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Abstract

This paper studies settings where there is interest in identifying and estimating

an average causal effect of a binary treatment on an outcome of interest, under com-

plete randomization or selection on observables assumptions. The outcome does not

get immediately realized after treatment assignment, a feature that is ubiquitous

in empirical settings, creating a time window in between the treatment and the

realization of the outcome. The existence of such a time window, in turn, opens

up the possibility of other observed endogenous actions to take place and affect the

interpretation of popular parameters, including the average treatment effect. In

this context, we study several regression-based estimands that are routinely used in

empirical work, and present five results that shed light on how to interpret them

in terms of ceteris paribus effects, indirect causal effects, and selection terms. Our

three main takeaways are the following. First, the three most popular estimands do

not satisfy what we call strong sign preservation, in the sense these estimands may

be negative even when the treatment positively affects the outcome for any possi-

ble combination of other actions. Second, the by-far most popular estimand that

“controlls” for the other actions in the regression does not improve upon a simple

comparisons of means in the sense that negative weights multiplying relevant ceteris

paribus effects become more prevalent. Finally, while non-parametric identification

of the effects we study is straightforward under our assumptions and follows from

saturated regressions, we also show that linear regressions that correctly control for

the other actions by stratifying lead to estimands that always satisfy strong sign

preservation.
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1 Introduction

We study settings where the analyst is interested in identifying and estimating an aver-

age causal effect of a binary treatment on an outcome of interest, where the treatment

status could be determined in the context of a randomized controlled experiment or in

the context of an observational study under conditional independence assumptions. We

focus on settings where the outcome of interest does not get immediately realized after

treatment assignment, a feature that is ubiquitous in empirical settings, including appli-

cations in development economics (Beaman et al., 2013), clinical trials (Moderna, 2021),

and a variety of applications in the industry (Akhtari et al., 2021). The delay in the

realization of the outcomes creates a time window in between the treatment assignment

and the realization of the outcome that, in turn, opens up the possibility for other ob-

served endogenous actions to take place before the outcome is finally realized; see Figure

1 for a graphical representation. In this context, we study the interpretation of several

popular estimands that arise from running regressions of the outcome on the treatment

and different ways of “controlling” for the other actions. Some of these estimands are not

only popular in the economics literature, see, e.g., Fagereng et al. (2021); Heckman et al.

(2013); Chernozhukov et al. (2021), but are also widely used across other social sciences,

like psychology and political science, as shown by the large number of citations associ-

ated with the regression approach popularized by Baron and Kenny (1986). For each of

these estimands, our results present a decomposition that facilitates their interpretation

in terms of ceteris paribus effects of the treatment on the outcomes, indirect effects

caused by the other actions, and selection terms; and provide a framework that allows

us to clarify under what type of conditions the practice of “controlling” for the presence

of other actions leads to estimands that admit the desired interpretation.

The main findings of this paper can be grouped into three sets of results. First, the

standard practice of studying estimands that arise from a regression of an outcome on

the treatment, with or without “controlling” for the other actions in such regressions,

does not satisfy what we call strong sign preservation. Strong sign preservation, formally

defined in Definition 3.3, is satisfied when an estimand that intends to capture a ceteris

paribus causal effect of a treatment on an outcome is positive when the effect of the

treatment on the outcome is positive conditional on all possible values of the other

actions. Failure to satisfy strong sign preservation introduces a Simpson’s Paradox-like

sign reversal where the estimands may be negative even when the treatment positively

affects the outcome for any possible combination of other actions. Second, the most

popular estimand that linearly controls for the other actions in the regression, and that

we label the long regression, does not generally provide benefits relative to the short

regression that includes no controls whatsoever. More concretely, while both the short

and long regressions do not satisfy strong sign preservation, the estimand associated

with the long regression admits a decomposition in terms of weighted averages of well
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defined causal effects but where the weights could potentially be negative. This feature

introduces yet another source that may separate the sign of the estimand from the

sign of ceteris paribus causal effects. Notably, this feature does not depend on whether

the regression includes interaction terms between the treatment and the other actions.

Finally, while non-parametric identification of the effects we study is straightforward

under the stronger version of our identifying assumptions and immediately follows from

a saturated regressions, we also show that linear regressions that correctly control for

the other actions by proper stratification (an approach we label as the strata fixed

effects regression due to its connection with the standard practice of including strata

fixed effects in randomized controlled trials with covariate adaptive randomization; see

Bugni et al. (2018, 2019)) always lead to estimands that automatically satisfy strong

sign preservation.

The decompositions we derive for each of the five estimands we study can be in-

terpreted as decomposing a “total” effect into a “direct” and an “indirect” effect (and

possibly “selection” effect depending on the assumptions), and so our results are linked

to the vast literature on mediation analysis, see, e.g., Baron and Kenny (1986), Pearl

(2001), Robins (2003), Imai et al. (2010), Glynn (2012), and Remark 2.1 for a discussion.

However, as opposed to the literature on mediation that studies the type of identifying

assumptions that would identify the causal effects of the so-called mediators, which in

our context would simply be the other actions taken before the outcome is realized, here

our goal is not to identify these indirect effects but rather to gain a better understanding

of how to properly interpret certain popular estimands of the effect of the treatment on

the outcome. Despite the different goals, our results directly speak to the dominant

empirical practice in the mediation literature and point to limitations in the scope of

such a practice. In particular, we show that the validity of the long regression (and the

long regression with interaction terms) not only depends on identifying assumptions like

sequential ignorability as shown by Imai et al. (2010), but also on the mediators being

scalar valued and a correctly specified linear model for potential outcomes.

