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Introduction

• We consider an analyst who is interested in the average causal effect of a
binary treatment D on an outcome Y.

• Y’s realization is delayed, i.e., there is a time gap between D and Y.

• This allows other actions, A1, A2, . . . , AK, to occur. These actions may be
influenced by D and may affect Y.

– Questions: What is the interpretation of popular regression-based estimands?
Do they estimate average causal effects?
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Examples

1) Beaman et al. (13, AER) - Field experiment in Mali
• D: free fertilizer to female rice farmers on May 2020,
• Y: output or profits on December 2020,
• A: herbicides, hired labor, etc.

2) Covid clinical trials by Moderna
• D: Covid vaccine in month 1 (vs. month 5),
• Y: Covid infection in months 1-4,
• A: weak masks in public, avoid large gatherings, etc.

3) Akhtari et al. (21) - Selection on Observables in AirBnB
• AirBnB customers consider several decision on their platform.
• D: booking a property,
• Y: profits in the long run,
• A: cancellations, leaving a review, etc.
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Contributions

• We study 5 regression-based methods to estimate avg. causal effect of D on Y.

– We do not assume linearity of the potential outcomes.

• Estimands are decomposed into direct & indirect effects (also selection effects).

– Direct: effect of D on Y holding A constant.

– Indirect: effect of D on Y via A.

• We use these decompositions to understand when these estimands have the
desired interpretation. Preview of main findings:

1) Popular reg.-based methods have undesirable properties in general.

2) We provide reg.-based methods that avoid these issues.

• Our paper does not contribute on:

– Identification of direct, indirect, or total effects.

– Discussion on relative merits of total vs. direct causal effects.
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Related literature

1) Mediation analysis in social sciences:

• Baron & Kenny (86), Pearl (01), Robins (03), Imai et al. (10), etc. . .

• Their interest in on the mediators, their decomposition is based on the natural
effects, and their analysis uses more restrictive assumptions.

• The actions (i.e., their mediators) are a nuisance to us, and our decomposition is
based on the controlled effects.

2) Total vs. partial/direct treatment effects in economics:

• Manski (97), Heckman (00), Rosenzweig & Wolpin (00), etc. . .

• We discuss how regression-based estimands capture one or the other.

3) Regression-based estimands without assuming linearity:

• Angrist (98), Goodman-Bacon (21), de Chaisemartin & D’Haultfuille (20),
Goldsmith-Pinkham et al. (22), Zhao & Ding (22), etc. . .

• Mechanical connection, but we differ on questions & main lessons.
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Overview

• Setup and definitions

• Decomposition of regression-based estimands

1) Short regression

2) Long regression

3) Long regression with interactions

4) Strata fixed effects regression

5) Saturated regression

• Conclusions
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Setup

• Variables: binary treatment D, outcome Y, and actions A = (A1, . . . , AK).

• Actions: A = (A1, . . . , AK) is discrete, taking values in

A ≡ {a = (a1, . . . , aK) : aj ∈ Aj, j = 1, . . . , K},
Aj ≡ {0, 1, . . . , āj} for āj ≥ 1.

• Potential outcomes: Y(d, a) with expected value

µ(d, a) ≡ E[Y(d, a)].

• Pooled potential outcomes:

Y(d) = ∑a∈A Y(d, a) I{A = a}.

• Observed outcome:

Y = ∑(d,a)∈D×A Y(d, a) I{(D, A) = (d, a)}.
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Causal effects

• We are interested in ceteris paribus effect of D on Y.

Definition: Average partial causal effect

The average partial causal effect of D on Y is

µ(1, a)− µ(0, a) for a ∈ A.

Definition: Average direct causal effect (DCE)

An average direct causal effect of D on Y is any convex combination of average
partial causal effects, i.e.,

∆ = ∑a∈A ω(a) (µ(1, a)− µ(0, a)),

where ω(a) ≥ 0 for all a ∈ A and ∑a∈A ω(a) = 1.
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Assumptions

• We rely on the following assumptions:

Assumption: Weak CI

D ⊥ Y(d) | X for all d ∈ {0, 1}.

– Weak CI: natural starting point, but insufficient to id. ceteris paribus effects.

Assumption: Strong CI

(D, A) ⊥ Y(d, a) | X for all (d, a) ∈ {0, 1} ×A.

