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Abstract

This paper investigates the role of social learning in the diffusion of a new agricultural

technology in Ghana. We use unique data on farmers’ communication patterns to define

each individual’s information neighborhood, the set of others from whom he might learn.

Our empirical strategy is to test whether farmers adjust their inputs to align with those of

their information neighbors who were surprisingly successful in previous periods. We present

evidence that farmers adopt surprisingly successful information neighbors’ practices, condi-

tional on many potentially confounding factors including common growing conditions, credit

arrangements, clan membership, and religion. The relationship of these input adjustments

to experience further supports their interpretation as resulting from social learning. In ad-
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dition, we apply our methods to input choices for another crop with known technology and

they correctly indicate an absence of social learning effects. JEL Codes: O12, D83, Q16.

1 Introduction

The transformation of technology is fundamental to the development process. For a new

technology to be adopted by an agent, particularly in agriculture, it must be adapted to the

circumstances faced by that agent. Its characteristics usually will not be transparent to the new

user (Evenson and Westphal (1995)). Consequently, an investment in learning about the new

technology is associated with its adoption. If there are multiple adopters of the new technology

in similar circumstances, as is often the case with an innovation in agriculture, then the process

of learning about the new technology may be social. New users of the technology may learn its

characteristics from each other.

The role of social learning in promoting growth and technology diffusion has been featured

in the endogenous growth literature (Romer (1986); Lucas (1988); Aghion and Howitt (1998);

Acemoglu (2007)). Social learning that generates knowledge spillovers is a central idea in the

large literature on urbanization and growth (e.g. Marshall (1890), Jacobs(1969), Porter(1990),

Glaeser et. al. (1992)). These interactions are also an integral part of current practice in agricul-

tural research and extension systems in developing countries. New technologies are introduced

either by farmers’ own experimentation or through formal sector intervention and the process of

social learning encourages their diffusion (Rogers (1995), Bindlish and Evenson (1997)). There

is a large body of empirical work looking at country and city-level evidence on the role of knowl-

edge spillovers and growth (e.g. Glaeser et. al. (1992), Rauch (1993), Barro (1994)). This

paper is an effort to contribute to the recent, small but growing literature that uses individual-

level data to measure the quantitative importance of learning from others. Important examples

of this work include Foster and Rosenzweig (1995), Bandiera and Rasul (2006), Bayer, Pintoff

and Pozen (2004), Munshi (2004), Duflo, Kremer and Robinson (2006) and Kremer and Miguel

(2007).1

1 In contrast, there is a long tradition of empirical studies by economists of the adoption of new technologies in

agriculture. Griliches (1957) is the seminal work. For reviews see Feder et al (1985) and Evenson and Westphal

(1995). This important literature, however, does not isolate the role of learning processes from other determinants
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In this paper we investigate learning about a new agricultural technology by farmers in the

Akwapim South district of Ghana. Over the last decade, an established system of maize and

cassava intercropping for sale to urban consumers has begun a transformation into intensive

production of pineapple for export to European markets (Obeng (1994)). This transformation

of the region’s farming system involves the adoption of a set of new technologies, in particular

the intensive use of fertilizer and other agricultural chemicals.

Measuring the extent of social learning is difficult for two major reasons. First, the set of

neighbors from whom an individual can learn is difficult to define. Second, even with a proper

definition of this set, distinguishing learning from other phenomena that may give rise to similar

observed outcomes is problematic. In the absence of learning, individuals may still act like their

neighbors as a result of interdependent preferences, technologies, or because they are subject to

related unobservable shocks.

Direct data on information interconnections is typically unavailable to economists.2 Conse-

quently, economic investigations of the process of social learning have typically made assumptions

that relate observed relationships between individuals - such as geographic proximity - to un-

observed flows of information. This set of assumptions is critical for the measurement of the

extent of social learning, but can rarely be tested because of data limitations.3 For example,

Foster and Rosenzweig (1995) provide tabulations indicating that ‘friends and neighbors’ are

an important source of information about fertilizer use, but must use village aggregates as the

relevant information set for social learning.

of adoption.
2Exceptions include Woittiez and Kapteyn (1998) and Kapteyn (2000) who use individuals’ responses to

questions about their ‘social environments’ to describe their reference groups. Romani (2003) uses information on

ethnicity and membership in cooperatives in Côte d’Ivoire to infer the probability of information flows. Another

exception is Bandiera and Rasul (2002), who have information on the number (though not the identities) of

people using a new technology known by particular farmers. Rauch and Casella (2001) is a very useful collection

of papers that use direct information on social interactions more generally.
3 In many investigations of learning in developing country agriculture, the reference group is taken to be all

farmers in the village (Foster and Rosenzweig (1995), Besley and Case (1994), Yamauchi (2002)). Munshi and

Myaux (1998) take exceptional care in the construction of reference groups for social learning by using external

evidence on communication barriers arising from religion. See Manski (1993) for a concise discussion of the

importance of reference group designations in identification of endogenous social effects.
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We have rich data that allows us to address the concerns of neighbor definition more directly.

Our approach draws on the classic work by Coleman et al (1957) which related adoption of new

antibiotics to the network of social interconnections between the doctors. We collected detailed

information on who individuals know and talk to about farming. Hence we follow Coleman et

al by defining information links between agents using responses to questions about which other

agents they turn to for information.4

Once neighborhoods are defined, the identification of learning is still a formidable problem.

The classic problem of omitted variables prevents us from inferring that learning effects must

be present simply from observations on, say, the diffusion process of a new technology. The

fact that a farmer is more likely to adopt a new technology soon after his neighbors have done

so might be a consequence of some unobserved variable that is spatially and serially correlated,

rather than learning. We believe that correlated unobservables are a general problem in the

literature on agrarian technology, and it is apparent that they are important in the sample

region (see sections 3.3 and 5.2). We have collected data to mitigate this problem. Our data

contains detailed geographic and soil information as well as information on credit and family

relationships, allowing us to control for otherwise confounding factors.

Our identification problem can be thought of as a special case of the general problem of

identification in social interactions models studied by Manski (1993, 1997), Brock and Durlauf

(1999), Moffitt (2001) and others. This literature is concerned with the problem of inferring

whether an individual’s behavior is influenced by the behavior or characteristics of those in his

neighborhood or reference group. Our strategy for identifying learning effects relies on using the

specific timing of plantings to identify opportunities for information transmission. The staggered

plantings in our data naturally provide a sequence of dates where new bits of information may be

revealed to each farmer. By conditioning upon measures of growing conditions, we can isolate

instances of new information regarding productivity being revealed to the farmer. We then

examine whether this new information regarding productivity is associated with innovations in

a farmer’s input use in a manner consistent with a simple set of assumptions about the nature

4Rogers (1995) and Birkhaeuser et al (1991) provide valuable surveys of research that describes and charac-

terizes the set of neighbors from whom agents learn about new innovations in a wide variety of settings. Van den

Bulte and Lilien (2001) argue that the social contagion effects found by Coleman et al vanish once marketing

effort is taken into account.
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of learning.5

We model farmers’ learning about the productivity of inputs. The two key farmer-chosen

inputs, fertilizer and labor, are used in essentially fixed, known proportions and farmers need

to learn about use of this composite input per pineapple plant. Each harvest opportunity gives

the farmer an observation on output for a given composite input, and thus reveals information

about the productivity of that input level. We focus on fertilizer usage as a measure of this

composite input since it is the most novel dimension of this new technology and because it is

better measured than labor.

Our primary method to test for social learning is to estimate how farmers’ input decisions

respond to the actions and outcomes of other farmers in their information network. We know

the inputs used and output harvested by each farmer, and thus can infer aspects of the informa-

tion conveyed by each ‘experiment’ with the new technology by each respondent. We use our

data on the spatial relationship between farms to condition on spatially-correlated but otherwise

unobserved factors that influence both profits and optimal input choices. We use our data on

information flow between farmers to trace the impact of the information revealed by each exper-

iment on the future input decisions of other farmers who are in the information neighborhood

of the cultivator who conducted the experiment.

We find strong effects of news about input productivity in the information neighborhood of

a farmer on his innovations in input use.6 Specifically, we find for a given farmer: (1) he is

more likely to change his fertilizer use after his information neighbors who use similar amounts

of fertilizer achieve lower than expected profits; (2) he increases (decreases) his use of fertilizer

after his information neighbors achieve unexpectedly high profits when using more (less) fertilizer

than he did; (3) his responsiveness to news about the productivity of fertilizer in his information

5Duflo, Kremer and Robinson (2006) use a randomized intervention in Western Kenya to implement the same

strategy. They gather data on social connections between farmers, and then provide information regarding the

profitability of fertilizer to a random subset of these farmers. This permits them to identify the importance

of learning from the experience of others in their environment. In Western Kenya, however, it turns out that

information, either from neighbors or from one’s own experience, plays a very limited role in decisions about

fertilizer use.
6We use the male pronoun to refer to farmers because the large majority of pineapple farmers in our data are

men.
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neighborhood is much greater if he has only recently begun cultivating pineapple; and (4) he

responds more to news about the productivity of fertilizer on plots cultivated by veteran farmers

and farmers with wealth similar to his. These conclusions hold when conditioning on the changes

in fertilizer use of farmers who are physically nearby and who therefore experience unobserved

changes in growing conditions that are highly correlated with his. In addition, they are robust

to a variety of different definitions of information flow between farmers, and conditional on the

fertilizer use of farmers with whom he has financial ties. Finally, we apply our methods to a

traditional maize-cassava mixture and they (correctly) indicate no evidence of learning about

this established technology.

2 A Learning Model

This section describes a simple model of learning about a new technology that we use to guide

our empirical work. We consider risk-neutral farmers, each with a single plot who are concerned

with maximizing current expected profits. At time period t farmer i chooses a discrete-valued

input xi,t. We mark time with the six-week intervals of our survey rounds. On this time scale,

pineapple output is realized 5 periods after inputs are applied via the production function:

yi,t+5 = wi,t (f(xi,t) + εi,t+5) . (1)

εi,t+5 is an expectation zero productivity shock that is IID across farmers and time and not

observed by either farmers or the econometrician. The variable wi,t is a positive, exogenous

growing conditions variable that influences the marginal product of xi,t and is correlated across

farmers and time.7 This is motivated by the fact that agricultural production is often affected

by spatially and serially correlated shocks to the marginal product of inputs (examples include

variation in soil moisture, weeds, or pests). We assume the wi,t are observable to farmers but

not the econometrician. The price of the input x is a constant which we normalize to 1.8 Profits

are therefore πi,t+5 = wi,t (f(x) + εi,t+5) − x. Farmers do not know the function f ; it is the

object of learning. The information set available to each farmer is that generated by all current

7The variable wi,t could include a forward looking component, e.g. a rain forecast.
8 In our study area, fertilizer prices and wages are common across farmers within villages and essentially

constant throughout the sample time span.
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and past growing conditions and observation of inputs and profits for all previous plantings

conducted by his information neighbors9, as well as his own previous plantings.

The farmer’s beliefs are conveniently summarized by his subjective expectations. We use the

notation fi,t(x) and Ei,t(πi,t+5) to refer to farmer i0s time t subjective expectations of f(x) and

of time t+ 5 profits, respectively. The farmer’s time t problem is to choose inputs to maximize

(subjective) expected profits. This is nothing more than choosing input level xi,t so that:

Ei,t(πi,t+5(xi,t)) = wi,tfi,t(xi,t)− xi,t ≥ wi,tfi,t(x̃)− x̃, all x̃. (2)

This simple model is illustrated in Figure 1 for a case where the input can take on three values:

zero (Z), low (L), and high (H). This figure plots expected profits as a function of growing

conditions w. Expected profit for any given input level x is a line with slope fi,t(x). As drawn,

the lines reflect a situation where beliefs are such that none of the three input levels is dominated.

