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Abstract

We explore how improving the skill of long-range monsoon forecasts affects
farmer investments and profitability. Based on panel data from India we show that
farmers respond to government forecasts, that these responses account for much of the
inter-annual variability in investments, and that farmers respond more strongly to the
forecast where there is more forecast skill. We also show that the return to such
investments depends substantially on the conditions under which it is obtained by
estimating how returns to planting-stage investments induced by variation in forecasts
vary by rainfall realizations. We find that farmers with access to skilled forecasts
experience increased mean profits and less variable profits and show that improved

forecast skill can substitute for weather index insurance.
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1. Introduction

It is well-established that agricultural profits in developing countries depend
strongly on weather realizations. It is similarly well-known that farmers without access
to good insurance markets act conservatively, investing less on their farms and choosing
crop mixes and cultivation techniques that reduce the volatility of farm profits at the
expense of lower expected profits. Economists have focused valuable attention on
policies and programs that can provide improved ex post mechanisms for dealing with
the consequences of this variability. For example, innovations in insurance can spread
risk across broader populations, or improved credit or savings institutions can permit
more effective consumption-smoothing over time. Innovations of this type can mitigate
the consequences of risk, and therefore permit farmers to make riskier, more profitable
decisions. Agricultural scientists have worked to improve the ex ante options available
to farmers faced with uninsured weather risk, most prominently by developing drought-
tolerant varieties of important crops.

Economists, however, have paid little attention to how farmers’ capacity to deal
with weather fluctuations is affected by the accuracy of forecasts of inter-annual
variations in weather. Like actuarially-fair insurance, a perfectly accurate forecast of
this year’s weather pattern, provided before a farmer makes his or her production
decisions for the season, eliminates weather risk. However, a perfect forecast also
permits the farmer to make optimal production choices conditional on the realized
weather and thus achieve higher profits on average compared with a risk-neutral or
perfectly-insured farmer. The profit and welfare gains associated with improvements in
the accuracy of long-range forecasts (forecasts that cover, for example, an entire
growing season) are potentially enormous, given the tremendous variability in profits
and optimal investment choices across weather realizations.? While there is no obvious

market failure for weather index insurance, the information generated by an accurate

2 Existing qualitative research in Tamil Nadu, Burkina Faso, and Zimbabwe suggests that farmers
demand and respond strongly to information about future rainfall realizations (Ingrama et al.
(2002); Phillips et al. (2002); Huda et al. (2004)).



weather forecast is a classic public good. Even if forecasts are demanded by farmers,
they will be underprovided by private forecasters.

Governments are aware of and responding to this opportunity. For example, in
India the national Monsoon Mission was launched in 2012 with a budget of $48 million
for five years to support research on improving forecast skill, with a special focus on
seasonal weather forecasting.? There is nothing new about this; in India the India
Meteorological Department (IMD) has been issuing annual forecasts of the monsoon
across the subcontinent since 1895, and it is widely reported in the Indian media that
farmers’ livelihoods depend upon the accuracy of the forecast.* Despite these sums
devoted to improvements in forecasting skill, we know of no estimates of farmers’
responsiveness to forecast by forecast skill or of the profitability of improving the
accuracy of long-term forecasting.

Economists have sought to quantify the impact of imperfect protection from
risk, other market imperfections, or interventions designed to overcome such problems
by estimating returns on investments. Estimates of these returns, however, have rarely
(if ever) taken into account variability due to weather or other stochastic events that are
common to all firms or farms. Well-identified studies that show the profitability of an
investment or technological innovation or the return to an intervention are typically
based on data from a single season in a particular locality and hence are conditional on a

single realization of weather or other correlated shocks.® This issue is most salient for

3 The annual budget for the US National Oceanic and Atmospheric Administration, which is
responsible for forecasting research (among other responsibilities) in the US, was approximately
S5 billion in 2010.

4 For example, “Laxman Vishwanath Wadale, a 40-year-old farmer from Maharashtra’s Jalna
district, spent nearly 25,000 on fertilizers and seeds for his 60-acre plot after the Indian
Meteorological Department (IMD) said in June that it stands by its earlier prediction of normal
monsoon. Today, like lakhs of farmers, Wadale helplessly stares at parched fields and is furious
with the weather office that got it wrong — once again. So far, rainfall has been 22% below
normal if you include the torrential rains in the northeast while Punjab and Haryana are being
baked in one of the driest summers ever with rainfall 42% below normal” (Ghosal and Kokata
2012).

5 When studies do extend over multiple periods, none have examined the sensitivity of returns to
realizations of weather (Duflo et al. (2011), Banerjee and Duflo (2008), Banerjee et al .(2013),



agricultural production. Because of weather variability and other sources of aggregate
risk, the standard errors associated with the estimated coefficients may substantially
overstate the precision of the return estimate.®

We show in a simple theoretical model in which the sensitivity of farm profits to
rainfall affects the return to farm investment how risk-averse farmers optimally respond
to information provided by long-range forecasts about future rainfall realizations, and
how these responses vary by risk, wealth and the skill of the forecast. The empirical
work is based on the history of long-range forecasts from the IMD, combined with panel
data from two sources: ICRISAT (2005-2011) and REDS (1996-2006) containing village-
level time-series of rainfall.

We first estimate the skill of the IMD forecasts and show that there is wide
variation across India in the correlation between the monsoon forecast and July-
September rainfall realizations. We find that the IMD forecast has predictive power in a
subset of the ICRISAT villages and a subset of districts across India as a whole.
Consistent with that, we find that planting-stage investments in both the ICRISAT and
the REDS samples respond more strongly to the forecast where it has more skill. This
estimate of the effect of forecast skill on the responsiveness of investment to the
forecast is robust to cross-sectional variation in a variety of agricultural characteristics.

We estimate the returns to planting stage investments taking into account the
effects of rainfall realizations on returns by exploiting the multi-year observations on
profits and rainfall. We use an instrumental variables strategy in which the forecasts
issued by the IMD before planting affect planting-stage investments, but do not
influence profits conditional on realized rainfall except via these investments. Our IV

estimates of the profit function indicate that over the support of the rainfall distribution

Bloom et al.(2013), de Mel et al. (2008, 2009), Mobarak and Rosenzweig (2013), Karlan et al.
(2013), Fafchamps et al. (2011), Udry and Anagol (2006)).

5 For larger scale research projects spanning a wide range of geographical locations a variety of
weather realizations may be realized, but there will be a concern that the weather realizations
may be correlated with unobserved features of the locality that influence the returns to the
investment. Most obviously, rainfall realizations will be correlated with the rainfall distribution,
which typically will be related to agricultural returns (Duflo and Udry 2004).



in the ICRISAT villages, profits increase as investments increase. ICRISAT farmers thus
dramatically underinvest. Our profit function results also show that the returns to
investment are extremely sensitive to rainfall realizations.

In the penultimate section of the paper we use the estimates of the effects of
the forecast and forecast skill on planting-stage investments and our estimates of the
profit function, coupled with the parameters of the IMD forecast and actual rainfall
realizations, to quantify the contribution of the forecast to investment variability and
returns. We show that expected farm profits are increasing in forecast skill, and that
profit variability declines with skill. We compare the gain to farmers from increased
forecast skill to that found for farmers who obtain commercially-available weather
insurance. We conclude with a discussion of the implications of our findings for the
market for agricultural insurance.

2. Modelling Weather Risk, Forecasts, and Farming Choices

Two essential characteristics of agriculture are that output and the returns to
agricultural investments are heavily dependent on weather shocks and second, that the
agricultural production process takes place over time. Farmers must choose inputs
before the realization of shocks which affect the productivity of those inputs.
Revelation of updated information about the probability distribution of the current
year’s shocks will change farmers’ optimal input choices. This is true for profit-
maximizing farmers, and a fortiori so for risk-averse farmers lacking access to complete
insurance markets. In this section we provide a simple model of farmer decision making
that clarifies how changes in information generated by weather forecasts influence
input choices, and how improvements in forecast skill affect input choices, profits and

welfare.”

Consider a farmer who makes decisions about farm inputs (x,) in the planting

period 0 and additional inputs (X ) in the harvest period 1. The farmer realizes a harvest

7 The model builds on Sandmo (1971), Newbery and Stiglitz (1981, chapter 6) and Fafchamps
(2003) by adding forecasts and multiple stages of production.



in period 1. In the harvest period, there are two possible states, S < {b, g} with

prob(S = b) = 7. Output h(x,,X,) depends on the input choices and the realized state.

for t € {0,1} forall

h i)
We assume that h(x,, %) <h, (x,,x) and 5hngolx1) < 0 9(82 X;)

(x,,x). Our assumption that output is less in the bad state than in the good state for any

levels of planting and harvest stage inputs is not particularly restrictive in the context of
Indian agriculture. The assumption that the marginal products of both planting and
harvest stage inputs are higher in the good state depends on the particular inputs we
are examining. For example, this assumption might be reversed for irrigation
investment, which is not a component of the inputs we measure.®

To highlight the role of risk, we assume that credit and saving markets work
smoothly; the farmer can borrow to finance inputs or save at the same risk-free interest
factor r. Denote net saving by a and the farmer’s initial wealth by Y. Although credit

markets work well, we assume that insurance is incomplete; farmers face uninsurable
risk from the realization of weather. The budget constraints are

(1) c’=Y-x-a

(2) c. = h,(X,, %X,)— X, +ra

Before making input decisions in period 0, the farmer receives a forecast of the state to

be realized in period 1. The forecast is either B or G. Let prob(S=b|B)=prob(5=g|G)=q, so

that g is the skill of the forecast.® We assume that the farmer knows g.1° The realized

8 Our assumption is that the marginal products of the aggregate planting stage input and the
aggregate harvest stage inputs are greater in the good state than in the bad state. It may be that
particular inputs (e.g., a drought-resistant seed) may be more productive in a bad state thanin a
good state; this is not inconsistent with our assumption that that aggregate input is more
productive in the good state.

® We show that the forecast of the IMD exhibits this symmetry property: the accuracy of the
forecast does not depend on whether it is a forecast for good or bad rainfall.

