Estimating Social Networks with Missing Links

Arthur Lewbel, Xi Qu, and Xun Tang

Northwestern University, March 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

In social networks, individual outcomes depend on:

- own characteristics (*direct* effects)
- neighbor characteristics (contextual effects)
- neighbor outcomes (*peer* effects)
- In practice, existing network links may be missing from the sample due to:
 - recall errors in survey responses
 - lapses in data input
- Our goal: estimate these effects despite missing links

Conventional 2SLS:

- Structural form: $y = \lambda Gy + X\beta + \varepsilon$, where G_{ij} indicates whether *i* and *j* are linked.
- Suppose *G* is perfectly reported in a sample.
- Peer outcomes Gy are endogenous due to simultaneity.
- ▶ Apply 2SLS using GX or G²X as instruments for Gy e.g. Lee (2007), Bramoulle et al (2009)
- IV exogeneity and relevance are guaranteed if $E(\varepsilon|X, G) = 0$.

How do missing links affect inference?

- Suppose the sample only reports H ≠ G, with H randomly missing links from G
- Feasible structural form: $y = \lambda Hy + X\beta + u$, with $u = \varepsilon + \lambda (G H)y$
- Endogenous peer outcomes: Hy correlated with u through measurement errors in H and through simultaneity
- Also, X is now endogenous (correlated with u via y).
- Hence HX (and H²X) are not valid IV b/c H and X correlate with u.

Related Literature

- ► Lee (2007), Bramoulle, Djebbari, and Fortin (2009)
 - introduce conventional IV methods
- Boucher and Houndetoungan (2020)
 - use knowledge (or estimates) of distribution of networks
 - draw networks from the distribution to construct IVs
- Griffith (2021)
 - missing links due to censoring (caps on # of links reported)
 - characterized the omitted variable bias in feasible regression
 - for model with no peer effects, estimate the bias under an order invariance condition
- Lewbel, Qu, and Tang (2022): identification when no links are observed

- We illustrate the main idea when links are randomly missing at rate p ∈ (0, 1).
- Adjusted 2SLS:
 - ► scale Hy by 1/(1 p) restores exogeneity of X in feasible structural form
 - find alternative, valid IV for Hy: e.g., H'X
 - requires knowledge of p, which can be estimated if there are multiple measures of same links

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• is \sqrt{n} -CAN

Extensions:

- add contextual effects
- allow for heterogeneous missing rates
- include group-level fixed effects
- Adjusted 2SLS: works with a single, large network
 - need notion of sparsity or weak dependence
 - e.g., many groups (blocks) with few links across groups, which are not reported

Introduction: Preview of Application

- We apply our method to data from Banerjee, Chandrasekhar, Duflo, and Jackson (2013)
 - surveys from 4,134 households in 43 villages
 - two measures of links imputed ("VisitCome" vs "VisitGo")
 - dependent variable: participation in microfinance program
 - evidence of missing links: symmetrized measures differ
- Findings:
 - ▶ missing rate p ≈ 0.18
 - ► "endorsement effect": \u03c0 \u2267 0.046. An additional participating neighbor increases own participation by 4.6%.
 - \blacktriangleright ignoring missing links using traditional 2SLS yields 9% upward bias in λ estimates

Social Network with Missing Links

Model:

A large number of small, independent networks

 $y = \lambda Gy + X\beta + \varepsilon, y \in \mathbb{R}^n, X \in \mathbb{R}^{n \times K}, \varepsilon \in \mathbb{R}^n, E(\varepsilon|X, G) = 0.$

- ▶ links $G_{ij} \in \{0, 1\}$ (not row-normalized); $G_{ii} = 0$.
- reduced form: $y = M(X\beta + \varepsilon)$, $M \equiv (I \lambda G)^{-1}$.
- data reports H instead of G, with $H_{ii} = 0$.
- feasible structural form:

$$y = \lambda Hy + X\beta + \underbrace{[\varepsilon + \lambda(G - H)y]}_{"}$$

Model Assumptions

• (A1)
$$E(H_{ij}|G,X) = E(H_{ij}|G_{ij},X).$$

(A2) Links missing at random:

•
$$E(H_{ij}|G_{ij} = 1, X) = 1 - p$$
 for $p \in (0, 1)$;

•
$$E(H_{ij}|G_{ij} = 0, X) = 0.$$

- Under (A1)-(A2), E(H|G, X) = (1-p)G.
- Exogeneity: (A3) $E(\varepsilon|X, G, H) = 0$.