For small w the zero input choice is optimal, for intermediate w the low level is optimal, and for

sufficiently large w the high level is best. The shaded upper envelope of these lines characterizes

optimal input choice as a function of w. Learning will consist of updating beliefs and subjective

expectations fi,t(·) in response to new pieces of information. As the farmer learns, the slopes of

the lines in Figure 1 change and of course this can influence farmer’s input choices for a given

realization of growing conditions.10

Farmers update their beliefs about f in response to observations of inputs, growing conditions

and outputs. Suppose that plot j of farmer j is observed by farmer i.11 This means that at

time t farmer i observes profit πj,t, the inputs used xj,t−5, and the relevant growing conditions

wj,t−5. This new information allows farmer i to calculate f(xj,t−5) + εj,t =
πj,t−xj,t−5

wj,t−5
and

this informs his beliefs about the productivity of input level xj,t−5, leading him to update his

previously held expectation (dated at some time tp prior to t): fi,tp(xj,t−5) to fi,t(xj,t−5). Note

that farmers know growing conditions, w, so these expectations reflect only uncertainty due to ε

and imperfect knowledge of f. Rather than focus on a specific mechanism or type of learning, we

9See Section 3.1 for operational definitions of information neighbors.
10Figure 1 is drawn for the production function (1). In a more general model in which yt+5 = F (wi,t, xi,t, εi,t+5)

the curves need not be linear. In this case there could be disjoint regions of w in which a given level of input

application is optimal.
11The analysis applies as well for farmer i learning from his own experience.
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consider the empirical implications of a set of three assumptions about the way in which farmers

learn that correspond to farmers’ descriptions of their own learning process.12 We state our

assumptions in terms of farmer i0s update ∆fi,t(xj,t−5) ≡ fi,t(xj,t−5) − fi,tp(xj,t−5) in response

to observing the event (πj,t,xj,t−5,wj,t−5):

A. ∆fi,t(xj,t−5) has the same sign as πj,t(xj,t−5)−Ei,tp(πj,t(xj,t−5)) and it increases without

bound as πj,t(xj,t−5) exceeds Ei,tp(πj,t(xj,t−5)).

B. We assume that ∆fi,t(x) attenuates as experience at input level x increases. An increase

in i0s experience reduces the absolute value of ∆fi,t(x) in response to a given piece of new

information (πj,t, xj,t−5, wj,t−5).

C. ∆fi,t(x) = 0 for all x other than xj,t−5. Learning is local, so that this new information

changes i0s beliefs only about the productivity of input level xj,t−5. Beliefs regarding other

input levels are unchanged.13

The counterpart of these assumptions in Figure 1 is that only one line will have its slope

changed in response to each new piece of information, this slope will rise (fall) if profit is higher

(lower) than expected, and for a given piece of new information the change in slope will become

less pronounced as farmer experience grows. So in Figure 1, if farmer i observes at time t+ 1

that farmer j using, say, fertilizer level L has achieved a higher profit than expected given j0s

growing conditions (at, say, point A), then i updates his beliefs about the productivity of L from

fi,t(L) to fi,t+1(L).

Assumptions A,B, and C have the following main empirical implications:

Implication 1: Farmers tend to adjust input use towards surprisingly successful input levels

and higher-than-expected profits at the currently utilized input level will make farmers less likely

12There are many specific models of learning consistent with these assumptions. In particular, they are con-

sistent with independent Bayesian learning about the elements of the support of x, or with standard models of

reinforcement learning (Kaelbling et al 1996; Feltovich 2000).
13The implications of our model do not hinge upon inputs being discrete. We take them as discrete for ease of

exposition. We could allow agents update only within one of a set of input ranges or only within a bandwidth

of observed input use via a local-average (kernel) regression. This would allow us to obtain identical implications

with continuous inputs, at the cost of complicating notation and our definition of local learning.
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to change from that level. When observed profit is higher than expected, then ∆fi,t(xj,t−5)

is positive. When ∆fi,t(xj,t−5) is positive, the set of w for which xj,t−5 is the optimal input

increases, hence this input level becomes more likely to be chosen. This is easy to see in

Figure 1, where a higher than expected output for a given input level will raise the slope of the

corresponding line, leaving the other lines unchanged. This increases the set of w for which this

given input level is optimal and hence chosen.

Implication 2: Farmers tend to adjust input use away from an input level that was less

profitable than expected. When observed profit is lower than expected, ∆fi,t(xj,t−5) is negative.

Negative ∆fi,t(xj,t−5) decreases the set of w for which xj,t−5 is the optimal input and so it is

less likely to be chosen. Again in Figure 1, one line will rotate down, decreasing the set of w

where its corresponding input is optimal, perhaps even rendering an input level dominated.

Implication 3: An observation of profit sufficiently above expectations will induce a farmer

to switch to that level of input use. If πj,t(xj,t−5) − Ei,tp(πj,t(xj,t−5)) is sufficiently large,

∆fi,t(xj,t−5) will be large enough to dominate expected profits under alternate input levels,

for any given w. Therefore, farmer i will switch from xi,tp to xj,t−5 in period t if i observes

an outcome of j0s choice of xj,t−5 that is sufficiently good. Defining ∆xi,t as xi,t − xi,tp , we

summarize this implication as

∆xi,t = 1{πj,t(xj,t−5)−Ei,tp(πj,t(xj,t−5)) > ci,t(xj,t−5)}(xj,t−5 − xi,tp) (3)

where 1{·} is an indicator function equal to one if its argument is true. The threshold value

ci,t(x) at any fertilizer level x depends upon growing conditions wi,t, farmer i’s beliefs prior to

this information revelation fi,t−1(·), and the characteristics of farmers i and j, particularly i0s

experience.

Implication 4: The probability of changing input levels in response to a given piece of

information is decreasing in a farmer’s experience. This is a direct implication of our assumption

that experience attenuates changes in beliefs induced by new information.

Implication 5: Correlations in growing conditions across space and time can look like social

learning to the econometrician who does not observe w. In this environment, growing conditions

wi,t are positively spatially and serially correlated. If there is any positive association in beliefs

across farmers, i.e. similar rankings of the productivity of different input levels, then positive
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correlations in wi,t will result in positive correlations in optimal input choices. In other words,

positive spatial and temporal correlations in wi,t mean that proximate (close in space and time)

farmers will have similar w values and thus if their beliefs about productivity are similar, they

will tend to choose similar input levels. This is true regardless of whether farmers learn about

input productivity.

Moreover, when plantings by different farmers are staggered in time, as in our application,

positive dynamic correlations between wi,t and wj,t+k for spatially close i, j can easily lead to

innovations in choices being positively correlated with lagged neighbors’ choices, even if there is

no learning at all. To see this, consider the example in Figure 1 with input levels zero, low, and

high and suppose farmers know the technology (so fi,t(.) ≡ f(.) and there is no learning). Take

farmers i and j who are physical neighbors, who are likely to experience similar w at similar

times, and who thus are likely to choose similar input levels. Suppose that i and j both plant

at period t and that they choose xi,t = xj,t = L. Suppose, as is common in our setting, that

farmer j plants another plot in, say, period t+3, and that farmer i plants another plot in t+8.

At time t + 3, let j experience a positive growing conditions shock (wj,t+3 > wj,t) sufficiently

large to induce him to change to xj,t+3 = H. Positive spatial and serial dependence in w is

consistent with this shock to j making it more likely that i, also, will experience a sufficiently

large innovation in w so that at t+8 he will change to xi,t+8 = H. High values of w will of course

tend to result in higher than usual values of yields and profits. The econometrician observes

farmer j choosing H and receiving higher than usual yields/profits, followed by his neighbor i

changing inputs to H. This is of course also a sequence of events that would also be predicted if

there were no change in growing conditions, but farmer i learned about the profitability of input

level H from observing farmer j get a good outcome after choosing H at time t + 3. Thus it

will be very important for us to disentangle the effects of learning from the reactions to growing

conditions.

Our model does not capture some aspects of learning about a new technology that are im-

portant in other applications. These aspects are largely absent or concerns about them strongly

mitigated by the specific circumstances of our context. First, there are multiple inputs to farm-

ing pineapple. The main inputs, fertilizer and labor, are used in essentially fixed proportions so

a single, composite input reflects reality well. Measurements of fertilizer provide our measure of
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this composite input, since it is better measured than labor inputs. Second, we abstract from

strategic behavior on the part of farmers. Strategic considerations in information transmission

are less salient in this environment than in others in the literature. Our surveyed farmers are

operating in a competitive environment in both output and input markets. The fertilizer choices

of any farmer will have no impact on the prices of pineapple, nor on the costs of farm inputs.

Third, we model farmers’ information flow from neighbors as being generated just from obser-

vation of their inputs and profit outcomes. This implicitly limits the extent of communication

between farmers and the ability/willingness of a farmer to model others’ behavior. For example,

it rules out learning via conversations about third parties’ activities and farmers making infer-

ences about a third party’s outcomes from an information neighbor’s action. Ruling out such

aspects of learning is well motivated in the villages we study as it is considered inappropriate

gossip for a pair of farmers to discuss other farmers’ activities. Furthermore, farmers have little

to no knowledge of others’ information connections. As a consequence, second-order inference

from the input choices of other farmers has little power. Fourth, we model farmers as focused

on short-run profits, so there is no scope for experimentation. Our main implications can be

shown to survive the introduction of forward looking farmers who take into account the value

of experimentation for future profits (see Conley and Udry 2005, Appendix 1) so this is not a

major concern. Furthermore, surveyed farmers’ descriptions of the reasoning behind their input

choices indicates that their overwhelmingly dominant concerns are returns from current rather

than future plantings.

Our choice to model learning as local is also specific to our setting. It contrasts with some

models of learning in other contexts in which information about the production function can

be deduced regardless of the portion of the production function that is used (Prescott 1972;

Jovanovic and Nyarko 1996; Foster and Rosenzweig 1995). The empirical implications of our

local learning model are different from those of a model of global learning. In the latter class

of models, there can be no general implication that farmers adjust inputs towards (away from)

surprisingly successful (unsuccessful) levels of input use. For us, local learning is motivated by

both surveyed farmers’ own descriptions of what they learned from past experiences with using

fertilizer and a substantial descriptive literature from Africa (Richards 1985; Amanor 1994).

This evidence strongly suggests that an appropriate model should have the feature that farmers
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must use or observe inputs in a given range in order to learn about the corresponding part of

the production function.

Basic Empirical Approach

We will investigate these five implications by estimating models, using the full sample, pre-

dicting the occurrence of a change in input use, ∆x 6= 0, and for the change in inputs itself,

∆x. Here, we preview our baseline models and heuristically describe the key regressors whose

construction is detailed in the following Section. We estimate a logistic model of the probability

that inputs change, ∆x 6= 0. The regressors of interest reflect whether events observed by the

farmer in between his planting opportunities had profits above or below expectations, which

we refer to as good or bad news, respectively. Let tp refer to the farmer’s previous planting

opportunity. We use the notation s(good, x = xi,tp) for the share of time t total observed events

in farmer i0s information neighborhood (from the beginning of the survey until time t) that are

good news events at input level xi,tp and occur between periods tp and t. Analogous notation

is used for the shares of other combinations of good/bad news and alternative inputs. These

regressors are expressed as a share of time t total observed events so that they attenuate with

increases in experience. They equal zero when farmer i does not observe any planting at a given

input level between tp and t. We estimate

Pr {∆xi,t 6= 0} = Λ

⎡⎢⎢⎢⎣
α1s(good, x = xi,tp) + α2s(good, x 6= xi,tp)

+α3s(bad, x = xi,tp) + α4s(bad, x 6= xi,tp)

+α5(∆ growing conditions)+ (experience and other controls)
0α6

⎤⎥⎥⎥⎦ (4)

where Λ(·) denotes the logistic function. The empirical counterpart of Implications 1 and 2 is

that α1, α4 are negative and α2, α3 are positive.

