 

season. 

Figures 4A and 4B display the returns to planting stage investments over the range of each 

of the dimensions of rainfall realizations in the data set based on the estimates in column 2 of 

Table 3. The pointwise confidence intervals presented in Figure 4 are again based on the 

assumption that sampling error is the only source of uncertainty in the estimate of the return to 

investment. However, our estimates  from the Ghana data, as for the India data, imply a very 

strong response of net returns to the realization of weather in any season. In order to investigate 

the implications of weather variability in the Ghana context for the computation of confidence 

intervals, we use the 65 years of rainfall data that are available from the historical records of the 

Northern Regional weather station in Tamale to estimate the joint distribution of (𝑅𝑣𝑡, 𝐼𝑣𝑡). 14 We 

                                                           
14 We cannot reject normality of the distribution of 𝑅𝑣𝑡 for any of the communities in the TRMM data. There is no 
evidence of serial correlation in total rainfall in the savanna zone of Ghana (Manzanas et al., 2014), so we 
parameterize total rainfall in any community as a draw from a normal distribution with a mean and standard 
deviation equal to our the mean and standard deviation of total rainfall over the growing season recorded at Tamale 
between 1944 and 2008.  The weather index 𝐼𝑣𝑡 takes on nine values, depending upon the distribution of rainfall 
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then use draws from this estimated distribution to examine the variability in the realized returns 

to investment that will be generated by the variability in weather conditions in northern Ghana. 

We begin by again assuming that the variation in weather across communities and over 

the three years of the Ghana sample has provided us with sufficient information to estimate the 

dependence of these rates of return on weather realizations (the vector 𝜶) precisely. Based on 

our estimates of the rainfall distribution and 𝜶, we can simulate the distribution of realized 

returns to investment. This distribution is reported as the solid line in Figure 5. Of course, we only 

estimate 𝜶̂, so Figure 5 also reports the distribution of expected returns taking into account both 

rainfall variability and the sampling error in our estimates 𝜶̂. 

In contrast, Figure 5 also reports as we did for the Indian sample the distribution of 

expected returns generated by sampling error alone at two specific realizations of 𝑠1 = (𝑅, 𝐼) – 

“good rain” that generates an expected net return equal to the 75th percentile of the overall 

distribution of net returns, and “poor rain” that generates an expected net return equal to the 

25th percentile of the overall distribution. As can be seen, consistent with our findings from the 

Indian data, the confidence interval one would calculate from the standard errors of the net 

income function at either of these two specific realizations would dramatically understate the 

width of the confidence interval constructed from the distribution of estimates that incorporates 

both sampling variation and the underlying variability in weather conditions. 

Given our estimates of the distribution of weather realizations and 𝜶̂, we can use (9) to 

calculate a lower bound of the probability that any single estimate of the returns obtained in a 

random season drawn from this rainfall distribution lies within some distance 𝛿 of the true 

𝑒𝑥 𝑎𝑛𝑡𝑒 expected return to investment. These probabilities are reported in the second column 

of Table 2, for 𝛿 ∈ (10, 20, … 50) percentage points. Interestingly, despite the very different 

settings that the Ghana and India ICRISAT farmers inhabit and the different IV strategies used to 

obtain the 𝛼’s, these lower-bound confidence intervals are almost identical for each sample. In 

both samples, for example, the estimates indicate that the probability that a single-year’s 

estimate of profit returns lies within 10 percentage points on either side of the expected return 

                                                           
across days in the season. Again we calculate this index for each year between 1944 and 2008 and we estimate the 
probability of realization of each of these values separately for each of the four quartiles of the overall rain 
distribution.  



24 
 

is just a little more than 1 percent for the Indian village farmers and 2 percent for the Ghana 

farmers; and there is only a 6% chance of even being within 50 percentage points on either side 

of the expected return for any single-year study in both samples. As we have noted, these are 

upper bounds on the probabilities because we are considering only variation in rainfall. Variation 

in other dimensions of the aggregate state reduces these probabilities still further. The external 

validity of an estimate of an investment return obtained in a single year is evidently extremely 

low in both agricultural environments.  

In Appendix C we exploit the relatively large number of geographic clusters in the Ghana 

data to additionally assess intertemporal external validity across space. We explore to what 

extent estimates of parameters 𝜶̂ from one population can be used to characterize the 

intertemporal distributions of profits returns in other populations. We find that there clearly is 

information in the aggregate shocks that we measure that can be used to improve estimates of 

the returns to investment outside a given sample. However, there are cases in which the model 

predicts very different returns than are realized in a cluster. We also assess how well our estimate 

of 𝜶 predicts out-of-sample investment returns across years in the clusters by restricting 

estimation to just two years. We find that the predicted returns are reasonably close to those 

observed in the out-of-sample year. 

3.3 Can spatial variation in macro shocks be used to Identify 𝛼? 

The estimates in Table 2  present a significant challenge to researchers interested in the 

returns to investment, new technologies, or market innovations in agriculture. An alternative to 

estimating 𝒂 from multiple observations of a single population over time could be to exploit 

cross-sectional variation in 𝒔𝟏 over space at a given time. Often, experimental designs include 

interventions across multiple administrative units spread across space. The data in northern 

Ghana encompass a sufficiently broad geographic area (150 km across its greatest extent) and 

rainfall realizations are sufficiently localized so that there is intra-annual variation in weather 

realizations across communities. Therefore, it may be possible to estimate the returns to planting 

stage investment and the interactions of those returns with weather realizations in a single cross-

section. Using a cross section requires abandoning the fixed effects specification. This method 
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would thus only be appropriate if the realization of 𝒔𝟏 is uncorrelated with fixed unobservable 

characteristics that might affect net profits. The issue is how important these correlations are. 

The results from estimating the relationship between rainfall realizations and returns to 

investment (evaluated at the median level of investment and median total rainfall) using each of 

the three cross-sectional waves of the panel are presented in Table 4.15  Figures 6a and 6b report, 

respectively, the relationship between investment returns by the rainfall index, conditional on 

the normalized mean value of total rainfall, and by total rainfall, conditional on the normalized 

mean value of the index, for all three survey years. As can be seen, all three plotted relationships 

for the index measure lie within the confidence intervals of the panel-based relationship. 

However, for the seasonal rainfall measure, only one of the three cross-sectional plots happens 

to lie inside the panel-based confidence intervals. These results thus suggest that while it may be 

possible that cross-sectional rainfall variation in a single year can proxy for intertemporal 

variation, it is not possible to know, and we see at least two cases (of three) in which the cross-

sectional relationships for one macro shock measure deviate importantly from the panel 

estimates.  

As a consequence, the strategy of using cross‐sectional variation in the shock to identify 

𝛼, and pairing this estimate with observations of shocks realized later to estimate the returns to 

investment in years following a survey is problematic. To assess this, we use estimates 𝜶̂2009 

from the 2009 cross‐section to predict cluster‐year returns in 2010 and 2011, and 𝜶̂2010 to 

predict cluster‐year returns in 2011. The results are erratic. The correlation of returns we observe 

over the 11 clusters of villages in 2010 with those predicted using the 2009 cross‐section (and 

the 2010 rainfall realizations) is -0.20 (𝑝 = 0.56); the correlation between observed returns in 

2011 with those predicted from the 2009 cross‐section is 0.38 (𝑝 = 0.25). The correlation 

between the 2011 observed returns and those predicted using the 2010 cross‐section (with 2011 

rainfall realizations) is 0.44 (𝑝 = 0.18).  