Beyond the literature on mediation analysis, we are also not the first to acknowl-

edge the importance of the distinctions between “partial” and “total” causal effects in

the economics literature, where early discussions include those in Manski (1997) and

Heckman (2000); see Remark 3.1. For example, Manski (1997, page 1321 and 1323)

provides two interpretations of potential outcomes (one that keeps other actions fixed

and another one that lets the other actions change in response to treatment) and clarifies

that the interpretation of treatment effects depends on how we think about potential

outcomes. Our goal in this paper is not dwell on discussions about relative merits of

partial or total effects but rather seek to understand when and how commonly used

estimands in empirical work admit either one of these interpretations. Finally, an im-

portant characteristic of the setting we consider is that the other actions are observed
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by the analyst and this separates the types of concerns we focus on here from those that

are related with unobserved factors that may affect the outcome and may be affected

by the treatment, see, e.g., Rosenzweig and Wolpin (2000).

The remainder of the paper is organized as follows. Section 2 introduces the basic

notation and provides motivating examples. Section 3 defines the main concepts we

use throughout the paper, including partial causal effects, direct causal effects, and

strong sign preservation. Section 4 introduces the five estimands we study, the short

regression, the long regression, the long regression with interactions, the strata fixed

effects regression, and the saturated regression, and then presents the main results on

how each of these estimands admit different decompositions into direct, indirect, and

selection effects. Finally, Section 5 concludes.

2 Setup and Notation

Consider a setting where Y denotes the (observed) outcome of interest, Ã denotes a

vector of actions that the individuals or units under study may take, and X denotes

observed covariates that include features beyond actions. We partition the vector of

actions Ã into the main action of interest, denoted by D, and “other” actions, denoted

by A, i.e.,

Ã = (D,A) ∈ D ×A . (1)

All actions are assumed to be discrete, with the main action, D, further assumed to be

binary, i.e., D ≡ {0, 1}. The other actions, A, are a K dimensional vector taking values

in

A ≡ {a = (a1, . . . , aK) : aj ∈ Aj and j = 1, . . . ,K} , (2)

where Aj ≡ {0, 1, . . . , āj} for āj ≥ 1.

The setting we study in this paper is one with the following characteristics. First,

the analyst controls the action of interest D via a randomized controlled experiment (or,

alternatively, by an exogeneity assumption like selection on observables). We therefore

alternatively call this action the “treatment”. Second, the outcome Y is not instanta-

neous and takes some time to get realized within the timeline of the experiment. In

the period in-between the treatment assignment and the realization of the outcome,

the other actions contained in A get chosen by the units participating in the experi-

ment. Figure 1 illustrates the setting and Examples 2.1-2.3 provide concrete empirical

situations where the setting we study currently applies.

Example 2.1 (Agriculture). Beaman et al. (2013) conduct a field experiment that pro-

vides free fertilizer to women rice farmers in Mali to measure how farmers choose to use

the fertilizer, what changes they make to their agricultural practices, and the overall
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timeline

D = d Y

Treatment Outcome realized

Other actions take place

A1, . . . , AK

Outcome not yet realized

Figure 1: Timeline of actions. The first action, D, is randomly assigned in the context of the

experiment (what we call the treatment). The outcome is not instantaneous and may take a

short or long period of time to get realized. In the meantime, units choose the value of the other

actions D, . . . , AK .

inpact on profitability. The authors distributed the fertilizer in May 2020 and conducted

two follow up surveys, one in August 2020 and one in December 2020, right after the

harvest. Using the notation in Figure 1, in this example D would be an indicator of

whether the farmer received free fertilizer, Y would be a measure of output like crop

yield or just profits, and A would include all relevant complementary agricultural inputs,

such as labor, herbicides, and water usage.

Example 2.2 (Covid). The clinical trial run by Moderna (2021) studied the efficacy

of the Moderna COVID-19 vaccine against SARS-CoV-2 infections. Participants in

the study were randomized to Immediate Vaccination Group 1 (receiving the Moderna

COVID-19 Vaccine on Day 1 and Day 29) or Standard of Care Group 2, with vaccination

given at months 4 and 5. During the months following vaccinations, participants received

visits that checked for infections and could include blood collection, nasal swab, SARS-

CoV-2 screening, COVID-19 symptom check, and questionnaires. Using the notation in

Figure 1, in this example D would be an indicator of whether the participant received

a vaccine, Y would be an indicator of whether the participant got infected within the 4

months of the study, and A would include other actions taken by the participants that

could affect infection rates, like whether the participants wear masks in public, whether

the participants avoid large gatherings, etc.

Example 2.3 (AirBnB). Online platforms often allow customers to take a variety of

actions and it becomes important to understand how much value to the company specific

actions may bring (e.g, buying an item, leaving a review, making a reservation, ordering

a delivery, renting a movie, etc); see Jain and Singh (2002) for a review of the literature

on life-time valuation in marketing. For example, Akhtari et al. (2021) discuss how

AirBnB measures the short and long-term value of actions and events that take place

on their platform. These actions could be a guest making a booking or a host adding

amenities to their listing, among many others. While it is often possible to rely on

randomized experiments to measure the causal effects of some of these actions, see, e.g.,

Huang et al. (2018), there are others that are difficult to evaluate using experiments

due to ethical, legal, or user experience concerns. In this cases it is common practice
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to rely on selection on observables assumptions, as those discussed in the next section,

and focus on a given action of interest at a time. For example, the main case discussed

in Akhtari et al. (2021) is the valuation of the long-term impact of a guest making a

booking at AirBnB. Using the notation in Figure 1, in this example D would be an

indicator for whether the customer made a booking on the platform, Y would be the

revenue crated by that customer over 365 days, and A would capture other relevant

actions, most notably, cancellations, leaving a review on the platform, etc.

