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Introduction

I In social networks, individual outcomes depend on:

I own characteristics (direct effects)

I neighbor characteristics (contextual effects)

I neighbor outcomes (peer effects)

I In practice, existing network links may be missing from the
sample due to:

I recall errors in survey responses

I lapses in data input

I Our goal: estimate these effects despite missing links



Introduction

I Conventional 2SLS:

I Structural form: y = λGy + X β+ ε, where Gij indicates
whether i and j are linked.

I Suppose G is perfectly reported in a sample.

I Peer outcomes Gy are endogenous due to simultaneity.

I Apply 2SLS using GX or G2X as instruments for Gy - e.g. Lee
(2007), Bramoulle et al (2009)

I IV exogeneity and relevance are guaranteed if E (ε|X ,G ) = 0.



Introduction

I How do missing links affect inference?

I Suppose the sample only reports H 6= G , with H randomly
missing links from G

I Feasible structural form: y = λHy + X β+ u, with
u = ε+ λ(G −H)y

I Endogenous peer outcomes: Hy correlated with u through
measurement errors in H and through simultaneity

I Also, X is now endogenous (correlated with u via y).

I Hence HX (and H2X ) are not valid IV b/c H and X correlate
with u.



Related Literature
I Lee (2007), Bramoulle, Djebbari, and Fortin (2009)

I introduce conventional IV methods

I Boucher and Houndetoungan (2020)

I use knowledge (or estimates) of distribution of networks

I draw networks from the distribution to construct IVs

I Griffi th (2021)

I missing links due to censoring (caps on # of links reported)

I characterized the omitted variable bias in feasible regression

I for model with no peer effects, estimate the bias under an
order invariance condition

I Lewbel, Qu, and Tang (2022): identification when no links are
observed



Introduction

I We illustrate the main idea when links are randomly missing
at rate p ∈ (0, 1).

I Adjusted 2SLS:

I scale Hy by 1/(1− p) restores exogeneity of X in feasible
structural form

I find alternative, valid IV for Hy : e.g., H ′X

I requires knowledge of p, which can be estimated if there are
multiple measures of same links

I is
√
n-CAN



Introduction

I Extensions:

I add contextual effects

I allow for heterogeneous missing rates

I include group-level fixed effects

I Adjusted 2SLS: works with a single, large network

I need notion of sparsity or weak dependence

I e.g., many groups (blocks) with few links across groups, which
are not reported



Introduction: Preview of Application

I We apply our method to data from Banerjee, Chandrasekhar,
Duflo, and Jackson (2013)

I surveys from 4,134 households in 43 villages

I two measures of links imputed (“VisitCome”vs “VisitGo”)

I dependent variable: participation in microfinance program

I evidence of missing links: symmetrized measures differ

I Findings:

I missing rate p ≈ 0.18
I “endorsement effect”: λ ≈ 0.046. An additional participating
neighbor increases own participation by 4.6%.

I ignoring missing links using traditional 2SLS yields 9% upward
bias in λ estimates



Social Network with Missing Links

I Model:

I A large number of small, independent networks

y = λGy + X β+ ε, y ∈ Rn , X ∈ Rn×K , ε ∈ Rn ,
E (ε|X ,G ) = 0.

I links Gij ∈ {0, 1} (not row-normalized); Gii = 0.
I reduced form: y = M(X β+ ε), M ≡ (I − λG )−1.

I data reports H instead of G , with Hii = 0.

I feasible structural form:

y = λHy + X β+ [ε+ λ(G −H)y ]︸ ︷︷ ︸
u

.



Model Assumptions

I (A1) E (Hij |G ,X ) = E (Hij |Gij ,X ).

I (A2) Links missing at random:

I E (Hij |Gij = 1,X ) = 1− p for p ∈ (0, 1);
I E (Hij |Gij = 0,X ) = 0.

I Under (A1)-(A2), E (H |G ,X ) = (1− p)G .

I Exogeneity: (A3) E (ε|X ,G ,H) = 0.



Restore Exogeneity of Covariates

I Step 1. Suppose p were known. Reparametrize the feasible
structural form:

y = λ Hy
1−p + X β+ ε+ λ

(
Gy − Hy

1−p

)
︸ ︷︷ ︸

≡v

.

I (A1)-(A3) imply:

I E (Gy |X ,G ) = GMX β

I E (Hy |X ,G ) = E (H |G ,X )MX β = (1− p)GMX β

I Together they imply E (v |X ,G ) = 0.

I In this reparametrized structural form, X is no longer
endogenous.



Bias in (Unscaled) 2SLS

I Let R ≡ (Hy ,X ), Z ≡ (ζ(X ),X ), where ζ(·) is nonlinear
function of X .