                                                           
15 These cross-section estimates include a rich set of land and household characteristics in place of the fixed effects 
used in the panel. The cross-sectional regressions condition on 16 categories of age/sex/education of household 
members, three measures of household head education, household wealth at the baseline survey, seven soil types, 
five topographic categories, three erosion status indicators, four land tenure indicators, tree cover and plot distance.  
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Cross-sectional variation in the rainfall distribution generates biased estimates of 𝜶 when 

it is correlated with unobserved determinants of investment returns. We illustrate the salience 

of this concern by examining the relationship between per-capita wealth and rainfall in Appendix 

D. Because wealth may affect returns through at least two channels – farmers with higher wealth 

may be more willing to undertake riskier investments (Rosenzweig and Binswanger, 1993) or face 

less binding liquidity constraints – profits will be more sensitive to rainfall in the cross-section if 

wealth is associated with more risk-taking; if the latter dominates, returns to investments will be 

lower where rainfall is ample if there are diminishing returns to investments.  We find that lagged 

wealth predicts rainfall realizations differentially across years, suggesting both why cross-

sectional estimates of 𝜶̂ are inconsistent and why they perform erratically in predicting 

investments returns across years.  

4. SRI LANKA MICRO ENTERPRISES 2005-2007 

One might think that rainfall variability, intra-seasonal and inter-annual, is only relevant 

to farming. However, the agricultural sector in most low-income countries employs a large 

fraction of the labor force. Fluctuations in farm income thus may affect the demand for non-

agricultural products. In this section we show that the returns to investment in non-farm micro-

enterprises in Sri Lanka, where 35% of the labor force is employed in agriculture, vary significantly 

within the year and correspond to the local seasonal agricultural cycle.  

De Mel at al. (2009) carried out a panel survey of 408 non-farm micro-enterprises (less 

than $1,000 in invested capital) in three southern and southwestern districts of Sri Lanka for nine 

consecutive quarters between 2005 and 2007. The aim of the study was to estimate the returns 

to investment by implementing an RCT in which cash and capital equipment were offered to a 

randomized subset of firms after the first and third survey rounds. We use their data to explore 

whether the issue of returns variability due to external aggregate shocks is salient outside of the 

agricultural sector. While in general it may be difficult to isolate and measure the source of 

demand shocks for non-agricultural enterprises, in most low-income countries, including Sri 

Lanka, a large fraction of income is derived from the agricultural sector. And, a salient feature of 

agricultural production is that it is seasonal. Thus, to the extent that the Sri Lanka 
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microenterprises serve local populations, it is not unlikely that demand is linked to the seasonal 

patterns of agricultural incomes. 

 The authors of the study pooled the quarterly profit data and provided one estimate of 

capital returns for the whole survey period. They believed that the observed inter-quarter profit 

variability was predominantly measurement error, and indeed they trimmed the top 0.5% of 

quarter-to-quarter differences.16 We use their trimmed data and their IV strategy, which is similar 

to that we employed in our analysis of investment returns among farmers in Ghana. That is, we 

used the randomized interventions as instruments to estimate investment returns, but we allow 

the returns to differ by quarter to allow for a seasonal pattern of returns and to test whether the 

seasonal patterns, if any, are consistent with the agricultural calendar. 

 A component of the survey instrument sheds light on the issue of whether the measured 

profit variability in the data is due to external aggregate demand shocks or was simply 

measurement error. The entrepreneurs were asked to provide information on their expectations 

about their enterprise’s profits in the subsequent quarter. Specifically, they were asked to 

indicate the lowest amount of monthly profits they thought they could earn three months from 

the survey date and the highest. The answers indicated that the respondents anticipated 

significant real quarterly profit variability. We computed the triangular coefficient of variation 

based on the answers, which was 0.5. Interestingly, the average coefficient of variation across 

firms for measured quarterly profits over the nine quarters was also 0.5.  

 More interestingly, the entrepreneurs were also asked to name the most important 

source of variability in profits. While 42.9% gave illness as the most important reason (own or 

family), 32% indicated that the most important factor causing a deviation in profits was an 

aggregate shock to product demand, including weather variation (8.2%), changes in income 

among customers (14.0%), and disruptions of infrastructure (road closing, power outages), 

10.3%.  

 The first column of Table 5 reports our enterprise and quarter fixed effects IV estimates 

of the return on investment from the enterprise data that pools the profit data across quarters, 

                                                           
16 Note that if their assumption is true, then the trimmed data merely have smaller sampling variability, but if 
trimming excludes important firms then our results will understate total intertemporal variation. 
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as in the original study. These estimates are obtained from the same unbalanced panel of 385 

firms with at least three rounds of information as used by de Mel at al. Our specification differs 

from theirs in two ways, however. First, we allow the investment responses to the treatments to 

vary by year and by the gender of the entrepreneur, as in subsequent work the same authors 

found that treatment response was significantly greater for male respondents (de Mel et al., 

2012). Second, given the reports by the respondents on the importance of illness in influencing 

profits, we include a dummy variable indicating whether or not the entrepreneur reported any 

illness that resulted in his or her losing days of work. The estimate of illness variable coefficient 

is statistically significant, and indicates that when the entrepreneur is ill profits are lower by 10%, 

showing an important supply shock to profits. The return on investment is also statistically 

significant, using the conventional standard error as our criterion, and is similar in magnitude to 

that found in the original study. 

 In the second column, we report estimates from a specification that allows the returns to 

vary by quarter. In all quarters returns are positive and statistically different from zero. The point 

estimates, however, vary from .066 to .133, a factor of 100%. The difference between the lowest 

quarterly return and the highest is statistically significant. However, we cannot reject the 

hypothesis by conventional standards that the returns are equal across all quarters. 

 Because every quarter of the year is represented twice in the data we can test for the 

existence of a seasonal pattern in returns based on the quarterly returns estimates and assess if 

that pattern is related to agricultural income seasonality. This would not be possible if profits 

were measured over a short time period (say net revenue in the last week) and interview dates 

varied widely across quarters for the same firm.  However, the window for revenue is the past 

month and the data set provides the exact date of the firm interview for all but one of the rounds. 

The interview date information indicates that 99.0% of the firms were interviewed in the same 

month in each quarter, and the inter-year differences in quarter-specific interview dates were no 

more than two weeks for 92.7% of respondents. Thus, the reference period is comparable within 

a quarter across years for firms and quarterly patterns are likely identifiable if they exist. 

In the three districts in which the sampled microenterprises were located, the agricultural 

dry season is from December to March. If demand is driving returns we should expect to see that 
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in the dry quarter the difference in investment returns between the treatment and control group 

should be lower than in other quarters. The quarterly returns estimates in the second column of 

Table 5 indicate that we can indeed reject the hypothesis of no seasonal pattern to investment 

returns (similarity of returns across seasons). We thus obtained new estimates of investment 

returns that are permitted to vary by season rather than by quarter. These estimates are reported 

in the first column of Table 6. For this specification, all the seasonal investment returns are 

significantly different from zero and we can also reject the hypothesis that the returns do not 

differ across seasons. There exists real seasonal returns variability. Moreover, this variability 

appears to be driven by the seasonal pattern of rainfall - the lowest return is in the January-March 

quarter, corresponding to the area-specific dry season. The point estimates indicate that had the 

experiment taken place only in that quarter rather than any of the other quarters the return 

estimate would have been on average 25% lower. Moreover, the pooled estimate of the returns 

to investments, net of season and entrepreneur fixed effects (column 2), .098, is not equal to the 

mean of the seasonal estimates of .087. 