Remark 2.1. What we call the other actions in Figure 1 can be alternatively labeled as

“mediator” variables since one could define mediators as any post-treatment variables

that occurs before the outcome is realized, see, e.g., Baron and Kenny (1986), Pearl

(2001), Robins (2003), Imai et al. (2010), Glynn (2012), and Hernan and Robins (2023,

Ch. 23) for a recent book treatment. However, our work deviates from this literature

in two important ways. First, while the literature on causal mediation analysis focuses

on the identification of causal effects induced by mediators, our focus in this paper is to

understand whether common estimands that are used to capture causal effects of main

action D on the outcome Y admit clear interpretations through the lens of total and

direct effects. Second, our decompositions in terms of direct and indirect effects are

defined in terms of potential values for all of the actions, including those that may be

labeled as mediators, and this implies “indirect” effects in our context do not coincide

with the definition of indirect effects in the mediation literature but rather with the

so-called “controlled” effects discussed by Pearl (2001) and Robins (2003); see Remark

3.2 for additional discussion on this distinction. It is worth noting, however, that several

of our results have implications for the causal mediation literature and we discuss these

implications as we present our main results.

We denote potential outcomes by Y (d, a) and their expectation by

µ(d, a) ≡ E[Y (d, a)] . (3)

Depending on the setting, we may expand a into (a1, . . . , aK) and write Y (d, a1, . . . , aK)

instead of Y (d, a), although we prioritize the more concise notation whenever possible.

We also introduce the concept of a pooled potential outcome to isolate the counterfactual

outcome associated with the main action of interest (the treatment),

Y (d) =
∑

a∈A

Y (d, a)I{A = a} . (4)

Finally, the observed outcome Y is related to potential outcomes by the relationship

Y =
∑

(d,a)∈D×A

Y (d, a)I{(D,A) = (d, a)} . (5)
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With this notation, we can state our basic maintained assumption as follows, where we

denote by X the covariates or pre-determined variables.

Assumption 2.1. For all d ∈ D it follows that D ⊥ Y (d) | X.

Assumption 2.1 can be obtained by the design of the experiment (as in Examples

2.1 or 2.2) or by relying on a rich set of covariates that would make the exogeneity

requirement credible (as in Example 2.3). In general, and as we will discuss in the next

sections, this assumption will not be enough to identify causal effects of interest but we

take it as the natural starting point of our analysis. For this reason, we also consider

a stronger version of this assumption that requires conditional exogeneity of potential

outcomes with respect to A as well. Formally, we state this assumption as follows.

Assumption 2.2. For all (d, a) ∈ D ×A it follows that (D,A) ⊥ Y (d, a) | X.

Assumption 2.2 essentially re-interprets the problem as a problem of multiple condi-

tionally exogenous treatments where, out of all possible treatments (D,A), the analyst

is interested in the effect of D only. As such, it may not be credible in settings where

a randomized controlled experiment randomly assigned D across units but not A, as

in Examples 2.1 or 2.2, but it is often invoked in settings where the main identifica-

tion argument relies on selection on observables, as in Example 2.3. The assumption is

strong in the sense that it is sufficient to non-parametrically identify µ(d, a) from the

data, but the results in this paper show that the assumption is not strong enough to

deliver a clean interpretation to popular estimands that are often used in practice. In

addition, this assumption is implied by the so-called sequential ignorability assumption,

a commonly used assumption in the literature on mediation analysis; see Section 4.2.

Remark 2.2. All the parameters we consider in this paper are characterized by con-

ditional means. It would then be sufficient for all of our formal results to work with

versions of Assumptions 2.1 and 2.2 that only require conditional mean independence,

as opposed to full independence. We choose to maintain full independence for clarity.

3 Causal Treatment Effects

We start by discussing the type of counterfactual treatment effects that could be of

interest to the researcher in the canonical setting where D is binary. Viewing Y (d, a) as

a function of two types of actions immediately suggests that there could be partial effects,

total effects, direct effects, and indirect effects, all which may or may not be of interest

in the context of a concrete application. Understanding the variety of causal effects that

one could describe in turn will help us provide representations and interpretations of

commonly used target parameters, like the average treatment effect (ATE), in terms of
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these types of causal effects. We start with what is perhaps one of the most natural

types of ceteris paribus effects in Definition 3.1.

Definition 3.1 (Average Partial Causal Effect). An average partial causal effect

of D on the outcome Y is any difference of the form µ(d, a) − µ(d′, a), where the value

a ∈ A is kept constant.

Definition 3.1 defines an average partial causal effect of the main action as a mean

comparison that keeps the value of the other actions unchanged in both states of the

comparison. In the context of Example 2.1 it would capture the average causal effect of

using fertilizer on the crop yield, while keeping other inputs, like labor, herbicides, and

water usage, constant in the counterfactual comparison.

The ceteris paribus effect in Definition 3.1 could also be defined conditional on certain

events or subpopulations. In order to account for this, we also consider the concept in

Definition 3.1 conditional on some conditioning set Ω, i.e.,

E[Y (d, a) − Y (d′, a) | Ω] , (6)

where Ω is a function of (D,A,X). For example, Ω = I{D = 1} would lead to an

average partial causal effect on the treated and Ω = I{X = x} would lead to an average

partial causal effect for units with covariates x.

The definition of a partial causal effect for the main action delivers a potentially dif-

ferent causal effect for each possible value of the other actions or, alternatively, provides

a collection of partial causal effects indexed by a ∈ A. While the goal could just be

to identify such a collection of effects, in many settings it may be natural to aggregate

this collection of partial effects in a way that summarizes the effect of the main action

on the outcome of interest. The following definition defines a direct causal effect as any

weighted average of partial causal effects.

Definition 3.2 (Average Direct Causal Effect). The average direct causal effect of

D on the outcome Y is any convex combination of average partial causal effects of D

on Y . That is,
∑

a∈A

ω(a)(µ(d′, a)− µ(d, a)) , (7)

where ω(a) ∈ [0, 1] for all a ∈ A and
∑

a∈A ω(a) = 1.

In the context of Example 2.1 with A only capturing low and high water usage for

simplicity, the parameter (7) combines the average causal effect of using fertilizer on

the crop yield for units with high water usage, say A = 1, and units with low water

usage, say A = 0. Average direct causal effects could be defined conditional on a set Ω

by weighting terms like those in (6). The definition does not determine how these two
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groups are weighted, but it does require that no group gets a negative weight. In this

sense, any average direct causal effect satisfies what we call strong sign preservation, as

defined below.