We investigate Implications 3 and 4 using a regression model for changes in x with the

following form:

∆xi,t = β1Mi,t + β2(∆ growing conditions)+ (experience and other controls)
0β3 + vi,t. (5)

The regressor of interest M is an empirical analog of the right side of equation (3). M is

constructed so that if an inexperienced farmer i observes good news using inputs well above

(below) his previous input level, xi,tp , this index will be positive (negative) and large. If the

farmer observes good news close to xi,tp or in the absence of good news, M will be near/at
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zero. Motivated by Implication 4, M is constructed so that its absolute magnitude is inversely

proportional to farmer i0s experience. Conditional on growing conditions, this index should be

a good predictor of variation in ∆x induced by observations of good news and its coefficient

should be positive. Implication 2 is not informative about the direction or magnitude of changes

in response to bad news; hence measures of bad news events do not appear in (5).

Our goal is to identify possible learning interactions via what Moffitt (2001) describes as

a type of policy intervention which “changes the fundamentals for a subset of the population

in a group in an attempt to influence the outcomes of the others in the group.” Our ‘inter-

vention’ is the realization of surprising (given growing conditions) profits by another farmer

in one’s information network, which is reflected in M . Implication 5 focuses our attention on

the challenge of disentangling the effects of social learning from the confounding influences of

growing conditions. We do so by using the high spatial and serial correlation in wi,t to construct

a variable that permits us to control for changes in growing conditions (see Section 3.3).

The component of our information measure, M, that identifies social learning is that orthog-

onal to our measures of changes in growing conditions and other farmer-level characteristics.

Our identification assumption is that this component is uncorrelated with unobserved determi-

nants of changes in input use. Evidence in support of this assumption is provided in section 4

and is the focus of the specification test in Section 5.2.

There are at least two important concerns about this empirical strategy. First, individuals

clearly choose their information neighbors. This presents the possibility that neighborhood

sorting or selection effects could influence our results. As we discuss in Section 5.1, details of

our empirical results permit us to rule out the most plausible models of endogenous sorting

that might lead to spurious results with respect to learning. Section 5.1 also presents results

using an arguably exogenous definition of information neighborhoods based upon a prediction

of information links between farmers given the deeper social relationships between individuals.

Second, those who farm pineapple are a selected group of farmers. Thus our estimates

of β1may not be representative of potential learning effects that non-adopters might face if or

when they adopt pineapple. If there is heterogeneity in the extent to which farmers learn from

others, it is possible that those who adopt first are those most responsive to information from

others. If so, our sample of adopters would be selected to be responsive and β1 would overstate
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the importance of social learning in the overall population. As we only have information on

learning for adopters, we cannot estimate learning effects for the non-adopting subpopulation

and this second concern must remain a caveat. However, in Section 4, we investigate the extent

of heterogeneity in ability to learn within our sampled subpopulation of adopters.

3 Data

This section describes our data and the construction of variables. First, we discuss the basic

features of our estimation sample. We then discuss the measures we use to define information

neighborhoods. We then describe the data on farmers’ inputs and outputs, our methods to con-

trol for growing conditions, and our methods for approximating farmers’ subjective expectations

and innovations in information.

Our main data source is a two-year survey (1996-1998) of 180 households, drawn from a

population of 550 households in three villages in southern Ghana.14 Our study region is in the

center of a recently growing area of intensive pineapple cultivation. Two enumerators lived in

or near each village and interviewed respondents in 15 rounds at intervals of approximately six

weeks. In addition to survey-based information, all plots were mapped using global positioning

system equipment. This procedure yields accurate measures of plot size and location, data that

is seldom available for developing countries.

Our main estimation sample is constructed as follows. We begin with information on pineap-

ple being grown on 406 plots by 132 farmers. Of these plots, 288 were planted during our survey.

Plot input data is missing on 3 of these plots, leaving 285. 77 of these were planted too late

in our survey for fertilizer application to be completed before the end of fieldwork, leaving 208

plantings. We are missing data for some rounds on 8 of these, leaving 200 plantings. 87 of

these are the first planting in our survey by particular farmers, leaving 113 observed changes in

fertilizer use. GIS information is missing on 6 of these plots, leaving information on 107 changes

in fertilizer use by 47 farmers. Figure 2 depicts the pineapple plots for which we have GIS

14These three villages are a subset of four total villages in which surveys were administered. Pineapple farming

was not present in the fourth village. A detailed description of survey procedures, copies of the survey instruments

and the data archive can be found at http://www.econ.yale.edu/~cru2/ghanadata.html.
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and input/output information. Farmers identification numbers are the horizontal coordinates

and the vertical coordinate for each point is the round in which the planting began. The first

planting by each farmer is marked with an open circle; second and later plantings are denoted

by closed circles. The 47 farmers who contribute observations on input changes are arranged at

the left to make reading the graph easier.15

Figure 3 shows the pattern of adoption of pineapple in our sample villages: from less than

10% in 1990, pineapple spread very rapidly until more than 46% of farmers were cultivating

pineapple in 1997. We utilize two measures of experience, Experiencei,t is the total number of

pineapple plants planted by farmer i from the start of our survey until time t.We also utilize data

on years of farming pineapple to define a binary indicator, dividing pineapple farmers into two

groups: veteran farmers who adopted pineapple before 1994, and novice farmers who adopted

in 1994 or after.

Table 1 reports summary statistics for our data. We report statistics by novice/veteran

status as well. Wealth is defined as the value of the non-land assets held by the farmer at the

start of the survey period. Veteran farmers are far wealthier. In addition, pineapple farmers as

a class are much wealthier than non-pineapple farmers in the area (not shown in table). Those

who do not cultivate pineapple have an average non-land wealth of only .4 million cedis versus

the average of 2.3 million cedis for pineapple farmers.16 Pineapple farmers’ wealth reduces

the potential importance of credit constraints for fertilizer decisions (mean fertilizer use on an

average-sized farm is .08 million cedis, a small fraction of average pineapple farmer non-land

wealth). The clan indicator variables denote membership in a particular abusua, or matrilineal

clan. The church indicator denotes membership in the most popular church. Members of

that church and of one of the matrilineages are overrepresented among experienced pineapple

farmers. We collected information on the soil chemistry (pH and organic matter content) of

approximately 80% of the plots. Approximately one-third of farmers report that they have

received advice from an agricultural extension agent (from the Ghanaian Ministry of Food and

Agriculture) in the past; we do not know when such advice was received.

15There are 81 farmers who cultivate plots for which we have GIS and input/output information. 11 live in

village 1, 32 in village 2 and 38 in village 3. Of the 47 farmers who provide data on input changes, 8 live in village

1, 14 in village 2, and 25 in village 3.
16Cedis are small units. The exchange rate during the sample period ranged from 1700-2300 cedis/US dollar.
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3.1 Communication and Knowledge

One of our main innovations is that we are able to use the survey data to define information

neighborhoods. We base our measure of information availability on direct data about conversa-

tions between individuals.

Each respondent was questioned about a random sample (without replacement) of seven

other individuals from our own sample in the same village. The samples of individuals produced

responses to the question: “Have you ever gone to ___ for advice about your farm?”. In this

case, we say an information link exists between farmers i and j if either i responded ‘yes’ to

this question about j or if j responded ‘yes’ to this question about i. We use responses to this

question as our benchmark definition of information neighbors because during the field research

it appeared reliably-answered and it is transparently related to the learning process under study.

Farmers are of course included in their own information neighborhoods. 17 Not counting farmers

themselves, the median number of information neighbors is 2.

There are several systematic patterns in information links. Here we briefly summarize esti-

mates of a model predicting our benchmark neighborhood connections given exogenous farmer

characteristics that is fully reported in Appendix 1. Spatial proximity is correlated with the

presence of information links but it is not their sole determinant. Information links occur over

long as well as short distances. These longer-distance information links are essential to our abil-

ity to distinguish the impact of information from that of spatially correlated shocks in growing

conditions. Cross-gender links are rare and links are positively correlated with common clan

membership and similarity in age. Individuals with different levels of wealth are more likely to

be linked, reflecting the strong vertical patron-client ties that exist in these villages. There is

no evidence that religion influences information links. Pineapple farmers — especially veteran

pineapple farmers — are more likely to be in each others’ information neighborhood than would

be expected by chance. Table 2 provides a summary of our baseline information link distribution

by experience. Over 20% of veteran pineapple farmers (within each village) have approached

each other for advice about farming, while only 6% of non-pineapple farmers are in each others’

17 There are relatively few plantings with timing that allows individuals to learn from their past plantings so

we do not distinguish between such ‘learning by doing’ events and observations in our benchmark specification.

We do however, examine ‘learning by doing’ events seperately in Section 5.
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information neighborhood. A similar pattern is observed using our other information metrics.

It may be the case that these information connections were important determinants of the adop-

tion process; however, we have too few instances of new adoption during our sample period to

address this question formally. In section 5, we discuss the possibility that farmers vary in their

ability to learn from others, and in particular that the pineapple farmers who comprise our

sample are selected along that dimension.

In section 5, we check the robustness of our main results to varying definitions of the infor-

mation neighborhood by using three alternative measures of information flow. Two of these

measures are based on lists of interactions between respondents during the course of the survey

(discussing farming, buying or selling goods, hiring labor, exchanging gifts, etc.). Our third

definition of the information neighborhood is based on predicted links between individuals using

the model discussed in Appendix 1. Information neighborhoods based on predicted neighbors are

less subject to concerns that observed links are endogenously formed in anticipation of obtaining

input advice. All of these measures are fully described in Appendix 1.

Finally, we note the surprising fact that pineapple exporters, though they might have an

incentive to provide input information, do not appear to be an information source. There is no

evidence that farmers receive advice on fertilizer application from the exporters to whom they

sell their harvest (nor is there any contract farming). Farmers were asked a series of open-ended

questions about sources of information regarding farming, including fertilizer application. In

no instance did any farmer mention pineapple exporters as a source of information or advice.18

3.2 Inputs and Outputs

We focus on farmers’ decisions about the intensity of input use in pineapple production. The two

key inputs are fertilizer and labor, which are used in essentially fixed proportions but with varying

intensities per pineapple plant. There is agronomic evidence that pineapple yields are very

responsive to fertilizer (Abutiate (1991); Purseglove (1972)). In informal interviews, individuals

in the sampled villages expressed substantial uncertainty and conflicting views regarding the

18This pattern has changed since the survey. Suri (2008) describes the recent emergence of contract farming

among pineapple farmers in this area.
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optimal intensity of fertilizer and associated labor use.19

Our empirical measure of input intensity is based on fertilizer usage since it is better measured

than labor. During the period from six weeks to six months after planting, pineapples are

extremely sensitive to nutrient availability (Bartholomew and Kadzimin (1977);Soler (1992)).

Our input measure is the amount of fertilizer per plant applied during this period. This

corresponds to one to four survey rounds after planting. We adopt the convention of indexing

plantings by the round when input application is complete, four rounds after the pineapple was

planted. Thus our input measure for plot i, xi,t, is the per-plant amount of fertilizer applied

over the reference period: t− 3 through t. We observe many plantings of pineapple during each

of our survey rounds because pineapple production in southern Ghana is not strongly seasonal.

Per-plant fertilizer application is uniform within plots. The plots in our sample are close to

the minimal viable scale for export farmers. The median plot size in our data is approximately

.5 hectares. The novice pineapple farmers who exhibit the most evidence of learning have a

median plot size of .25 hectares; exporters are reluctant to harvest and export crops from plots

any smaller (only 5 plantings in our data were as small as .125 ha.). Plots have to be harvested

on a single day for efficient export of the fresh fruit by air to Europe. It is essential that the

fruits mature simultaneously, which requires common treatment across plants within the plot.

As a consequence, there is no scope for experimentation with different levels of fertilizer within

plots.

