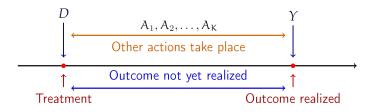
Decomposition and Interpretation of Treatment Effects in Settings with Delayed Outcomes

Federico A. Bugni Ivan A. Canay Steve McBride Northwestern Northwestern Roblox

Northwestern University Former Students Conference March 31, 2023

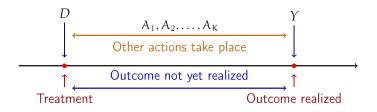
Introduction

- We consider an analyst who is interested in the average causal effect of a binary treatment D on an outcome Y.
- *Y*'s realization is delayed, i.e., there is a time gap between *D* and *Y*.
- This allows other actions, A_1, A_2, \ldots, A_K , to occur. These actions may be influenced by D and may affect Y.
- *Questions*: What is the interpretation of popular regression-based estimands? Do they estimate average causal effects?



Introduction

- We consider an analyst who is interested in the average causal effect of a binary treatment D on an outcome Y.
- *Y*'s realization is delayed, i.e., there is a time gap between *D* and *Y*.
- This allows other actions, A_1, A_2, \ldots, A_K , to occur. These actions may be influenced by D and may affect Y.
- *Questions*: What is the interpretation of popular regression-based estimands? Do they estimate average causal effects?



Examples

1) Beaman et al. (13, AER) - Field experiment in Mali

- D: free fertilizer to female rice farmers on May 2020,
- Y: output or profits on December 2020,
- A: herbicides, hired labor, etc.

2) Covid clinical trials by Moderna

- D: Covid vaccine in month 1 (vs. month 5),
- Y: Covid infection in months 1-4,
- A: weak masks in public, avoid large gatherings, etc.

3) Akhtari et al. (21) - Selection on Observables in AirBnB

- AirBnB customers consider several decision on their platform.
- D: booking a property,
- Y: profits in the long run,
- A: cancellations, leaving a review, etc.

Contributions

- We study 5 regression-based methods to estimate avg. causal effect of D on Y.
 We do not assume linearity of the potential outcomes.
- Estimands are decomposed into *direct* & *indirect* effects (also *selection* effects).
 - *Direct*: effect of *D* on *Y* holding *A* constant.
 - *Indirect*: effect of D on Y via A.
- We use these decompositions to understand when these estimands have the desired interpretation. Preview of main findings:
 - 1) Popular reg.-based methods have undesirable properties in general.
 - 2) We provide reg.-based methods that avoid these issues.
- Our paper does *not* contribute on:
 - Identification of direct, indirect, or total effects.
 - Discussion on relative merits of total vs. direct causal effects.

Contributions

- We study 5 regression-based methods to estimate avg. causal effect of D on Y.
 We do not assume linearity of the potential outcomes.
- Estimands are decomposed into *direct* & *indirect* effects (also *selection* effects).
 - *Direct*: effect of *D* on *Y* holding *A* constant.
 - *Indirect*: effect of D on Y via A.
- We use these decompositions to understand when these estimands have the desired interpretation. Preview of main findings:
 - 1) Popular reg.-based methods have undesirable properties in general.
 - 2) We provide reg.-based methods that avoid these issues.
- Our paper does *not* contribute on:
 - Identification of direct, indirect, or total effects.
 - Discussion on relative merits of total vs. direct causal effects.

Related literature

1) Mediation analysis in social sciences:

- Baron & Kenny (86), Pearl (01), Robins (03), Imai et al. (10), etc...
- Their interest in on the mediators, their decomposition is based on the *natural* effects, and their analysis uses more restrictive assumptions.
- The actions (i.e., their mediators) are a nuisance to us, and our decomposition is based on the *controlled* effects.

2) Total vs. partial/direct treatment effects in economics:

- Manski (97), Heckman (00), Rosenzweig & Wolpin (00), etc...
- We discuss how regression-based estimands capture one or the other.