I Suppose:

(IV-R) E (Z ′R) and E (Z ′Z ) both have full rank.

Then:
y = λ

1−pHy + X β+ ε+ λ
(
Gy − Hy

1−p

)
︸ ︷︷ ︸

≡v

,

=⇒ E (Z ′y) = E (Z ′R)( λ
1−p , β

′)′ + E (Z ′v)︸ ︷︷ ︸
=0

.

I Missing links in H lead to “augmentation bias”on peer
effects in 2SLS.

I We provide suffi cient conditions for the rank condition (IV-R).



Construct Instruments from H

I Recall we can not use HX as instruments. But H ′X is!

I (A4) Given (G ,X ), Hij⊥ Hkl for all (i , j) 6= (k, l).

I rules out symmetric H (undirected links).

I We show Z = (H ′X ,X ) satisfies E (Z ′v) = 0.

I E
[
(H2)ij |G ,X

]
= (1− p)2

(
G2
)
ij , and

E [HG |G ,X ] = E (H |G ,X )G = (1− p)G2;
I Hence E (HGy |G ,X ) = E (H2y |G ,X )/(1− p). So,
E (X ′Hv |G ,X ) = 0.
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Construct Instruments from H (’ctd)

I (A4) requires the noisy measure H be asymmetric. What if
only symmetric measures are available?

I Suppose there are two symmetric measures H (1),H (2)

I (A4) Given (G ,X ), H(1)ij ⊥ H
(2)
kl for all (i , j) 6= (k, l).

I e.g., two independent measures of the same network.

I We can show that

E [(H(2)X )′v (1)] = 0.



Recover the missing rate

I We now show how to identify the missing rate p when

I either (a) asymmetric noisy measure H of a symmetric G ;

I or (b) two independent measures H(1),H(2) of the same G (all
matrices can be symmetric or asymmetric)

I Solution in (a):

I suppose Pr(Gij = Gji ) = 1, Pr(Hij 6= Hji ) > 0
I construct H̃ij = max{Hij ,Hji} with missing rate p2

I E (Hij ) = (1− p)E
(
Gij
)
, E (H̃ij ) = (1− p2)E (Gij )

I then p = E
[
ψ(H̃)

]
/E [ψ(H)]− 1, where ψ(H) is a linear

function of H (e.g. average of all entries)

I Solution in (b) follows from a similar argument.



Adjusted 2SLS Estimator

I Step 1. Use the analog principle to estimate missing rates p̂ in
(a).

I Step 2. (Single H case) Use (H ′X ,X ) as instruments for(
Hy
1−p ,X

)
in 2SLS:

θ̂ ≡
(
A′B−1A

)−1 A′B−1(Z′Y ),
where A ≡ Z′W(p̂) and B ≡ Z′Z, with W, Z stacking

Ws (p) ≡
(
Hsys
1− p ,Xs

)
, Zs ≡ (H ′sXs ,Xs )

over the observed group s in the sample.

I We derived asymptotic variance, taking into account
estimation error in p̂.



Adjusted S2SLS Estimator
I In the case with multiple measures H (t), t = 1, 2, we apply
system 2SLS.

I Stack the moments: E
[
Z̃ ′s (ỹs − W̃sθ)

]
= 0, where

Z̃s ≡
(
Z (1)s 0

0 Z̃ (2)s

)
; ỹs ≡

(
ys
ys

)
; W̃s ≡

(
W (1)
s

W (2)
s

)

and for each group s observed in the sample and t = 1, 2,

Z (t)s ≡
(
H (3−t)s Xs ,Xs

)
, W (t)

s ≡
(
H (t)s ys
1− p(t)

,Xs

)
.

I Provided E
(
Z̃ ′sW̃s

)
has full rank, we can identify θ from the

stacked moments. Thus we can do S2SLS:

θ̃ ≡
[
W̃ ′Z̃

(
Z̃ ′Z̃

)−1
Z̃ ′W̃

]−1
~W′~Z

(
Z̃ ′Z̃

)−1 ~Z′~y.



Extension 1

I Allowsing for group fixed effects,

y = λGy + X β+ α+ ε,

where G is measured as H with missing links.

I Do with-in transformation, and then applies our method.

I This works because of model linearity, and that E (H |G ,X ) is
linear in G .



Extension 2

I Structural model with contextual effects is

y = λGy + X β+ GXγ+ ε.

I Adjusted feasible structural form is

y = λ Hy
1−p + X β+ HX

1−pγ+ η,

where η ≡ ε− λ( H
1−p − G )y − (

H
1−p − G )Xγ.

I Under (A1)-(A3), E (η|X ,G ) = 0.

I Under (A4), use (H ′X ,H ′ζ(X )) as instruments for (Hy ,HX ).