Pineapple takes approximately 5 of our survey rounds to mature after the application of

fertilizer is completed. Profit for plot i with fertilizer application completed at time t, denoted

πi,t+5(xi,t), is obtained by deducting from harvest revenue the value of all inputs, including

family labor valued at the relevant gender-specific wage. In addition to plantings with harvest

revenue data, we have some plantings that were unharvested at the end of the survey period

but far enough along to enable an accurate forecast of their value at harvest. Our measure

of πi,t+5(xi,t) for these plantings (about a third of the total observed) is constructed using the

19While there are official recommendations on fertlizer use from the extension service of the Ghanaian Ministry

of Agriculture (which we interpret as the yield-maximizing level of fertilizer use on test plots), these far exceed

the levels of application in the sampled villages. The recommendation is 400 kg of fertilizer per hectare which is

more than 10 times the mean fertilizer use observed in our sample. Only 4 of 208 plantings we observed exceeded

the recommended level of fertilizer application.
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farmer’s forecast of revenue at harvest. Respondents had no trouble providing such forecasts,

perhaps because pre-harvest crop sales are routine for traditional crops like cassava.

3.3 Growing Conditions

We expect shocks to growing conditions to be positively correlated across both space and time.

Our concern about spatial correlation is motivated by the observation in these villages that

growing conditions vary spatially on the scale of hundreds of meters. Soil types and topo-

graphical features are highly correlated across neighboring plots, but vary over the village as

a whole. Therefore, common village-level weather shocks can have varying impacts across the

village. Moreover, rainfall realizations can be different on opposite sides of a single village.

Finally, weeds spread in a broadly continuous manner across space, and soil moisture and pest

and disease environments are often much more similar on nearby plots than on more distant

plots within villages. Positive serial correlation in growing conditions is also to be expected

across the six-week long periods. At this time scale, there is substantial correlation in soil

moisture, weeds, and pest conditions on a given plot over multiple periods. Thus we anticipate

substantial correlation in growing conditions for physically close plots planted at different but

near points in time, due to the overlap in much of the environmental conditions they experience.

As detailed in Section 2, it is essential for us to control for changes in growing conditions in our

empirical work.

Our control for the change in growing conditions faced by farmer i between his current and

previous plantings is based upon the difference between the observed input choices of other

farmers with plots that are close to i’s current planting and the earlier input choice of farmer

i. The assumption underpinning this is that strong positive spatial and temporal correlations

in growing conditions will induce farmers to make highly correlated input choices. Therefore,

input choices for plots proximate to plot i at time t will contain a strong signal regarding the

growing conditions at this place and time. We define xclosei,t as the (plant-weighted) average of

fertilizer input on plots sufficiently close to plot i and time t.20 Our regressor for the change in

20 ‘Sufficiently close’ means within 1 km and at time t to t − 3. The median number of physically proximate

plots is 12, the maximum is 25. See Figure 4 for a scale map of plot centers within one of the villages. Our results

are not very sensitive to the radii chosen here, qualitatively identical results obtain with a range of 500 to 1500
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growing conditions for plot i at time t since i0s previous planting at time tp is then defined as:

Γi,t = xclosei,t − xi,tp (6)

Γi,t should be a good predictor of changes in input choice by farmer i, ∆xi,t ≡ xi,t−xi,tp that are

due to growing conditions. This regressor can be interpreted as a gap between a target input use

of those close to (i, t) and the farmer’s previous input choice. We use this construction rather

than a measure of changes in geographic neighbors’ input choices because of the unbalanced

nature of our panel. Many farmers have single plantings and those with multiple plantings are

irregularly staggered in time. Single-planting farmers remain useful in constructing our target

term. We also employ a regressor Γ̃i,t to reflect the level of absolute discrepancies between xi,tp

and inputs used on plots close to (i, t). Γ̃i,t is a plant-weighted average (across plots close to i, t)

of the absolute difference between inputs used on the plot and xi,tp .

In addition, we construct a regressor analogous to Γi,t with the neighborhood definition based

on financial rather than geographic neighborhoods. Two farmers belong to each others’ finan-

cial neighborhood if they lend to, borrow from, or exchange gifts or hold assets in common with

each other at any point during the two year survey period. This regressor is motivated by alter-

nate explanations that would suggest that significant β1 estimates might be caused by omitted

variable bias because information neighbors share common access to credit arrangements.

3.4 Innovations to Information

In this Section we discuss our measures of farmers’ subjective expectations and our operational

definition of innovations in information regarding input productivity. A key object in this mea-

sure is Ei,tp(πj,t+5(xj,t)), which is farmer i’s subjective expectation, at the time of his previous

planting opportunity tp, of profitability for his information neighbor farmer j, who used input

level xj,t at t. Farmer i0s information includes knowledge of farmer j0s inputs xj,t and growing

conditions wj,t. We use observed inputs and profits to approximate Ei,tp(πj,t+5(xj,t)), relying

on physical and temporal proximity to effectively condition upon wj,t without observing it.21

meters and one to four time periods. See Appendix 2.
21We note that while this method allows us to overcome the absence of data on w, it has the disadvantage of

forcing our estimate of expected profitability to be based on information relatively near the time t to t+5 interval.
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Our approximation, Êi,tp(πj,t+5(xj,t)), is the median profits of all plots whose observed input

choices are close to xj,t and whose time and location are close to plot j and dated period t or

shortly before so that growing conditions are approximately the same as wj,t.
22 Armed with

these approximations to expected profits, we construct indicator variables for whether profits

πj,t+5 exceeded or were below i’s expectations, which we refer to as good or bad news events,

respectively.

Our characterization of the information that i receives between his planting opportunities

depends on the number of plantings that he observes and their precise timing relative to his

planting times. Let farmer i have plantings at time tp and later at time tc (‘c’ for ‘current’). In

the modal case (half of all observations) i gets information from only a single planting, say by

farmer j, and the profits of j’s planting are revealed between tc and tp, as depicted in Figure 5.

Recall from equation (3) that the change in farmer i0s input use will be

xi,tc − xi,tp =
£
1{πj,t+5(xj,t)−Ei,tp(πj,t+5(xj,t)) > ci,tc(xj,t)}

¤
(xj,t − xi,tp). (3’)

That is, the input change will be non-zero if j0s profit exceeds expectations (it is good news)

and does so by an amount that also exceeds the threshold ci,tc(xj,t). This threshold is implicitly

a function of the characteristics of farmers i and j including of course farmer i0s beliefs about

all input levels and his experience, and of the growing conditions wi,tc , which are not observed

by us.

It is necessary for profits to exceed expectations for the bracketed term in (3’) to equal one

but of course this is not sufficient. Good news about an input level may not exceed the threshold

ci,tc(xj,t). In particular, this threshold will increase with farmer i
0s experience as it attenuates

updates in expectations. We construct a rough empirical analogue to the right-hand side of (3’)

using our good news indicator and a term in farmer i0s experience, Experiencei,tc , as follows:

Mi,tc ≡
1

Experiencei,tc
[1{πj,t+5(xj,t)− Êi,tp(πj,t+5(xj,t)) > 0}](xj,t − xi,tp). (7)

Farmers in our model and, we presume, in real life have relatively more past information. However, with our data

it appears impossible to incorporate more past information in these estimated expectations.
22We use a variable bandwith to define ‘sufficiently close’. For the large majority it means within 1 km of

location j and from time t to t− 3. About 1/4 of xj,t are on relatively isolated plots and for these we expand the

geographic neigborhood to 3 kilometers. In both cases our baseline definition of proximate inputs are those within

coarse categories of x = 0 and x > 0. The robustness of results to these assumptions is examined in Appendix 2.
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If there is learning of the type we have proposed, Mi,tc should be positively correlated with

changes in inputs conditional on changes in growing conditions. If planting j, t results in good

news about an input level xj,t which is much higher than farmer i0s previously used level (xi,tp),

Mi,tc is large and positive; if instead it contains good news about a level xj,t that is much

lower than xi,tp , it is large and negative; and it will be near zero if good news concerns input

levels near xi,tp(or zero in the absence of good news). Mi,tc will of course be nonzero for some

observations when in fact the innovation in information is not sufficiently large to induce a

change in fertilizer use by farmer i. Nevertheless, Mi,tc should be a good predictor of both the

direction and magnitude of changes in inputs. We refer toMit as our “index of good news input

levels.”

Equation (7) defines Mi,tc for the modal case. Slight variants of this definition are used

when i observes multiple harvests and/or there is different timing. When the farmer observes

more than one harvest between tc and tp, our baseline definition of Mi,tc uses a plant-weighted

average of (7) across all plots j, t farmer i observed between times tp and tc.
23 When a planting

that i observes is harvested shortly after tc, as is the case for farmer k in Figure 5, profits

πj,t+5 are not fully observed when i0s input decisions are finalized at tc, but i has an excellent

signal of the value of impending harvest. Therefore, we are motivated to make use of these

observations. Our baseline measure Mi,tc is formed using (7) and discounted to reflect the

reduced information compared to fully-revealed harvests. The tedious details of these weighting

schemes are described in Appendix 1, and the robustness of our results to changes in weighting

is examined in Appendix 2.

4 Empirical Results

We begin by presenting some simple cross tabulations to illustrate our basic empirical strat-

egy. Table 3 provides a cross-tabulation of changes in fertilizer use and the two measures of

information flow with the most robust estimated effects. The first row in each cell provides a

simple count of the number of transitions in each category. The most populous category is one

maintaining zero fertilizer use, while transitions from positive use to zero use are more common

23 It turns out in our data there are no multiple plantings with good news observations disagreeing about the

direction of movement. Thus we never have to average Ms of opposite sign.
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than transitions in the opposite direction. The second row in each cell is the within-cell average

ofMit, our index of good news input levels. A farmer whose previous input level was above that

of his ‘good news’ neighbors input level will have a negative value for M, whereas those who

observe good news at a higher input level than they had previously used will have M positive.

Cell-average M is strongly predictive of changes in fertilizer inputs: it is strongly negative for

those farmers who reduced fertilizer use to zero, positive for those who increased fertilizer use

from zero, and near zero for those who did not change categories. The third row in the table

provides a measure of the amount of bad news information about previously-chosen input levels,

the average (within-cell) share of new information that falls in this category. This bad news

regarding past choices is clearly correlated with switching input categories.

The correlations evident in Table 3 are consistent with the implications of our model of

social learning. However, as we have noted above (Implication 5) they could also be generated

by spatially- and serially-correlated growing conditions. Therefore, we move beyond cross tab-

ulations and estimate regressions predicting the occurrence of a change in input use and the

change in inputs; specifications which include regressors controlling for this confounding source

of variation in input changes.

We now recall the base regression specifications that we use to examine the relationships

between changes in fertilizer use and information shocks that were introduced in Section 2. Al-

ternative specifications and a discussion of robustness are considered in Section 5 and Appendix

2. We let the characteristics of i and his plot that we use for conditioning be contained in a

vector zi,t. These characteristics include the farmer’s wealth, soil characteristics, and indicators

for religion, clan, village, round of the planting and the novice farmer indicator.

We first estimate a logistic model of the probability of a change in x:

Pr {∆xi,t 6= 0} = Λ

⎡⎢⎢⎢⎣
α1s(good, x = xi,tp) + α2s(good, x 6= xi,tp)

+α3s(bad, x = xi,tp) + α4s(bad, x 6= xi,tp)

+α5Γ̃i,t + z0i,tα6

⎤⎥⎥⎥⎦ (4’)

The first four terms reflect the share of new information to the farmer in good/bad news and

both input categories, as described in Section 3.4. Recall that s(good, x = xi,p) is the share of

plants on plots associated with good news and with inputs equal to the farmer’s previous choice,

with the other three s terms defined likewise. Our model implies α1 and α4 are negative and
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α2 and α3 are positive. Γ̃i,t, is our control for growing conditions defined in Section 3.3. When

the absolute discrepancy between farmer i0s growing conditions wi,tp is very different from the

growing conditions nearby (i, t), Γ̃i,t will tend to be large. Therefore it should be correlated with

changes induced by changes in growing conditions and α5 is anticipated to be positive.