– Strong CI: sufficient for identification of µ(d, a), and any parameter of interest,
but insufficient to deliver a desirable interpretation of popular estimands.
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Overview

• Setup and definitions

• Decomposition of regression-based estimands (We ignore X)

1) Short regression: Y on D

2) Long regression: Y on D + A

3) Long regression with interactions: Y on D + A + AD

4) Strata fixed effects regression: Y on D + strata(A)

5) Saturated regression: Y on D strata(A) + strata(A)

• Conclusions
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Short regression: decomposition

short regression: Y = ∆shortD + α + ε.

∆short = E[Y | D = 1] − E[Y | D = 0].

• ∆short can be decomposed into three terms:

∆short = ∆s
dce + ∆s

ind + ∆s
sel,

with

∆s
dce ≡ ∑

a∈A
π1(a) E[Y(1, a)− Y(0, a)|D = 1, A = a]

∆s
ind ≡ ∑

a∈A
(π1(a)− π0(a)) (E[Y(0, a)|D = 0, A = a]− E[Y(0, 0)|D = 0, A = 0])

∆s
sel ≡ ∑

a∈A
π1(a) (E[Y(0, a)|D = 1, A = a]− E[Y(0, a)|D = 0, A = a]

)
and πd(a) ≡ P{A = a | D = d}.
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Short regression: comments

∆short = ∆s
dce + ∆s

ind + ∆s
sel.

1) Decomposition does not invoke Weak CI or Strong CI.

2) Under Weak CI: ∆short captures the total effect.

∆short = E[Y(1)− Y(0)] = E[Y(1, A(1))− Y(0, A(0))].

3) Under Weak CI: ∆short is not a DCE.

– ∆short includes a DCE, ∆s
dce, but also includes the sum of:

– ∆s
ind: combines selection and indirect effects.

– ∆s
sel: a pure selection effect.

12/31



Short regression under Strong CI

• Under Strong CI, the decomposition simplifies as follows:

∆short = ∆s
dce + ∆s

ind +�
�∆s
sel.

with

∆s
dce = ∑a∈A π1(a) (µ(1, a)− µ(0, a))

∆s
ind = ∑a∈A (π1(a)− π0(a)) (µ(0, a)− µ(0, 0)).

• Strong CI yields ∆s
sel = 0 and isolates the indirect effect in ∆s

ind.

– Strong CI does not restrict how D affects A: (π1(a)− π0(a)) 6= 0.

– Strong CI does not restrict how A affects Y: µ(0, a)− µ(0, 0) 6= 0
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Short regression under Strong CI: comments

Under Strong CI, ∆short = ∆s
dce + ∆s

ind.

1) ∆short (still) captures a total effect.

2) ∆short is (still) not a DCE because of the indirect effect in ∆s
ind.

– It’s possible to have µ(1, a)− µ(0, a) > 0 for all a ∈ A and ∆short < 0.
This will happen if ∆s

ind < −∆s
dce < 0.

– i.e., the indirect effect may have opposite sign and dominate the DCE.

• From here on: we focus on analysis under Strong CI (See paper for Weak CI).
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Overview

• Setup and definitions

• Decomposition of regression-based estimands (ignore X)
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j=1θjAj + α + ε.
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Long Regression

Theorem: Long regression

• Assume Strong CI and that cov(D, A) is PD. Then,

∆long = ∆l
dce + ∆l

ind,

where

∆l
dce ≡∑a∈A ωl

dce(a) (µ(1, a)− µ(0, a)) with ∑a∈A ωl
dce(a) = 1,

∆l
ind ≡∑a∈A ωl

ind(a) (µ(0, a)− µ(0, 0)) with ∑a∈A ωl
ind(a) = 0.

• Furthermore, the following statements are equivalent:

a) A are mutually exclusive binary variables, i.e., Aj = {0, 1} for j = 1, . . . , K and
AjAl = 0 for all j, l = 1, . . . , K with j 6= l.

b) For any distribution of (A, D), ωl
dce(a) ≥ 0 for all a ∈ A.

c) For any distribution of (A, D), ωl
ind(a) = 0 for all a ∈ A.
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Long regression: comments

∆long = ∆l
dce + ∆l

ind.

1) If A are not mutually exclusive binary vars., ∆long is not a DCE.

(i) The indirect effect may have opposite sign and dominate the DCE. (= Short).