 

5. RETURNS TO SCHOOLING: URBAN INDONESIA 1993-2000 

In this section we examine whether short-term aggregate shocks affect the estimated rate 

of return to education using panel data on urban wage workers in Indonesia. Schooling decisions, 

like enterprise and farm decisions, are made before the realization of the stochastic shocks 

relevant to future earnings streams and schooling decisions. Therefore, these decisions will be 

made based on expected returns, and rates of return to schooling are also subject to macro 

shocks. Unlike for firm and farm investments, however, investments in schooling have payoffs 

over a long period and schooling investments are not regularly repeated year after year. The 

intertemporal external validity issue for schooling returns is thus not so much that the year-to-

year variability in schooling returns affects schooling decisions but how informative a single-

year’s contemporaneous estimate of the return may be to those making schooling decisions.17 

                                                           
17 Jensen (2010), for example, presents a single year estimate of the skilled-unskilled wage differential to households 
making schooling decisions to test whether lack of information on schooling returns is a factor explaining low 
schooling. How the respondents responded to the estimate would depend on their knowledge of how informative a 
single year’s estimate of the schooling return was for gaging the expected return, which would in turn depend on 
the realization of the shock in that year relative to its expected value. 
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As noted above, there have been studies that have examined fluctuations in returns in developed 

countries. In those studies the sources of the fluctuations are not identified and are typically 

measured by endogenous outcomes such as unemployment, and thus they are not useful for 

assessing the external validity of any given return estimate. Naturally, how the shock affects the 

investment return depends on the source of the shock.  

Many developing countries are less diversified than developed countries in terms of 

exports, and incomes are thus more sensitive to fluctuations in individual commodity world 

prices. We study Indonesia because it is a country whose incomes are heavily dependent on the 

value of its oil exports and thus on shocks to world oil prices. In addition, Indonesia also has 

experienced external shocks to the value of its currency. We consider here not only whether but 

how both these shocks affect single-year estimates of schooling returns by exploiting the cross-

sectional variation in the composition of industry.  

The realizations of macroeconomic shocks are the same across all provinces, but they may 

have varying impacts on the distribution of wages and thus possibly schooling returns across 

provinces because of cross-province differences in industry composition. For oil price shocks, the 

effect in the short run on schooling returns in a given area, absent perfect mobility, will depend 

on the share of the workforce in the petroleum sector and the skill-intensity of the petroleum 

industry. For exchange rate shocks we expect that the wage premium for schooling increases 

more in provinces with a higher share of high skilled employment in open-to-trade industries 

when the exchange rate depreciates. Thus, while in the long run the expected value of the wage 

premium is equalized across provinces, the slope of the relationship between the realized wage 

premium in a single year and these macroeconomic shocks varies according to the industrial 

structure of the province. These short-run effects identified off province differences mimic the 

longer-run aggregate effects of oil price and exchange rate trends at the country level to the 

extent that Indonesia is a closed economy with respect to labor and capital.  

 To assess to what extent and how macro shocks affect estimates of the returns to 

schooling we use panel data from the first three rounds of the Indonesia Family Life Survey (IFLS), 

focusing on short-term contemporaneous variation in macro shocks, as we did for agricultural 

and non-agricultural investments. We selected the IFLS, a panel survey based on a representative 
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sample of households in 13 major provinces in Indonesia begun in 1993, for three reasons: First, 

we can construct an annual hourly wage series for individual (wage and salary) workers from 

1993-2000. The survey rounds were in 1993, 1997, and 2000, but every wave has a retrospective 

earnings history so we can fill in the inter-survey years using the wage and employment histories.  

 A second reason for selecting the IFLS for this time period is that Indonesia was affected 

by two external macroeconomic shocks. First, during this period there were large fluctuations in 

the world price of oil. Second, the financial crisis of 1998 substantially altered the value of 

Indonesian currency on the world market, potentially affecting the workforce in industries 

engaged in international trade relative to those in industries producing non-tradeables. Figure 7 

shows the movements in the price of oil and the rupiah exchange rate from 1990 to 2000, both 

of which display considerable volatility over the period. We can assess to what extent these 

macro shocks affected the returns to schooling in urban areas in the eight years of the panel.18 

 The third reason for selecting the IFLS data is that, with our estimates of the sensitivity of 

schooling returns to oil price and rupiah variation in the decade of the 1990's, we can assess the 

external validity of the Duflo (2001) estimates of both the effects of school building on schooling 

attainment and the returns to schooling, based on a school-building initiative in the 1973-78 

period and earnings measured from the 1995 Indonesia census. We do this in the next section. 

 In our panel sample of male urban wage and salary workers aged 16-80 with eight years 

of non-zero earnings from the IFLS, the average coefficient of variation in real earnings is a 

nontrivial 0.43. This value is comparable to our estimate of micro-enterprise profit variation from 

the Sri Lanka panel.19 The main issue is again whether the returns to schooling vary significantly 

across years, and to what extent this variation is attributable to aggregate shocks. 

                                                           
18There have been studies of the effects of oil price shocks on the US economy. These have shown that from 1948 
to 1972, increases in the world price of oil played a significant role in US recessions (Hamilton, 1983) but had no 
detectable adverse effects after 1973 (Hooker, 1996). These results are not obviously applicable to Indonesia, as the 
petrochemical industry constitutes a much smaller share of industry employment in the United States than in 
Indonesia. Additionally, governmental revenues in the US are not nearly as dependent on oil revenues. 
19 Some of this variation is also due to measurement error. In these data we can obtain an upper bound on 
measurement error by comparing the overlap of contemporaneous wage reports and retrospective wage reports 
from a subsequent survey round (for example, in the 1997 round, respondents report their wage in 1993, the 
preceding survey year). We find that the measurement error in wage rates accounts for approximately 40% of the 
cross-sectional variance, assuming independence of errors. But it is unlikely that there is as much measurement 
error in earnings as there is in agricultural or micro-enterprise profits computed from survey data, where we found 
evidence of systematic factors that altered investment returns. 
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 The first column of Table 7 reports the OLS estimate of “the” rate of return to schooling 

based on pooling all observations for urban male wage and salary workers with at least two years 

of non-zero earnings over the eight-year panel. The specification is the standard “Mincer” log 

wage specification, including schooling years, age and age squared. We also include year fixed 

effects. The set of individual linear year coefficients are statistically significant, and indicate 

significant variation in hourly wage levels across years. In the next column, the rates of return are 

allowed to vary by year. All of the year-specific schooling returns are statistically different from 

zero by conventional standards, and we can also reject the hypothesis that all the year-specific 

returns are equal. 

 The OLS returns estimates in the first two columns may be biased due to the endogeneity 

of schooling. In the third column of Table 7 we report worker fixed effects estimates, which 

eliminates the influence of any worker characteristics that jointly affect schooling and earnings. 

In this specification we cannot identify the returns to schooling, but we can obtain consistent 

estimates of differences in returns across years. The year-specific returns coefficients in the third 

column are relative to that in the omitted year, 2000. These estimates too lead to rejection of 

the hypothesis that the schooling returns are equal across years. The point estimates indicate, 

for example, that the schooling returns in 1998 and 1999 are from 2.6 to 2.7 percentage points, 

respectively, below that for 2000. These differences are statistically significant 

 Just as for the agricultural samples, we are interested in understanding the sources of 

variation in returns. We not only want to estimate α’s for schooling returns but also to explore 

the mechanisms. We thus examine the influence on the return to schooling investment of 

variation in the world price of oil over the sample period and of changes in the rupiah exchange 

rate in the last three years of the panel, when we think the variation in the value of the rupiah is 

mainly due to forces external to Indonesia rather than to domestic factors.  