Restore Exogeneity of Covariates

Step 1. Suppose p were known. Reparametrize the feasible structural form:

$$y = \lambda \frac{H_y}{1-\rho} + X\beta + \underbrace{\varepsilon + \lambda \left(Gy - \frac{H_y}{1-\rho} \right)}_{\equiv v}.$$

(A1)-(A3) imply:

- $E(Gy|X, G) = GMX\beta$
- $\models E(Hy|X,G) = E(H|G,X)MX\beta = (1-p)GMX\beta$
- Together they imply E(v|X, G) = 0.
- In this reparametrized structural form, X is no longer endogenous.

Bias in (Unscaled) 2SLS

Let R ≡ (Hy, X), Z ≡ (ζ(X), X), where ζ(·) is nonlinear function of X.

Suppose:

(IV-R) E(Z'R) and E(Z'Z) both have full rank.

Then:

$$y = \frac{\lambda}{1-p}Hy + X\beta + \underbrace{\varepsilon + \lambda \left(Gy - \frac{Hy}{1-p}\right)}_{\equiv v},$$
$$\Longrightarrow E(Z'y) = E(Z'R)(\frac{\lambda}{1-p},\beta')' + \underbrace{E(Z'v)}_{=0}.$$

- Missing links in H lead to "augmentation bias" on peer effects in 2SLS.
- We provide sufficient conditions for the rank condition (IV-R).

Construct Instruments from H

• Recall we can *not* use HX as instruments. But H'X is!

► (A4) Given
$$(G, X)$$
, $H_{ij} \perp H_{kl}$ for all $(i, j) \neq (k, l)$.

rules out symmetric H (undirected links).

• We show Z = (H'X, X) satisfies E(Z'v) = 0.

Construct Instruments from H

• Recall we can *not* use HX as instruments. But H'X is!

► (A4) Given (G, X),
$$H_{ij} \perp H_{kl}$$
 for all $(i, j) \neq (k, l)$.

rules out symmetric H (undirected links).

• We show Z = (H'X, X) satisfies E(Z'v) = 0.

►
$$E[(H^2)_{ij}|G,X] = (1-p)^2 (G^2)_{ij}$$
, and
 $E[HG|G,X] = E(H|G,X)G = (1-p)G^2;$

Construct Instruments from H

Recall we can not use HX as instruments. But H'X is!

► (A4) Given (G, X),
$$H_{ij} \perp H_{kl}$$
 for all $(i, j) \neq (k, l)$.

rules out symmetric H (undirected links).

• We show Z = (H'X, X) satisfies E(Z'v) = 0.

•
$$E[(H^2)_{ij}|G,X] = (1-p)^2 (G^2)_{ij}$$
, and
 $E[HG|G,X] = E(H|G,X)G = (1-p)G^2;$

• Hence $E(HGy|G, X) = E(H^2y|G, X)/(1-p)$. So, E(X'Hv|G, X) = 0.