10 \We leave for future research the interesting question of how farmers learn the skill of the
forecast (Miller (2013) examines farmers’ interpretation of forecasts; and Taraz (2013) has a
related investigation of farmer learning about evolving weather patterns).



state is known to the farmer at the time he or she chooses x. The key distinction

between X; and X, in our model is that by the time period 1 inputs are chosen, the

realized state has been revealed.

In period 1, the farmer’s problem is to choose
X (%,S) =argmax (%, %) =,
Therefore we can define
f06) =h (%, X (8, %)) =% (8, %)

afb(xo) < é’fg (Xo)
0X, 0%,

for all x. Conditional on the receipt of

with f, (%) < f, (%) and

forecast F € {B,G} the farmer’s period 0 decision problem is

(3) max u(c’) + B (prob(S =b|F)u(c;) + prob(S = g | F)u(cy))

subject to (1) and (2), and the usual non-negativity constraints on XO,CO, and Ci,
which will never bind because we make Inada assumptions on u(.) and f ().

In Propositions 1-3 in the Appendix, we confirm that risk-averse farmers without
access to insurance markets choose lower levels of inputs than would a profit-
maximizing farmer, that input use increases (and net savings decreases) when the
forecast is for good weather and that this increase in input use increases with the skill of
the forecast. 2! These propositions follow from the facts that planting-season inputs are
more risky than the alternative asset and that the marginal product of planting-season
inputs is higher in good than in bad weather.

Some dimensions of farmer heterogeneity are particularly salient for
understanding how rainfall forecasts and their accuracy influence cultivation decisions.
Propositions 4 through 6 show that input use increases in farmer wealth and decreases

in riskiness of the environment. We also show that the responsiveness of investment to

11 All propositions and proofs are provided in the appendix.



forecasts declines in the installed base of irrigation, and varies by farmer wealth and the
riskiness of the environment.
We show in Proposition 7 that expected profits and expected utility increase

with forecast skill. Expected profits increase with forecast skill for two reasons, as can be

seen in (4):
dE(%rqofits) 2= 1,(%,(@1G) ~ f,(%,(a]G)) |+[ f,(%,(a|B)) - f, (%,(a|B))]
dx,(qG) | | ofs(%,(q]|G)) o, (x,(q]| G))
(4) + Xodq {Q{ o —r}(l—q){—axo —r}}
+dXo(QIB) q afb(Xo(QIB))_r +(-q) <9fc_,(><o(QIB))_r
dq X, %,

>0
First, improved forecasts permit the farmer to match his input choices to the realized

state. These are the first two terms in (4), which sum to a positive because

x,(@1G)>x (q| B). These terms would be the same for a risk neutral farmer who simply

maximizes profit. Second, improved forecast skill reduces the risk faced by the farmer.
The reduced risk permits a risk-averse farmer to increase investment, on average,
reducing the gap in the expected marginal product of investment in inputs and the
return on the risk free asset. These are the second two terms in (4).*?

3. Data

We use two panel data sets. There are two key features of these data for our

purposes — information on investments by stage of production or time-period and time-

125ee the appendix for the full proof. This proposition relies on an additional assumption that the
unconditional probability of bad weather is 0.5. The simplification associated with this
assumption is that if and only if 7=.5, the probability of a Bad (Good) forecast is invariant to
changes in forecast accuracy. This is a consequence of our use of g to summarize forecast
accuracy symmetrically for forecasts of good and bad weather. In general,
dPr(Bad Forecast) ~ 27-1
da (-
the actual probability of bad forecasts.

and changes in g can’t be modelled independently of changes in




series of village-level rainfall. The stage-specific investment data enable us to measure
the kharif-season planting-stage investments (the value of labor used in plowing,
seeding and fertilizing plus the costs of the material inputs) that are informed by the
IMD forecasts (which are issued at the end of June) but made prior to the full realization
of rainfall shocks. The rainfall time-series permit us to compute various time-specific
measures of rainfall shocks for the assessment of forecast skill and to estimate the
sensitivity of investment returns to rainfall outcomes that are not attenuated due to the
lack of proximity of rainfall gauges to the sample respondents.

The first set of data is from the ICRISAT Village Dynamics in South Asia (VDSA)
surveys for the years 2005-2011 in the six villages from the first generation ICRISAT VLS
(1975-1984). The villages are located in the states of Maharashtra (4) and Andhra
Pradesh (2). These data provide daily rainfall for each of the six villages for as long as 30
years and are collected at a high frequency so that accurate information is provided on
the value of inputs by operation and by date as well as the season-specific profits
associated with those investments.’* We use these data to estimate both the response
of planting-stage investments to the IMD forecasts and the returns to such investments
under different weather conditions.

The second panel data set we use is from the 1999 and 2007-8 Rural Economic

and Development Surveys (REDS) administered by the National Council of Economic

13 Many studies estimating rainfall effects use the University of Delaware Air Temperature and
Precipitation Data set, which provides climatologically-aided spatial interpolations of monthly
rainfall for a set of points on a 0.5 degree by 0.5 degree latitude/longitude grid based on a
limited set of weather stations (http://climate.geog.udel.edu/~climate/htm| pages/Global2011/
README.GlobalTsP2011.html). The rainfall time-series for the grid points are subject to
interpolation error, and the correlation between these supplied data points and actual rainfall for
any point (village location) within the grid may be quite small, given the strong negative
association between distance and the rainfall correlations between any two villages found by
Mobarak and Rosenzweig (2013) using monthly village-specific rainfall time-series data.

14 Dates of operations are not always provided so that certain operations such as fertilizing,
included in our measure of planting-stage investment, may have occurred in some cases after the
realization of early-season rainfall. In the estimation of the profit function we control for rainfall
during the entire kharif season so that identification of the effects of planting-stage investments
is based on variation solely induced by forecast changes. We also assess if our estimate of the
forecast on measured investments is sensitive to the inclusion of post-forecast rainfall.




Research (NCAER) in 242 villages in the 17 major states of India. This survey, like the
ICRISAT survey, elicited information on inputs by season and stage of production so that
it is also possible to construct a measure of kharif planting-stage investments. The data
set also includes monthly rainfall information at the village level for 212 villages
covering the years 1999-2006. Given the wide spatial coverage of the REDS, these
rainfall data enable us to estimate the skill of the IMD forecasts across Indian regions
and thus to estimate if and how planting-stage investments respond differentially to
forecast skill conditional on other regional characteristics for 2,219 farmers. A limitation
of the data is that there is no rainfall information for the year in which profits and inputs
were collected in the 2007-8 round, so it is not possible to estimate the returns to
planting-stage investments that account for the effects of rainfall variability.

The top and bottom panels of Table 1 provide descriptive statistics for the
ICRISAT and REDS data. As can be seen, while the average planting-stage investments in
both surveys is comparable, there is substantially more investment variation in the REDS
data set, reflecting its wider geographic scope. The shape of the distribution of
investments is similar across the data sets, and is well characterized by the log-normal
distribution.'® Another notable difference in the two data sets is that the intertemporal
coefficient of variation in crop-year rainfall in the ICRISAT villages is double that for the
average for the more representative sample of farmers in rural India. The fraction of
land that is irrigated for ICRISAT farmers is also 26% lower than that of farmers in the

REDS. Rainfall variability is thus an especially salient issue for the ICRISAT farmers.*®

15 Appendix Figures 1-4 display the planting-stage and the log planting-stage distributions from
both data sets. Given these distributions, we will employ the log of planting-stage investments
when we estimate the determinants of those investments.

16 Our measure of profits is the value of agricultural output minus the value of all agricultural
inputs, including the value of family labor and other owned input services. Our model suggests
that the value of output should be discounted by r, the return on risk-free assets between the
time of input application and the time of harvest. Appendix table Al shows the nominal annual
interest rates of formal and informal savings accounts held by the ICRISAT households. 85% of
the households have positive savings balances. The average nominal interest rate (weighted by
value of deposit) is 10.4%. Average annual inflation over the span of the ICRISAT survey was



4, IMD Monsoon Forecasts and Forecast Skill

Each year at about the end of June, the Indian Meteorological Department
(IMD) in Pune issues forecasts of the percentage deviation of rainfall from “normal”
rainfall for the July-September period (summer monsoon). Rainfall in this period
accounts for over 70% of rainfall in the crop year and is critical for kharif- season
profitability - planting takes place principally in June-August, with harvests taking place
in September-October. The IMD was established in 1886 and the first forecast of
summer monsoon rainfall was issued on that date based on seasonal snow falls in the
Himalayas. Starting in 1895, forecasts have been based on snow cover in the Himalayas,
pre-monsoon weather conditions in India, and pre-monsoon weather conditions over
the Indian Ocean and Australia using various statistical techniques.!’” Thus, IMD
forecasts are based on information that is unlikely to be known by local farmers. There
has been no alternative source of monsoon forecasts other than IMD until 2013, when a
private weather services company (Skymet) issued its own forecast for a limited set of
regions.

What is the skill of the forecasts in predicting July-September rainfall?*® The IMD
has published the history of its forecasts since 1932 along with the actual percentage
deviations of rainfall in the relevant period. One could use the entire time series to
assess the forecast. However, in addition to the fact that the statistical modeling has
changed over time so that forecast skill in earlier periods may no longer be relevant, the
forecast regions have changed - geographical forecasting by region was abandoned in

the period 1988-1998 - and in many early years the forecasts are qualitative (“far from

10.6%. Therefore, we set r=1 for the profit value in Table 1. We assess how our investment
returns estimates differ when we allow discounting below.

17Regression techniques were first used in 1909 to predict monsoon rainfall. IMD has changed
statistical techniques periodically, more frequently in recent years. Different statistical methods
were used for the 1988-2002, 2003-2006, and 2007-2011 forecasts (Long Range Forecasting in
India, undated).

18 |In the literature on forecasting, ‘skill’ is the term used for the accuracy of the forecast. The
typical measure of skill is the correlation between the forecast and the realized weather (see, for
example, Turner and Annamalai 2012).