I Or, one can do effi cient method of moments, by plugging in
estimates for p.



Heterogeneous Missing Rates

I Now let the missing rates vary with X .

I Relax (A2) with:

E (Hij |Gij = 1,X ) = 1− pij (X ) and E (Hij |Gij = 0,X ) = 0.

I Then

E (H |G ,X ) = Q(X ) ◦ G with Qij (X ) ≡ 1− pij (X ),

where denote “◦”Hadamard product.

I Step 1: estimate pij (X ) using sample analogs as before.



Heterogeneous Missing Rates

I Step 2: apply 2SLS to

y = λ
(
Q̃ ◦H

)
y + X β+ ε+ λ[G − Q̃ ◦H ]y︸ ︷︷ ︸

v ∗

where Q̃ij ≡ 1/(1− pij ), and

E (v ∗|G ,X ) = λ[GMX β− Q̃ ◦ E (H |G ,X )MX β]

= λ[GMX β− Q̃ ◦ (Q ◦ G )MX β] = 0.

Now we need nonlinear function ζ(X ) as instruments for
(Q̃ ◦H)y .

I One can do effi cient method of moment instead, using
E (v ∗|X ) = 0.



Single, Large Network

I Our method applies to single, large network if there is “weak
dependence”between individuals “suffi ciently far” from each
other.

I Nearly block-diagonal (NBD)

I sample partitioned into approximate groups, or “blocks”

I links within each block are dense; links across blocks are sparse

I Measurement errors in NBD networks

I within-block links are reported, but randomly missing at rate p

I no links reported across blocks



Single, Large Network
I A key condition:

∑N
i=1 ∑j 6∈s(i ) E (|Hi ,j − Gi ,j |) = O(S

ρ) for ρ < 1,

where j 6∈ s(i) means j is not in the same block as i , with S
being # of blocks and N = ∑S

s=1 ns the sample size.

I We show that 2SLS applied to unscaled peer outcomes,
denoted θ̂a is such that

θ̂a − θa = Op(S−1/2 ∨ Sρ−1),

where θa ≡ (λ/(1− p), β′)′. And with ρ < 1/2,

√
S
(
θ̂a − θa

) d−→ N (0,Ω).

I In our empirical application we assume this near block
diagonal structure.



Application: Microfinance in Indian Villages

I Data source: Banerjee et al (2013). 4,134 households from 43
villages in the State of Karnataka, India.

I Dependent variable y : participation in a microfinance
program. Average participation rate is 18.9%

I Covariates X are demographcs at the household and
individual level.

I From survey responses, Banerjee et al (2013) provide various
symmetrized social network measures.



Empirical Application: Network Measures

I We use two of symmetrized measures of links reported in the
data: H (1) is who visits you (VisitCome) and H (2) is who you
visit (VisitGo).

I H (1) and H (2) are both measures of the same underlying G ,
because if household A visits household B, as recorded in H (1)

then household B must have been visited by household A, as
recorded in H (2).

I These two matrices empirically differ substantially, showing
both are noisy measures of G .

I We assume the observed differences between H (1) and H (2)

are missing links, and any of the reported zeros in both could
also be missing links.



Table 2(a): Summary of Dependent and Explanatory Variables
Variable definition obs. mean s.d. min max
y dummy for participation 4149 0.1894 0.3919 0 1

room number of rooms 4149 2.4389 1.3686 0 19
bed number of beds 4149 0.9229 1.3840 0 24
age age of household head 4149 46.057 11.734 20 95
edu education of household head 4149 4.8383 4.5255 0 15
lang whether to speak other language 4149 0.6799 0.4666 0 1
male whether the hh head is male 4149 0.9161 0.2772 0 1
leader whether it has a leader 4149 0.1393 0.3463 0 1
shg whether in any saving group 4149 0.0513 0.2207 0 1
sav whether to have a bank account 4148 0.3840 0.4864 0 1

election whether to have an election card 4149 0.9525 0.2127 0 1
ration whether to have a ration card 4149 0.9012 0.2985 0 1



Table 2(b): Summary of Category Variables
Variable definition obs. per. Variable definition obs. per.

religion latrine
- Hinduism 3943 95.04 - Owned 1195 28.80
- Islam 198 4.77 - Common 20 0.48
- Christianity 7 0.19 - None 2934 70.72

roof own property ownership
- Thatch 82 1.98 - Owned 3727 89.83
- Tile 1388 33.45 - Owned & shared 32 0.77
- Stone 1172 28.25 - Rented 390 9.40
- Sheet 868 20.92
- RCC 475 11.45
- Other 164 3.95

electricity electricity provision caste
- Scheduled caste 1139 27.54

- Private 2662 64.18 - Scheduled tribe 221 5.34
- Government 1243 29.97 - OBC 2253 54.47
- No power 243 5.86 - General 523 12.65