3) Regression-based estimands without assuming linearity:

- Angrist (98), Goodman-Bacon (21), de Chaisemartin & D'Haultfuille (20), Goldsmith-Pinkham et al. (22), Zhao & Ding (22), etc...
- Mechanical connection, but we differ on questions & main lessons.

- Setup and definitions
- Decomposition of regression-based estimands
 - 1) Short regression
 - 2) Long regression
 - 3) Long regression with interactions
 - 4) Strata fixed effects regression
 - 5) Saturated regression
- Conclusions

Setup

- Variables: binary treatment D, outcome Y, and actions $A = (A_1, \ldots, A_K)$.
- Actions: $A = (A_1, \ldots, A_K)$ is discrete, taking values in

$$\mathcal{A} \equiv \{a = (a_1, \dots, a_K) : a_j \in \mathcal{A}_j, j = 1, \dots, K\},$$

$$\mathcal{A}_j \equiv \{0, 1, \dots, \bar{a}_j\} \text{ for } \bar{a}_j \ge 1.$$

• **Potential outcomes**: *Y*(*d*, *a*) with expected value

$$\mu(d,a) \equiv E[Y(d,a)].$$

Pooled potential outcomes:

$$Y(d) = \sum_{a \in \mathcal{A}} Y(d,a) I\{A = a\}.$$

• Observed outcome:

$$Y = \sum_{(d,a)\in\mathcal{D}\times\mathcal{A}} Y(d,a) I\{(D,A) = (d,a)\}.$$

• We are interested in *ceteris paribus* effect of *D* on *Y*.

Definition: Average partial causal effect

The average partial causal effect of D on Y is

$$\mu(1,a) - \mu(0,a)$$
 for $a \in \mathcal{A}$.

Definition: Average direct causal effect (DCE)

An **average direct causal effect** of D on Y is *any* convex combination of average partial causal effects, i.e.,

$$\Delta = \sum_{a \in \mathcal{A}} \omega(a) \ (\mu(1,a) - \mu(0,a)),$$

where $\omega(a) \ge 0$ for all $a \in \mathcal{A}$ and $\sum_{a \in \mathcal{A}} \omega(a) = 1$.

Assumptions

• We rely on the following assumptions:

Assumption: Weak CI

 $D \perp Y(d) \mid X \text{ for all } d \in \{0,1\}.$

- Weak CI: natural starting point, but insufficient to id. ceteris paribus effects.

Assumption: Strong CI

 $(D,A) \ \perp \ Y(d,a) \ \mid \ X \quad \text{for all} \ (d,a) \in \{0,1\} \times \mathcal{A}.$

- **Strong CI:** sufficient for identification of $\mu(d, a)$, and any parameter of interest, but insufficient to deliver a desirable interpretation of popular estimands.

- Setup and definitions
- Decomposition of regression-based estimands (We ignore X)
 - 1) Short regression: Y on D
 - 2) Long regression: Y on D + A
 - 3) Long regression with interactions: Y on D + A + AD
 - 4) Strata fixed effects regression: Y on D + strata(A)
 - 5) Saturated regression: Y on D strata(A) + strata(A)
- Conclusions

short regression:
$$Y = \Delta_{\text{short}}D + \alpha + \epsilon$$
.
 $\Delta_{\text{short}} = E[Y \mid D = 1] - E[Y \mid D = 0].$