Definition 3.3 (Strong Sign Preservation). A parameter ∆ that measures a causal

effect of the main action D on the outcome Y satisfies strong sign preservation if

µ(d′, a)− µ(d, a) > 0 for all a ∈ A implies ∆ > 0 .

In the context of Example 2.1 with A only capturing low and high water usage,

strong sign preservation of a parameter ∆ implies that whenever fertilizers improve the

expected crop yield both for units with high water usage and units with low water usage,

∆ should be positive as well. As the name suggests, strong sign preservation does not

allow for the possibility of what it is typically referred to as sign reversal, understood

as a situation where ∆ < 0 when µ(d′, a)− µ(d, a) > 0 for all a ∈ A.

Remark 3.1. While strong sign preservation may be perceived as a key requirement for

parameters that intend to identify partial causal effects, it may not be a reasonable re-

quirement in settings where the counter-factual question of interest involves total effects,

as introduced and discussed in the next section. The distinctions between “partial” and

“total” causal effects have appeared in the literature in a variety of contexts, even be-

yond the mediation analysis literature discussed in Remark 2.1, where Pearl (2001) and

Robins (2003) provide comprehensive treatments on these distinctions. For example,

Heckman (2000) defines a causal effect as a partial derivative and states that while the

assumption that an isolated action can be varied independently of others is strong but

“...essential to the definition of a causal parameter”. In fact, Heckman (2000, page 47)

writes “Defining causality within a model is relatively straightforward when the causes

can be independently varied. Defining causality when the causes are interrelated is less

straightforward and is a major achievement of econometrics”. Manski (1997, page 1321

and 1323), in turn, provides two interpretations of potential outcomes (one that keeps

other actions fixed and another one that lets the other actions change in response to the

main action) and clarifies that the interpretation of treatment effects depends on how

we think about potential outcomes. Here, we do not dwell on discussions about relative

merits of partial or total effects but rather seek to understand whether commonly used

estimands in empirical work admit either one of these interpretations under different

assumptions.

Remark 3.2. Our definitions of average causal partial effects and average direct causal

effects are not analogous to the notions of total causal effects, causal mediation effects,

and natural direct effects that are commonly used in the mediation analysis literature.

For example, the average natural direct effect corresponds to E[Y (1, A(1))−Y (0, A(0))]

in our notation, where A(d) denotes potential outcomes for the actions A as a function of
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the treatment d. Contrary to these type of effects that are defined in terms of potential

actions, A(d), the effects we focus on in this paper are defined in terms of specific values

of the actions A, say A = a for any a ∈ A, and are therefore analogous to the notions

of a controlled direct (or total) effect that have been discussed in Pearl (2001); Robins

(2003), among others.

4 Decomposing Common Estimands

In this section we analyze five natural and highly popular estimands that are intended

to capture treatment effects of D on Y . For each of these estimands we derive a de-

composition in terms of parameters that can be labeled according to Definitions 3.1 and

3.2 and discuss under what assumptions they can be interpreted as intended. In order

to keep our exposition as simple as possible, from here on we ignore the role of the

covariates, X, in the type of regressions we consider. This could be interpreted as a

situation where the covariates are discrete, and the regressions are viewed as within cell

regressions with cells given by X = x, or more generally where the covariates have been

already accounted for by other means, like clustering or via a partially linear model,

among many possibilities.

The first such estimand is the usual difference in means, which we write here as the

slope coefficient ∆short in a regression (projection) of Y on D and a constant term,

short regression: Y = β +∆shortD + U , (8)

where E[UD] = 0 by properties of projections and E[U |D] = 0 follows from D being

binary. We call this the short regression.

The second estimand is the slope coefficient D in a linear regression of Y on D, a

constant term, and the K actions A1, . . . , AK ,

long regression: Y = ∆longD + θ0 +

K
∑

j=1

θjAj + V , (9)

where E[V D] = E[V Aj] = 0 by properties of projections. We call this the long regres-

sion.

The third estimand is the slope coefficient D in a linear regression of Y on D, a

constant term, the K actions A1, . . . , AK , and their interactions with D,

interaction regression: Y = ∆interD + θ0 +
K
∑

j=1

θjAj +
K
∑

j=1

λjAjD + e , (10)

where E[eD] = E[eAj ] = E[eAjD] = 0 by properties of projections. We call this the
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interaction regression. Note that this is not a fully saturated regression in general, since

the random variables Aj take values in Aj ≡ {0, 1, . . . , āj} and āj is allowed to be greater

than 1.

The fourth estimand is the slope coefficient D in a regression of Y on D and a set

of indicator functions for all the values that A takes,

sfe regression: Y = ∆sfeD +
∑

a∈A

θ(a)I{A = a}+ ν , (11)

where E[νD] = E[νI{A = a}] = 0 by properties of projections. Note that this is

a regression of Y on D with “strata fixed effects”, where the event {A = a} defines

a stratum for each value of a. As a result, we call this the strata fixed effect (sfe)

regression. The regression in (11) can also be interpreted as a regression of Y on D and

A where the linear component that captures the effect of A is fully saturated; i.e.,

∑

a∈A

θ(a)I{A = a} =
∑

a1∈A1

∑

a2∈A2

· · ·
∑

aK∈AK

θ(a)I{A1 = a1}I{A2 = a2} · · · I{AK = aK} .

The last set of estimands are the slope coefficients ∆sat(a), for a ∈ A, in a saturated

regression of Y on a set of indicator functions for all the values that A takes and their

interactions with D,

sat regression: Y =
∑

a∈A

γ(a)I{A = a}+
∑

a∈A

∆sat(a)I{A = a}D + ǫ , (12)

where E[ǫDI{A = a}] = 0 by properties of projections and E[ǫ|D, I{A = a}] = 0 follows

from D and I{A = a} being binary for all a ∈ A. We call this the saturated regression.