With respect to the oil price, as noted, whether an increase in the price of oil increases or 

decreases the schooling return in the short run depends on whether it raises the demand for 

skilled relative to unskilled labor. We would expect that an increase in the oil price would likely 

raise the returns to schooling. First, an increase in the price of oil would lead to an expansion in 

the demand for workers in the petrochemical industry, and the 1990 Indonesian Census indicates 
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that workers in the petrochemical industry are more skilled relative to the overall workforce, 

whether measured by mean years of schooling or proportion of workers with secondary 

education. Second, because government revenues depend heavily on the price of oil in Indonesia, 

we would expect that employment in the public sector would also expand, and generally public-

sector employees are more skilled. For example, the INPRES school-building program in 1973-78, 

financed with the new revenues resulting from an increase in the price of oil in that period, 

increased as well the employment of teachers, who are significantly more educated than the 

average Indonesian worker. We thus would expect that in the short run, before workers can re-

allocate among industries, a rise in the price of oil will benefit skilled relative to less skilled 

workers and raise the return to schooling in areas with a larger employment of oil workers. 

 We re-estimate the log wage equation omitting the set of individual year-schooling 

interactions and replacing them with an interaction between the oil price and schooling to 

estimate α for oil price variation. Because the oil price is time-varying, we can identify the 

influence of shocks to oil prices on schooling returns while including the worker fixed effect.20 

Column 1 of Table 8 reports the OLS estimates of the return to schooling and of α. The 

specification includes schooling, age, age squared, the interactions of schooling and the age 

variables with the oil price, the oil price, and year. As expected α is positive and statistically 

significant, while the direct effect of the price of oil on wages (for the unskilled) is actually 

negative. When the worker fixed effect is included in column 2, the estimate of the oil price α 

retains its statistical significance, and increases in magnitude by 50%, while the direct oil price 

effect is slightly attenuated. 

 The point estimate of α in the second column implies that a one standard deviation 

(measured over the decade) increase in the price of oil would modestly raise the return to 

schooling, by a statistically significant 0.7 percentage points. However, the estimate also implies 

that the rise in the price of oil from 1998 to 2000 ($16 per barrel) increased the return to 

schooling by 2.5 percentage points, accounting for all of the observed increase in the return to 

schooling in that interval seen in column two of Table 7. 

                                                           
202.7% of respondents moved to another province over the eight-year period.  These respondents were dropped. In 
the fixed effects specification, only if such movers had schooling returns unusually sensitive to the oil price shocks 
will this affect (attenuate) our estimates of the shocks on schooling returns.  
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 We have assumed that the oil price increased the relative demand for skilled versus 

unskilled workers in Indonesia as the reason why we found the oil price α to be positive. Next we 

more directly test the hypothesis that changes in schooling returns due to macro shocks arise 

from the effects they have on the relative demand for skilled and unskilled labor, exploiting the 

movements in the exchange rate value of the rupiah over the 1997-200 period. As seen in Figure 

7, the exchange rate increased threefold between 1997 and 1998 due to the worldwide financial 

crisis in 1998. To carry out the analysis, we make use of a method employed in the trade literature 

to examine the effects of changes in trade policies on schooling choice. The key idea is that the 

policies (e.g., tariff reforms) affect the returns to schooling via their effects on industries 

differentiated by skill intensity and sensitivity to the policy as measured by trade openness (e.g., 

Edmonds et al., 2010; Atkin, 2015). In this literature, the estimates are of the effects of the shifts 

in trade variables via industry structure on schooling choice. Here we estimate the effects of the 

external trade shock on schooling returns, which influence the decisions of agents making 

schooling choices. Analogous to the inquiries in the trade literature, we wish to test whether in 

areas (provinces) where there are more workers employed in industries that are both more open, 

and thus disproportionally affected by a change in the value of the rupiah, and more skilled, an 

exogenous rise in the exchange rate raises the returns to schooling. That is, the more open are 

skilled industries in an area, the greater the increase in the return to schooling. 

 To carry out this analysis we constructed a standard measure of trade openness by 

industry ((exports + imports)/ value added) 𝑂𝑘, where k indexes industry.21 We also obtained 

information on the skill-intensity (share of workers with secondary schooling) of industries 𝑆𝑘 

from the 1990 Indonesia Census. From these data we created our average skill/openness 

measure by province: 𝑆𝑂𝑗 = ∑ 𝑂𝑘𝑆𝑘𝐺𝑗𝑘𝑘 . We then interacted that measure by the year-specific 

rupiah exchange rate xrt and the schooling of the respondent. Our hypothesis is that the 

coefficient on the triple interaction between (provincial) openness, (annual) exchange rates and 

(individual) education (𝑆𝑂𝑗  ∙ 𝑥𝑟𝑡 ∙ 𝑎0𝑖) is positive, implying that a rise in the exchange rate 

                                                           
21 We obtained industry-specific information on imports and exports in 1990 for Indonesian industries from the UN 
ComTrade database   and industry output and province- and industry-specific GDP share for each province j 𝐺𝑗𝑘  from 

Statistics Indonesia 
 http://comtrade.un.org/db/default.aspx and https://www.bps.go.id/linkTabelStatis/view/id/1200. 

http://comtrade.un.org/db/default.aspx
file:///C:/Users/cru2/AppData/Roaming/Microsoft/Word/(https:/www.bps.go.id/linkTabelStatis/view/id/1200
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increases the returns to schooling more in areas in which there is a heavier concentration of 

industries that are open and skill-intensive.  

 The last two columns of Table 8 report the OLS and fixed effects estimates of the log wage 

equation, based on the years 1997-2000, including the oil price variables, the exchange rate and 

openness/skill variables. As can be seen the returns to schooling do rise when the exchange rate 

increases in areas with more open and skilled industries. Increases in the oil price also increase 

the schooling rate of return in this sub-period. The point estimate from the individual fixed-effect 

specification indicates that at the mean of the SO measure of openness/skill for Indonesia, the 

large rise in the exchange rate from its value in 1997 to its average value in 1998-2000 after the 

financial crisis increased the rate of return to schooling by 2.4 percentage points. If we use Duflo’s 

(2001) estimate of the mean return level for the decade, which we show to be externally valid 

below, that represents an increase of over a third in the schooling return. Clearly, domestic 

schooling returns are sensitive to global macro shocks in Indonesia. While exchange rate volatility 

in Indonesia after 2000 seems to be relatively low, as can be seen in Figure 8 oil price volatility in 

the first 15 years of the 21st century was substantially higher than it was in the 1990's. We would 

therefore expect that investments in schooling have become much riskier, and single-year 

estimates of rates of return to schooling are now less reliable indicators of the expected returns 

to schooling. 

6. ASSESSING EX POST THE  EXTERNAL VALIDITY OF DUFLO’S (2000) ESTIMATES OF 

SCHOOL ACCESS AND SCHOOLING RETURNS. 

Our findings imply that estimates of the sensitivity of returns to aggregate shocks may be 

necessary to more fully assess the external validity of estimates, and this most likely entails 

obtaining estimates of returns over multiple years. In this section, we show that attention to 

aggregate shocks can shed light on the external validity of estimates even for projects that obtain 

estimates from only a single year. In particular, our model and estimate of the effect of the oil 

price on returns to education (α) allow us to ex post evaluate the external validity of Duflo’s 

(2001) estimates of both the effects of increasing access to schools via school building on 

schooling attainment and the returns to schooling. In that study, the massive program building 

schools in Indonesia in the years 1973 through 1978 was used to estimate the effects of 
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increasing school access on schooling attainment and the consequences of the increased 

schooling for earnings, based on the earnings for the relevant cohorts measured in the single 

period 1994-1995. 