• Δ_{short} can be decomposed into three terms:

$$\Delta_{\rm short} = \Delta_{\rm dce}^{\rm s} + \Delta_{\rm ind}^{\rm s} + \Delta_{\rm sel}^{\rm s}$$

with

$$\Delta_{dce}^{s} \equiv \sum_{a \in \mathcal{A}} \pi_{1}(a) E[Y(1,a) - Y(0,a)|D = 1, A = a]$$

$$\Delta_{ind}^{s} \equiv \sum_{a \in \mathcal{A}} (\pi_{1}(a) - \pi_{0}(a)) (E[Y(0,a)|D = 0, A = a] - E[Y(0,0)|D = 0, A = 0])$$

$$\Delta_{sel}^{s} \equiv \sum_{a \in \mathcal{A}} \pi_{1}(a) (E[Y(0,a)|D = 1, A = a] - E[Y(0,a)|D = 0, A = a])$$

and $\pi_d(a) \equiv P\{A = a \mid D = d\}.$

Short regression: comments

$$\Delta_{\text{short}} = \Delta_{\text{dce}}^{\text{s}} + \Delta_{\text{ind}}^{\text{s}} + \Delta_{\text{sel}}^{\text{s}}.$$

- 1) Decomposition does not invoke Weak CI or Strong CI.
- 2) Under *Weak CI*: Δ_{short} captures the *total effect*.

$$\Delta_{\text{short}} = E[Y(1) - Y(0)] = E[Y(1, A(1)) - Y(0, A(0))].$$

- 3) Under *Weak CI*: Δ_{short} is *not a DCE*.
 - Δ_{short} includes a DCE, $\Delta_{dce}^{s},$ but also includes the sum of:
 - $-\Delta_{ind}^s :$ combines selection and indirect effects.

–
$$\Delta_{sel}^s$$
: a pure selection effect.

Short regression under Strong CI

• Under Strong CI, the decomposition simplifies as follows:

$$\Delta_{\text{short}} = \Delta_{\text{dce}}^{\text{s}} + \Delta_{\text{ind}}^{\text{s}} + \Delta_{\text{sel}}^{\text{s}}.$$

with

$$\begin{aligned} \Delta^{\rm s}_{\rm dce} &= \sum_{a \in \mathcal{A}} \pi_1(a) \, \left(\mu(1,a) - \mu(0,a) \right) \\ \Delta^{\rm s}_{\rm ind} &= \sum_{a \in \mathcal{A}} (\pi_1(a) - \pi_0(a)) \, \left(\mu(0,a) - \mu(0,0) \right). \end{aligned}$$

- Strong CI yields $\Delta_{sel}^s = 0$ and isolates the indirect effect in Δ_{ind}^s .
 - Strong CI does not restrict how D affects A: $(\pi_1(a) \pi_0(a)) \neq 0$.
 - Strong CI does not restrict how A affects Y: $\mu(0,a) \mu(0,0) \neq 0$

Short regression under Strong CI: comments

Under Strong CI,
$$\Delta_{short} = \Delta_{dce}^{s} + \Delta_{ind}^{s}$$
.

- 1) Δ_{short} (still) captures a total effect.
- 2) Δ_{short} is (*still*) *not a DCE* because of the *indirect effect* in $\Delta_{\text{ind}}^{\text{s}}$.
- $\begin{array}{ll} \text{ It's possible to have } \mu(1,a) \mu(0,a) > 0 \text{ for all } a \in \mathcal{A} \text{ and } \Delta_{\text{short}} < 0. \\ \text{This will happen if } \Delta_{\text{ind}}^{\text{s}} & < -\Delta_{\text{dce}}^{\text{s}} & < 0. \end{array}$
- i.e., the indirect effect may have opposite sign and dominate the DCE.
- From here on: we focus on analysis under Strong CI (See paper for Weak CI).

Short regression under Strong CI: comments

Under Strong CI,
$$\Delta_{short} = \Delta_{dce}^{s} + \Delta_{ind}^{s}$$
.

- 1) Δ_{short} (still) captures a total effect.
- 2) Δ_{short} is (still) not a DCE because of the indirect effect in $\Delta_{\text{ind}}^{\text{s}}$.
 - $\begin{array}{ll} \text{ It's possible to have } \mu(1,a) \mu(0,a) > 0 \text{ for all } a \in \mathcal{A} \text{ and } \Delta_{\text{short}} < 0. \\ \text{This will happen if } \Delta_{\text{ind}}^{\text{s}} & < -\Delta_{\text{dce}}^{\text{s}} & < 0. \end{array}$
 - i.e., the indirect effect may have opposite sign and dominate the DCE.
 - From here on: we focus on analysis under Strong CI (See paper for Weak CI).