10



I”

normal”). Starting in 1999, percentage deviations were re-introduced. For India as a
whole, using the published data from 1999-2010, we find that forecast skill is not very
high. However, the forecasts exhibit the symmetry property we have assumed in the
model: when the IMD forecast is for below-normal or for above-normal monsoon
rainfall the likelihood the forecast is correct slightly above 50% in each case.

Forecast skill, however, may vary by region. In the period 1999-2003, the
forecasts were issued for three regions of India. Starting in 2004, the forecasts have
been issued for four broad regions of India (see Appendix Map A1l). To estimate district-
specific forecast skill, we obtained the correlations between the regional IMD forecasts
and the village-specific times-series of rainfall in the ICRISAT and REDS data. For the
ICRISAT data (2005-2011) we use the Southern Peninsula (SP) forecasts. For the REDS
(1999-2006), we matched up the REDS village rainfall time-series with the appropriate
regional forecasts over the time period. If there is indeed spatial variation in skill, we can
use that variation to test a key prediction of our model, that the response of
investments to the forecasts will be stronger the higher is forecast skill.

Table 2 provides the correlations between the IMD forecasts and actual July-
September rainfall for each of the six ICRISAT villages between 2005 and 2011. As can be
seen, for the four Maharashtra villages, skill is relatively high (p=.267), but for the two
Andhra villages the forecast is not even positively correlated with the rainfall
realizations. It is not obvious what accounts for the higher skill in the Maharashtra
villages. It is not because there is less rainfall variability in those villages, as the average
rainfall CV is significantly higher than that in the Andhra villages.

The REDS data also show regional patterns of forecast skill. While the overall
correlation between the forecast and actual July-September rainfall in the 1999-2006
period is only .132, the range in village-specific correlations, where the correlations are
non-negative, is from .01 to .77. This variation in our estimates of skill could just be

noise. However, there appear to be broad geographical areas where the skill is

11



substantially higher and we can reject the null hypothesis that the forecast has no skill.*°
Map 1 shows where in India the correlations are highest (darker areas), with the
Northeast area exhibiting the highest skill. Of course, the key question raised by
Propositions 2 and 3 is whether farmers respond to the forecasts, and do so more
strongly where the forecast has greater skill.

5. Rainfall Forecasts, Forecast Skill and Planting-Stage Investments

As shown in section 2, optimal input investment by household h in village v ( X,
) depends upon the forecast (Proposition 2), F,, the interaction of the forecast with a
set of fixed farm characteristics Z, that affect wealth and the riskiness of inputs
(Propositions 5 and 6), lagged profits (Proposition 4), and forecast skill (itself interacted
with the forecast, and with Z, ) (Proposition 3). In addition, X,,, depends upon lagged
rainfall realizations via soil moisture overhang, and this effect may vary across farmers

depending on ij, most importantly soil depth (which changes the extent of moisture
overhang). It also is important that we control for lagged rainfall (R, ,)in case the IMD

forecast partly depends on rainfall history. We are examining early season, planting-
stage input investments to ensure that these decisions do not depend upon later season
rainfall realizations (this assumption is tested below). Log planting stage input

investments by household h in year t are therefore specified as

X = F '|:a|: +aeeFy +ZakFZkhv:|+ Rt -{ar +zairzih"}
K ]
(5)

+a T, 0,0, +F, 00, {%F + zaqukhv :| + A F s
P

1% We use a Bonferroni correction (which permits arbitrary correlations between estimates of
skill), which requires p<0.0002 to reject at the 5% level. This is a very conservative approach,
because both the forecast and monsoon rainfall are positively spatially correlated.

12



where 4 is a household fixed effect that may affect input choices, and 7, is a random

shock uncorrelated with other determinants of input choice. The household fixed effect

is collinear with the direct effect of forecast skill on investment, so a, is not identified.

The first column of Table 3 reports farmer fixed-effect estimates from the
ICRISAT panel data of a reduced-form version of the (log) planting-stage investment
equation (5) in which we replace lagged profits by the previous year’s monsoon forecast
and initially omit the interactions between land characteristics and the forecast. The set
of lagged rainfall and the contemporaneous forecast coefficients are statistically
significant; the point estimate is that a one percentage point increase in the IMD rainfall
forecast results in a 1.5% increase in planting-stage investments.

We make use of Proposition 3 to show that farmers are behaving in accord with
the model. Proposition 3 implies that the ICRISAT farmers in Andhra Pradesh should not
be responding to the IMD forecasts in making their planting-stage investments. As
shown in Table 2, forecast skill in the Andhra Pradesh villages is nil, so unless farmers
are unaware of the poor performance of the forecasts or we have incorrectly
characterized forecast skill, a finding that planting-stage investments are substantially
influenced by the forecasts in these villages would call into question our assumptions
and/or model. The response of investments in the planting stage to the forecast should
only be exhibited in the Maharashtra ICRISAT villages. The estimates of the planting-
stage investment equation for the Maharashtra and Andhra villages are reported in
columns two and three of Table 3, respectively. Consistent with the model, the effect of
the forecast in the two Andhra Pradesh villages is not significantly different from zero

and the point estimate is less than a third of that in the villages with forecast skill.?°

20 Another concern is that the measured planting-stage investments based on the ICRISAT data
may reflect in part realized rainfall in the early months of the kharif season, which are correlated
with the forecast, so that we are over-estimating the power of the forecast in influencing farmer
decisions. To test this, we also included in the specification actual July-September rainfall (not
shown). Actual rainfall was not a significant predictor of planting-stage investments, with an
asymptotic t-ratio of 0.11, while the forecast coefficients retained their statistical significance
and quantitative importance.

13



In columns 4-6 of Table 3 we provide estimates that include interactions of the
forecast with itself and with six characteristics of the farmer’s landholdings — total land
size, share of land irrigated, and four soil types. As can be seen, the results are similar to
those from the simpler specification, although now the full set of skill and skill
interaction coefficients (not shown) are jointly statistically significant for all the villages
and for the Maharasthra villages but not for the Andhra villages. The net effect of higher
responsiveness of investment to forecasts in Maharashtra is that investment in
Maharashtra is more variable. The average coefficient of variation of investment in the
Maharashtra villages is 60%, while the average CV in Andhra Pradesh is 41% (these are
statistically significantly different, p=0.027).%

There may be alternative explanations associated with unobserved
heterogeneity at the village level that account for the sharp difference we observe in
the effects of the forecast on planting-stage investment across the two ICRISAT areas.
The REDS data, from which we have many more village-level estimates of forecast skill
and many more farmers, allow us to estimate directly how forecast skill, as measured by
the correlation between the IMD forecast and actual rainfall in the local area, affects the
responsiveness of planting-stage investments to forecasts. We can also use the REDS
data to assess the robustness of our forecast estimates to heterogeneity in farmers and
geographic areas. We thus use the REDS data to estimate investment equation (5)
excluding lagged profits (which did not seem to matter), given we only have two
observations per farmer, but including the interactions between forecast, forecast skill
and other characteristics of the region and farmer.

Column 1 of Table 4 reports farmer FE estimates of the effects of the IMD

forecast and the forecast interacted with forecast skill on the log of planting-stage

21 In Appendix Table A2, we replace the lagged forecast variable by lagged profits, treating that
variable as endogenous and using the lagged IMD forecast and its square and the interactions of
the lagged forecast with the farm land characteristics as instruments. The estimates of the
forecast effects on investments are similar to those reported in Table 3, with again the forecast
only having power in the Maharasthra villages. However, previous-year profits, net of the current
forecast and rainfall overhang effects (which remain statistically significant), are not themselves
significant predictors of investments made in the planting stage.

14



investments in the REDS data. Consistent with the model and with the investment
estimates by state from the ICRISAT data, the response of the investments to the
forecast is statistically significantly higher the higher is forecast skill in the area, and a
higher forecast leads to more investments, though not statistically significantly so. One
reason for the small average response to the forecast is that, as shown in Table 1, a
large fraction of REDS farmers cultivate on irrigated land. Proposition 5 indicates that
because irrigation reduces the losses from poor rainfall outcomes, planting-stage
investments of irrigated farmers will be less responsive to increases in forecast skill. To
test this, we added interactions between the fraction of the farmer’s land that is
irrigated and the forecast and forecast skill. The estimates for this specification, shown
in column two of Table 4, are consistent with the model and the effects of irrigation on
the sensitivity of investment returns - the higher the fraction of the farmer’s land that is
irrigated, the lower the responsiveness to forecast skill. This irrigation gradient is
statistically significant, as is the effect of forecast skill on the forecast response for
unirrigated farmers. The point estimates indicate that at a forecast skill of, say, .43 (the
forecast skill in Shirapur village in the ICRISAT data for which we have the longest rainfall
time-series) among unirrigated farmers a one percentage point increase in the forecast
increases planting-stage investments by 9%. In column 3, we add a full set of
interactions between the forecast, forecast skill and land characteristics of the farmer
(these include the four soil types, total land owned, and the two soil depth indicators).
The interactions are jointly statistically significant (p=0.00), but the main effects of the
forecast and forecast-skill interaction are stable.

Village-level forecast skill may be correlated with other area characteristics that
affect farmer investments. As was seen in Map 1, forecast skill has strong spatial
patterns. One striking fact is that where the forecast skill is higher many farmers grow

rice.? To assess if our finding of the higher responsiveness of investments to the

22 This is shown in Appendix Map A2, based on the cropping patterns of the farmers in the REDS.
It shows that in the northeast area with good forecast skill is one of the rice-intensive areas,
defined as areas in which at least 75% of farmers grow rice.
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monsoon rainfall forecast in high skill areas merely reflect the differential
responsiveness of rice farmers to forecasts, we added interactions between the forecast
and forecast-skill interaction and a dummy variable for whether the village was in a rice
growing region. In addition, Proposition 6 shows that the riskiness of production will in
general change the responsiveness of farmers to forecasts and to the skill of forecasts.
Therefore, we added interactions between the forecast and forecast skill variables and a
measure of the variability of village-level rainfall (CV), which also varies greatly across
Indian regions (see Appendix Map A3). The fourth column of Table 5 displays these
estimates. As can be seen, the set of rice coefficients are not statistically significant
jointly or individually. The set of CV interaction coefficients is statistically significant at
the 10% level, but the magnitudes and statistical significance of the coefficients
associated with the responsiveness of investments to forecast skill for irrigated and
unirrigated farmers are unaffected.?