 Figure 8, which displays the changes in oil prices over the period 1960 through 2016, 

highlights the prices for years relevant to the Duflo study. What is apparent is that the first year 

of the school building initiative was marked by a permanent increase in oil prices. This fact is not 

surprising, as the financing of the program was supported by the increase in oil revenues accruing 

to the government. If the jump in oil prices at the initiation of the program increased expectations 

of future levels of oil prices, given our estimate of a positive α, the oil price increase alone would 

have increased schooling attainment by altering the expected rate of return to schooling even if 

access to schools had remained unchanged. If both the control group – those cohorts who chose 

schooling before the program was put in place - and the treatment group equally changed their 

expectations of schooling returns, the estimated impact of the program has internal validity. 

However, as shown in expression (14), the estimated effect of the program, given our finding that 

α>0, while indeed causal, likely overstates the effect of increasing school access that would occur 

when returns expectations are stable.  

 What about the external validity of the estimate of the rate of return to schooling 

obtained by Duflo? The return estimate was obtained based on earnings measured in a single 

year, from the 1995 Census. An issue is what is the appropriate return to compare Duflo’s single-

year estimate? One benchmark might be the expected or average return over the decade, say 

the return associated with the decade average oil price. The average oil price from 1991-2000 

was $18.2, while the price of oil in the Census earnings reference year used by Duflo was between 

$15.5 and $16.9, a difference of only about $2 from the mean price. Given our estimate of α, this 

difference implies that Duflo’s estimate of the expected return over the decade was too low by 

only 0.3 percentage points - 1995 happened to be a typical year.  In contrast, if Duflo had used 

2000 as the reference year (say, using the 2000 Indonesian Census), when the oil price had spiked 

to $27.6, our estimate of α implies that her estimate of the schooling return would have been 

too high by about 1.5 percentage points, 21% above the expected value for the decade, given her 

externally valid estimate of the schooling return of 7%. 
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7. CONCLUSION 

 While it is known that aggregate shocks can affect micro parameter estimates and their 

confidence intervals, there is little evidence of the empirical importance of the existence of time-

varying, aggregate shocks for drawing inferences about the external validity of internally-valid 

causal estimates that are typically obtained in one time-period. The key set of parameters needed 

to assess temporal external validity is that describing how aggregate shocks affect the returns to 

the actions, α. Estimates of shock effects on returns, however, are rarely obtained in existing 

studies, even in those studies using information from multiple years, which could in principle be 

used to identify α. Because it is necessary to have information on not only the sensitivity of 

investment returns to macro shocks but also the parameters of the relevant shock distributions 

most existing studies therefore also do not provide appropriate parameter confidence intervals 

to the extent that aggregate shocks are important. These issues would appear to be particularly 

salient for studies from developing countries, where a large fraction of the population is 

employed in agriculture and therefore subject to the vagaries of both weather and global 

commodity price shocks. 

 In our empirical investigation of the sensitivity of estimates of investment returns to 

external aggregate shocks using data from four low-income countries we have found evidence 

that investment returns, whether returns to agricultural investments, non-agricultural enterprise 

investments or urban investments in human capital, differ significantly from year to year. And, 

where we could measure the impact of specific aggregate shocks, such as for agriculture and for 

schooling, we found that the α’s were large in magnitude and in sign consistent with economic 

theory. Moreover, where we could also reliably estimate the parameters of the distribution of 

one key aggregate shock, rainfall in India and Ghana, we showed that the probability of a single 

year estimate being within a reasonable interval around the expected investment return are very 

low. Thus, for rain-fed agriculture, single-year estimates of the returns to investments or 

interventions have extremely low temporal external validity. Our estimates also imply that our 

knowledge of the impact of investments or policy interventions may be far less certain than 

existing estimates of confidence intervals imply. Agents making investment decisions and policy-
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makers making policy decisions in a stochastic world face substantially more risk than measured 

by conventional estimates that ignore aggregate shocks.  

We also showed that in one data set where we had cross-sectional variation in rainfall,  

estimates based solely on cross-sectional variation did not reliably replicate those obtained using 

time-series variation that enable control for spatial and agent fixed effects. This is not 

unexpected, as draws from a stationary distribution will be correlated with the parameters of the 

distribution. In the case of agriculture and rainfall, we found that farmer wealth levels and rainfall 

means were positively correlated, such that the cross-sectional estimates of the sensitivity of 

output to rainfall obtained in Karlan et al. (2014) were positively biased, as would be expected if 

wealth matters for the level and/or the risk properties of investment decisions. 

 What is the remedy for enhancing temporal external validity and assessing the external 

validity of estimates in a world with stochastic shocks? First, micro models of individual decision-

making need to identify and incorporate the role of aggregate shocks. Theory should suggest 

which states of nature matter, and how, for the outcomes and interventions of interest as well 

as what information agents have about future shocks when they make decisions.  Second, 

information on the time-series of the relevant states of nature (shocks) for the population or site 

being studied should be obtained along with information on the realization of the shocks for the 

study period. Ideally, identification of α should also become a component of any well-designed 

study. This process likely requires information spanning multiple periods, as cross-sectional shock 

variation can be correlated with site-specific unobservables that influence outcomes, as we have 

shown.  

Typically, though, an analyst using data from one particular context may not have the data 

available to estimate α. Knowledge of the context, of agents’ decision-making processes and 

relevant technologies, however, can generate a prior belief regarding its sign and magnitude. 

These, coupled with estimates from external sources of the distribution of the relevant aggregate 

shocks, as we have shown for Duflo’s (2000) estimates of schooling returns, can guide informed 

speculation ex post regarding the relationship between any single-period estimate of returns to 

expected returns or the returns from future actions. 
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APPENDIX A. PRICE VARIATION AND THE RETURNS TO INVESTMENT 

A specific aggregate state variable that will typically be important and typically 

measurable over a long time-period is the price of output. Our model shows that it is relatively 

straightforward to assess the influence of price variation on investment returns. Let 𝒔𝟏 =

(𝑝, 𝒔̃)′. Let 𝑦𝑖1 = 𝑝𝑓(𝑎𝑖0, 𝒔̃).  Therefore 

 𝛽𝑖(𝑎𝑖0, 𝜖𝑖, 𝒔1) = 𝑝𝜖𝑖

𝜕𝑓(𝑎𝑖0, 𝒔̃)

𝜕𝑎𝑖0
− 1. (A1) 

Given data from a single realization of 𝒔𝟏 = 𝒔1𝑡 we can estimate only  

 𝛽̂(𝑎̂0, 𝒔1𝑡) = 𝑝𝑡 ∫ 𝜖
𝜕𝑓(𝑎𝑖0, 𝒔̃𝒕)

𝜕𝑎𝑖0
𝑔(𝜖)𝑑𝜖 − 1 (A2) 

and we can observe 𝛼𝑝 = ∫ 𝜖
𝜕𝑓(𝑎𝑖0,𝒔̃𝒕)

𝜕𝑎𝑖0
𝑔(𝜖)𝑑𝜖 =

𝛽̂(𝑎̂0,𝒔1𝑡)+1

𝑝𝑡
. The linearity of the effect of variations 

in the price of output on the marginal return to investment eases the interpretation of the effect 

of this dimension of variation, and the  𝛽̂ (𝑎̂0, (𝑝
𝑡
, 𝒔̃𝒕)

′
) observed for any particular realization of 

𝑝𝑡 is sufficient to imply the 𝛽̂(𝑎̂0, (𝑝, 𝒔̃𝒕)′) for any other realization of the price (given the other 

𝑘 − 1 dimensions of 𝒔), with 

 𝛽̂(𝑎̂0, (𝑝, 𝒔̃𝒕)′) = (𝛽̂(𝑎̂0, (𝑝𝑡, 𝒔̃𝒕)′) + 1)
𝑝

𝑝𝑡
= 𝛼𝑝 ∙ 𝑝 (A3) 

for all 𝑎.   