Construct Instruments from H ('ctd)

- (A4) requires the noisy measure H be asymmetric. What if only symmetric measures are available?
- Suppose there are two symmetric measures $H^{(1)}$, $H^{(2)}$
 - ► (A4) Given (G, X), $H_{ij}^{(1)} \perp H_{kl}^{(2)}$ for all $(i, j) \neq (k, l)$.
 - e.g., two independent measures of the same network.
 - We can show that

$$E[(H^{(2)}X)'v^{(1)}] = 0.$$

Recover the missing rate

- We now show how to identify the missing rate p when
 - either (a) asymmetric noisy measure H of a symmetric G;
 - or (b) two independent measures H⁽¹⁾, H⁽²⁾ of the same G (all matrices can be symmetric or asymmetric)
- Solution in (a):
 - ▶ suppose $Pr(G_{ij} = G_{ji}) = 1$, $Pr(H_{ij} \neq H_{ji}) > 0$
 - construct $\tilde{H}_{ij} = \max\{H_{ij}, H_{ji}\}$ with missing rate p^2
 - ► $E(H_{ij}) = (1-p)E(G_{ij}), E(\tilde{H}_{ij}) = (1-p^2)E(G_{ij})$
 - ▶ then p = E [ψ(H̃)] / E[ψ(H)] 1, where ψ(H) is a linear function of H (e.g. average of all entries)
- Solution in (b) follows from a similar argument.

Adjusted 2SLS Estimator

- Step 1. Use the analog principle to estimate missing rates p̂ in

 (a).
- Step 2. (Single H case) Use (H'X, X) as instruments for (Hy/1-p, X) in 2SLS:

$$\hat{\boldsymbol{\theta}} \equiv \left(\mathbf{A}' \mathbf{B}^{-1} \mathbf{A} \right)^{-1} \mathbf{A}' \mathbf{B}^{-1} (\mathbf{Z}' Y),$$

where ${\bf A}\equiv{\bf Z}'{\bf W}(\widehat{p})$ and ${\bf B}\equiv{\bf Z}'{\bf Z},$ with ${\bf W},~{\bf Z}$ stacking

$$W_s(p) \equiv \left(rac{H_s y_s}{1-p}, X_s
ight), \ Z_s \equiv \left(H_s' X_s, X_s
ight)$$

over the observed group s in the sample.

We derived asymptotic variance, taking into account estimation error in p.

Adjusted S2SLS Estimator

- In the case with multiple measures H^(t), t = 1, 2, we apply system 2SLS.
- Stack the moments: $E\left[\tilde{Z}_{s}'(\tilde{y}_{s}-\tilde{W}_{s}\theta)
 ight]=0$, where

$$\tilde{Z}_{s} \equiv \begin{pmatrix} Z_{s}^{(1)} & 0 \\ 0 & \tilde{Z}_{s}^{(2)} \end{pmatrix}; \tilde{y}_{s} \equiv \begin{pmatrix} y_{s} \\ y_{s} \end{pmatrix}; \tilde{W}_{s} \equiv \begin{pmatrix} W_{s}^{(1)} \\ W_{s}^{(2)} \end{pmatrix}$$

and for each group s observed in the sample and t = 1, 2,

$$Z_{s}^{(t)} \equiv \left(H_{s}^{(3-t)}X_{s}, X_{s}\right), W_{s}^{(t)} \equiv \left(\frac{H_{s}^{(t)}y_{s}}{1-p^{(t)}}, X_{s}\right).$$

▶ Provided $E(\tilde{Z}'_s \tilde{W}_s)$ has full rank, we can identify θ from the stacked moments. Thus we can do S2SLS:

$$\tilde{\theta} \equiv \left[\tilde{W}'\tilde{Z}\left(\tilde{Z}'\tilde{Z}\right)^{-1}\tilde{Z}'\tilde{W}\right]^{-1}\tilde{\mathbf{W}}'\tilde{\mathbf{Z}}\left(\tilde{Z}'\tilde{Z}\right)^{-1}\tilde{\mathbf{Z}}'\tilde{\mathbf{y}}.$$

・ロト・日本・日本・日本・日本・日本

Extension 1

Allowsing for group fixed effects,

$$y = \lambda G y + X \beta + \alpha + \varepsilon$$
,

where G is measured as H with missing links.