- Setup and definitions
- Decomposition of regression-based estimands (ignore X)
 - 1) Short regression: Y on D (= total effect)
 - 2) Long regression: Y on D + A

$$Y = \Delta_{\text{long}} D + \sum_{j=1}^{K} \theta_j A_j + \alpha + \varepsilon.$$

- 3) Long regression with interactions: Y on D + A + AD
- 4) Strata fixed effects regression: Y on D + strata(A)
- 5) Saturated regression: Y on D strata(A) + strata(A)
- Conclusions

Long Regression

Theorem: Long regression

• Assume Strong CI and that cov(D, A) is PD. Then,

$$\Delta_{
m long} = \Delta^{
m l}_{
m dce} + \Delta^{
m l}_{
m ind}$$
,

where

$$\begin{split} \Delta^{\mathrm{l}}_{\mathrm{dce}} &\equiv \sum_{a \in \mathcal{A}} \ \omega^{\mathrm{l}}_{\mathrm{dce}}(a) \ (\mu(1,a) - \mu(0,a)) \quad \text{with} \quad \sum_{a \in \mathcal{A}} \omega^{\mathrm{l}}_{\mathrm{dce}}(a) = 1, \\ \Delta^{\mathrm{l}}_{\mathrm{ind}} &\equiv \sum_{a \in \mathcal{A}} \ \omega^{\mathrm{l}}_{\mathrm{ind}}(a) \ (\mu(0,a) - \mu(0,0)) \quad \text{with} \quad \sum_{a \in \mathcal{A}} \omega^{\mathrm{l}}_{\mathrm{ind}}(a) = 0. \end{split}$$

• Furthermore, the following statements are equivalent:

- a) A are mutually exclusive binary variables, i.e., $A_j = \{0, 1\}$ for j = 1, ..., K and $A_jA_l = 0$ for all j, l = 1, ..., K with $j \neq l$.
- b) For any distribution of (A, D), $\omega_{dce}^{l}(a) \ge 0$ for all $a \in A$.
- c) For any distribution of (A, D), $\omega_{ind}^{l}(a) = 0$ for all $a \in A$.

$$\Delta_{\text{long}} = \Delta_{\text{dce}}^{\text{l}} + \Delta_{\text{ind}}^{\text{l}}.$$

1) If A are not mutually exclusive binary vars., Δ_{long} is not a DCE.

- (i) The indirect effect may have opposite sign and dominate the DCE. (= Short).
- (ii) Even without an indirect effect, $\omega_{dce}^{l}(a) < 0$ for some $a \in \mathcal{A}$ (\neq Short).

2) (ii) raises a red flag regarding the adjustment of A in a linear regression:

- In particular, it implies that Δ_{long} is neither a DCE nor a total effect (next slide).
- \Rightarrow Adjusting for A makes things worse.

Long regression: comments (ctd.)

- Consider **Example 1:** $\mathcal{A} = \{0, 1, 2\}$, i.e., non-binary.
- Let $P\{D = 1\} = 0.5$, $\{A|D = 1\} \sim \text{Bi}(2, 0.3)$, & $\{A|D = 0\} \sim \text{Bi}(2, 0.9)$. $\Rightarrow \qquad \omega_{\text{dce}}^{\text{l}} = [-0.1, 0.76, 0.34] \text{ and } \omega_{\text{ind}}^{\text{l}} = [-0.14, 0.28, -0.14].$
- Then, suppose that $\mu(1,0)>0$ and $\mu(d,a)=0$ for all (d,a)
 eq(1,0).

a)
$$\Delta_{ ext{long}} = \Delta^{ ext{l}}_{ ext{dce}} < 0$$
 despite $\mu(1,a) - \mu(0,a) \geq 0$ for all $a \in \mathcal{A}.$

b)
$$\Delta_{\text{ind}}^{\text{l}} = 0$$
 as $\mu(0, a) - \mu(0, 0) = 0$ for all $a \in \mathcal{A}$.