Our baseline regression predicting changes in fertilizer use is:

∆xi,t = β1Mi,t + β2Γi,t + z0i,tβ3 + vi,t. (5’)

Γi,t defined in (6) is our crucial control for movements in xi,t induced by correlated growing

conditions. As in (4’), zi,t includes wealth, soil characteristics, and indicators for religion, clan,

village, round of the planting and novice indicator. In addition, it includes the financial analog

to Γi,t with the neighborhood definition based on financial rather than geographic neighbor-

hoods. Finally, the error term vi,t is permitted to be conditionally heteroskedastic and spatially

correlated across plots as a general function of their physical distance using the spatial GMM

approach of Conley (1999).

Recall from section 2 that our key identification assumption is that conditional on our mea-

sure of changes in growing conditions (Γit), our measures of information shocks are uncorrelated

with unobserved determinants of changes in input use. We cannot test this assumption di-

rectly. However, it is true that observed determinants of input changes are uncorrelated with

this component of our information measures. Conditional on changes in growing conditions, our

measures of information shocks are uncorrelated with any of the characteristics of farmers (ex-

perience, wealth, matrilineage, religion, land characteristics) that might influence input choice.

Thus we argue it is plausible that conditional on our measure of changes in growing conditions

(and our other covariates), surprisingly high profits achieved by a given farmer’s information

neighbors influence his decision to change his input level only through that information link: a

significant, positive coefficient β1 is evidence of social learning.

Logit Results

Table 4 presents the coefficient and spatial standard error estimates from equation (4’).24

We show results for three descriptors of a change in inputs which vary with respect to their
24The standard errors in all our specifications use limiting results for cross section estimation with spatial de-

pendence characterized by physical distance between the centroids of each farmer’s set of plots. Serial dependence

is allowed for only by use of time (round) dummies. Specifically, spatial standard errors are calculated using
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sensitivity to small changes in input use.

The dependent variable in column A is an indicator equal to one if the farmer changed

his fertilizer use from zero in his previous planting to a positive value at t, or vice versa. We

see that the direction of the influence of our information and experience variables upon the

predicted probability of changing is as implied by our model. Observations of bad news at

the farmer’s previous input level strongly increase the predicted probability that he will change

input levels. The estimated coefficient is positive, significantly different from zero and large.

A one standard deviation increase (.12) in a farmer’s observation of bad news at that farmer’s

previous level of fertilizer use is associated with an increase in the probability of changing of

59 percentage points, calculated at the median probability of changing fertilizer use (which is

13%). Similarly, observations of bad news at alternative levels of fertilizer use strongly decrease

the predicted probability of changing. A one standard deviation increase (.12) in the share

of bad news at alternative fertilizer levels is associated with a reduction in the probability of

changing fertilizer use of 8 percentage points (off of the same base probability of 13%). The

point estimate of the effect of good news at alternative levels of fertilizer use on the probability of

changing is positive, and that of the effect of good news at the previous level of use is negative, as

anticipated, but these coefficients are relatively small (compared to those for bad news) and these

estimates’ precision is too low to statistically distinguish them from zero. As would be expected

in virtually any model of learning, novice farmers are much more likely to change input levels. In

addition, the estimated probability of changing fertilizer levels is significantly and very strongly

increasing in the average absolute deviation of farmer i0s lagged inputs from his geographic

neighbors, providing evidence of the importance of positively serially- and spatially-correlated

the estimator in Conley (1999) with a weighting function that is the product of one kernel in each dimension

(North-South, East-West). In each dimension, the kernel starts at one and decreases linearly until it is zero at a

distance of 1.5 km and remains at zero for larger distances. This estimator is analogous to a Bartlett (1950) or

Newey-West (1987) time series covariance estimator and allows general correlation patterns for distances shorter

than the cutoff. Note that plantings by the same farmer are allowed to be arbitrarilly correlated as they are all

distance zero from each other.

The inferences reported below are robust to cutoff distances between 1 km and 2 km. This is largely due to

the fact that there is little spatial correlation in our regression errors because we are intentionally conditioning

upon indices involving geographic neighbors’ actions that provide a good signal of spatially correlated growing

conditions.
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unobserved shocks to the productivity of fertilizer.

In column B, the dependent variable is an indicator that the absolute value of the change

in fertilizer use is larger than 1 cedi per plant Mean fertilizer use is 2 cedis per plant, and the

25th percentile of changes in fertilizer use for those farmers whose fertilizer use changed is 1 cedi

per plant. Hence, this column focuses on relatively large changes in fertilizer use. The results

are qualitatively similar to those in column A, with the main exception that the positive point

estimate of the effect of good news at alternative levels of input use is now negative and very

imprecisely measured.

In column C the dependent variable is a indicator variable equal to one whenever the change

in input use is non-zero. Obviously, the median probability of a non-zero change is higher in

this case: it is now 53%. The pattern of statistical significance of the estimates remains similar

to those of the previous specifications. As in the other columns, bad news at the farmer’s

lagged fertilizer use, bad news at alternative levels of fertilizer use, the absolute deviation of

the farmer’s fertilizer use from that of his geographic neighbors, and his experience are all

quantitatively important determinants of the likelihood of changing fertilizer use.

Finally, all three specifications include an indicator for whether the respondent has ever

received advice from the local extension agent. We do not know when any such conversation

occurred. In column C, the estimate indicates that those who have received advice from an

extension agent are significantly less likely to adjust their fertilizer use.

Regression Results

Table 5, column A presents the results of estimating equation (5’). The coefficient on

the index of good news input levels in the farmer’s information neighborhood is positive and

statistically significant, as implied by our model. A one standard-deviation increase inM (about

4) is associated with an increase in fertilizer use of approximately 4 cedis per plant, which is

greater than the median level of fertilizer use per plant of those farmers who use fertilizer.

Round indicator variables are included, but not reported. None of them is individually

significant, nor are they jointly significantly different from zero. There is no evidence that

changes in input use are significantly related to inputs used by financial neighbors. In this as in

the following columns, changes in fertilizer use are strongly in the direction of the use by one’s

geographic neighbors.
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In column B, we examine relationship between experience and a farmer’s responsiveness

to information on the profitability of fertilizer. The coefficients on M for veteran and novice

farmers are statistically different from each other at the 3% level. There is no evidence that

veteran pineapple farmers respond at all to good news about alternative levels of fertilizer use.

For novice farmers, in contrast, a one standard-deviation increase in M is associated with an

increase in fertilizer use of approximately 4 cedis per plant. We raised the possibility in section

3.2 that farmers might be heterogeneous in their ability to learn from others, and in particular

that lower ability farmers adopt pineapple more slowly (or not at all) and react less to information

from their neighbors. If this is the case, then our use of a sample of current pineapple farmers

overstates the responsiveness of farmers in general to information from neighbors. The results

in Column B provide some evidence on the importance of this kind of selection. If there is

selection such that later adopters of pineapple are less responsive to news, then this selection is

sufficiently weak that recent adopters are still very responsive to new information.

Columns C-F present the results of an investigation of the influence of the source of infor-

mation on farmer i0s reactions. In alternate specifications, we use variants of M defined on

partitions of farmer i0s information neighborhoods based on i0s information neighbors’ expe-

rience, farm size, relative wealth and relative soil type. Our novice/veteran indicators are as

described above. We define large farms as those with plantings of at least 60,000 total pineap-

ple plants over our sample period (27 % of farmers have large farms).25 Finally, we define a

classification of wealth as rich/poor with rich as those whose non-land wealth at the start of the

survey is greater than the mean non-land wealth (30% of farmers are rich by this definition).

Column C defines M separately for novice and veteran farmers in i0s information neigh-

borhood. The coefficient on M using veteran farmers’ results is large and significant and that

corresponding to M comprised of novice farmers’ information is not. Column D presents a par-

tition depending on whether i0s information neighbor is in i0s wealth category (both rich or both

poor). Wealth-partitionedM is an important and significant predictor for same category neigh-

bors but not for different category neighbors. For each of the pairs of M partition coefficients in

columns C and D, their difference is statistically significant with a p−value under 2%. Column

E presents analogous estimates with a partition of M depending upon the size of the farms in

25Median and mean numbers of plants planted by farmers in our sample are 22,000 and 41,000, respectively.
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i0s information neighborhood. Both coefficient estimates are large, positive, and statistically

significant. Point estimates suggest that the responsiveness of input use to news from large

farmers may be stronger than it is to similar news from small farmers. However, these estimates

are not statistically different from each other. Finally, Column F presents estimates with M

defined using a partition based on whether i0s neighbor has the same soil type as i (sandy or

clay). These estimates provide no significant evidence that news from others with the same soil

type matters more to a farmer. In summary, novice farmers appear to be the ones reacting to

good news and they tend to react to information revealed by neighbors who are veterans and

who have similar wealth.26

5 Robustness Checks and Extensions

5.1 Learning-by-Doing, Alternative Information Neighborhoods, Endogenous

Sorting

There are 19 cultivators in our data who have multiple plantings sufficiently far apart in time for

the fruit on the earlier planting to be growing before fertilizer is applied on the later planting.

These farmers present the opportunity to identify learning-by-doing alongside the social learning

that is the key focus of the paper. Column A of Table 6 presents regression results using with a

partition ofM using only an individual’s past history and using only other farmers’ information.

In column A, we see that there is no important or statistically significant difference between the

impact of good news on one’s own plot and that of good news on a neighbor’s plot.

In columns B−D, we examine whether our finding that M predicts innovations in fertilizer

is robust to changes in the definition of an information link. Full definitions of each of these

alternatives are provided in Appendix 1. In column B, j is considered to be in i0s information

neighborhood if j is named by i when asked a series of open-ended questions about who taught

them to farm and from whom they have received farming advice (or vice versa). In column

C, we use the broader definition of an information link if either i or j is listed anywhere in

the other’s roster of interactions with other sample members. In column D we define informa-

26Of course an important caveat to this summary is that our small sample size constrains us to examine these

partitions one variable at a time rather than jointly.
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tion neighborhoods based on the predicted probabilities for going to another farmer for advice

(corresponding to the estimates in Table A1).

Regardless of the precise definition of the information neighborhood, the coefficient on M

is statistically significant and large for novice farmers (the standard deviation of M is approxi-

mately 3.5 for the two roster of contacts neighborhoods, and about 1 for the “Predicted Advice”

neighborhood). In each case we find that when i is a novice, good news experiments in i0s

information neighborhood tend to be followed by i changing his fertilizer use in the direction

of those experiments, conditional on our growing conditions control, village and round effects,

and i0s wealth, clan and church membership. In contrast, there is evidence of responsiveness

to information by veteran pineapple farmers only for one metric: predicted ask-for-advice.

The robustness of our main results to the use of predicted neighborhoods provides some

assurance that they are not driven by sorting/selection effects. It is also reassuring that, across

alternate definitions, our strong partial correlations of M with changes in fertilizer are driven

as much by farmers moving down in response to good news at lower levels of fertilizer use as

by upward movement in response to good news at higher fertilizer levels. Endogeneity due to

positive, associative sorting along a characteristic correlated with fertilizer use (e.g. unobserved

wealth) could produce a tendency for good news to be associated with either high or low fertilizer

use but we were unable to think of a scenario where it would induce both. For example, assume

high fertilizer levels are more productive than low levels, and assume a positive correlation

between unobserved wealth and the amount of fertilizer used. In such a scenario, positive

sorting would produce high fertilizer farmers with neighbors prone to good news events at high

levels of fertilizer but not farmers lowering their fertilizer being prone to receipt of good news

from their low-fertilizer neighbors.

We are also confident our results are not driven by reverse-causality sorting. For example,

suppose farmers first decided whether to increase or decrease their fertilizer use and then sought

out the friendship/advice of surprisingly successful farmers who tended to dogmatically use their

chosen amount. Such a scenario is unlikely in our setting since our data on information connec-

tions were collected at the beginning of a 2 year survey. It is implausible that these farmers

premeditated to the extent that they planned fertilizer choices one to two years in advance

and chose their contacts accordingly. Moreover, the results using the predicted information
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neighborhoods could not be generated by this type of scenario.