In Table 5, we present estimates of the responsiveness of planting level
investments of farmers in the REDS sample to the forecast at varying levels of forecast
skill using an alternative to the correlation-based estimate of forecast skill. The mean
rainfall of a village in the REDS sample is typically different from mean rainfall over the
broad IMD region in which it is situated. We construct an estimate of the forecast skill in
a particular district by adjusting for these mean differences:

(6) Ry =V +BF +&y,
where j indexes districts and k indexes villages. Our estimate of the skill of the forecast

in district j is max{ﬁj ,0}. Column 1 of Table 5 presents reports farmer FE estimates of

the effects of the IMD forecast and the forecast interacted with forecast skill on the log
of planting-stage investments. As in the analogous specification reported in column one

of Table 4 with the correlation-based estimate of skill, there is a positive response of

23 We also estimated specifications adding mean rainfall interactions. These also were not
significant determinants of planting-stage investments and did not alter the forecast skill
estimates.
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investment to forecasts only in districts with skill.?* In column 2, we restrict attention to
districts with positive estimated skill, to examine the possibility that we introduced a
bias by truncating estimated skills at zero. For this subsample as well we see the same
pattern: the responsiveness of investment to the IMD forecast is stronger in those
districts in which the forecast has more skill.

One concern with estimating forecast response by forecast skill is that our skill
measure is only an estimate of farmers’ assessment of the skill of the forecast in their
district, based only on seven years of village-specific rainfall. To take this into account,

we maintain the assumption that farmers know g, but we have available only /§j, We

also have information, however, on the reliability of our estimates of district-specific

forecast skill, namely the district-specific standard errors ofIBj . In column 3 of Table 5,

we report the estimates corrected for this measurement error in forecast skill using the
coefficient standard errors. As expected, this increases the point estimates of the
responsiveness of investment to the forecast, and of the effect of the interaction
between forecast skill and the forecast. Our conclusion remains unchanged: farmers
respond to the IMD forecast by increasing investment only in those districts in which the
forecast has skill.

6. Rainfall Variability and the Returns to Planting-Stage Investments

The REDS and ICRISAT data sets both suggest that farmers’ planting-stage
investments respond to the IMD forecasts, with such responses differing across farmers
(for given forecast skill) depending on their specific land characteristics. We now use the
IMD forecast as part of an IV strategy to estimate the returns to planting-stage
investments. In particular, we estimate a conditional profit function using the ICRISAT

panel data, treating planting-stage investments as an endogenous choice that responds

24 Investment responds positively to the forecast in districts with ,Bj > 22.5 (corresponding to a

correlation between the forecast and actual rainfall of .22), which is the case for 40% of the
districts with any skill in the REDS sample.
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to the rainfall forecast. To identify investment returns, we have to impose additional
structure to ensure that the forecast instruments satisfy the exclusion restriction.
Agricultural profits depend on investments in planting-stage inputs and on the
realization of rainfall, and as our model has emphasized, on the interaction between
these. In addition, agricultural profits are functions of a number of dimensions of
heterogeneity, such as farm size, soil characteristics, and irrigation and interactions of
these with rainfall. There is also good evidence (Sharma and Acharya 2000) that profits
depend as well on lagged rainfall (differentially depending upon farm characteristics,
particularly soil depth) through the soil moisture overhang effect. Hence we specify a
linearized version of the farm profits of household h in village v in year t that is quadratic

in planting-stage investments as

ﬂhvt = IBxtht +ﬂxxxr?vt + th {ﬁr +ﬂrert +ﬂrxxhvt +ﬂrxxxﬁvt +Z(ﬁrkzkhv )}
(7) ‘
+R, '{ﬂn +BaRia+ Z(,Brmzkhv )} + A Aoy + Enne-
k

A_ is a village-year fixed effect that absorbs time-varying village-specific input prices
(particularly wages) that could be correlated with rainfall forecasts. 4, is a household

fixed effect, and &, is a shock to farm profits. A key feature of (7) is that the effects of

planting-stage investments on profits depend on the realization of rainfall R, This is, of
course, central to any model in which rainfall risk has consequences for income and

investment choices.

Excluded from (7) are the rainfall forecast (F,) and its interactions with

exogenous fixed land characteristics. This is the primary identification assumption
required to estimate the returns to planting-stage investments. That is, conditional on
realized rainfall, the forecast of total rainfall in the monsoon affects profits only through

its effect on X, . There are three primary concerns regarding this excludability

assumption. The first is that that conditional on our specific measures of realized
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rainfall, the forecast of total rainfall may be correlated with an unmeasured dimension
of rainfall that matters for profits. As described in section 3, we measure realized
rainfall as the total amount of rainfall over the year and the total amount of rainfall over
the monsoon, as the IMD long-range forecast is the prediction for the total amount of
rainfall over the monsoon. Binswanger and Rosenzweig (1993) have shown that the
monsoon onset date is a salient feature of rainfall for farm profits in India. However, in
the ICRISAT data we find that conditional on even a subset of our measures of rainfall
(monsoon rainfall), the IMD forecast of total monsoon rainfall is not correlated with the
onset date.?”> We include both the monsoon onset and end dates, calculated from the
daily rainfall information, interacted with land characteristics in the profit-function
specification.

Second, the rainfall forecast for a given year is common to everyone in a village.
Through its effect on input demand, a forecast of good (bad) weather could raise (lower)
input prices — particularly wages —in a village. In principle it is possible as well that
there could be policy interventions (changes in regulated grain prices, emergency
agricultural interventions, ex ante efforts to provide relief). These village-specific
changes correlated with the forecast could affect profits directly. As noted, the village-

year fixed effect (4_,) is included in (7) to address this possibility. A casualty of

including village-year fixed effects is that the direct effects of rainfall and lagged rainfall
on profits are not identified.

A third concern that would make the forecast non-excludable in (7) is that the
increased planting-stage investments induced by a favorable forecast reduce the
farmer’s resources available for subsequent production stages. In the model this was
ruled out by the assumption of perfect credit markets within the season. That is,
farmers are able to profit-maximize conditional on their planting-stage investments. We

will provide a test of this assumption below.

e find Onset, = 370 —.139MR, ~1.064F,  Apsolute values of asymptotic t-ratios in parentheses.
(347)  (747)  (0.86)
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Table 6 reports fixed-effects instrumental variable (FE-IV) estimates of the
profit function (6), with the FE at the farmer and village-year levels. The IMD forecast
interacted with the characteristics of the farm and farmer are the instruments for
planting-stage investments. All profit function specifications include current-year and
prior-year annual and July-September rainfall; monsoon start and end dates; the
squares of the rainfall quantity variables; the rainfall variables interacted with total
landholdings, irrigated landholdings, soil depth, and four soil types (red, black, sandy,
loam); and annual rainfall interacted with the planting-stage investment variable.

The first two columns of Table 6 report profit specifications that are linear and
quadratic in investment, respectively, and that exclude the village/year fixed effects, but
in which the effects of the planting-stage investments depend on rainfall. For either
specification we can strongly reject the hypotheses that (i) larger planting-stage
investments do not increase profits over almost the full range of the investment
distribution in the sample and (ii) investment returns do not depend on rainfall. The
same conclusions follow in the quadratic specification when we include the full set of
village/year dummies to absorb any aggregate effects of the forecast on input prices
(column 3).%° These estimates imply that ex-post optimal investments depend on
realized rainfall outcomes, or, put differently, how much underinvestment one would
infer from profit function estimates depends on what is assumed to be the typical

rainfall outcome. Investment returns also remain concave when we include the village-

26 The F(9, 1724)-statistics for the set of identifying variables including the forecast, the forecast
squared, the and the forecast interacted with total landholdings, with irrigated landholdings,
with July-September rainfall, with annual rainfall and with annual rainfall interacted with
landholdings and irrigated landholdings are, for the four endogenous variables (preparation
investments, preparation investments squared, preparation investments interacted with annual
rainfall, and preparation investments squared interacted with annual rainfall) 8.19, 10.17, 6.74,
and 7.63, respectively, all significant at the .0001 level. The Anderson (1951) canonical
correlations test statistic strongly rejects under-identification for all specifications (except for the

sample of farmers in the low-skill villages (column 4)). For example, the test statistic, ;(2 33), =

73.4 (p=.0001) for the column-3 specification. The full set of first-stage estimates is available
upon request from the authors.
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year fixed effects and we also cannot reject the hypothesis that the point estimates of
the coefficients of investment, investment squared and their interactions with rainfall
and rainfall-squared are the same in columns 2 and 3.%” The estimates in columns 1-3
imply that at mean levels of investment in the ICRISAT sample, returns to planting-stage
investment are positive over the full range of rainfall realizations observed in the data.
Figure 1 confirms this result for both the linear and quadratic specifications, while
permitting the return to vary non-parametrically with rainfall.?

Although for the whole panel sample our instruments have power, to ensure
that identification of the profit-function estimates is based on the investment forecast
response we separately estimate (7) for the sample of farmers in the Andhra Pradesh
and Maharasthra villages. These estimates are reported in columns 4 and 5 of Table 6,
respectively. As expected, for the sample of farmers in the Andhra Pradesh villages
where there is no forecast skill and little investment response to forecasts we cannot
obtain any statistically significant effect of planting-stage investments on profits and the
under-identification test fails to reject,?® while the estimates of investment effects are
statistically significant for the Maharasthra farmers and similar to those obtained from
the whole sample.

The profit estimates reported in the columns 1 through 5 were based on a
measure of annual profits assuming a zero discount rate, consistent, as noted with real
interest rates in our sample. To assess the robustness of the profit-function results to

this assumption, we re-calculated profits assuming an annual discount rate of 10%. The

2" The 4°(4) test statistic is 4.74 (p=0.31). The robustness of the profit-function estimates to the

inclusion of the village/year fixed-effects is consistent with our finding that the IMD forecasts
have a statistically significant but small effect on planting-stage wages (Rosenzweig and Udry,
2014).