If price variability is the main source of stochastic variation in second-period outcomes, 

we can thus use the time-series of prices to quantify ex post the variability in profits or earnings 

faced historically by agents.  

We have time series of prices relevant to farmers in both northern Ghana and the ICRISAT 

India villages. In each country, our observed returns correspond to 𝛽̂ (𝑎̂0, (𝑝
𝑡
, 𝒔̃𝒕)

′
) in (A3).  Was 

the study period  a time of particularly low or high crop prices? We use (A3) to calculate how the 

mean realized return to investment (at mean levels of investment, total rainfall and rainfall timing 

index, as appropriate for each country) would vary with a Laspeyres price index for the most 

important crops in each study area. Unlike for rainfall, however, we do not know the distribution 

of future output prices and developing a model of the dynamics of commodity prices is beyond 

the scope of this paper. Therefore, we do not compute the relevant confidence intervals for 
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investment returns that incorporate stochastic price variability. Instead, we document the 

changes in returns to investment in Ghana and India that have occurred over the duration of the 

price data and display the time series in Figure A1.22 As can be seen, there are signficant 

fluctuations in the returns soley due to price changes. The estimated return in the highest index 

price year is 50-70% above that in the lowest price year within the seven-year span of these data, 

for a fixed rainfall realization.  

APPENDIX B. ESTIMATION OF RETURNS TO INVESTMENT 

Estimates of the return to investment in India rely on the assumption that news regarding the 

probability of good rainfall is excludable from the profit function. There are three primary 

concerns regarding this excludability assumption.  The first is that if the reactions to forecasts by 

farmers depends on their soil characteristics, it must also be true that the impact of rainfall on 

investment returns is affected by soil properties. Thus we must include these interactions with 

investments in the second-stage profit function and they should have power in explaining profit 

variability. The second concern is that conditional on our specific measures of realized rainfall, 

the forecast of total rainfall may be correlated with an unmeasured dimension of rainfall that 

matters for profits. We measure realized rainfall as the total amount of rainfall over the year and 

the total amount of rainfall over the monsoon, as the IMD long-range forecast is the prediction 

for the total amount of rainfall over the monsoon. Binswanger and Rosenzweig (1993) have 

shown that the monsoon onset date is a salient feature of rainfall for farm profits in India. 

However, in the ICRISAT data we find that conditional on even a subset of our measures of rainfall 

(monsoon rainfall), the IMD forecast of total monsoon rainfall is not correlated with the onset 

date. Note that the village-year effects capture all time-varying aggregate shocks.  

 A third concern is that because the rainfall forecast for a given year is common to 

everyone in a village through its effect on input demand, a forecast of good (bad) weather could 

raise (lower) input prices - particularly wages - in a village. In principle it is also possible that there 

could be policy interventions (changes in regulated grain prices, emergency agricultural 

interventions, ex ante efforts to provide relief).  These village-specific changes correlated with 

                                                           
22 Maize, rice and yam in northern Ghana, using real July prices, and cotton, pigeon pea, green gram and sorghum 
for India using October prices. 
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the forecast could affect profits directly. As noted, the village-year fixed effects are included in 

the profit function to absorb these effects. A casualty of including village-year fixed effects is that 

the direct effects of rainfall and lagged rainfall on profits are not identified.23  

The randomized assignment of farmers to index insurance and cash grant treatments in 

Ghana is the foundation of the identification of the returns to investment conditional on 

aggregate shocks. We rely on the assumption that the assignment to alternative treatments 

affects net income only through the choice of planting season investments. The primary concern 

that arises with respect to this assumption is that conditional on planting season investments, 

assignment to the different treatments could influence later-stage cultivation decisions and thus 

be correlated with net income. This objection will not apply for assignment to the cash grant 

treatment if liquidity constraints do not bind with respect to expenditures within the growing 

season. The results of Karlan et al. (2014) showing that these households were able to 

substantially increase average planting season investments upon assignment to free or reduced 

cost insurance without any infusion of additional capital suggest that within season liquidity 

constraints are not binding.  The identification assumption with respect to the insurance 

treatments is that conditional on the level of planting season investment and rainfall realizations, 

post-planting cultivation decisions are independent of insurance. Identification is threatened, 

however, if there is sufficient flexibility in cultivation opportunities after the conclusion of 

                                                           
23A further concern that would make the forecast non-excludable is that the increased planting-stage investments 

induced by a favorable forecast reduce the farmer's resources available for subsequent production stages. In the 

model this is ruled out by the implicit assumption of perfect credit markets within the relevant production cycle. The 

ICRISAT survey data enable us to carry out a global separability test similar to that of Benjamin (1992). The basic idea 

is that exogenous changes in the family labor force should not affect profits if all input markets are unconstrained. 

Illness has a large random component (net of the household fixed effect), and illness can affect the family's ability 

to supply labor. For the years 2005, 2006, 2010 and 2011 the ICRISAT survey elicited information on the number of 

days that adult family members were ill in the kharif season.  Household fixed effect estimates obtained for the total 

sample of farmers and the farm households in the Maharashtra villages of the effect of the number of sick days on 

total labor days in the kharif season indicate that for each day an adult was sick almost a third of a day of on-farm 

family labor was lost. The estimate is 
𝐿𝑎𝑏𝐷𝑎𝑦𝑠𝑖𝑡 =−0.34

(.09)
𝑆𝑖𝑐𝑘𝑑𝑎𝑦𝑠𝑖𝑡 +

.
. 002

(.0004)
 𝑇𝑜𝑡𝑅𝑎𝑖𝑛𝑣𝑡. If liquidity constraints 

limited the ability of the household to substitute hired labor to make up for family labor days lost, an increase in sick 

days should therefore decrease profits. However, FE-IV estimates of the profit function for the Maharashtra farmers 

including the number of adult sick days (not reported) indicate that we cannot reject the hypothesis of separability 

- despite sick days evidently significantly reducing on-farm family labor supply, an increase in the number of adult 

sick days has no impact on profitability.  
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planting season investment that farmer decisions might be influenced by insurance status (e.g., 

conditional on planting stage cultivation decisions and rainfall realizations, an insured farmer 

decides to replant after a late season drought spell while an uninsured farmer does not). This 

identification concern is mitigated by the fact that the crucial decisions guiding end-season 

cultivation activities are the planted area, choice of crop, planting density, and chemical 

application, all of which are completed by the end of the planting period. By the completion of 

planting season, farmers have accrued 90% of total non-family labor costs for the entire season.24  

APPENDIX C. ASSESSING SPATIAL AND INTERTEMPORAL EXTERNAL VALIDITY 

We exploit the relatively large number of geographic clusters in the Ghana data to 

additionally assess intertemporal external validity across space. We want to know if estimates of 

parameters α  ̂from one population can be used to characterize the intertemporal distributions 

of profits returns in other populations. To do this, we divide the Ghana sample into a sequence 

of training and test subsamples in order to quantify the extent to which it is possible to predict 

some of the observed variation in returns to capital across cluster years within northern Ghana, 

where the technology of agricultural production is plausibly similar, based on estimates from only 

a subset of clusters.   