- Do with-in transformation, and then applies our method.
- ► This works because of model linearity, and that E(H|G, X) is linear in G.

Extension 2

Structural model with contextual effects is

$$y = \lambda G y + X \beta + G X \gamma + \varepsilon.$$

Adjusted feasible structural form is

$$y = \lambda \frac{Hy}{1-p} + X\beta + \frac{HX}{1-p}\gamma + \eta$$

where $\eta \equiv \varepsilon - \lambda (\frac{H}{1-p} - G)y - (\frac{H}{1-p} - G)X\gamma$.

- Under (A1)-(A3), $E(\eta | X, G) = 0$.
- Under (A4), use $(H'X, H'\zeta(X))$ as instruments for (Hy, HX).
- Or, one can do efficient method of moments, by plugging in estimates for p.

Heterogeneous Missing Rates

- Now let the missing rates vary with X.
- Relax (A2) with:

$$E(H_{ij}|G_{ij}=1,X)=1-p_{ij}(X) ext{ and } E(H_{ij}|G_{ij}=0,X)=0.$$

Then

$$E(H|G,X) = Q(X) \circ G$$
 with $Q_{ij}(X) \equiv 1 - p_{ij}(X)$,

where denote " \circ " Hadamard product.

Step 1: estimate p_{ij}(X) using sample analogs as before.

Heterogeneous Missing Rates

Step 2: apply 2SLS to

$$y = \lambda \left(\tilde{Q} \circ H \right) y + X\beta + \underbrace{\varepsilon + \lambda [G - \tilde{Q} \circ H] y}_{v^*}$$

where $\tilde{Q}_{ij} \equiv 1/(1-p_{ij})$, and

$$E(v^*|G, X) = \lambda[GMX\beta - \tilde{Q} \circ E(H|G, X)MX\beta]$$

= $\lambda[GMX\beta - \tilde{Q} \circ (Q \circ G)MX\beta] = 0.$

Now we need nonlinear function $\zeta(X)$ as instruments for $(\tilde{Q} \circ H)y$.

One can do efficient method of moment instead, using E(v*|X) = 0.

Single, Large Network

- Our method applies to single, large network if there is "weak dependence" between individuals "sufficiently far" from each other.
- Nearly block-diagonal (NBD)
 - sample partitioned into approximate groups, or "blocks"
 - links within each block are *dense*; links across blocks are *sparse*
- Measurement errors in NBD networks
 - within-block links are reported, but randomly missing at rate p

no links reported across blocks

Single, Large Network

A key condition:

$$\sum_{i=1}^N \sum_{j
otin s(i)} {\sf E}(|{\sf H}_{i,j}-{\sf G}_{i,j}|)=O(S^
ho)$$
 for $ho<$ 1,

where $j \notin s(i)$ means j is not in the same block as i, with S being # of blocks and $N = \sum_{s=1}^{S} n_s$ the sample size.

► We show that 2SLS applied to unscaled peer outcomes, denoted θ̂_a is such that

$$\hat{ heta}_{\mathsf{a}} - heta_{\mathsf{a}} = \mathit{O}_{\mathsf{p}}(\mathit{S}^{-1/2} \lor \mathit{S}^{
ho-1})$$
 ,

where $heta_{a}\equiv (\lambda/(1ho),eta')'.$ And with ho<1/2,

$$\sqrt{S}\left(\hat{\theta}_{a}-\theta_{a}\right)\overset{d}{\longrightarrow}\mathcal{N}(0,\Omega).$$

 In our empirical application we assume this near block diagonal structure.

Application: Microfinance in Indian Villages

- Data source: Banerjee et al (2013). 4,134 households from 43 villages in the State of Karnataka, India.
- Dependent variable y: participation in a microfinance program. Average participation rate is 18.9%
- Covariates X are demographes at the household and individual level.
- From survey responses, Banerjee et al (2013) provide various symmetrized social network measures.