Remark 4.1. The use of short, long, and interaction regressions in the social sci-

ence literature is ubiquitous. When Glynn (2012) discusses the popularity of these

regressions, he writes that long regressions are so pervasive within the social science

and empirical mediation literature that “examples are too numerous to cite.” Indeed,

Baron and Kenny (1986), the paper that largely established the use of these and related

regressions, has over 115, 000 citation as of 2022.

4.1 Short regression

The short regression is algebraically very simple, so we build up towards the main result

introducing the main concepts and notation along the way. The other regressions, on the

contrary, have derivations that are more opaque, and so in those cases we first present

the formal results and then discuss their interpretation.

The slope coefficient ∆short in (8) equals ∆short = E[Y |D = 1] − E[Y |D = 0] by

10



elementary arguments. If we define

πd(a) ≡ P{A = a|D = d} , (13)

and note that

E[Y |D = d] =
∑

a∈A

E[Y (d, a)|D = d,A = a]πd(a) ,

we can decompose ∆short into the following three terms,

∆short = ∆s
dce +∆s

ind +∆s
sel (14)

where

∆s
dce ≡

∑

a∈A

π1(a)E[Y (1, a) − Y (0, a)|D = 1, A = a] (15)

∆s
ind ≡

∑

a∈A

(π1(a)− π0(a))(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0]) (16)

∆s
sel ≡

∑

a∈A

π1(a)(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]
)

. (17)

Each of the three terms in the above decomposition for ∆short have a clear interpretation

and show that there are two channels of endogeneity that are introduced by the fact

that the other actions, A, take place in-between the treatment assignment and the

realization of the outcome of interest. The term in (15), ∆s
dce, captures an average

direct causal effect on the treated, as in Definition 3.2. Note that this term conditions

on Ω = I{D = 1, A = a} and so it is a conditional effect like those defined in (6).

The term in (16), ∆s
ind, admits a clean interpretation for each value a ∈ A under

additional assumptions we introduce below. Without additional assumptions, this term

is a type of “indirect” effect that contains the product of the difference in conditional

probabilities, π1(a)− π0(a), and a term that confounds the average partial causal effect

of A moving from 0 to a on Y , with selection that arises from the distinct conditioning

sets {D = 0, A = a} and {D = 0, A = 0}. Finally, the term in (17), ∆s
sel, is a selection

term that captures the fact that the action A = a may not be independent of Y (0, a)

and D.

Two points are worth highlighting. First, the above decomposition does not invoke

either Assumption 2.1 or Assumption 2.2. Importantly, while Assumption 2.1 guarantees

that

∆short = E[E[Y |D = 1,X] − E[Y |D = 0,X]] = E[Y (1) − Y (0)] , (18)

where Y (d) are the pooled potential outcomes in (4), it is not enough to characterize

∆short as an average direct causal effect or as a parameter that satisfies strong sign

preservation. In particular, the two endogeneity channels, ∆s
ind and ∆s

sel, in the decom-
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position of ∆short could be positive or negative and, more importantly, lead to ∆short to

have opposite sign to ∆s
dce. Second, the two endogeneity channels, ∆s

ind and ∆s
sel, are

conceptually different. While the channels entering the term ∆s
ind are difficult to shut

down, the selection term ∆s
sel can be set equal to zero under Assumption 2.2.

Under Assumption 2.2 the three terms entering the decomposition for ∆short simplify

in the following way,

∆s
dce =

∑

a∈A

π1(a)(µ(1, a) − µ(0, a)) (19)

∆s
ind =

∑

a∈A

(π1(a)− π0(a))(µ(0, a) − µ(0, 0)) (20)

∆s
sel = 0 . (21)

That is, the first two terms are now a function of the unconditional expectations µ(d, a)

defined in (3), and the selection term ∆s
sel is no longer present. Importantly, the term

∆s
ind is still part of the decomposition since Assumption 2.2 does not restrict how A

may affect outcomes, so that µ(0, a) − µ(0, 0) 6= 0, nor does it affect how the main

action may affect the other ones, so that π1(a) − π0(a) 6= 0. Aside from removing the

term capturing selection bias, Assumption 2.2 also delivers a clean interpretation to the

indirect effects captured by ∆s
ind. Each summand in ∆s

ind contains the average partial

causal effect of A moving from 0 to a on Y , µ(0, a)−µ(0, 0), multiplied by the difference

π1(a)− π0(a), which admits a causal interpretation of an average direct causal effect of

D on A under the additional assumption A(d) ⊥ D - where here we use A(d) to denote

potential outcomes for the other actions. As an illustrative example, suppose that

µ(1, a)− µ(0, a) > 0 ∀a ∈ A

µ(0, a) − µ(0, 0) < 0 ∀a ∈ A

π1(a)− π0(a) > 0 ∀a ∈ A .

That is, D increases the mean outcome for any value of a and also increases the proba-

bility that the other actions take the value a, while the other actions decrease the mean

outcome relative to a = 0 under no treatment (D = 0). In this case, ∆s
ind is immediately

negative and the sign of ∆short gets determined by the relative magnitudes of ∆s
ind and

∆s
dce. In the other extreme where µ(0, a)− µ(0, 0) > 0 for all a ∈ A, the decomposition

shows that ∆short amplifies the average direct causal effect of D on Y by taking a piece

π1(a) − π0(a) of the effect of A on Y , µ(0, a) − µ(0, 0). It follows that ∆short measures

a total causal effect of D on Y .

We can interpret the terms entering the decomposition of ∆short in (14) in the context

of Examples 2.1-2.3. For example, consider the case of Example 2.1 where Y is crop

yield, D is an indicator for the use of fertilizer, and A is for simplicity an indicator
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for high water usage. In this setting, ∆s
dce captures the average direct causal effect

of using fertilizer on the crop yield, where the effect weights units with high and low

water usage according to the respective probabilities of these actions happening for the

treated, π1(a). The term ∆s
ind, in turn, captures a piece of the causal effect of water

usage on crop yield that depends on the magnitude of differential water usage between

the treated and the untreated. If water usage causally improves crop yield in the absence

of fertilizer, and getting an exogenous fertilizer incentivizes units to increase their water

usage, this term would be positive.