In each case 𝑖 we use the data in the training sample clusters to estimate the parameters 

𝜶̂𝑖  in the model as specified in column 2 of Table 3. We then use those estimates along with the 

observed weather realizations in the test sample cluster-years to predict the cluster-year returns 

to capital in the test sample: 𝛽̂𝑣𝑡
𝑖 = 𝒔𝒗𝒕

′ 𝜶̂. This prediction of returns is then compared to 𝛽̂𝑣𝑡, the 

“actual” returns to capital in each of the cluster years in the test sample as measured by 

estimating (15). The cluster-year returns as predicted by the two rainfall realizations are 

correlated with the realized returns across clusters: the correlation over clusters is 0.40 when 

each test sample is a single cluster (𝑝 = 0.22); 0.31 when each test sample is two clusters (𝑝 =

0.03) and 0.20 (𝑝 = 0.01) when each test sample is three clusters. It is also possible to predict 

changes over time within clusters. In 6 of 11 cases with a single cluster in each test sample, the 

correlation between predicted and realized returns over the three years is positive (𝑝 = 0.23). 

                                                           
24 Estimates from a narrower definition of “planting season” that excluded fertilizer expenses are available from the 
authors (and were provided in an earlier version of the paper). The results are qualitatively similar to those presented 
here. 
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When each test sample is two clusters, 31 of the 51 time series correlations are positive (𝑝 = 0.03). 

And with test samples of three clusters each, 96 of the 164 time series correlations are positive (𝑝 =

0.01). Figure A2 provides a summary account of the relationship between realized returns in each cluster 

year, and the average across the test sample predictions of the return in each cluster year. There clearly 

is information in the aggregate shocks that we measure that can be used to improve estimates of the 

returns to investment outside a given sample. However, there are cases in which the model predicts very 

different returns than are realized in a cluster – for example cluster 2, year 3. Evidently there are a host 

of macro shocks other than our two dimensions of rainfall that affect average returns.  

The three years of data from northen Ghana permit us to also explore the external validity 

of our fixed-effect IV estimates of 𝜶 across time and the clusters. In particular, we use the first 

two years of data (2009‐10) to estimate consistent fixed‐effect IV estimates of 𝜶 (reported in 

column 3 of Table 3), and use these estimates along with 2011 rainfall realizations to predict rates 

of return to investment across the 11 geographic clusters. The correlation between these 

predictions and the observed rates of return is 0.39 (p=0.23). Information about the realization 

of macro shocks, when combined with consistent estimates of the responsiveness of returns to 

those shocks, can be useful in improving the temporal external validity of estimates of the returns 

to an investment. 

APPENDIX D. WEALTH AND RAINFALL REALIZATIONS 

To first see if household wealth and the mean of the rainfall distribution are correlated, 

we regressed the log of per-capita household wealth from the 2009 baseline survey on the mean 

of the rainfall distribution (and its square) over the 30 clusters, based on the 16-year time series 

of seasonal cluster-specific rainfall from the TRMM data set. The estimates are reported in the 

first column of Appendix Table A1. The estimates clearly indicate that households in areas that 

on average have more rain also have higher levels of per-capita wealth. Is it possible to just use 

a single-year cross-section of rainfall outcomes to test for this potential source of bias? Of course, 

in any given year higher rain is more likely in an area with a higher mean rainfall.  A potential 

placebo test therefore is to regress baseline wealth on subsequent rainfall. In columns two and 

three of Appendix Table A1 we report estimates of the effects of rainfall and its square in 2009, 

2010 and 2011, respectively, on log wealth measured in the 2009 baseline survey. In all years, 

the estimates indicate that rainfall and wealth are not independent, and in two of the three years 
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wealth and the single-year rainfall outcome are positively related; but in 2009 rainfall is 

negatively correlated with baseline wealth. This demonstrates again that a single cross-section, 

given high rainfall variability, may not be revealing about longer term relationships.25  

  

                                                           
25 Karlan et al. (2014) make use of the cross-sectional variation in rainfall realizations to identify the effects 

of insurance on risk-taking. In particular, they compared the responsiveness of farm output to rainfall across farmers 
randomly assigned to receive free or subsidized insurance compared to a control group not offerered insurance. The 
idea was that farmers offerred insurance would take more risk, and this would be expressed as a higher sensivity of 
their output to rainfall.  However, because this regression makes use of cross-sectional variation in rainfall outcomes 
over the first two years of the panel (2009 and 2010), which we have shown are correlated with farmer wealth, it is 
likely that the estimates are biased positively, as long as wealth increases investment responses to insurance via 
liquidity effects. Consistent with this, re-estimation of their specification with village fixed effects results in a 
reduction in the rainfall-insurance treatment interaction coefficient by over a third and a loss of statistical 
signficance.  
 



APPENDIX TABLE A1
Estimates of the Effects of Year-Specific Rainfall and Mean Rainfall

on Log Total Household Per-capita Wealth at Baseline (2009)

Variable/rainfall years 2000-2015 2009 2010 2011

Rainfall in year - -0.731
(0.906)

11.8
(4.35)

0.0193
(0.00565)

Rainfall in year squared - 0.0568
(0.0595)

-0.767
(0.285)

-0.0000117
(0.0000037)

Mean rainfall 0.263
(0.0193)

- - -

Mean rainfall squared -0.0000152
(0.0000122)

- - -

Number of farmers 1,065 1,065 1,065 1,065

H0: No rainfall effect F(2,68)
[p]

4.70
[0.0123]

4.62
[0.0132]

3.89
[0.0251]

10.37
[0.0001]

Standard errors clustered at the village level in parentheses.



TABLE 1
Farmer Fixed Effects IV Estimates of Planting-Stage Investments on Net Returns,

Four ICRISAT Villages, 2005-2011

Variable (1) (2)

Planting-stage investment 7.15
(2.47)

1.54
(4.09)

Planting-stage investment squared x10-5 -7.26
(3.19)

-3.91
(4.60)

Planting-stage investment x Kharif rainfall - 0.0163
(0.00654)

Planting-stage investment squared x Kharif rainfall x10-5 - -0.0123
(0.00674)

Planting-stage investment x Kharif rainfall x depth 1 - -0.0103
(0.00366)

Planting-stage investment x Kharif rainfall x depth 3 - -0.00259
(0.00466)

Planting-stage investment x Kharif rainfall x sandy soil - 0.00246
(0.00338)

Planting-stage investment x Kharif rainfall x loam soil - 0.00425
(0.00775)

H0: Investment effect = 0,  ÷2(n) [p] 11.1(2)
[.0039]

14.3(4)
[.0063]

Investment effect at sample mean investment and rainfall 6.41
(2.16)

6.63
(2.90)

N (farmer-years) 1,152 1,152

Standard errors clustered at the farm level in parentheses. 
Specification includes rainfall and lagged rainfall and rainfall and lagged rainfall interacted
with total landholdings, irrigated landholdings, and four soil characteristics; and village*year
fixed effects.
The identifying instruments for the planting-stage investment variables are the year-specific
IMD Southern Peninsula pre-planting monsoon forecast interacted with total landholdings,
irrigated landholdings, and four soil characteristics.



TABLE 2
Probability of Being within ± ä of the Expected Return on Investment,

by ä and Sample

ä (Percentage Points) ICRISAT Ghana

10 .012 .02

20 .02 .03

30 .04 .04

40 .05 .05

50 .06 .06

The probabilities are calculated based on equations (3) and (4) in the text. In column 1 we use the
estimate of á (the interaction between investment and the rainfall realization, evaluated at mean
investment)  from Table 1, column 2, multiplied by the estimated standard deviation of the
rainfall distribution in the ICRISAT village with the longest rainfall series. In column 2, we use
the estimates of á from column 2 of Table 3, evaluated at the mean investment level, and the
empirical distribution of the bivariate weather outcomes in the historical rainfall distribution of
the Ghana study area.