 $\Rightarrow \ \Delta_{long} \text{ is neither a DCE nor a total effect (c.f. } \Delta_{short} = \Delta_{dce}^{s} > 0).$

• We also have **Example 2**: $\mathcal{A} = \{0,1\}^2$ but not mutually exclusive.

Long regression is popular

- The long regression is extensively used in mediation literature:
 - Baron & Kenny (86): largely established the use of these regressions in mediation analysis, has over 115,000 citations.
 - Glynn (12) discusses the popularity of the long regression in mediation and social sciences, and writes "examples are too numerous to cite."
 - Imai et al. (10): recommends inference with a long regression under stronger assumptions + scalar A + linear model for $\mu(d, a)$.
- It has also been used in economics, even recently:
 - Heckman, Pinto, & Savelyev (13, AER): use inference with a long regression. They assume linear model for $\mu(d, a)$.
 - Fagereng, Mogstad, & Ronning (21, JPE) also assume linear model for $\mu(d, a)$. They use long regression and interpret Δ_{long} as a DCE.
- Our results: these conclusions rely on linear model for $\mu(d, a)$.

- Setup and definitions
- Decomposition of regression-based estimands (ignore X)
 - 1) Short regression: Y on D (= total effect)
 - 2) Long regression: Y on D + A
 - 3) Long regression with interactions: Y on D + A + AD

$$Y = \Delta_{\text{inter}} D + \alpha + \sum_{j=1}^{K} \theta_j A_j + \sum_{j=1}^{K} \lambda_j A_j D + \varepsilon.$$

- 4) Strata fixed effects regression: Y on D + strata(A)
- 5) Saturated regression: Y on D strata(A) + strata(A)
- Conclusions

Long regression with interactions

Theorem: Long regression with interactions

• Assume Strong CI and that cov(D, A, AD) is PD. Then,

$$\Delta_{\text{inter}} = \Delta^{\text{i}}_{\text{dce}} + \Delta^{\text{i}}_{\text{ind}}$$

where

$$\begin{array}{lll} \Delta^{\rm i}_{\rm dce} &\equiv \sum_{a \in \mathcal{A}} \omega^{\rm i}_{\rm dce}(a)(\mu(1,a) - \mu(0,a)) \ \, \mbox{with} \ \, \sum_{a \in \mathcal{A}} \omega^{\rm i}_{\rm dce}(a) = 1, \\ \Delta^{\rm i}_{\rm ind} &\equiv \sum_{a \in \mathcal{A}} \omega^{\rm i}_{\rm ind}(a)(\mu(0,a) - \mu(0,0)) \ \, \mbox{with} \ \, \sum_{a \in \mathcal{A}} \omega^{\rm i}_{\rm ind}(a) = 0. \end{array}$$

- Furthermore, the following statements are equivalent:
 - a) A are mutually exclusive binary variables, i.e., $A_j = \{0, 1\}$ for j = 1, ..., K and $A_j A_l = 0$ for all j, l = 1, ..., K with $j \neq l$.
 - b) For any distribution of (A,D), $\omega_{dce}^{i}(a) \geq 0$ for all $a \in A$.
 - c) For any distribution of (A, D), $\omega_{ind}^{i}(a) = 0$ for all $a \in A$.