(ii) Even without an indirect effect, ωl
dce(a) < 0 for some a ∈ A ( 6= Short).

2) (ii) raises a red flag regarding the adjustment of A in a linear regression:

• In particular, it implies that ∆long is neither a DCE nor a total effect (next slide).

⇒ Adjusting for A makes things worse.
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Long regression: comments (ctd.)

• Consider Example 1: A = {0, 1, 2}, i.e., non-binary.

– Let P{D = 1} = 0.5, {A|D = 1} ∼ Bi(2, 0.3), & {A|D = 0} ∼ Bi(2, 0.9).

⇒ ωl
dce = [−0.1, 0.76, 0.34] and ωl

ind = [−0.14, 0.28,−0.14].

– Then, suppose that µ(1, 0) > 0 and µ(d, a) = 0 for all (d, a) 6= (1, 0).

a) ∆long = ∆l
dce < 0 despite µ(1, a)− µ(0, a) ≥ 0 for all a ∈ A.

b) ∆l
ind = 0 as µ(0, a)− µ(0, 0) = 0 for all a ∈ A.

⇒ ∆long is neither a DCE nor a total effect (c.f. ∆short = ∆s
dce > 0).

• We also have Example 2: A = {0, 1}2 but not mutually exclusive.

18/31



Long regression is popular

• The long regression is extensively used in mediation literature:

– Baron & Kenny (86): largely established the use of these regressions in
mediation analysis, has over 115,000 citations.

– Glynn (12) discusses the popularity of the long regression in mediation and
social sciences, and writes “examples are too numerous to cite.”

– Imai et al. (10): recommends inference with a long regression under stronger
assumptions + scalar A + linear model for µ(d, a).

• It has also been used in economics, even recently:

– Heckman, Pinto, & Savelyev (13, AER): use inference with a long regression.
They assume linear model for µ(d, a).

– Fagereng, Mogstad, & Ronning (21, JPE) also assume linear model for µ(d, a).
They use long regression and interpret ∆long as a DCE.

• Our results: these conclusions rely on linear model for µ(d, a).
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Overview

• Setup and definitions

• Decomposition of regression-based estimands (ignore X)

1) Short regression: Y on D (= total effect)

2) Long regression: Y on D + A

3) Long regression with interactions: Y on D + A + AD

Y = ∆interD + α + ∑K
j=1 θj Aj + ∑K

j=1 λj Aj D + ε.

4) Strata fixed effects regression: Y on D + strata(A)

5) Saturated regression: Y on D strata(A) + strata(A)

• Conclusions

20/31



Long regression with interactions

Theorem: Long regression with interactions

• Assume Strong CI and that cov(D, A, AD) is PD. Then,

∆inter = ∆i
dce + ∆i

ind,

where

∆i
dce ≡ ∑a∈A ωi

dce(a)(µ(1, a)− µ(0, a)) with ∑a∈A ωi
dce(a) = 1,

∆i
ind ≡ ∑a∈A ωi

ind(a)(µ(0, a)− µ(0, 0)) with ∑a∈A ωi
ind(a) = 0.

• Furthermore, the following statements are equivalent:
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AjAl = 0 for all j, l = 1, . . . , K with j 6= l.

b) For any distribution of (A, D), ωi
dce(a) ≥ 0 for all a ∈ A.

c) For any distribution of (A, D), ωi
ind(a) = 0 for all a ∈ A.
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Long regression with interactions: comments

1) ∆inter and ∆long share problems: Unless A are mutually exclusive binary vars.,
∆inter is neither a DCE nor a total effect.

2) What about alternative estimands? For example:

∆inter + ∑K
j=1 λjE[Aj] or ∆inter + ∑K

j=1 λjaj.

⇒ We obtain an alternative decomposition, but with analogous problems.

3) This regression is also very popular. In particular, extensively used in mediation;
advocated by Judd & Kenny (81), Kraemer et al. (02,08).
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Overview

• Setup and definitions

• Decomposition of regression-based estimands (ignore X)

1) Short regression: Y on D (= total effect)

2) Long regression: Y on D + A

3) Long regression with interactions: Y on D + A + AD

4) Strata fixed effects regression: Y on D + strata(A)

Y = ∆sfe D + ∑a∈A θa I{A = a} + ε.