Empirical Application: Network Measures

- ► We use two of symmetrized measures of links reported in the data: H⁽¹⁾ is who visits you (*VisitCome*) and H⁽²⁾ is who you visit (*VisitGo*).
- ► H⁽¹⁾ and H⁽²⁾ are both measures of the same underlying G, because if household A visits household B, as recorded in H⁽¹⁾ then household B must have been visited by household A, as recorded in H⁽²⁾.
- These two matrices empirically differ substantially, showing both are noisy measures of G.
- ► We assume the observed differences between H⁽¹⁾ and H⁽²⁾ are missing links, and any of the reported zeros in both could also be missing links.

()		5				
Variable	definition	obs.	mean	s.d.	min	max
У	dummy for participation	4149	0.1894	0.3919	0	1
room	number of rooms	4149	2.4389	1.3686	0	19
bed	number of beds	4149	0.9229	1.3840	0	24
age	age of household head	4149	46.057	11.734	20	95
edu	education of household head	4149	4.8383	4.5255	0	15
lang	whether to speak other language	4149	0.6799	0.4666	0	1
male	whether the hh head is male	4149	0.9161	0.2772	0	1
leader	whether it has a leader	4149	0.1393	0.3463	0	1
shg	whether in any saving group	4149	0.0513	0.2207	0	1
sav	whether to have a bank account	4148	0.3840	0.4864	0	1
election	whether to have an election card	4149	0.9525	0.2127	0	1
ration	whether to have a ration card	4149	0.9012	0.2985	0	1

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Table 2(a): Summary of Dependent and Explanatory Variables

					1.6.1.1		
Variable	definition	obs.	per.	Variable	definition	obs.	per.
religion				latrine			
-	Hinduism	3943	95.04	-	Owned	1195	28.80
-	Islam	198	4.77	-	Common	20	0.48
-	Christianity	7	0.19	-	None	2934	70.72
roof				own	property o	wnership	
-	Thatch	82	1.98	-	Owned	3727	89.83
-	Tile	1388	33.45	-	Owned & shared	32	0.77
-	Stone	1172	28.25	-	Rented	390	9.40
-	Sheet	868	20.92				
-	RCC	475	11.45				
-	Other	164	3.95				
electricity	electricit	y provisi	on	caste			
				-	Scheduled caste	1139	27.54
-	Private	2662	64.18	-	Scheduled tribe	221	5.34
-	Government	1243	29.97	-	OBC	2253	54.47
-	No power	243	5.86	-	General	523	12.65

Table 2(b): Summary of Category Variables

Degree	0	1	2	3	4	5	6	7	8	9	10
$H^{(1)}$	2	21	110	227	357	505	526	546	506	379	269
$H^{(2)}$	4	24	112	245	384	522	534	577	491	386	255
Degree	11	12	13	14	15	16	17	18	19	20	≥ 21
$H^{(1)}$	224	145	90	74	54	33	27	15	9	6	24
$H^{(2)}$	179	137	102	59	46	28	22	13	9	3	17

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Table 3 Degree Distribution in Two Network Measures

Scaled feasible structural linear probability model:

$$y = \lambda \frac{H^{(t)}y}{1-p^{(t)}} + X\beta + villageFE + v^{(t)}$$

Estimates of missing rates

$$\hat{p}^{(1)} = 0.1681$$
 and $\hat{p}^{(2)} = 0.1909$.

 Next 2SLS estimates and inference are based on single growing network.

Two-stage Least Squares Estimates:

We report five different estimates, as follows:

(a) Standard network 2SLS treating $H^{(1)}$ as true G.

(b) Our adjusted 2SLS using $H^{(2)}X$ as instruments for the scaled feasible structural model:

$$y = \lambda \frac{H^{(1)}y}{1-p^{(1)}} + X\beta + villageFE + v^{(1)}.$$

(c) Standard network 2SLS treating $H^{(2)}$ as true G.