28 Figure 1reports the locally smoothed FE-IV estimates of the return to planting-stage
investment using the specifications reported in Table 6, Columns 1 and 2 at each rainfall
realization. The return is the derivative of profits with respect to investment, estimated at the
ICRISAT sample mean investment, at each level of rain. The tricube kernel is used, with a
bandwidth of 0.7.

29 The relevant test statistic, 7°(30), = 31.1 (p=.41).
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estimates using this profit measure obtained from the Maharasthra- village sample are
reported in column 6 of Table 6. As can be seen, the estimates are largely unchanged
from those obtained using a zero discount rate.

Finally, as noted, the excludability of the forecast instruments from (7) assumes
that farmers can freely maximize profits conditional on their planting-stage investments.
The ICRISAT survey data enable us to carry out a global separability test similar to that of
Benjamin (1992). The basic idea is that exogenous changes in the family labor force
should not affect profits if all input markets are unconstrained. Changes in household
size or in labor supply are not obviously exogenous to profit changes. However, illness
has a large random component (net of the household fixed effect), and illness can affect
the family’s ability to supply labor.

For the years 2005, 2006, 2010 and 2011 the ICRISAT survey elicited information
on the number of days that adult family members were ill in the kharif season.
Household fixed effect estimates obtained for the total sample of farmers and the farm
households in the Maharasthra villages in those years of the effect of the number of sick
days on total labor days in the kharif season, reported in Appendix Table A4, indicate
that for each day an adult was sick almost a third of a day of on-farm family labor was
lost. The estimates are highly statistically significant. If liquidity constraints limited the
ability of the household to substitute hired labor to make up for family labor days lost,
an increase in sick days should therefore decrease profits. In the last column of Table 6
we report FE-IV estimates of the profit function for the Maharasthra farmers including
the number of adult sick days. As can be seen, we cannot reject the hypothesis of
separability — despite sick days evidently significantly reducing on-farm family labor
supply -- an increase in the number of adult sick days has no impact on profitability.°

To see what our estimates imply for the sensitivity of returns to rainfall
realizations and for assessing the degree of underinvestment we plot in Figure 2 the

relationships between profits and investments for rainfall at the mean and at the

30 Note that it is plausible that shocks to profits affect illness. However, this would create a
negative bias for the sick days coefficient. Thus, we have a statistically strong test of separability.
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minimum, maximum and 75 percentile of the actual rainfall distribution in the ICRISAT
villages. We use the estimates in column 2, without village-year fixed effects, to include
the direct effect of rainfall realizations on profits.3! The mean, the 10" and the 90"
percentiles of the distribution of planting-stage investment in the ICRISAT sample are
indicated on the investment axis. We note three important features of this figure.

First, the return to a given investment varies substantially depending on the
rainfall outcome. For example, an additional R10,000 investment (over the base of
R12,000) would have an estimated return of about R10,000 in additional profits if
estimated in a year of rainfall at the minimum of the distribution. However, the same
investment would have a return of over R50,000 if estimated using data from a year in
which rainfall was at its maximum. This illustrates that an estimate in one place at one
time of the returns to investment has a precision that is much smaller than that
indicated by the t-ratios of the coefficients if the influence of rainfall variability is
ignored.3? This feature of Figure 2 also demonstrates the challenges involved in
attempting to generalize results from studies of agriculture undertaken in limited
geographical range. If the plots by rainfall realization represent averages for different
areas, rather than the stochastic outcomes of one area, our estimates indicate that
estimates obtained at different places would provide very different estimates of returns
to investment just from rainfall heterogeneity.

A second feature of the figure is that there is considerable underinvestment.
Profits are not only increasing with planting-stage investment at the actual mean
investment level observed in the sample, consistent with Proposition 1, but for every
observed rainfall outcome over almost the entire distribution of observed planting-stage
investments. Underinvestment is sufficiently ubiquitous that even at the 90" percentile

of observed investment, profits are increasing, even at the minimum observed rainfall.

31 Were we to use the (statistically-indistinguishable) estimates with village-year fixed effects
instead, the intercept of each curve would be arbitrary. Comments 1 and 2 which follow are

independent of any such normalization; comment 3, however, relies on the estimates of the
direct effect of rainfall on profits.

32 We quantify this difference in Section 7 below.
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Finally, a third feature of Figure 2 is that rainfall risk at the mean level of investment
observed in the ICRISAT sample is small relative to the risk at higher levels of
investment.

7. The Profitability of Improving Forecast Skill

We have seen in Tables 3-5 that in villages in which the forecast is more strongly
positively correlated with rainfall outcomes, farmers respond more powerfully to the
forecast by increasing (decreasing) planting-stage investments when the forecast is for
more (less) rain. We have also shown that the return to these planting-stage
investments is higher when realized rainfall is higher. Proposition 7 states that expected
profits should rise with forecast skill. Our estimates of the profit function and the input
demand function can be combined with information on the joint distribution of rainfall
realization and forecasts to provide estimates of the effects of changes in forecasting
skill on the distribution of farm profits.

Farm profits are a concave function of planting-season investments interacted
with rainfall realizations. As a consequence, expected profits are not a simple function
of expected rainfall, expected forecasts, and the expected value of planting-stage
investments. In order to describe the distribution of profits, we simulate profits using
repeated draws from the joint distribution of rainfall and forecasts for a typical farmer,
subject to varying assumptions regarding the skill of the forecast. As the baseline for the
simulations, we use the mean values of farm characteristics and the rainfall distribution
in the ICRISAT village of Kinkheda, which has a relatively low baseline forecast skill of

0.2.33 We use the parameter estimates of the coefficients in equations (7) and (5) to

33 The correlation matrix for total rainfall (mm), monsoon rainfall (mm), the monsoon start date
(days since Jan 1) and the IMD forecast (% of normal) for Kinkheda is

1 9807 -.2318 .1961
9807 1 _1881 02 |- Asthesimulationsincrease the correlation between monsoon

-.2318 -.1881 1 —-.0376
1961 02 -.0376 1

rainfall and the IMD forecast, we assume that the correlation between the total rainfall and the
forecast and monsoon onset and the forecast change proportionally, while of course the
correlations between total and monsoon rainfall and monsoon onset are fixed.

24



generate a prediction of planting-stage investment, and (using the predicted planting-
stage investment) farm profit. We then trace out the consequences for the distribution
of profits of increasing skill from 0.2 to 0.6.

To generate predicted planting-stage investment as skill increases, we use the

consistent estimate of Qe from equation (5) reported in column 1 of Table 4. a, is not

identified, however, because it is collinear with the household fixed effect. Therefore,
we simulate a lower bound responsiveness of investment to increases in skill by setting

a, =—a, *100 so that at a forecast of normal monsoon rainfall (F=100), investment

does not change as forecast skill increases. This is a lower bound because, as we have
shown in Proposition 7, planting-stage investment would actually increase on average as
forecast skill improves (and there is underinvestment, so profits increase on average
with investment). For each realization of the IMD forecast we generate a prediction of
planting stage investment. The predicted planting stage investment is combined with
corresponding draws of total rainfall, monsoon rainfall and monsoon onset date and the
parameter estimates of equation (7) from column 2 in Table 6 to generate predicted
profits for each realization of rainfall and IMD forecast.?*

The simulation results are presented in Figure 3. The solid line represents the
mean of the distribution of profits across these rainfall/forecast realizations for the
typical Kinkheda farmer. As noted, we have imposed the assumption that on average
planting-stage investments remain constant as forecast skill increases. Therefore, the

upward slope of expected profits is due entirely to the better match of planting-stage

34 Estimates of the standard error of the forecast profits are generated from 1000 bootstrap
iterations. In each iteration, independent bootstrap samples are drawn from the REDS and
ICRISAT samples. Equation (5) is re-estimated from the REDS bootstrap sample by OLS, imposing
the constraints that &qF remain fixed at its consistent estimate from column 1 of Table 4 and

&q = _100&qF . Equation (7) is re-estimated from the ICRISAT bootstrap sample by IV as in
column 2 of Table 6. The constrained estimates are reported in Appendix Table 5. Predicted
profits for each skill level are generated for each of the same 10,000 simulated rainfall and
forecast realizations, as described in the preceding paragraph. The estimates of the standard
error of predicted profits for each rainfall realization is the standard deviation of the predicted
profits across the 1000 bootstrap samples.
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investment to later rainfall realizations enabled by improved forecast skill. Were
investment to increase with better forecast skill, as implied by proposition 7, average
profits would increase more steeply because (as we have shown in Figure 1) profits are
increasing in investment for the typical farmer over the entire rainfall distribution.

The upper dotted line is the standard deviation of profits across rainfall and
forecast realizations for each level of forecast skill. As can be seen, as forecast skill
increases, not only do average profits increase, but variability in profits due to rainfall
variability decreases. The lower dashed line is the standard deviation of predicted mean
profits across bootstrap samples, the statistical standard error of our profit estimate. As
can be seen, the variation in profits due to weather variability and forecast outcomes is
approximately twice that of the estimation error. As we noted in our discussion of
Figure 2, an estimate of profits conditional on a single realization of weather (and
forecast) has in fact far less precision than would be indicated by the standard error of
that estimate conditional on that weather realization.

How does increasing forecast skill compare with alternative approaches to
improving the risk management environment of farmers? Cole et al. (2013) examines
the effect on agricultural investment of providing grants of rainfall index insurance to
farmers in Andhra Pradesh. Farmers receiving the insurance grant evidently increased
their investment by approximately 8% relative to the control group.® We again use our
estimates of the parameter values of equation (7) from column 2 of Table 6 to estimate
the effect on profits (net of insurance payouts minus the actuarially fair value of the
insurance policy) of an 8% increase in investment for a typical farmer in one of these
villages, over 10,000 simulated rainfall draws. To carry out the simulation, we use the
characteristics of the average farmer in a village in Andhra Pradesh (the state in which

the insurance grants were provided), Aurepalle, and also use the parameters of the

35 Cole et al. (2013), Table 3. The estimate of the difference (0.082, se=0.087) is not significant at
conventional levels, and investments are not disaggregated by cultivation stage. We use it as the
best available estimate of the responsiveness of investment to formal insurance in India.
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Aurepalle rainfall distribution.®® Because the baseline forecast skill in Aurepalle is zero,
planting-stage investment is constant across the simulated rainfall draws.