5.2 Learning about Optimal Labor Use in Pineapple and in Established

Crops

There should be no learning about optimal inputs in the maize-cassava cultivation that occurs

in our study villages. A standard maize-cassava intercrop pattern has been the foundation of the

economy here since the local decline of cocoa cultivation in the 1930s. The characteristics of the

maize-cassava production function are well-known to farmers in these villages. This provides a

‘placebo’ environment in which to test our methodology. The only non-seed variable input into

maize-cassava production is labor; no chemical inputs are used on any maize-cassava plot in

these villages (Goldstein and Udry, forthcoming).

In this section we estimate a model of learning about optimal labor use in maize-cassava

cultivation. To verify that our results regarding learning about labor use is not an artifact

of a peculiar aspect of our data on labor inputs, we also estimate a model of learning about

optimal labor use on pineapple farms. Since labor and fertilizer are used in approximately fixed

proportions in pineapple cultivation, we will see the same patterns associated with learning

regarding labor that we found with fertilizer.

We estimate a regression of changes in labor inputs for pineapple plots and for maize-cassava

plots with a specification analogous to (5’):

∆xlabori,t = δ1M
labor
i,t + δ2Γ

labor
i,t + z0i,tδ3 + ui,t. (8)

Where xlabor is the labor input per plant for pineapples and per hectare for maize-cassava. M labor
i,t

and Γlabori,t are constructed exactly as above for this labor input.27 We expect a positive δ1 for

pineapple plots if pineapple farmers are learning from their neighbors about the productivity of

labor. A nonzero δ1 for maize-cassava cannot be attributed to learning, because this technology

is well-established.

We estimate (8) for the same sample of pineapple plots examined above. Labor inputs are

measured over the crucial period early in the life cycle of the pineapple during which fertilizer
27Labor inputs include both the value of hired labor and that provided by the farmer’s household. The labor

input range was divided into two categories (above and below median) for determining whether profits were

unusually high given inputs.

30



inputs also occur. All farmers change their labor inputs across plantings, so there is no need to

estimate an analog of the logit (4’). M labor is defined using the benchmark (asked for advice)

information neighborhood. Column A of Table 7 presents the results of estimating (8). We

condition on the average deviation of i0s lagged labor use from the lagged labor used by his

geographic neighbors, Γlabor, and its analog for his financial neighbors.

For pineapple farmers, good news experiments in i0s information neighborhood tend to be

followed by i changing his labor use in the direction of those experiments’ labor, conditional

on geographic and financial neighbors’ lagged labor use, plot characteristics, village and round

effects, and i0s wealth, clan and church membership. The coefficient is also large: a one standard

deviation increase in M labor (which is 348) is associated with an increase in labor use of approx-

imately 682 cedis per plant, which is 37 per cent of the median labor use per plant on pineapple

plots (which is 1, 845). Pineapple farmers are learning about the productivity of inputs in the

cultivation of pineapple from the experiences of their information neighbors. The data on labor

show the same pattern we saw with fertilizer.28

In contrast, in column B, we see that there is no evidence that maize/cassava farmers

adjust labor inputs to information from the cultivation of their information neighbors.29 The

coefficient of the learning index M labor is virtually zero (at the point estimate, a one standard

deviation increase in M labor is associated with an increase in labor use of 34 thousand cedis

per hectare, while the mean labor use is 466 thousand cedis, and its standard deviation is 567

thousand). M labor has no significant predictive power for innovations in labor use in maize-

cassava production, just as we expect given the familiarity of this farming system in the study

region.

For both pineapple and maize-cassava, we find that there is a strong geographic correlation

28Note again that because labor and fertilizer move together in approximately fixed proportions (subject to the

additional measurement error in labor), so this is not independent evidence of learning about inputs on pineapple

farms.
29There are two differences in specification between the pineapple and maize-cassava regressions: first, in

contrast to pineapple, the maize-cassava intercrop system is seasonal. Hence we compare inputs across successive

seasons and replace the round indicators in A with season indictors in B. Second, the maize-cassava mixture is

grown in all four of our survey villages, while pineapple is grown in only three villages, hence there is an additional

village indicator for maize-cassava.
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in innovations in labor use. There are important spatially- and serially-correlated shocks to the

productivity of inputs. This underscores the value of direct data on communication for defining

information neighborhoods. In the more typical case in which we had data only on geographic

proximity, it would be tempting to rely on this to proxy for information links. The consequences

of this are presented in column C. We construct a new variable, analogous to M labor but with

information links replaced with an indicator of geographic proximity. We see in column C

that maize-cassava farmers adjust labor inputs in the direction of successful ‘experiments’ in

their geographic neighborhood. The coefficient is large (a one standard deviation increase in

the index of experiments in the geographic neighborhood is associated with an increased labor

input of 153 thousand cedis/ha., compared to mean labor input of 466 thousand cedis/ha.) and

statistically significant. This result has nothing to do with learning; it is induced entirely by the

strong correlations in growing conditions. However, without our direct data on communication

we might incorrectly infer the existence of social learning about labor productivity in this well-

established farming system.

6 Conclusion

This paper presents evidence that social learning is important in the diffusion of knowledge

regarding pineapple cultivation in Ghana. We take advantage of data that combines agronomic

and conventional economic information with details regarding relationships between farmers to

address the challenge of identifying learning effects in an economy undergoing rapid technological

change. We find that farmers are more likely to change input levels upon the receipt of bad news

about the profitability of their previous level of input use, and less likely to change when they

observe bad news about the profitability of alternative levels of inputs. Farmers tend to increase

(decrease) input use when an information neighbor achieves higher than expected profits when

using more (less) inputs than they previously used. This holds when controlling for correlations

in growing conditions, for common credit shocks using a notion of financial neighborhoods, and

across several information metrics. Support for the interpretation of our results as indicating

learning is provided by the fact that it is novice farmers who are most responsive to news in

their information neighborhoods. Additional support is provided by our finding no evidence of
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learning when our methodology is applied to a known maize-cassava technology.

Further evidence of learning is provided by changes in profits that correspond to input

changes that appear to be mistakes and those that appear to be correct, subject to a conjecture

regarding the optimal level of input use. Learning implies that farmers respond to both signal

and noise. So, particularly in the early stages of learning, we expect to see novice farmers

make mistakes by switching to what is truly a suboptimal input level after seeing it perform

surprisingly well in a small number of experiments. We have a strong belief that optimal fertilizer

use for pineapple in Ghana is much higher than the levels we observe in our sample; certainly it is

greater than zero.30 Thus we believe that many of the movements from positive to zero fertilizer

use are mistakes. About a quarter of the farmers moved towards our conjectured optimal input

levels in response to good news about high levels of fertilizer use. On average, these farmers

have the highest growth of profit in our sample with average profit growth of 122 cedis per

plant. We also observe approximately the same number of farmers who make (we conjecture)

mistakes by reducing their level of fertilizer input in response to good news about low levels of

fertilizer. They achieve substantially lower average profit growth at 62 cedis per plant. Though

such mistakes provide evidence in favor of learning, they inherently undermine the ability of our

data to provide us with good estimates of the value of learning via estimating profits associated

with optimal inputs. The span of our data is simply too short for most farmers to have learned

optimal input choices.

We have presented evidence that social learning plays a role in the cultivation decisions of

these farmers. Information, therefore, has value in these villages, as do the network connections

through which that information flows. This raises the possibility that farmers consider the

consequences for the availability of information when forming the connections that underlie

their information neighborhoods. If so, measurement of the extent of social learning is not

sufficient for adequate evaluation of policy regarding the diffusion of technology. It is necessary,

in addition, to understand the endogenous process of information network formation, making

this a very important topic for future research. For example, consider the impact of a subsidy

offered to one farmer in a village that induces him to use an optimal large amount of fertilizer

30This belief is based mainly on follow-up visits to these villages several years subsequent to the survey period

and the observation that virtually all pineapple farmers now use positive amounts of fertilizer.
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and (with high probability) get high profits. The speed with which this information spreads,

and hence the value of the subsidy, depends upon the choices of the subsidized farmer and

others in the village to make and maintain information linkages. These choices may depend

upon the value of the information to each farmer and upon the costs of information links, which

may depend upon a rich array of characteristics of the farmers and the social structure of the

village. In some contexts, differing religions may be an effective barrier to communication. In

others, gender, wealth or family ties may be the most salient determinants of the shape of the

information network.
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Appendix 1: Construction of Alternate Information Neighborhoods and
the Good/Bad News Indices

In this Appendix we provide details concerning the information neighborhoods mentioned

in section 3.1 and the construction of our index of good news in those cases in which farmer i

might be deciding on his fertilizer input before the outcome on farmer j0s plot is fully revealed

by his harvest.

Two of our alternate indicators for the existence of an information link between two farmers

are based on a listing of all the individuals named by each respondent in a number of different

contexts. This data includes people named in response to questions designed to record all

‘significant’ conversations about farming between individuals, and people who were hired by,

borrowed from, lent or sold output to, or exchanged gifts, transacted land or jointly held assets

with the respondent.31 We construct two metrics from this information, first defining an

information link to exist between two farmers if either reports learning about farming from the

other. Because important information might be transmitted during quite casual conversation,

we also define a broader information neighborhood which defines a link to exist if either farmer

lists the other anywhere in his or her roster of contacts.

Both our baseline “ask for advice” metric and these “roster of contacts”-based measures

have potential drawbacks. The “ask for advice” measure is based on a random sample of other

farmers, and so yields estimates of the information neighborhood of a farmer that are smaller

than his actual information neighborhood. The roster of contacts measures include some pairs

who probably do not discuss farming activities, and depends upon the respondents’ subjective

understanding of ‘significant conversations about farming.’ In addition, there is some concern

that observed information links might be endogenously formed in anticipation of receiving input

advice (see Bala and Goyal 2000 or Falk and Kosfeld 2003). Therefore, we also construct a

predicted information neighborhood based on estimates reported in Table A1 of the probability

of a link (based on the question “Have you ever gone to ___ for advice about your farm?” ) given

pair characteristics. There is evidence of spatial correlation in link patterns as the marginal

31Significant conversations include, for example, discussions of techniques for using agricultural chemicals, seeds,

dealing with agricultural problems, or crop choice.
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effect of proximity is to increase link probability, but distance is not the sole determinant of

links. Individuals are more likely to have information links if they are of the same gender, the

same clan, and similar ages. Individuals with different levels of wealth are more likely to be

linked, reflecting the strong vertical patron-client ties that exist in these villages. There is no

evidence that religion influences information links.32 We construct the predicted probability

that farmer j is in i0s information neighborhood from the parameter estimates in Table A1, and

Mpredicted
i,tc

is constructed as a weighted average of (7) across all plots j, t that farmer i0s village

between times tp and tc, with weights equal to this predicted probability (times the number of

plants on j0s plot).

Turn now to the timing of information revelation. In about half of our observations, farmer

i observes farmer k, whose profits πk,t+5 are not fully observed when farmer i0s input decisions

are finalized at tc, as illustrated in Figure 5. In this case, farmer i may have an excellent signal

about a t+5 harvest at time t+4 and is likely to have some signal about a t+5 harvest as early

as t+1. Therefore, we are motivated to make use of these observations. Our simplest treatment

is to construct Mi,tc as in (7) separately for groups of observations with the same lag between

t+5 and tc. Letting k = t+5− tc refer to this lag, we constructMi,tc(k) for groups of k ≤ 1 and

k = 2, 3, or 4 and examine the robustness of our conclusions to using such a set of Ms. These

results are presented in column A of Table A2 and are discussed in Appendix 2. However, to

conserve degrees of freedom in our baseline specification by defining our Mi,tc regressor to be a

linear combination of elements of this set withMi,tc(1) getting a weight of one,Mi,tc(2) a weight

of .75, and so on down to Mi,tc(4) with a weight of .25.
33

32For the sake of discussion of the quantiative importance of the determinants of link probability, take as

a base pair one with the mean values of wealth difference, age difference, and distance (2.9, 10.9, and 1.25

respectively) with the same gender and soil but different clans, religions, and where neither party holds an office.