5) Saturated regression: Y on D strata(A) + strata(A)

• Conclusions
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SFE regression

Theorem: SFE regression

• Assume Strong CI, and P{A = a} > 0 and πd(a) ∈ (0, 1) for all a ∈ A. Then,

∆sfe = ∑
a∈A

ωsfe(a) (µ(1, a)− µ(0, a)),

where

ωsfe(a) ≡
π1(a)π0(a)

∑ã∈A π1(ã)π0(ã)
.

• Note that ωsfe(a) ≥ 0 and ∑a∈A ωsfe(a) = 1.
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SFE regression: comments

∆sfe = ∑
a∈A

ωsfe(a) (µ(1, a)− µ(0, a)).

1) SFE regression automatically implements the main lesson from long regression:

∆long identifies a DCE ⇐⇒ actions are mutually exclusive binary variables.

2) SFE regression gets a DCE without full saturation.
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Overview

• Setup and definitions

• Decomposition of regression-based estimands (ignore X)

1) Short regression: Y on D (= total effect)

2) Long regression: Y on D + A

3) Long regression with interactions: Y on D + A + AD

4) Strata fixed effects regression: Y on D + strata(A) (= DCE)

5) Saturated regression: Y on D strata(A) + strata(A)

Y = ∑a∈A ∆sat(a) D I{A = a} + ∑a∈A γa I{A = a} + ε,

Under Strong CI, ∆sat(a) = µ(1, a)− µ(0, a) for all a ∈ A.
1
1

• Conclusions
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Conclusions

• We consider analyst interested in the avg. causal effect of binary treatment D
on a “delayed” outcome Y. The delay implies that other actions A occur.

• We study regression-based estimands to capture avg. causal effect of D on Y.

• We decompose estimands into direct & indirect effects, and study conditions
under which they have desirable interpretations:

– Short regression: total effect.

– Long regression (with or without interactions): problematic in general,
unless A are mutually exclusive binary variables.

– SFE regression: direct causal effect.

– SAT regression: everything.
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Thanks!
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Comparison with Imai et al. (10)

• Imai et al. (10) formalizes regression-based analysis for mediation analysis,
initially proposed by Barron & Kenny (86).

• They assume:

a) scalar A (though not necessarily binary),

b) linear model for µ(d, a), i.e., µ(d, a) = κ1 + κ2d + κ′3a.

c) sequential ignorability, which implies Strong CI.

Assumption: Sequential Ignorability (SI)

• (Y(d̃, a), A(d)) ⊥ D | X for all (d̃, d, a) ∈ {0, 1} × {0, 1} ×A,
• Y(d̃, a) ⊥ A(d) | (D = d, X) for all (d̃, d, a) ∈ {0, 1} × {0, 1} ×A.

• Under these conditions, Imai et al. (10) use ∆long to identify a DCE.
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Comparison with Imai et al. (10) (ctd.)

• Their analysis imposes strong assumptions:

a) Sequential Ignorability, more restrictive than Strong CI,

b) Scalar A, which we don’t require.

c) Linear model for µ(d, a) = κ1 + κ2d + κ′3a, which we don’t require.

• Under these conditions, they show that

ζ̄(d) ≡ E[Y(1, A(d))]− E[Y(0, A(d))]
(SI)
= ∑

a∈A
πd(a) (µ(1, a)− µ(0, a))

(linear)
= ∑

a∈A
πd(a) κ2 = κ2.

• The argument and the DCE interpretation break down with non-linear µ(d, a).
Back
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Long regression: Example 2

• Example 2: A = {0, 1}2 & P{A1 = A2 = 1} > 0, i.e., not mutually excl.

– P{D = 1} = 0.5, {Aj|D = 0} ∼ Be(0.1), {Aj|D = 1} ∼ Be(0.7) for j = 1, 2.

⇒ ωl
dce = [0.34, 0.38, 0.48,−0.1] and ωl

ind = [−0.14, 0.14, 0.14,−0.14].

– Then, suppose that µ(1, 3) > 0 and µ(d, a) = 0 for all (d, a) 6= (1, 3).

a) ∆long = ∆l
dce < 0 despite µ(1, a)− µ(0, a) ≥ 0 for all a ∈ A.

b) ∆l
ind = 0 as µ(0, a)− µ(0, 0) = 0 for all a ∈ A.

⇒ ∆long is neither a DCE nor a total effect (c.f. ∆short = ∆s
dce > 0) Back
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