The following theorem summarizes our discussion above.

Theorem 4.1. Consider the short regression in (8) and assume P{D = 1} ∈ (0, 1).

Then, ∆short can be decomposed as in (14)-(17). If Assumption 2.2 holds, then ∆s
sel = 0

and ∆s
dce and ∆s

ind simplify to the expressions in (19) and (20).

Remark 4.2. It is important to note that, even under the stronger exogeneity condition

in Assumption 2.2, the parameter ∆short does not satisfy strong sign preservation as

defined in Definition 3.3. Indeed, it is certainly possible that µ(1, a)−µ(0, a) > 0 for all

a ∈ A and yet ∆short < 0 due to ∆s
ind < −∆s

dce < 0.

Remark 4.3. Under Assumption 2.2 and A(d) ⊥ D, ∆short is a linear combination of

average partial causal effects and it captures a “total” effect rather than a “partial”

effect, as discussed in Remark 3.1. To understand this, notice that ∆ind in (20) is the

product of π1(a) − π0(a) and µ(0, a) − µ(0, 0) for each a ∈ A. Both of these terms are

partial effects, where π1(a) − π0(a) = E[A(1) − A(0)] is the average partial effect of

D on A and µ(0, a) − µ(0, 0) is the average partial effect of moving A from 0 to a on

the outcome Y for units with D = 0. With this interpretation, ∆short captures a total

effect of D on Y that adds up the direct effect of D on Y , captured by ∆s
dce, and the

indirect effect that D has on Y via its effect on A and how A affects Y . This distinction

between partial and total effects mimics the usual one associated with total and partial

derivatives in mathematical analysis. Whether total or partial effects are relevant in the

context of a given application has been already discussed elsewhere; see, for example,

Manski (1997); Heckman (2000); Imai et al. (2010); Glynn (2012). Our main goal here

is to clarify the interpretation of estimands like ∆short in terms of these notions.

In what follows we prioritize results that hold under Assumption 2.2, with discussions

on how the main implications would be affected if Assumption 2.2 is replaced by its

weaker analog, Assumption 2.1. In general, moving from Assumption 2.2 to Assumption

2.1 in all of the cases we study below leads to the same implication: interpreting the

estimands under consideration becomes difficult as a selection term, like ∆s
sel above,

becomes present. Indeed, Robins and Greenland (1992) argued early on in the empirical

mediation literature that direct and indirect effects cannot be separated in randomized

controlled trials without additional assumptions; a problem that at least within the
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literature in development economics appears to be well understood, see, for example,

Mel et al. (2009); Duflo et al. (2011); Beaman et al. (2013).

Settings where D is randomized in the context of an RCT, as in Examples 2.1

and 2.2, are the ones where Assumption 2.2 may be particularly difficult to defend.

We note, however, that selection terms could disappear under alternative assumptions

to Assumption 2.2, and we discuss some of these alternatives below. On the other

hand, settings where the identification argument relies on selection on observables, as

it is typically the case in applications in the industry, as in Example 2.3, are such that

Assumption 2.2 may become more natural and may even be be implied by the symmetric

nature of D and A - as these are all actions that customers can take in the platform.

4.2 Long Regression

A seemingly natural, and certainly popular, way to mitigate the presence of indirect

effects and obtain an estimand that satisfies strong sign preservation is to control for

the other actions linearly as in (9); an approach we call the long regression. Our main

result below shows that the slope coefficient ∆long in (9) admits a decomposition similar

to that derived by ∆short, and thus includes a combination of direct effects and indirect

effects. However, except in some special cases, the coefficients multiplying each average

partial causal effect, as in Definition 3.1, could be negative and so ∆long may be negative

even in the absence of indirect effects. We formalize this below and provide a proof in

Appendix A.

Theorem 4.2. Let Assumption 2.2 hold and assume that the covariance matrix of

(D,A) is positive definite. Then, the coefficient ∆long in (9) admits the decomposition

∆long = ∆l
dce +∆l

ind , (22)

where

∆l
dce ≡

∑

a∈A

ωl
dce(a)(µ(1, a) − µ(0, a)) (23)

∆l
ind ≡

∑

a∈A

ωl
ind(a)(µ(0, a) − µ(0, 0)) , (24)

and {ωl
dce(a) : a ∈ A} and {ωl

ind(a) : a ∈ A} are as defined in Theorem A.1 and satisfy
∑

a∈A ωl
dce(a) = 1 and

∑

a∈A ωl
ind(a) = 0. Furthermore, the following statements are

equivalent:

(a) A are mutually exclusive binary variables, i.e., Aj = {0, 1} for j = 1, . . . ,K and

AjAl = 0 for all j, l = 1, . . . ,K with j 6= l.
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(b) For any distribution of (A,D), ωl
dce(a) ≥ 0 for all a ∈ A.

(c) For any distribution of (A,D), ωl
ind(a) = 0 for all a ∈ A.

Theorem 4.2 shows that ∆long can be decomposed into direct and indirect effects,

but it leaves open the possibility that the coefficients entering each of these terms could,

in general, be negative. An immediate implication is that, except in the special case

where the actions in A are all mutually exclusive binary variables, which includes the

case where A is a scalar binary variable as a special case, the term ∆l
dce could be negative

even if µ(1, a) − µ(0, a) > 0 for all a ∈ A. This is because ωdce(a) may be negative for

some a ∈ A. As a result, ∆long in general does not satisfy strong sign preservation for

the following two reasons. First, it may be possible that ∆l
ind < −∆l

dce, so that the

indirect effect dominates the direct effects. This phenomenon is the same as the one we

discussed for the short regression. Second, even in the absence of indirect effects, where

∆l
ind = 0, the term ∆l

dce could be negative by itself. This second possibility represents a

stark distinction between the long regression estimand, ∆long, and the short regression

estimand, ∆short.