Long regression with interactions: comments

- 1) Δ_{inter} and Δ_{long} share problems: Unless A are mutually exclusive binary vars., Δ_{inter} is neither a DCE nor a total effect.
- 2) What about alternative estimands? For example:

$$\Delta_{\text{inter}} + \sum_{j=1}^{K} \lambda_j E[A_j] \quad \text{ or } \quad \Delta_{\text{inter}} + \sum_{j=1}^{K} \lambda_j a_j.$$

- \Rightarrow We obtain an alternative decomposition, but with analogous problems.
- This regression is also very popular. In particular, extensively used in mediation; advocated by Judd & Kenny (81), Kraemer et al. (02,08).

- Setup and definitions
- Decomposition of regression-based estimands (ignore X)
 - 1) Short regression: Y on D (= total effect)
 - 2) Long regression: Y on D + A
 - 3) Long regression with interactions: Y on D + A + AD
 - 4) Strata fixed effects regression: Y on D + strata(A)

$$Y = \Delta_{\text{sfe}} D + \sum_{a \in \mathcal{A}} \theta_a I\{A = a\} + \varepsilon.$$

- 5) Saturated regression: Y on D strata(A) + strata(A)
- Conclusions

Theorem: SFE regression

• Assume Strong CI, and $P\{A = a\} > 0$ and $\pi_d(a) \in (0,1)$ for all $a \in \mathcal{A}$. Then,

$$\Delta_{\rm sfe} = \sum_{a \in \mathcal{A}} \omega_{\rm sfe}(a) \ (\mu(1,a) - \mu(0,a)),$$

where

$$\omega_{\rm sfe}(a) \equiv \frac{\pi_1(a)\pi_0(a)}{\sum_{\tilde{a}\in\mathcal{A}} \pi_1(\tilde{a})\pi_0(\tilde{a})}.$$

• Note that $\omega_{\text{sfe}}(a) \ge 0$ and $\sum_{a \in \mathcal{A}} \omega_{\text{sfe}}(a) = 1$.

$$\Delta_{\rm sfe} = \sum_{a \in \mathcal{A}} \omega_{\rm sfe}(a) \ (\mu(1,a) - \mu(0,a)).$$

- 1) SFE regression automatically implements the main lesson from long regression: Δ_{long} identifies a DCE \iff actions are mutually exclusive binary variables.
- 2) SFE regression gets a DCE without full saturation.

Overview

- Setup and definitions
- Decomposition of regression-based estimands (ignore X)
 - 1) Short regression: Y on D (= total effect)
 - 2) Long regression: Y on D + A
 - 3) Long regression with interactions: Y on D + A + AD
 - 4) Strata fixed effects regression: Y on D + strata(A) (= DCE)
 - 5) Saturated regression: Y on D strata(A) + strata(A)

$$\begin{array}{lll} Y & = & \sum_{a \in \mathcal{A}} \ \Delta_{\mathrm{sat}}(a) \ D \ I\{A = a\} & + & \sum_{a \in \mathcal{A}} \ \gamma_a \ I\{A = a\} & + & \varepsilon, \\ \\ \text{Under Strong CI}, & & \Delta_{\mathrm{sat}}(a) & = & \mu(1,a) - \mu(0,a) & \text{ for all } a \in \mathcal{A}. \end{array}$$

Conclusions

Overview

- Setup and definitions
- Decomposition of regression-based estimands (ignore X)
 - 1) Short regression: Y on D (= total effect)
 - 2) Long regression: Y on D + A
 - 3) Long regression with interactions: Y on D + A + AD
 - 4) Strata fixed effects regression: Y on D + strata(A) (= DCE)
 - 5) Saturated regression: Y on D strata(A) + strata(A) (= everything)

$$\begin{array}{lll} Y & = & \sum_{a \in \mathcal{A}} \Delta_{\mathrm{sat}}(a) \ D \ I\{A = a\} & + & \sum_{a \in \mathcal{A}} \gamma_a \ I\{A = a\} & + & \varepsilon, \\ \\ \text{Under Strong CI}, & \Delta_{\mathrm{sat}}(a) & = & \mu(1,a) - \mu(0,a) & \text{ for all } a \in \mathcal{A}. \end{array}$$

Conclusions

- We consider analyst interested in the avg. causal effect of binary treatment D on a "delayed" outcome Y. The delay implies that other actions A occur.
- We study regression-based estimands to capture avg. causal effect of D on Y.
- We decompose estimands into direct & indirect effects, and study conditions under which they have desirable interpretations:
 - Short regression: total effect.
 - Long regression (with or without interactions): problematic in general, unless *A* are mutually exclusive binary variables.
 - SFE regression: direct causal effect.
 - SAT regression: everything.