The first column of Table 7 reports the baseline mean profit and standard
deviation of profits across the simulated rainfall realizations of the typical farmer at the
mean investment observed in Aurepalle with no rainfall index insurance, and a forecast
skill of 0. In column 2, we see that the 8% higher investment associated with access to
rainfall index insurance generates 3% higher profits on average (we assume that the
insurance is actuarially fair, so the net flow of insurance payouts minus the cost of
insurance is zero on average). The insurance is effective in reducing the variability of
profits net of insurance flows. In column 3, we report the results of simulating the effect
of increasing forecast skill in Aurepalle from 0 to 0.45 (the highest skill observed in the
ICRISAT villages), instead of providing insurance. This simulation uses the same
procedure described above for assessing forecast profitability, but applied to a farmer
with the mean characteristics of those in Aurepalle. We find that this increase in
forecast skill generates a (lower-bound) increase of 6% in average profits, double that
from the insurance contract, and that the standard deviation of profits is also smaller
than that obtained through index insurance. There is a catch, however, to this superior
performance: in 14% of the years, profits are lower than those realized in the absence of
a forecast due to an erroneous optimistic forecast.

8. Conclusion

The existence of agricultural risk implies that farmers would benefit from
improved signals of future rainfall realizations. Long-term forecasts of monsoon rainfall
have been issued by the Indian government for many years. We used newly-available

panel data on farmers in India to assess the ability of the rainfall forecasts to predict

36 Aurepalle is the ICRISAT village in Andhra Pradesh for which we have the longest observed
series of rainfall. In order to simulate insurance payouts, we used the daily rainfall recorded by
ICRISAT to calculate the cumulative rainfall during the 35 days after the monsoon start as defined
in the ICICI Lombard insurance policy and described in Cole et al. (2013). The actuarially-fair value
of the insurance provided in the experiment was Rs.350. To match that actuarially fair value
given the Aurepalle rainfall distribution, we set the "strike" to 0 and the "exit" to 8.
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rainfall, the responsiveness of farmers’ investments to the forecasts, and how the
returns to planting-stage investments vary by rainfall realizations. We show that the
Indian forecasts significantly affect farmer investment decisions, that the skill of the
forecasts varies substantially across areas of India, and that farmers respond more
strongly to the forecast where there is more forecast skill and not at all when there is no
skill. Our profit-function estimates, using an IV strategy in which the monsoon forecast
serves as the main instrument, indicate that Indian farmers on average under-invest.
We also provide the first quantitative evidence that investment returns vary
substantially by rainfall realizations. This sensitivity of returns to weather implies that an
estimate of the returns to an investment at only one point in time may be a poor
estimate of sub-optimal investment in risky environments.

We used our estimates to quantify how farmers’ responses to forecasts affect
both the level and variability in profits as the skill of forecasts increased. Increases in
forecast skill would both increase average profit levels and decrease profit variability.
We also showed that allowing farmers to better match their ex ante investments to ex
post rainfall outcomes by improving forecast skill may outperform rainfall insurance
contracts in terms of both the first and second moments of farm profits.

The possibility of improvements in forecasting weather realizations also has
important consequences for the provision and design of agricultural insurance
contracts. Given access to conventional weather index insurance products, which are
sold at a fixed price up to the start of the farming season, farmers will adjust their
demand for insurance in response to skilled forecasts, as has been suggested by
Robertson et al (2010). Contrary to conventional belief, then, weather index insurance
products can be subject to adverse selection, and the strength of that selection will
increase as forecast accuracy increases. There are two ways to overcome this adverse
selection: index insurance can be sold only before the release of skilled forecasts, or the

price of the insurance must vary depending upon the forecast.
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Even abstracting from the reality of basis risk, risk-averse farmers who make
investments influenced by forecasts cannot achieve complete insurance and productive
efficiency using weather index insurance alone. The responsiveness of inputs to
forecasts implies that the loss that a farmer faces upon the realization of bad weather
depends upon the prior forecast: the loss is greater if the forecast had been for good
weather then if it had been for bad weather. To achieve full insurance, the farmer would
require a larger payout in the event of a drought following a forecast of good weather
than in the event of a drought following a forecast of a drought. This is a general point:
if the production process is dynamic — decisions made over time contingent on the
revelation of information about the probability of the realization of a random shock —
then full insurance requires insurance that covers not just the final realization of that
shock, but the entire sequence of decision-relevant signals.

There is thus a missing market for forecast insurance. As we have shown, access
to skilled forecasts increases a farmer’s expected profits and expected utility. It does,
however, generate a new, particularly bad state of nature: a misleading forecast of good
weather. Here, the losses of a farmer are particularly high because of the high
investments that the erroneous forecast has induced. In the absence of conventional
weather index insurance, there would be demand, in particular, for insurance against
this specific event. An insurance product that paid out when bad weather followed a

forecast of good would be a valuable financial innovation.
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Table 1
Descriptive Statistics: ICRISAT Panel (2005-2011) and REDS Panel (1999 and 2006)

Variable Mean Sd

ICRISAT Panel 2005-2011

Kharif planting-stage investment (2005 rupees) 11949.7 13061.9
Annual profits (2005 rupees) 32700.8 610063.6
Total acres owned 8.68 7.44
Share irrigated acres 497 376
Share acreage with soil depth 1-3 feet 647 367
Share acreage with soil depth >3 feet 244 376
June-September rainfall (mm) 507.7 318.2
CV rainfall 614 .205
Southern peninsula forecast (% of normal June-September rain) 96.4 2.77
Forecast skill (correlation, forecast and June-September rain) 267

Number of villages 6

Number of farmers 477

REDS Panel 1999 and 2006

Kharif planting-stage investment (2005 rupees) 11315.9 97899.3
Total acres owned 5.27 7.33
Share irrigated acres .637 453
Share acreage with soil depth 1-3 feet 392 471
Share acreage with soil depth >3 feet .268 431
July-September rainfall (mm) 533.7 434.6
CV rainfall .269 125
Area-specific forecast (% of normal June-September rain) 98.1 2.70
Forecast skill (correlation, forecast and June-September rain) 132

Farmer cultivates rice 510 .500
Number of villages 212

Number of farmers 2219
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Table 2
Forecast Skill and Rainfall Characteristics, ICRISAT Villages 2005-2011, by Village

State Maharashtra Andhra Pradesh
Village Kalman Kanzara Kinkheda Shirapur  Aurepalle  Dokur
Mean July-September rainfall (mm) 415.8 582.5 571.1 360.9 586.4 525.4
CV July-September rainfall 753 750 736 741 488 213
Skill (forecast-rainfall correlation) 451 173 193 397 -.401 -.161

Map 1. Forecast Skill by Area (REDS 1999-20006)
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Table 3

Rainfall Forecasts and Log Planting-Stage Investments

(ICRISAT Panel, 2005-2011)

Maharasthra Andhra Pradesh Maharasthra Andhra Pradesh
Sample All Villages (high skill) (no skill) All Villages (high skill) (no skill)
Forecast rain () .0156 .0240 .00872 1.08 1.44 1.39
(1.91) (2.34) (0.67) (2.88) (3.08) (1.95)
Forecast rain squared () - - - -.00542 -.00717 -.00789
(2.86) (3.03) (2.16)
Rain (#1) .000052 .000067 .000071 .000058 .000051 .00019
(0.70) (0.79) 0.43) (0.79) 0.01) (1.09)
Forecast rain (#1) .0100 .0132 .0127 .0105 .0138 6.76
(1.14) (1.21) (0.88) (1.20) (1.27) (1.67)
Rain (#1) x soil depth, > 3 .00052 .00059 - .00048 .00061 -
(3.54) (3.49) (3.28) (3.65)
Rain (#1) x soil depth, 1-3 .00007 .00002 .00027 .00010 .00002 .00028
(0.65) (0.15) (1.31) (0.88) (0.14) (1.29)
F(8, ») all forecast (#) and forecast - - - 212 3.50 1.04
interaction variables=0 [p] [.031] [-0006] [-409]
dlog investment/ dforecast (7) at - - - .0269 .0474 .0253
mean values (2.09) (3.61) (0.96)
Includes forecast interacted with N N N Y Y Y
land characteristics
N 1603 1125 478 1603 1125 478

Absolute values of asymptotic ~ratios in parentheses. Contemporaneous forecasts interacted with land size, irrigation share, and four soil types in columns 4-6.
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Table 4
Household FE Estimates: Rainfall Forecasts, Forecast Skill and Log Planting-Stage Investments
(REDS Panel, 1999 and 2006)

Variable ) 2 3 4
Forecast rain -.0670 -122 -.159 =177
(1.60) (1.47) (1.93) (1.94)
Forecast rain x skill 168 482 453 .568
(2.53) (4.28) (4.601) (2.93)
Forecast rain*irrigated land share - .0839 .0375 .0378
(1.23) (0.64) (0.74)
Forecast rain*skill* irrigated land share - -.383 =211 -.218
(3.55) (2.81) (1.79)
Forecast rain x rice area - - - -.00977
(0.09)
Forecast rain x skill x rice area - - - .00541
(0.05)
Forecast rain x rainfall CV - - - .000074
(0.49)
Forecast rain x skill x CV - - - -.00049
(1.88)
Includes all forecast and forecast/skill interactions N N Y Y
N 4438 4438 4438 4438

Absolute values of asymptotic #ratios in parentheses clustered at the forecast area level. Skill is the correlation
between July-September rainfall and the relevant area-specific forecast using the seven-year monthly rainfall times-
series for each REDS village. The land characteristics include the four soil types, total land owned, irrigation share,
and the two soil depth variables.