(d) Our adjusted 2SLS using $H^{(1)}X$ as instruments for:

$$y = \lambda \frac{H^{(2)}y}{1-p^{(2)}} + X\beta + villageFE + v^{(2)}.$$

(e) Stacked 2SLS estimator that exploits the moments generated by both (b) and (d) above into a single combined estimator.

	(a)	(b)	(c)	(d)	(e)
r.h.s. endogeneity	H ⁽¹⁾ y	$\frac{H^{(1)}}{1-\hat{p}_1} y$	Н ⁽²⁾ у	$\frac{H^{(2)}}{1-\hat{p}_2} y$	$\frac{H}{1-\hat{p}} y$
IV used	H ⁽¹⁾ X	H ⁽²⁾ X	H ⁽²⁾ X	H ⁽¹⁾ X	Combined
$\widehat{\lambda}$	0.0498***	0.0456***	0.0529***	0.0484***	0.0461***
	(0.0076)	(0.0096)	(0.0092)	(0.0087)	(0.0075)
leader	0.0378**	0.0364**	0.0418**	0.0405**	0.0387**
	(0.0185)	(0.0186)	(0.0182)	(0.0182)	(0.0183)
age	-0.0016***	-0.0017***	-0.0016***	-0.0017***	-0.0017***
	(0.0005)	(0.0005)	(0.0005)	(0.0005)	(0.0005)
ration	0.0441**	0.0435**	0.0423**	0.0413**	0.0426**
	(0.0201)	(0.0201)	(0.0195)	(0.0194)	(0.0197)
electricity – gov	0.0343**	0.0333**	0.0352**	0.0341**	0.0339**
	(0.0157)	(0.0157)	(0.0156)	(0.0155)	(0.0156)
electricity – no	0.0223	0.0229	0.0237	0.0247	0.0236
	(0.0297)	(0.0297)	(0.0300)	(0.0298)	(0.0298)
caste — tribe	-0.0285	- 0.0272	-0.0275	- 0.0257	- 0.0268
	(0.0312)	(0.0309)	(0.0305)	(0.0300)	(0.0305)
caste — obc	- 0.0520**	- 0.0490**	- 0.0486**	- 0.0441***	- 0.0473***
	(0.0217)	(0.0212)	(0.0215)	(0.0206)	(0.0210)
caste — gen	-0.0734***	-0.0698***	-0.0688***	-0.0628**	-0.0673***
	(0.0239)	(0.0242)	(0.0241)	(0.0234)	(0.0239)
religion — Islam	0.0980***	0.0955***	0.0893***	0.0849***	0.0910***
	(0.0323)	(0.0323)	(0.0343)	(0.0344)	(0.0332)
religion – Chri	0.1434	0.1420	0.1466	0.1452	0.1438
	(0.130)	(0.1287)	(0.1314)	(0.1300)	(0.1293)
Controls					\checkmark
VillageFE	, v	v	√	v	i v
R ²	0.1332	0.1345	0.1350	0.1365	0.1353
Obs	4134	4134	4134	4134	4134

Table 4: Two-stage Least Squares Estimates

Note: s.e. in parentheses. ***, **, and * indicate 1%, 5% and 10% significant.

Controls include male, roof, room, bed, latrine, edu, lang, shg, sav, election, own.

Empirical results: summary

- Our main empirical findings regarding peer effects on participation in a microfinance program in India:
 - missing rate $p \approx 0.18$ on average.
 - ▶ peer effect $\lambda \approx 0.046$. One more participating link (visitor) increases own participation probability by 4.6%
 - ignoring missing links by using traditional 2SLS yields peer effect λ estimates biased upward by about 9% (augmentation bias).

Conclusion

- We propose a simple method for applying 2SLS when some links are missing at random from the sample.
- ▶ We derive limiting distribution theory for our estimators.
- We provide an empirical application estimating peer effects on participation in a microfinance program in India.
 - we find strong empirical evidence of missing links.
 - we show that accounting for missing links on estimation is empirically important.

THANKS!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>