The point estimate of the link probability for this base pair is 22%. This point estimate would drop to 14% if

one of the parties held some office and increase to 31% if instead they were from the same clan. A reduction in

estimated probabilities to around 15% would accompany an approximate doubling of the base pair’s distance or

age difference, individually. Likewise, an approximate doubling of the wealth difference would result in an increase

to 31%. If the pair is not of the same gender, the predicted probability of one asking the other for advice drops

dramatically to 5%.
33When we have both multiple harvests observed by farmer i and some of these harvests are at times after tc

we use a weighted average for baseline Mi,t that has this same pattern of weights based upon lag between t+ 5
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Appendix 2: Robustness to Assumptions on Construction of Mit

In Appendix Table 2, we examine some of the assumptions we have made about the timing

of learning, the categories of fertilizer used in constructing our proxy for subjective expectations,

the size of the geographic neighborhood, and conditioning on soil characteristics. In each case

we look at the impact of the specification change for our regression of ∆x on M interacted with

our experience indicator.

In column A, we examine the assumptions regarding the timing of information flows from

neighbors’ pineapple plots. We adopt a more flexible specification which permits the respon-

siveness of i’s fertilizer use to vary depending upon the lag between his planting and the planting

of his information neighbor’s plot. There is virtually no effect of the success of plots planted

in round t − 1 on i’s round t planting. As the lag increases, so does the estimated effect of a

successful experiment, until for plots planted at least 4 rounds previously the magnitude of the

coefficient reaches 1.15.

In columns B and C, we examine the impact of averaging across multiple good news sources in

Mi,t. For those 30% of our observations in which more than one plot enters into the calculation

of M in our standard specification, we select only the one, largest plot (that is, the plot with

the most pineapple plants) that provides information to the farmer. Thus in column B, Mi,t

is defined as in (7) with xj,t defined as the level of fertilizer use on the largest successful plot

in i0s information neighborhood during the relevant time period. In column C we take the

more draconian step of dropping those observations for which more than one plot enters into

the calculation of M in our standard specification. In neither case do the results change in any

substantive way.

In column D, we modify our categorization of fertilizer use. Expectations about profitability

of fertilizer use had been defined over the two coarse categories of x = 0 and x > 0. For

40% of the plantings in our sample, there is at least one planting in the farmer’s information

neighborhood that provides information about the profitability of x = 0; for 32% of the plantings

there is at least one planting in the farmer’s information neighborhood that provides information

about x > 0. We now define expectations over three categories of input intensity: x = 0, 0 <

x ≤ xh, xh < x, where xh = 2.5 (the 80th percentile of fertilizer use is about 2.5). As can be

and tc and plant-weighting across plots.
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seen in column D, this change in specification has no qualitative effect on the results. This

conclusion is robust for any xh less than the 85th percentile of fertilizer use. For larger xh, the

precision of the estimates falls enough that the coefficient onM is not significant at conventional

levels. It does not appear to be feasible to define expectations over more than three meaningful

categories given the size of our dataset.

In column E, we alter the definition of the geographic neighborhood so that only plots within

500 meters fall within a plot’s geographic neighborhood. Again, we find that novice farmers

change their fertilizer use in the direction of inputs associated with good news experiments by

their information neighbors, but that experienced farmers do not. Very similar results are

obtained when geographic neighborhoods are defined as within 1500 meters.

In column F we include information on soil characteristics in the conditioning set. We

lose some observations by doing so, because soil testing was not completed on all plots, but

once again the core result is unchanged: the coefficient on M is positive, large and statistically

significant for novice farmers but not for experienced farmers.

In column G we examine the possibility that our results are an artifact of mean reversion

in fertilizer use. Lagged own fertilizer use appears both in the dependent variable and in Mi,t

raising the possibility that mean reversion in fertilizer use, perhaps due to large measurement

error, might lead us to find a spuriously significant coefficient on Mi,t. In the absence of any

learning effects, the average xk,t−1 across good news observations would be an estimate of the

conditional mean of xk,t given πk,t was above its expectation. So Mi,t could be interpreted as a

noisy, biased estimate of whether xi,t−1 is above or below its unconditional expectation which

might be positively correlated with ∆xi,t solely due to mean reversion. A priori, we think

this is an unlikely source of spurious results as we include Γi,t in (5’) in addition to Mi,t. The

sample size within geographic neighborhoods is considerably larger than that in information

neighborhoods. Despite a higher spatial correlation within geographic neighborhoods, averages

within this larger neighborhood will have a smaller variance than averages within information

neighborhoods. Therefore, if mean reversion were driving correlations, Γit should be a much less

noisy measure of whether xi,t−1 is above its long run mean. Once Γi,t is conditioned upon, Mi,t

should offer little or no predictive power for ∆xi,t resulting from mean reversion.34 However,

34A special case of mean-reverting xi,t would result if our data on inputs were dominated by large amounts of
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to be confident our results are not an artifact of mean reversion, in column G we add the

lagged fertilizer level xi,t−1to the regression. The coefficients on Mi,t change by a magnitude

comparable to some of our other alternative specifications and for novice farmers it remains a

significant predictor. The coefficient on Γi,t changes the most dramatically; this is unsurprising

since the lagged input levels are spatially correlated and so provide an alternate control for

spatially correlated growing conditions.

These results should be robust to conditioning on lagged own profits. This is confirmed in

column H, where we show that the key coefficients change little and that lagged profit realization

has no influence on innovations in fertilizer use. This is consistent with our results on the credit

neighborhood. We have no evidence that variations in the opportunity cost of capital are

playing important roles in fertilizer choices.

In addition, we show in column I that the results are robust to constructing Γi,t in a way that

is strictly analogous to the way Mi,t is constructed. In column I, the Avg. Dev. of Previous

Use from Geographic Neighbor’s Use variable is constructed as Γ̈it = ẍcloseit − xi,tprevious , where

ẍcloseit is the (plant-weighted) average of fertilizer input on plots sufficiently close to plot i and

time t that had surprisingly high profits, as defined in section 3.4.

Column J demonstrates that results are robust to changing the definition of Γi,t to include

input choices of geographic neighbors at time t+1, t+2 and t+3 in addition to t-3 through t. We

keep our base specification of Γi,t as only t-3 through t comparisons because this corresponds to

the period during which i is also applying fertilizer and thus provides the closest match to the

unobserved Γi,t

Our logit results for responses to bad news at previous input choice are robust to analogs of

classical measurement error. However, we think this case is unlikely to have occured as the field research was

specifically designed to collect accurate data on farming inputs (including the number of plants planted) and

output by sacrificing sample size in exchange for frequent and thorough visits to respondents.

We also examined the special case of measurement error by performing Monte Carlo experiments (available

upon request) adding artificial measurement error to our fertilizer data. The mean of per-plant fertilizer use is 4,

and its standard deviation is 7; to our data we added a mean zero normal draws with standard deviation 1 to 7

(truncated so that measured fertilizer use is never negative). The estimated coefficient onM becomes insignificant

at conventional levels when the standard deviation of the added noise is 4 while Γ remains a significant predictor.
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the robustness checks in Table 7.35 Indices of bad news at farmers’ previous input levels remain

statistically significant predictors of whether ∆xi,t 6= 0; more bad news about previously used

levels increases predicted changes.

35Columns B through F have analogs for our logistic regressions and results (omited here to save space) are

available upon request. The robustness check in Column G has no analog as the concern of potentially spurious

results due the construction of M does not apply to our logits.

45



E
π

(x
, w

)

w

wfi,t(H) - H

wfi,t+1(L) - L

wfi,t(L) - L

wfi,t(Z) -Z

Figure 1: Updating Productivity Knowledge

A



3
5

7
9

11
R

ou
nd

 o
f P

la
nt

in
g

Farmers

initial planting subsequent plantings

Distribution of Observations Across Farmers and Survey Rounds
Figure 2:



Figure 3: Sample Proportion of Farmers Cultivating Pineapple By Year
(retrospective data from authors' survey)
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Table 1: Descriptive Statistics, Estimation Sample

Estimation 
Sample Novice Veteran

t (H0: equal means 
by experience)

Fertilizer Use (cedis per sucker) 1.938 3.767 1.392 -1.91
(5.62) (9.66) (3.57)

Change in Fertilizer Use (Δxi,t) -0.315 -1.398 0.009 0.61
(10.34) (20.02) (4.71)

Indicator of Change in Fertilizer ≠ 0 0.496 0.500 0.494 -0.05
(0.50) (0.51) (0.50)

Wealth (million cedis) 2.331 0.889 2.763 3.07
(2.84) (0.71) (3.08)

Clan 1 Indicator 0.327 0.154 0.379 2.18
Clan 2 Indicator 0.451 0.538 0.425 -1.01
Church 1 Indicator 0.487 0.231 0.563 3.07
pH 5.952 6.175 5.876 -1.73

(0.74) (0.61) (0.77)
Soil Organic Matter (%) 2.927 2.694 3.007 1.19

(1.11) (0.79) (1.20)

Contact with Extension Agent Indicator 0.327 0.269 0.345 0.71

-0.500 2.870 -1.505 -2.58
(7.79) (14.18) (4.02)

Indicies of Good News Input Levels:
   M Ask advice 0.055 -1.421 0.495 2.03

(4.28) (7.80) (2.11)
   M Talk frequently 0.163 -1.210 0.573 1.82

(4.43) (8.18) (2.33)
   M Roster of contacts, farm info only -0.167 -1.582 0.255 2.49

(3.37) (6.34) (1.54)
   M Roster of contacts, full list -0.118 -1.584 0.320 2.59

(3.38) (6.34) (1.53)
   M Predicted ask for advice 0.019 -0.340 0.126 2.21

(0.96) (1.79) (0.47)

0.117 0.187 0.076 -2.33
(0.21) (0.30) (0.17)
0.037 0.084 0.022 -2.28
(0.12) (0.19) (0.09)
0.040 0.046 0.039 -0.23

(0.12) (0.17) (0.11)
0.025 0.049 0.017 -1.45
(0.10) (0.16) (0.07)

Novice Farmer Indicator 0.230 1.000 0

number of observations 107 25 82
number of farmers 47 15 32

Unless otherwise indicated, cells contain means of the indicated variable for the indicated sample.  
Standard deviations in parentheses.

Share of Bad News at Alternative 

Fertilizer Use s(bad, x ≠ xi,previous)

Avg. Dev. of Lagged Use From 
Geographic Neighbors' Use (Γi,t)

Share of Good News at Lagged Fertilizer 
Use s(good, x=xi,previous)
Share of Bad News at Lagged Fertilizer 
Use s(bad, x=xi,previous)
Share of Good News at Alternative 

Fertilizer Use s(good, x ≠ xi,previous)



Table 2: Information Connections by Cohort of Pineapple Adoption

Proportion of pairs of individuals in each other's information neighborhood

Not Farming 
Pineapple

Novice 
Pineapple 

Farmer

Veteran 
Pineapple 

Farmer Neighorhood Metric

Not Farming Pineapple 0.06 0.05 0.07
Novice Pineapple Farmer 0.05 0.09 0.13
Veteran Pineapple Farmer 0.07 0.13 0.21

Response to "Have you 
ever gone to ____ for 

advice about your farm?"