Table 5
Rainfall Forecasts, Forecast Skill and Log Planting-Stage Investments Using the Forecast Skill Measure with Village-
Specific Intercepts, by Sample and Estimation Procedure
(REDS Panel, 1999 and 20006)

Sample Full Sample Districts with Skill Districts with Skill
Household FE,

Estimation Method Household FE Household FE Cotrected
Forecast rain -.0674 -.0412 -.293

(1.60) (1.80) (4.98)
Forecast rain x skill .00299 .00227 .0135

(3.27) (4.55) (4.99)
N 4438 1856 1856

Absolute values of asymptotic #ratios in parentheses clustered at the forecast area level in columns one and two.
Absolute values of bootstrapped £ratios clustered at the forecast area level in column three. The specification for the
district-specific forecast skill measure, §, based on the village-specific seven-year times seties of monthly rainfall, is: Ry,
= vy + B, + ¢, where j=district and k = village. The reliability index used to correct for measurement error bias,
based on the estimated district-specific standard errors of the forecast skill coefficients, is .688.
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Table 6
Household FE-IV Profit Function Estimates: The Returns to Planting-Stage Investments
(ICRISAT Panel, 2005-2011)

Variable/specification ) @) 3) @ 5) (6) @
Profits, 10%
Dependent variable Profits Profits Profits Profits Profits Discount Profits
Planting-stage investment -2.64 -4.062 -1.22 -1.18 298 -.0878 -9.08
(2.71) (2.00) (0.450 (0.43) (0.08) (0.03) (1.38)
Planting-stage investment x rainfall .00597 .0129 0127 .0017 .0140 0127 .00790
(3.71) (3.62) (2.86) (0.43) (2.69) (2.73) (1.21)
Planting-stage investment squared (x10~) - 2.14 .0823 6.81 -.588 -.126 16.9
(0.76) (0.25) (0.90) (0.14) (0.03) (1.20)
Planting-stage investment squared x - -1.16 -1.19 -.926 -1.33 -1.22 -1.11
rainfall (x107) (2.27) (2.14) (0.78) (2.16) (2.20) (1.20)
Total sick days adults - - - - - - 48.9
(0.06)
Y*(2) test: investment, investment x 14.4 - - - - - -
rainfall=0 [p] [.0008]
Y*(2) test: investment, investment squared, - 19.0 19.7 2.80 18.1 17.6 11.6
investment x rainfall, investment squared [-0008] [-0006] [.592] [0012] [.0015] [0210]
x rainfall=0 [p]
Village/year fixed effects N N Y Y Y Y Y
Villages All All All Andhra Maharashtra Maharashtra Mabharashtra
N 1667 1667 1667 515 1152 1152 569

Absolute values of asymptotic #ratios in parentheses. Specification also includes current-year annual and July-September rainfall, the monsoon onset date, the
monsoon end date, prior-year rainfall, current-year and prior-year rainfall squared, and current-year rainfall and prior-year rainfall interacted with total landholdings,
irrigated landholdings, soil depth, and four soil types. The instruments include the rainfall forecast, its square and the rainfall forecast interacted with the soil and
landholding variables, annual and July-September rainfall, and the monsoon start date.

37



Table 7
Simulation Results: Effects of Providing Rainfall Insurance Compared with Increasing Forecast Skill,
Holding Investment Fixed,
on Mean Rainfall and Rainfall Variability

Baseline: Rainfall insurance No insurance
No rainfall insurance No forecast skill Forecast skill = .45
Outcomes No forecast skill 8% investment increase No investment increase
Mean profits 15,780 16,248 16,796
Net profit variability (sd) 31,096 30,641 30,301
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Figure 1. Local-IV Estimates of the Returns (drn/dx) to Planting-Stage Investments,
by Rainfall Realization (mm) and Specification
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Figure 2
Relationship Between Crop-Year Farm Profitsand KharifPlanting Investments (x10-3),
by Realized Kharif Rainfall
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Figure 3. Mean Profits, Rainfall-Induced Profit Variability, and Estimation Error,
by Forecast Skill
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Appendix for Online Publication: Propositions and Appendix
Tables and Figures

Proposition 1: A risk-averse farmer chooses lower levels of planting-season inputs then would a profit-

maximizing farmer.

Suppose the forecast is B. A profit-maximizing farmer would chose x, so that:

of of
Al St 1l-g)—E=r.
(A1) a7 ( q)ax

0 0

The profit-maximizing farmer sets the expected marginal product of farm inputs equal to the rate of

return on financial assets.

In contrast, a risk-averse farmer uses fewer inputs and keeps more of his resources in the risk free net

savings. The first order conditions for the choice of x, and a, conditional on a forecast of B, are

1 ~A0 ( 1Al af 1Al af ]
(A2) —u'(c”)+ B qu'(c)) ==+ (1-qu'(c]) == [=0
X, 0X,
(A3) —u'(c®) + Br(qu'(cy) + (L—q)u'(c;)) =0.
Thus
(qu'eh) + A-qu'e)) = au'(e) Te v a-quiet) 2o
) ° ’ °7 %, 97 0x,

of
<gEu '(cl)a—fb+ (1-q)Eu'(ch—=~
OX %)

0 0

where Eu'(ct)=qu '(Cé) +(1-q)u '(C;) and the inequality follows from the convexity of u() and the
. afb 61:g . . . .-
assumption that 6_ < 8_ . Hence the optimal choice of xo for a risk-averse farmer, conditional on a
Xo Xo

forecast of B satisfies
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of of
(A5) r<q—2+@1-q)—>.

0X, 0
Comparing (A1) and (A5), we see that the optimal input levels of a risk-averse farmer are less than
profit-maximizing. We’ve shown this conditional on a forecast of the bad state, but an exactly analogous

argument holds given a forecast of the good state. The intuition is parallel to that of Sandmo (1971).

Proposition 2: Planting period inputs are larger and net savings smaller after a forecast of good rainfall

compared to a forecast of bad rainfall.

First order conditions (A2) and (A3) define optimal input use x, conditional on a forecast of Bad weather,
when forecast skill is g, which we write as xo(q/B). Similarly, optimal net savings is a(q/B). The implicit

function formula implies

[ Ar* (au(e)) + (L-a)u"(ch)) +u'(c,) | B {u () 2oyt )—}
dx,(q|B) _ -1 %

A6 =
(A6) dg det

<0.

of
—[ﬂr(qu"(cé>%+(1—q)u"(c;)67g]+u"(co)}[ﬂr(u'(cé)—u'(c;))]

det is the determinant of the Jacobian and is positive. The inequality follows because

u (Cb)g —u (C ) <0 (this follows from the concavity of u(.), f_(x,) > f,(x,)and

o, (%) _ &, 05)
0X, X,

for all xp). As the forecast skill improves, input use in the case of a forecast of poor

da(q|B)
o

weather declines. A similar comparative static shows that
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I A1 asz w1 afb ? )
qu (Cb)aTj+qu (cb)(a_XO]
1 afgz nfAl afg
+(1—q)u-((;g)a > +(1-q)u (cg)(_]
Xo 0X,
da(q|B) -1 |- i .
dq " det 'ﬂr[u'(cé)—u'(c;)] >0. Since
of
—[ﬂr(qu "(Cé)gf—b+(1—q)u"(c;)—g}u"(co)}
Xo 0X,
.ﬂ(u (Cb)a_xo - (Cg)axo]

prob(S=b|B)=prob(S=g|G)=q, (3) implies that

X ((1-a)|G)=x,(q]|B)
a(l-q)|G)=a(q|B).

Therefore
dx,(q/G)
—/ 750
(A7) g
and
d(a(q|G)
——2<0
(A8) dq

So as long as forecasts are informative (g>0.5), xo(q/G)>xo(q|B) and a(q|G)<a(q|B). Therefore, a forecast
of good weather (as opposed to bad) increases investment in inputs and reduces investment in the safe

asset.

Proposition 3: The increase in investment with a forecast of good weather (compared to a forecast of
bad weather) is larger as forecast skill improves.

d(%(alG) _d(x%@lB)_,
dq dq '

From (A6) and (A7),

Proposition 4: If farmers have decreasing absolute risk aversion, then despite the smoothly-operating
credit/savings market, input use is higher for farmers with higher initial assets Y. The response of input

use to forecasts varies by initial assets.
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(—u"()(Br*[ qu'(c) + L-a)u'(cy) |+u"(c”))

d,(alB) 1 . .
dy det +(u"(c°>)[/f{qu"(cé)87b+<1—q)u"(c;)aﬂw"(c")J
_ w0 of
=L [queeiyr+a-q) u"(c;)r]{qu"(cé)S—;Zﬂl—q)u"(cg)a—xiD
(A9) =) (e[ ) i[O
=gt | W )| r ox +(@1-q)u (cg)[r GXOD
—Bru"(c® of
e LG +(1—q)u"(c¢)[r—£ﬁ
_=pruteyute)( () . . o
LW -2 - r- 2

>0

where the first inequality is a consequence of I <—2 and decreasing absolute risk aversion (which

implies ‘u "(Cé)‘ > ‘u "(C;)‘ ). The second inequality is a consequence of (A5). An exactly parallel

argument shows that input use increases with Y in the context of a good forecast as well. The sign of

d(x(q]G) d(x(q[B)

oy av is not determined in general, because it depends on the rate of decline of

absolute risk aversion relative to the rate of decline of the marginal product of investment. However, in
general the response of input use to forecasts will vary with initial assets Y. Sandmo relies on similar

reasoning (1971, equation 14).

Proposition 5: Suppose complete irrigation eliminates rainfall risk. Then as the skill of the forecast
increases, the difference in the responsiveness of farmers with and without irrigation to a forecast of

good weather increases.

A farmer whose land is fully irrigated has a different production function, so output and marginal

I I
productivity does not depend on the realized state: fg (Xo) = fb (Xo) For such a farmer

Xo(q|G)=xo0(q|B), and the farmer does not respond at all to the forecast. As the skill of the forecast
increases, the difference in the responsiveness of farmers with and without irrigation to a forecast of

good weather increases (by Proposition 3 applied to the farmers without irrigation).
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Proposition 6: Farmers who live in riskier environments will invest less in inputs, respond differently to

forecasts, and respond differently to the skill of forecasts.