Remark 4.4. Replacing Assumption 2.2 with Assumption 2.1 leads to a decomposition

of ∆long that introduces three changes relative to the one in Theorem 4.2. First, the term

∆l
dce becomes a linear combination of expectations that condition on {D = 1, A = a}.

Second, the interpretation of ∆l
ind becomes convoluted for the same reasons discussed

for ∆s
ind before. Finally, the decomposition additionally includes a selection term that

is conceptually identical to ∆s
ind in the short regression. The details of these expressions

are presented in Theorem A.1 in the Appendix.

The possibility of ωdce(a) being negative for some a ∈ A does not rely on pathological

data generating processes and may arise in rather simple settings under reasonable

distributions for (A,D). This raises an important red flag for the use of linear in A

regressions, as they may lead to results that are quite difficult to interpret and, in

general, do not offer an improvement relative to the short regression in (8). Below we

illustrate this situation with two canonical simple cases: one where A is a scalar random

variable taking multiple values, and another one where A = (A1, A2) with A1 and A2

being binary. These same examples appear in the proof of Theorem 4.2.

Consider first the case where A = A1 is a scalar random variable taking values in

A1 = {0, 1, 2, . . . , ā1}. The regression in (9) simplifies to

Y = ∆longD + θ0 + θ1A1 + V . (25)

Theorem A.1 in the appendix provides general closed-form expressions for {ωl
dce(a) : a ∈
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Figure 2: Weights ωl

dce(a) as a function of p when {A|D = 1} ∼ Bi(3, 0.8), and {A|D = 0} ∼ Bi(3, 0.2)

A} and {ωl
ind(a) : a ∈ A} that, when applied to this specific example, lead to

ωl
dce(a) ∝

(

π1(a)−
Cov(D,A1)(a− E[A1])

Var(A1)(1− p)

)

, (26)

where p = P{D = 1}. From this expression it follows that any distribution of (A,D)

for which
Cov(D,A1)(a− E(A1))

Var(A1)(1− p)
> π1(a) ,

would lead to negative weights. For example, consider the case where p = 0.8, ā1 = 3,

{A|D = 1} ∼ Bi(3, 0.8), and {A|D = 0} ∼ Bi(3, 0.2), where Bi(n, π) denotes a Binomial

distribution with n trials and success probability π. In this case, ωl
dce(3) = −0.41 < 0.

Figure 2 plots the weights ωl
dce(a) as a function of p and shows that ωl

dce(3) is negative

for any p > 0.4 in this example.

Next, consider the case where A = (A1, A2) with A1 and A2 both being binary

variables, so that A = {(0, 0), (1, 0), (0, 1), (1, 1)}. The regression in (9) simplifies to

Y = ∆longD + θ0 + θ1A1 + θ2A2 + V .

The closed-form expressions for {ωl
dce(a) : a ∈ A} and {ωl

ind(a) : a ∈ A} derived in

Theorem A.1 also simplify to this case and lead to simple conditions for which

ωl
dce(1, 1) = −ωl

dce(1, 0) . (27)

That is, whenever one of the average partial causal effects gets a positive weight, the

other one necessarily gets a negative one. As an illustrative example, consider the case

16



where Cov[A1, A2] = 0,

P{D = 1} = P{A2 = 1} =
1

2
, P{A1 = 1 | D = 1} = 2P{A1 = 1} , (28)

and

P{A1 = A2 = 1 | D = 1} = P{A1 = 1, A2 = 0 | D = 1} =
1

4
. (29)

Using the expressions in Theorem A.1, we obtain ωl
dce(1, 0) = −ωl

dce(1, 1) = −0.30,

which one more time illustrates that negative weights arise naturally in settings with

non-pathological DGPs. In the proof of Theorem 4.2 we present even simpler counter-

examples that also illustrate how the weights {ωl
ind(a) : a ∈ A} are generally non-zero

and potentially negative, as well as how ωl
dce(a) may be negative without necessarily

satisfying (27).

Remark 4.5. It is important to note that, even under the stronger exogeneity condition

in Assumption 2.2, the parameter ∆long does not generally satisfy strong sign preserva-

tion as defined in Definition 3.3. Indeed, it is certainly possible that µ(1, a)−µ(0, a) > 0

for all a ∈ A and yet ∆long < 0 due to either ∆l
ind < −∆l

dce < 0 or simply ∆l
dce < 0

because of negative weights {ωl
dce(a) : a ∈ A}. This second condition implies that not

even ∆l
dce satisfies strong sign preservation and thus, in general, ∆long does not offer

much of a benefit relative to ∆short, as ∆short can at least be interpreted as a kind of

“total” effect, as discussed in Remark 4.3.

Remark 4.6. As discussed in Remark 4.1, the long regression in (9) is used extensively

in the social sciences and the mediation literature. In economics, Heckman et al. (2013,

Eq. (6)) consider a long regression in the context of a more restrictive model for potential

outcomes that are linear and separable in (d, a). More recently, Fagereng et al. (2021,

Eq. (7)) use the same mediation model from Heckman et al. (2013), in combination with

the long regression in (9), to disentangle the average causal effect on outcomes into direct

and indirect effects. The causal interpretation assigned to the estimands in these last set

of papers is correct under the modeling assumptions for potential outcomes, despite both

applications involving actions A that are multidimensional and non-mutually exclusive.

Our results, however, imply that the main conclusions from such an analysis delicately

rely on a linear model for µ(d, a) and do not generally extend to more general models

for µ(d, a).

The results in Theorem 4.2 are novel to the best of our knowledge, though there

are related results that differ in focus and scope. For example, Imai et al. (2010) study

the interpretation of the long regression popularized by Baron and Kenny (1986) under

an assumption they refer to as sequential ignorability and a linear model for potential

outcomes. We state this assumption below.