Table 3: Transitions in Fertilizer Use and Reciept of Information

Zero Positive

Count 55 12
Avg Mi,t 0.44 0.86
Avg s(bad, x=xi,previous) 0.015 0.090

Count 17 29
Avg Mi,t -3.30 -0.03
Avg s(bad, x=xi,previous) 0.125 0.007

Count: Number of transitions in each category
Avg Mi,t: within-cell average of Mi,t, our index of good news input levels

Avg s(bad, x=xi,previous): within-cell average of the share of plots obsered by i that had bad news 
about the input level he used in his previous planting 

Current Fertilizer Use

Previous 
Fertilizer 
Use

Zero

Positive



Table 4: Determinants of Changing Input Use

Coefficient 
Std. 
Error

Marginal 
effect at 

median prob Coefficient 
Std. 
Error

Marginal 
effect at 

median prob Coefficient 
Std. 
Error

Marginal 
effect at 

median prob

Good News at Previous Input Use
s(good, x = xi,previous) -1.42 3.53 -0.03 -0.77 1.45 -0.03 -0.70 1.15 -0.04

Good News at Alternative Fertilizer Use
s(good, x ≠ xi,previous) 9.48 5.15 0.14 -1.11 2.05 -0.02 1.33 2.59 0.03

Bad News at Lagged Fertilizer Use 23.62 8.08 0.59 14.35 5.12 0.41 15.82 5.84 0.35
s(bad, x = xi,previous)

Bad News at Alternative Fertilizer Use -8.02 3.21 -0.08 -6.45 2.08 -0.14 -5.40 2.94 -0.16
s(bad, x ≠ xi,previous)

Average Absolute Deviation from 0.77 0.31 0.85 0.47 0.16 0.62 0.36 0.20 0.41
Geographic Neighbors' Fertilizer Use [Γi,t]

Novice Farmer 3.54 1.10 0.71 2.47 0.90 0.53 1.48 1.04 0.30

Talks with Extension Agent -0.68 1.52 -0.06 -1.42 0.80 -0.22 -1.54 0.65 -0.34

Wealth (Million Cedis) 0.27 0.14 0.10 0.16 0.08 0.10 0.06 0.12 0.04
Clan 1 3.09 2.34 0.64 2.36 1.21 0.51 2.81 1.12 0.42

Clan 2 6.51 2.36 0.86 2.70 1.40 0.56 2.86 1.06 0.42

Church 1 2.00 1.21 0.39 -0.58 0.82 -0.11 -0.75 0.89 -0.18

Marginal Effects: Calculated at the median probability of a change for each column (.13, .32, and .53, respectively).  For continuous variables, 
this is the change in probability associated with a 1 std. deviation increase in the variable; for dummy variables a 1 unit increase in the variable. 

A B C

Logit MLE point estimates, spatial GMM (Conley 1999) standard errors in parentheses allow for heteroskedasticity and correlation as a function 
of physical distance, see footnote 24 for details. Sample Size = 107. Pseudo R-squareds .40, .26, and .31 for columns A, B and C respectively. A 
full set of village and round dummies were included but not reported.  Information neighborhoods defined using responses to: Have you ever 
gone to farmer ____ for advice about your farm?

Dept. Var: Indicator for |Change| 
> 1 Cedi/Plant

Dept Var: Indicator for Change 
between Zero and Positive

Dept Var: Indicator for non-zero 
change in fertilizer



Table 5: Predicting Innovations in Input Use, Differential Effects by Source of Information

Dependent Variable: Innovation in Per Plant Fertilizer Use
A

Index of Good News 0.99
 Input Levels (Mi,t) [.16]
Mi,t * Novice Farmer 1.09

[0.22]
Mi,t * Veteran Farmer 0.10

[0.32]

Index of Good News Input Levels -0.13
  by Novice Farmers [0.37]
Index of Good News Input Levels 1.02
  by Veteran Farmers [0.17]
Index of Good News Input Levels by 1.03
  Farmers with Same Wealth [0.18]
Index of Good News Input Levels by -0.41
  Farmers with Different Wealth [0.32]

Index of Good News Input Levels 1.10
  on Big Farms [0.14]
Index of Good News Input Levels 0.89
  on Small Farms [0.18]
Index of Good News Input Levels 1.04
  Farmers with Same Soil [0.16]
Index of Good News Input Levels 0.91
  Farmers with Different Soil [0.19]
Novice Farmer 4.01 4.20 4.22 4.19 4.12

[2.62] [2.66] [2.65] [2.65] [2.77]
Avg. Dev. of Geog. Nbrs 0.54 0.55 0.58 0.58 0.58 0.59
  From Prev. Use [Γi,t] [0.06] [0.08] [0.06] [0.06] [0.06] [0.06]
Avg. Dev. of Financial 0.53 0.45 0.40 0.43 0.22 0.24
  Nbrs From Prev. Use [0.58] [0.58] [0.59] [0.55] [0.61] [0.60]

Village 1 -7.62 -7.92 -8.09 -8.24 -7.81 -7.88
[1.16] [1.43] [1.36] [1.43] [1.31] [1.31]

Village 2 -0.61 -1.82 -2.15 -2.17 -1.83 -1.78
[1.56] [2.02] [2.03] [2.11] [2.02] [2.07]

Wealth (Million Cedis) 0.13 0.36 0.41 0.45 0.29 0.29
[0.25] [0.17] [0.17] [0.17] [0.20] [0.20]

Clan 1 -2.62 -2.42 -2.68 -2.62 -2.53 -2.55
[1.29] [1.21] [1.12] [1.09] [1.11] [1.15]

Clan 2 -0.40 -0.11 -0.11 -0.15 -0.31 -0.29
[1.44] [1.32] [1.32] [1.32] [1.30] [1.30]

Church 1 0.26 0.67 0.76 -0.60 0.87 0.88
[1.29] [1.12] [1.06] [1.11] [1.12] [1.12]

R-squared 0.70 0.73 0.71 0.71 0.71 0.71

OLS point estimates, spatial GMM (Conley 1999) standard errors in brackets allow for heteroskedasticity and 
correlation as a function of physical distance, see footnote 24 for details. Sample Size = 107. A full set of round 
dummies included but not reported. Information neighborhoods defined using responses to: Have you ever gone to 
farmer ____ for advice about your farm?
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Table 6: Learning-by-Doing and Alternate Definitions of the Information Network

Dependent Variable: Innovation in Per Plant Fertilizer Use

A C

Information Neighborhood Metric

Learning by 
Doing and 

Learning by 
Others

Roster of 
Contacts: Full 

Set of 
Contacts

M from own plots only 1.46
[0.56]

M from information neighbors 1.22
[0.31]

M * Novice Farmer 1.50 1.49 6.34
[0.28] [0.28] [1.14]

M * Veteran Farmer 0.19 0.15 4.52
[0.21] [0.22] [1.80]

Novice Farmer 4.66 4.65 4.01
[2.84] [2.84] [2.77]

Average Deviation of Lagged Use 
From Geographic Neighbors' Use 
(Γi,t) 0.49 0.49 0.49 0.33

[0.10] [0.09] [0.09] [0.12]

R-squared 0.73 0.72 0.72 0.73

OLS point estimates, spatial GMM (Conley 1999) standard errors in brackets allow for 
heteroskedasticity and correlation as a function of physical distance, see footnote 24 for details. 
Sample Size = 107. All of the variables in Table 5 were included but coefficients are not reported. 
Alternative information neighborhoods are as defined in Section 3.1 and Appendix 1.

D
Roster of 
Contacts: 
Farm Info 

Only

Predicted 
Advice

B



Table 7: Predicting Innovations in Labor for Pineapple and Maize-Cassava Plots

Dependent Variable: First Difference in Labor Inputs for Pineapple and Maize-Cassava

1.96 0.13
[.86] [0.14]

0.32
[0.12]

0.49 0.74
[0.20] [0.08]

0.52 0.01
[0.29] [0.07]

Village 1 162.12 -89.77 -79.29
[301.85] [77.69] [87.40]

Village 2 -432.70 -303.66 -246.19
[289.83] [131.54] [109.97]

Village 3 -193.52 -198.11
[73.17] [82.96]

Wealth (Million Cedis) 166.42 30.36 2.44
[91.55] [32.90] [35.13]

Clan 1 -159.86 43.62 -378.15
[247.73] [265.36] [299.52]

Clan 2 463.35 -82.42 -67.78
[239.96] [78.77] [65.29]

Church 1 -552.22 -62.06 -48.52
[253.94] [88.30] [91.96]

Sample size 346
R-squared 0.55 0.42 0.24

OLS point estimates, spatial GMM (Conley 1999) standard errors in brackets allow for heteroskedasticity and correlation 
as a function of physical distance, see footnote 24 for details. Round/season dummies included but not reported. 
Information neighborhood from: Have you ever gone to farmer ____ for advice about your farm?

Crop (labor cost in cedis 
per plant)

(labor cost in 1000 
cedis per hectare)

89 346

Index of Good News Input Levels in the 
Geographic Neighborhood

Average Deviation of Lagged Use From 
Geographic Neighbors' Use [Γlabor]

Average Deviation of Lagged Use From 
Financial Neighbors' Use

Index of Good News Input Levels: Mlabor

C 
Maize-Cassava

(labor cost in 1000 
cedis per hectare)

A B
Pineapple Maize-Cassava



Appendix Table 1: Determinants of Information Links

Coefficient Standard Error

Either Party Holds Traditional Office -0.55 0.26
Same Religion 0.04 0.33
Same Clan 0.43 0.24
Same Gender 1.73 0.78
Same Soil Type -0.23 0.27
Absolute Age Difference (years) -0.04 0.02
Absolute Wealth Difference (million cedis) 0.15 0.03
Distance Between Plot Centers (kilometers) -0.46 0.16
Constant -2.14 0.84

Logit MLE Estimates, Sample Size = 490, Pseudo R-squared =.12.
Dependent variable is one if either party answered yes to the question:
Have you ever gone to _____ for advice about your farm?



D E G H I J

Flexible 
Lags in 

Learning

Only 
Largest 
Good-
News 
Plot 

Enters M

Drop Obs  
with 

Multiple 
Good-

News Plots

Ferilizer 
Categories 

Zero, 
Medium 
and High

Geographic 
Neighbor-

hood within 
500m

Lagged 
Fertilizer 

Use

Lagged 
Profits

Geographic 
Neighbor 

defined as 
is M

Гi,t includes 
t+1, t+2, t+3 
in addition to 
t-3 through t

1.30 1.48 1.03 1.85 1.11 0.34 0.98 0.76 0.89
[0.22] [0.29] [0.19] [0.20] [0.27] [0.13] [0.21] [0.30] [0.31]

1.32 0.52 -0.41 0.04 -0.24 0.08 -0.28 -0.08 -0.49
[1.29] [0.46] [0.35] [0.23] [0.45] [0.31] [0.52] [0.69] [0.35]

Novice Farmer 3.88 3.95 4.01 2.87 5.94 4.05 3.27 3.96 3.84
[2.70] [2.90] [2.71] [2.71] [2.72] [2.62] [2.13] [2.71] [2.71]

M (k = 4)* 0.02
[0.69]

M (k = 3)* 0.64
[0.14]

M (k = 2)* 0.92
[0.25]

M (k ≤ 1)* 1.15
[0.71]

Lagged Own 
Fertilizer Use -0.84

[0.22]

0.50 0.54 0.46 0.58 0.10 0.50 0.09 0.45 1.58 0.68
[0.10] [0.08] [0.10] [0.08] [0.06] [0.12] [0.17] [0.11] [0.25] [0.16]

Lagged Own 
Profits 0.01

[0.01]
Soil Organic 
Matter 0.14

[0.67]
Soil pH 4.09

[2.31]
Soil Type = 
Loam 1.40

[1.14]
Soil Type = 
Sandy -5.78

[2.72]

Sample size 107 107 84 107 107 107 107 107 107

R-squared 0.69 0.73 0.75 0.68 0.68 0.80 0.75 0.75 0.72 0.72

OLS point estimates, spatial GMM (Conley 1999) standard. errors in brackets allow for heteroskedasticity and correlation as a 
function of physical distance, see footnote 24.  All of the covariates listed in Table 5 are included in the regressions, but not 
reported. Alternative specifications are as defined in Appendix 2.

* k parameterizes the number of lags. When k=4, only information from t-1 plantings is included in M t. When k=3, only 
information from t-2 is included; when k=1, information from t-4 and earlier is included.

M * Novice 
Farmer

M * Veteran 
Farmer

Avg. Dev. of 
Lagged Use 
From Geo 
Neighbors' 
Use (Γi,t)

89

A F

Soil  
Charac- 
teristics

Appendix Table 2: Robustness to Changes in Specification
Dependent Variable: Innovation in Per Plant Fertilizer Use

B C