Consider a mean preserving spread in output. We model this by rewriting the production functions as

fy(X)= /f;(xo)+}/, f, (%) = /fvb(XO)—]/. If 7= % then an increase in 7 is an MPS. Conditional on

either a bad or a good forecast, investment in inputs declines as the riskiness of production increases. In

the case of a forecast of bad weather:
(A" [au"(ch) +@-aq)u(c;) ]+ u'(c,))

1 af 1 afg
'(—qU"(cb)—H(1—q)U"(cg)—]
dx,(B) -1 % %y

dy d
(A10) ! “® —[ﬂr [qu "(Ci)ﬂJr 1-q)u "(C;)%} +U "(Co)]
OX )

0

{(Br(-auc)+ @-au(c)))
- (7 ] PN ) N
- de®) ( qu (Cb)(ax0 r]+(1 qu (cg)(ax0 rD<O.

of, (%) <r<afg(xo) <0 as well.

The inequality follows because . Analogous reasoning shows

Iy
Farmers reallocate their investment from risky inputs to the safe asset as the riskiness of production
rises. It will be important in our empirical work to be able to distinguish the effects of forecast skill
(which increases investment) from the effects of riskiness, since the two may be inversely correlated
across space. The interaction effects of the riskiness of production and the responsiveness of
investment to a forecast of good weather will also in general be nonzero, although the sign of the
dx,(G) _ dx,(B)
dy dy

production on the response of investment to a change in forecast accuracy is generally nonzero, but of

interaction effect is ambiguous ( cannot be signed). Similarly, the effect of an MPS in

ambiguous sign.

Proposition 7: Expected profits and expected utility increase with forecast skill.

45



CEPIOME) 2= [, (x,(a1G)) ~ 1, (6(aI G) ]+, (a1 B~ T, (a1 B)]

dg
+dXo(q|G){q_afg(xo(Q|G))_r}L(l_q){&fb(xo(qu))_r}}
dq | 0%, OX,
, d%(alB) {q‘afb(xo(mB»_r}(l_q){afg(xo(q|B»_r}}
dq | X, OX,

>0

The first two terms sum to a positive because X (4| G) > X (4| B). These are the direct effect of improved

forecast skill on better matching input choices to the realized state; these terms would be the same for a
risk neutral farmer who simply maximizes profit. The second two terms are the effect of improved
forecast skill on reducing the risk faced by the farmer. They sum to a positive as well, because the
reduced risk permits a risk-averse farmer to increase investment, on average, reducing the gap in the
expected marginal product of investment in inputs and the return on the risk free asset summarized by
u'(c16) _ u'(c;B)

(A5). The second two terms sum to a positive because —= ——
u'(cy [G) u'(cy|B)

(since X,(0|G) >x,(q|B)

anda(q|B)>a(q|G)). Thisin turn (by (A4)) implies that

of G of B
(LOIOD o) AGAIG) K)o Fol6(aI5)
Xo 0%, 0%, 0%,

Now consider expected utility conditional on a forecast of good rainfall.
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= luc @lo) -ulcy)]

_u-<c°>.(dxoquql<3>+da<§q'G>J

S pr{au e, @10 + (- a6 (al 6)]
of G
+dx0(dq| )ﬂ[qu'(c;(qu)) s (%( ))+(1_q)u.(cé(q|G))6fb(xo(q|G))
q 0X, OX,

= Blu(ci(@]G))-u(c(alG)) |

_ui(e) .(dxo (dqQ| G, da‘gJ G)j
{dx‘) 18) , daal G)}ﬂr[qu (c(a]G) +1-aq)u'(c(alG)]
dq dq

= Blu(c;(alG) -u(c (gl G)) |-

The second equality follows from the analogue of (A4) for the case of a forecast of Good weather, and
the third equality follows from the analogue of (A3) for the case of a forecast of Good weather. Do the

same exercise for expected utility conditional on a forecast of Bad weather, and sum weighted by % to

find

at1) di—g‘)-hﬂ[u(cg(q|G»—u(cé<q|e»+(u(cé(q|B»—u(c;(q|8»)]>o

Expected utility rises because the gain in utility associated with the forecast being correct when the

forecast is for good weather is larger than the loss in utility associated with the forecast be correct when

the forecast is for bad weather (because a is higher and x, lower with B than with G).
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Appendix Map Al

India Meteorological Department
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Map A2. Rice-Growing Areas by District (REDS)  Map A3. Rainfall CV by District (REDS)
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Appendix Table Al
Savings Accounts of ICRISAT Households and Annual Interest Rates,
Weighted by Account Value

Account Interest Rate Mean Interest Rate SD Account Value (Rs)
Chit Funds 23.18 3.45 1,779,525
Co-operative Bank 5.97 1.33 1,297,245
LIC/PLI policies 8.14 217 3,117,557
National Bank 7.35 1.38 2,811,895
Others (GPF, etc.) 8.36 2.03 656,550

Post Office 8.40 2.33 492,600

Self Help Group 12.15 7.69 705,355
Total 10.44 6.49 10,878,727
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Appendix Table A2
Rainfall Forecasts, Profits and Planting-Stage Investments
(ICRISAT Panel, 2005-2011)

Estimation method

Household FE

Household FE-IV

Variable Profits (~1) Log planting-stage investments (7)
Mabharasthra Andhra Pradesh
Sample All Villages (high skill) (no skill)
Forecast rain (~1) -303490 - - -
(2.68)
Forecast rain squared (1) 1534.4 - - -
(3.97)
Forecast rain () 32159 572 1.37 -419
(0.40) (1.22) (2.87) (0.44)
Forecast rain squared (7) -163.3 -.0048 -.0068 .00036
(0.68) (2.46) (2.78) (0.07)
Profits (~1) x 10° - 722 106 6.76
(0.79) 0.27) (1.67)
Rain (#1) x soil depth, > 3 -18.7 .00052 .00067 -
(1.37) (3.25) (3.76)
Rain (#1) x soil depth, 1-3 34.0 .00015 .00051 .00033
(1.60) (2.08) (0.51) (2.52)
¥*(2) forecast () variables=0 0.30 7.65 9.63 2.10
1] [.739] [.022] [.008] [-350]
¥*(2) forecast (#1) 8.47 - - -
vatiables=0 [p] [-000]
v*(8) all forecast (3 - 13.5 15.6 5.48
interaction variables=0 [p] [.096] [.010] [-705]
dloginvestment/ dforecast (7) - 480 .688 -101
at mean values (2.49) (2.85) (0.22)
N 1399 1399 974 425

Absolute values of asymptotic £ratios in parentheses. Lagged profit specification also includes lagged
rainfall, lagged rainfall interacted with land size, irrigation share, and four soil types and the lagged and
contemporaneous forecasts interacted with land size, irrigation share, and four soil types. The investment
specification also includes the forecast interacted with land size, irrigation share, and four soil types.
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Appendix Table A3
Household FE-IV Estimates: The Effect of Rainfall Forecasts on Planting-Stage Investments including the Monsoon Start Date
(ICRISAT Panel, 2005-2011)

Maharasthra Andhra Pradesh
Sample All Villages (high skill) (no skill)
Forecast rain (9 .630 1.11 -.199
(1.27) (2.07) (0.20)
Forecast rain squared (9) -.0051 -.0054 -.00069
(2.39) (1.98) (0.14)
Profits (~1) x 10° .653 326 7.52
(0.67) (0.33) (1.87)
Rain (#1) x soil depth, > 3 .00052 .00068 -
(3.29) (3.80)
Rain (#1) x soil depth, 1-3 .00016 .00035 .00032
(2.16) (0.35) (2.40)
Monsoon start date (x107) -.122 448 -1.82
(0.34) (1.08) (2.40)
¥*(2) forecast () variables=0 [#] 7.36 6.13 1.91
[.025] [.047] [.384]
¥(8) all forecast () interaction variables=0 [f] 13.7 14.5 6.05
[.090] [.025] [.641]
dlog investment/ dforecast (7 at mean values .509 107.3 -19.0
(2.43) (2.07) (0.22)
N 1399 974 425

Absolute values of asymptotic #ratios in parentheses. Lagged profit specification also includes lagged rainfall, lagged rainfall interacted with land size, irrigation
share, and four soil types and the lagged and contemporaneous forecasts interacted with land size, irrigation share, and four soil types. The investment specification
also includes the forecast interacted with land size, irrigation share, and four soil types.
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Appendix Table A4
FE Estimates of the Effect of Total Number of Adult Sick Days on On-Farm Family Labor in the Kbarif Season
(ICRISAT Panel: 2005, 2006, 2010, 2011)

All Villages Maharasthra Villages
Total adult sick days -.288 -.281
(3.41) (3.25)
N 1156 835

Absolute values of £ratios in parentheses.
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Appendix Table A5
Unconstrained and Constrained Cross-Sectional Estimates:

Rainfall Forecasts, Forecast Skill and Log Planting-Stage Investments,
(REDS Panel, 1999 and 20006)

Variable Unconstrained Constrained®

Forecast rain .0908 -.0791
(0.09) (0.22)

Forecast x forecast skill 125 160
(4.00) (180.3)

Forecast skill -13.4 -16.8
(4.31)

N 4438 4438

“The constraint is forecast skill = -100*forecast*forecast skill estimated using household fixed effects and reported in
column 1 of Table 4.

Absolute values of asymptotic ratios in parentheses clustered at the forecast area level. Skill is the correlation
between July-September rainfall and the relevant area-specific forecast using the seven-year monthly rainfall times-
series for each REDS village. Specifications also include mean rainfall, the coefficient of variation of rainfall, whether
or not the village is in a rice-growing region, five soil characteristics, total land owned, share of owned land irrigated,
and all land characteristics interacted with the forecast.
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Appendix Figures

Distributions of Planting Stage Investments

Figure 1

Distribution of Planting-Stage I nvestments, ICRISAT Panel 2005-11

Figure 2
Distribution of Log Planting-Stage Investments, | CRISAT Panel 2005-2011
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