Thanks!

Comparison with Imai et al. (10)

- Imai et al. (10) formalizes regression-based analysis for mediation analysis, initially proposed by Barron & Kenny (86).
- They assume:
 - a) scalar A (though not necessarily binary),
 - b) linear model for $\mu(d, a)$, i.e., $\mu(d, a) = \kappa_1 + \kappa_2 d + \kappa'_3 a$.
 - c) sequential ignorability, which implies Strong Cl.

Assumption: Sequential Ignorability (SI)

- $(Y(\tilde{d},a),A(d)) \perp D \mid X$ for all $(\tilde{d},d,a) \in \{0,1\} \times \{0,1\} \times \mathcal{A}$,
- $Y(\tilde{d},a) \perp A(d) \mid (D=d,X)$ for all $(\tilde{d},d,a) \in \{0,1\} \times \{0,1\} \times \mathcal{A}$.
- Under these conditions, Imai et al. (10) use Δ_{long} to identify a DCE.

Comparison with Imai et al. (10) (ctd.)

- Their analysis imposes strong assumptions:
 - a) Sequential Ignorability, more restrictive than Strong CI,
 - b) Scalar A, which we don't require.

c) Linear model for $\mu(d,a) = \kappa_1 + \kappa_2 d + \kappa_3' a$, which we don't require.

Under these conditions, they show that

$$\begin{aligned} \xi(d) &\equiv E[Y(1,A(d))] - E[Y(0,A(d))] \\ &\stackrel{(\mathrm{SI})}{=} \sum_{a \in \mathcal{A}} \pi_d(a) \ (\mu(1,a) - \mu(0,a)) \\ &\stackrel{(\mathrm{linear})}{=} \sum_{a \in \mathcal{A}} \pi_d(a) \ \kappa_2 \ = \ \kappa_2. \end{aligned}$$

• The argument and the DCE interpretation break down with non-linear $\mu(d, a)$.

Long regression: Example 2

- Example 2: $\mathcal{A} = \{0, 1\}^2$ & $P\{A_1 = A_2 = 1\} > 0$, i.e., not mutually excl.
- $P\{D = 1\} = 0.5$, $\{A_j | D = 0\} \sim \text{Be}(0.1)$, $\{A_j | D = 1\} \sim \text{Be}(0.7)$ for j = 1, 2.
 - $\Rightarrow \quad \omega_{\rm dce}^{\rm l} = [0.34, 0.38, 0.48, -0.1] \quad {\rm and} \quad \omega_{\rm ind}^{\rm l} = [-0.14, 0.14, 0.14, -0.14].$
- Then, suppose that $\mu(1,3) > 0$ and $\mu(d,a) = 0$ for all $(d,a) \neq (1,3)$.
 - a) $\Delta_{\mathrm{long}} = \Delta^{\mathrm{l}}_{\mathrm{dce}} < 0$ despite $\mu(1,a) \mu(0,a) \ge 0$ for all $a \in \mathcal{A}$.
 - b) $\Delta^l_{\mathrm{ind}} = 0$ as $\mu(0, a) \mu(0, 0) = 0$ for all $a \in \mathcal{A}$.
 - $\Rightarrow \Delta_{long}$ is neither a DCE nor a total effect (c.f. $\Delta_{short} = \Delta_{dce}^{s} > 0$) (Teack