Table 3 Degree Distribution in Two Network Measures
Degree 0 1 2 3 4 5 6 7 8 9 10
H (1) 2 21 110 227 357 505 526 546 506 379 269
H (2) 4 24 112 245 384 522 534 577 491 386 255
Degree 11 12 13 14 15 16 17 18 19 20 ≥ 21
H (1) 224 145 90 74 54 33 27 15 9 6 24
H (2) 179 137 102 59 46 28 22 13 9 3 17



I Scaled feasible structural linear probability model:

y = λ H (t)y
1−p(t) + X β+ villageFE + v (t).

I Estimates of missing rates

p̂(1) = 0.1681 and p̂(2) = 0.1909.

I Next 2SLS estimates and inference are based on single
growing network.



Two-stage Least Squares Estimates:

We report five different estimates, as follows:

(a) Standard network 2SLS treating H (1) as true G .

(b) Our adjusted 2SLS using H (2)X as instruments for the scaled
feasible structural model:

y = λ H (1)y
1−p(1) + X β+ villageFE + v (1).

(c) Standard network 2SLS treating H (2) as true G .

(d) Our adjusted 2SLS using H (1)X as instruments for:

y = λ H (2)y
1−p(2) + X β+ villageFE + v (2).

(e) Stacked 2SLS estimator that exploits the moments generated
by both (b) and (d) above into a single combined estimator.



Table 4: Two-stage Least Squares Estimates
(a) (b) (c) (d) (e)

r.h.s. endogeneity H (1) y H (1)
1−p̂1

y H (2) y H (2)
1−p̂2

y H
1−p̂ y

IV used H (1) X H (2) X H (2) X H (1) X Combined

λ̂ 0.0498*** 0.0456*** 0.0529*** 0.0484*** 0.0461***
(0.0076) (0.0096) (0.0092) (0.0087) (0.0075)

leader 0.0378** 0.0364** 0.0418** 0.0405** 0.0387**
(0.0185) (0.0186) (0.0182) (0.0182) (0.0183)

age -0.0016*** -0.0017*** -0.0016*** -0.0017*** -0.0017***
(0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

ration 0.0441** 0.0435** 0.0423** 0.0413** 0.0426**
(0.0201) (0.0201) (0.0195) (0.0194) (0.0197)

electricity − gov 0.0343** 0.0333** 0.0352** 0.0341** 0.0339**
(0.0157) (0.0157) (0.0156) (0.0155) (0.0156)

electricity − no 0.0223 0.0229 0.0237 0.0247 0.0236
(0.0297) (0.0297) (0.0300) (0.0298) (0.0298)

caste − tribe -0.0285 - 0.0272 -0.0275 - 0.0257 - 0.0268
(0.0312) (0.0309) (0.0305) (0.0300) (0.0305)

caste − obc - 0.0520** - 0.0490** - 0.0486** - 0.0441*** - 0.0473***
(0.0217) (0.0212) (0.0215) (0.0206) (0.0210)

caste − gen -0.0734*** -0.0698*** -0.0688*** -0.0628** -0.0673***
(0.0239) (0.0242) (0.0241) (0.0234) (0.0239)

religion − Islam 0.0980*** 0.0955*** 0.0893*** 0.0849*** 0.0910***
(0.0323) (0.0323) (0.0343) (0.0344) (0.0332)

religion − Chri 0.1434 0.1420 0.1466 0.1452 0.1438
(0.130) (0.1287) (0.1314) (0.1300) (0.1293)

Controls
√ √ √ √ √

VillageFE
√ √ √ √ √

R2 0.1332 0.1345 0.1350 0.1365 0.1353
Obs 4134 4134 4134 4134 4134

Note: s.e. in parentheses. ***, **, and * indicate 1%, 5% and 10% significant.
Controls include male , roof , room , bed , latrine , edu , lang , shg , sav , election , own .



Empirical results: summary

I Our main empirical findings regarding peer effects on
participation in a microfinance program in India:

I missing rate p ≈ 0.18 on average.
I peer effect λ ≈ 0.046. One more participating link (visitor)
increases own participation probability by 4.6%

I ignoring missing links by using traditional 2SLS yields peer
effect λ estimates biased upward by about 9% (augmentation
bias).



Conclusion

I We propose a simple method for applying 2SLS when some
links are missing at random from the sample.

I We derive limiting distribution theory for our estimators.

I We provide an empirical application estimating peer effects on
participation in a microfinance program in India.

I we find strong empirical evidence of missing links.

I we show that accounting for missing links on estimation is
empirically important.
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