TABLE 3
Farmer Fixed Effects IV Estimates of Planting-Stage Investments on Net Returns, 

75 Ghana Villages, 2009-2011

Sample years 2009-2011 2009-2010

Variable (1) (2) (3)

Planting-stage investment 1.043
(0.707)

0.956
(0.718)

-0.0144
(0.766)

Planting-stage investment x rainfall index - 0.0298
(0.0119)

0.0344
(0.0123)

Planting-stage investment x total rainfall - 0.123
(0.0586)

0.128
(0.0569)

H0: Investment effect = 0,  ÷2(3) [p] - 11.3
[.0104]

7.84
[.0494]

H0: Rainfall-investment interactions = 0,  ÷2(2)
[p]

- 6.32
[.0424]

7.78
[.0204]

N (farmer-plot-years) 6,418 6,418 4,126

Standard errors clustered at the farmer level in parentheses. The specifications include the rainfall index and its
square, five soil characteristics, five slope characteristics, these characteristics interacted with the rainfall index,
the distance of the plot to the house, the number of trees, total rainfall, total rainfall and the rainfall index
interacted., plot area, and year. The identifying instruments for the planting-stage variables are randomized offers
of index insurance at nine price levels, cash grants, and cash grants plus insurance.



TABLE 4
Cross-Sectional IV Estimates of Planting-Stage Investments on Net Returns, by Year

75 Ghana Villages, 2009-2011

Variable/Sample 2009 2010 2011

Planting-stage investment 1.402
(6.27)

0.720
(0.950)

1.715
(1.80)

Planting-stage investment x rainfall
index

0.0391
(0.0645

-0.00121
(0.0118)

0.0702
(0.0296)

Planting-stage investment x total
rainfall

0.176
(0.0858)

0.0544
(0.0826)

0.169
(0.127)

H0: Investment effect = 0,  ÷2(3) [p] 6.28
[.0990]

1.54
[.6737]

11.4
[.0097]

H0: Rainfall-investment interactions
= 0,  ÷2(2) [p]

4.62
[.0993]

0.450
[.7979]

5.64
[.0597]

N (farmer-plot-years) 1,844 2,282 2,292

Standard errors clustered at the farmer level in parentheses. The specifications include the rainfall index and its
square, five soil characteristics, five slope characteristics, these characteristics interacted with the rainfall index,
the distance of the plot to the house, the number of trees, total rainfall, total rainfall and the rainfall index
interacted., plot area, and year. The identifying instruments for the planting-stage variables are randomized offers
of index insurance at nine price levels, cash grants, and cash grants plus insurance.



TABLE 5
Enterprise Fixed Effects IV Estimates of Investments on Net Returns, by Survey Wave

Sri Lankan Micro-enterprises, 2004-2006

Variable (1) (2)

Investment (non land) .0756
(.0242)

-

Entrepreneur sick -1042.8
(329.4)

-1033.1
(391.9)

Wave 2 investment - .133
(.0718)

Wave 3 investment - .132
(.0503)

Wave 4 investment - .0615
(.0315)

Wave 5 investment - .0795
(.0311)

Wave 6 investment - .0664
(.0252)

Wave 7 investment - .0794
(.0267)

Wave 8 investment - .0701
(.0289)

Wave 9 investment - .0884
(.0267)

Wave fixed effects Y Y

H0: wave fixed effects=0,  ÷2(8) [p] 30.1 [.0002] 5.45 [.709]

H0: Seasonal pattern,  ÷2(4) [p] - 2.22 [.694]

N (enterprise-quarters) 3,101 3,101

Standard errors clustered at the enterprise level in parentheses. 
Sample excludes enterprises directly affected by the 2004 tsunami. 
The identifying instruments in column 1 are the randomized offer of cash and that variable
interacted with whether the entrepreneur was a male. In column 2 the instruments also include
the two instruments interacted by wave indicators.



TABLE 6
Enterprise Fixed Effects IV Estimates of Investments on Net Returns, by Quarterly Season

Sri Lankan Micro-enterprises, 2004-2006

Variable (1) (2)

Investment (non land) - .0977
(.0216)

Entrepreneur sick -1066.5
(366.5)

-951.5
(345.3)

Q1 investment .0947
(.0219)

-

Q2 investment .1001
(.0236)

-

Q3 investment .0693
(.0192)

-

Q4 investment .0836
(.0242)

-

Season fixed effects Y Y

H0: Season fixed effects = 0  ÷2(4) [p] 9.27 [.0547] 11.6 [.0208]

N (enterprise-quarters) 3,101 3,101

Standard errors clustered at the enterprise level in parentheses.  
Sample excludes enterprises directly affected by the 2004 tsunami. 
The identifying instruments in the first column are the randomized offer of cash and that
variable interacted with whether the entrepreneur was a male and those two instruments
interacted with wave indicators. The identifying instruments in column 2 are the randomized
offer of cash and that variable interacted with whether the entrepreneur was a male and quarter
indicators.  



TABLE 7
Log Urban Hourly Wages: Estimates of the Returns to Schooling by Year, 1993-2000 

Men Aged 16-79 in Urban Indonesia (IFLS 1993, 1997, 2000)

Variable/Estimation Procedure OLS OLS FE

Years of schooling .123
(.00485)

- -

Years of schooling/ Difference from 2000, 1993 - .154
(.0103)

-.00360
(.0160)

Years of schooling/ Difference from 2000, 1994 - .124
(.00730)

-.0129
(.1013)

Years of schooling/ Difference from 2000, 1995 - .121
(.00692)

-.0139
(.0102)

Years of schooling/ Difference from 2000, 1996 - .122
(.00677)

-.0125
(.0102)

Years of schooling/ Difference from 2000, 1997 - .138
(.00768)

-.000132
(.0104)

Years of schooling/ Difference from 2000, 1998 - .104
(.00651)

-.0255
(.00752)

Years of schooling/ Difference from 2000, 1999 - .102
(.00623)

-.0270
(.00707)

Years of schooling 2000 - .129
(.00761)

-

Year fixed effects Y Y Y

H0: Year fixed effects=0, F(8, 3062) [p] 415.0
[.0000]

395.1
[.0000]

17.0
[.0000]

H0: Schooling returns are equal across years,
F(7,3062) [p]

- 5.94
[.0000]

2.95
[.0044]

N (person-years) 12,769 12,769 12,769

Standard errors clustered at the individual level in parentheses.  
Specifications also include age and age squared.



TABLE 8
Log Urban Hourly Wages: Estimates of the Returns to Schooling and External Macro Shocks

Men Aged 16-79 in Urban Indonesia (IFLS 1993, 1997, 2000)

Sample Period 1993-2000 1998-2000

Estimation Procedure OLS FE OLS FE

Years of schooling .0855
(.0102)

- -.00134
(.0213)

-

Years of schooling x oil price .00105
(.000492)

.00156
(.000434)

.00214
(.000517)

.00210
(.000631)

Years of schooling x exchange rate x
industry openness x ind. skill x 10-5

- - .222
(.0506)

.121
(.0615)

Oil price -.0528
(.0136)

-.0504
(.0106)

-.0894
(.0131)

-.0632
(.0196)

Exchange rate x industry openness x
skill x10-4

- - -.342
(.107)

-.613
(.258)

Exchange rate x10-4 - - -.447
(.209)

.437
(.746)

Industry openness x skill - - .0968
(.0533)

-

H0: No shock effects on schooling
returns, F(2, 2120) [p]

- - 13.3
[.0001]

5.54
[.0040]

N (person-years) 12,242 12,242 5,470 5,470

Standard errors clustered at the individual level in parentheses.  Specifications also include age
and age squared, year, and age and age squared interacted with the oil price/industry variables. 
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