Assumption 4.1 (Sequential Ignorability). Let A(d) denote the potential outcome for
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A and assume that

(Y (d′, a), A(d)) ⊥ D | X = x (30)

Y (d′, a) ⊥ A(d) | D = d,X = x , (31)

for d, d′ = 0, 1 and all x, where in addition 0 < P{D = d | X = x} and 0 < P{A(d) =

a | D = d,X = x} for all d, x, and a.

The results in Imai et al. (2010) about the long regression in (9) invoke

(a) sequential ignorability,

(b) a scalar random variable A (though not necessarily binary), and

(c) a linear model for µ(d, a) in (d, a).

Under (a)-(c) above, Imai et al. (2010, Theorem 2) shows that ∆long identifies ζ̄ =

ζ̄(1) = ζ̄(0) where

ζ̄(d) ≡ E[Y (1, A(d))] − E[Y (0, A(d))] =
∑

a∈A

(µ(1, a) − µ(0, a))πd(a) , (32)

and the equality follows from Assumption 4.1 implying Y (d′, a) ⊥ A(d) | X = x; see

Lemma B.2 in Appendix B. The linear model for µ(d, a) implies that the difference

µ(1, a) − µ(0, a) does not depend on the value of a, and so it is just a constant that we

can denote by ζ̄ without loss of generality. The fact that ζ̄ = ζ̄(1) = ζ̄(0) then follows

from
∑

a∈A πd(a) = 1 for d ∈ {0, 1}.

The additional assumptions (a)-(c) mentioned above have implications on the con-

clusions of Theorem 4.2, which does not invoke any of these assumptions. In particular,

the linearity of µ(d, a) implies that ∆l
dce in (23) equals ζ̄

∑

a∈A ωl
dce(a) = ζ̄ by the weights

adding up to one according to Theorem 4.2. The same linearity assumption also implies

that

∆l
ind ≡

∑

a∈A

ωl
ind(a)(µ(0, a) − µ(0, 0)) ∝

∑

a∈A

ωl
ind(a)a = 0 ,

where the last equality follows from Theorem A.1 in the appendix. We conclude that

Theorem 4.2 coincides with the results in Imai et al. (2010) in delivering ∆long being

equal to ζ̄ under the additional assumption that µ(d, a) is linear in (d, a). This means

that, while sequential ignorability is a stronger assumption than Assumption 2.2 (we

prove this claim in Lemma B.1 in Appendix B), the main driving force of this result is

the linear model for the potential outcomes or, equivalently, the linear model for µ(d, a).

As we discussed in Remark 4.6, this linearity assumption has been used in economic

applications, e.g., Heckman et al. (2013); Fagereng et al. (2021), and while it imposes
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enough restrictions to provide a clean interpretation to the coefficient ∆long, our results

show that such a clean interpretation generally breaks down when µ(d, a) is not linear

in (d, a).

Remark 4.7. We note that while Theorem 4.2 is a result on how to properly interpret

∆long in the context of a long regression, Imai et al. (2010, Theorem 2) is a result on

the identification of natural indirect effects via the same type of regression and the

additional conditions in (a)-(c) above. Related to our discussion in Remark 3.2, the

natural indirect effect does not coincide with our notion of indirect effect in Theorem

4.2. To see the difference, note that the natural indirect effect, defined as δ̄(d) =

E[Y (d,A(1)) − Y (d,A(0))], can be written as

δ̄(d) =
∑

a∈A

(µ(d, a) − µ(d, 0))(π1(a)− π0(a)) , (33)

under sequential ignorability, and is distinct from ∆l
ind in (24) because ωl

ind(a) 6= π1(a)−

π0(a). Conceptually, the literature on mediation analysis defines an indirect effect as a

target parameter and then determines conditions under which such indirect effects could

be identified from the data. In contrast, we characterize the decomposition of estimands

in terms of average direct causal effects, as defined in Definition 3.2, and then group

the reminding terms as indirect or selection terms, depending on the case. We note,

however, that our indirect effects coincide with those characterized by δ̄(d) in the case

of the short regression from Section 4.1. That is, ∆s
ind in (20) equals δ(0).

4.3 Long regression with interactions

A common variant of the long regression we just study is the regression that additionally

includes the interactions between the K actions, A1, . . . , AK , and the treatment D; i.e.,

the slope coefficient ∆inter in (10). We call this the long regression with interactions. Our

main result below shows that the slope coefficient ∆inter in (10) admits a decomposition

with the same shortcomings of the one we derived for ∆long, including the possibility

of ∆inter being negative even in the absence of indirect effects. We formalize this below

and provide a proof in Appendix A.

Theorem 4.3. Let Assumption 2.2 hold and assume that the covariance matrix of

(D,A,AD) is positive definite. Then, the coefficient ∆inter in (10) admits the decompo-

sition

∆inter = ∆i
dce +∆i

ind , (34)
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where

∆i
dce ≡

∑

a∈A

ωi
dce(a)(µ(1, a) − µ(0, a)) ,

∆i
ind ≡

∑

a∈A

ωi
ind(a)(µ(0, a) − µ(0, 0)) ,

and {ωi
dce(a) : a ∈ A} and {ωi

ind(a) : a ∈ A} are as defined in Theorem A.2 and satisfy
∑

a∈A ωi
dce(a) = 1 and

∑

a∈A ωi
ind(a) = 0. Furthermore, the following statements are

equivalent:

(a) A are mutually exclusive binary variables, i.e., Aj = {0, 1} for j = 1, . . . ,K and

AjAl = 0 for all j, l = 1, . . . ,K with j 6= l.

(b) For any distribution of (A,D), ωi
dce(a) ≥ 0 for all a ∈ A.

(c) For any distribution of (A,D), ωi
ind(a) = 0 for all a ∈ A.

Theorem 4.3 is analogous to Theorem 4.2 and has very similar implications. Except

in the special case where the actions in A are all mutually exclusive binary variables,

which includes the case where A is a scalar binary variable as a special case, the term

∆i
dce could be negative even if µ(1, a)−µ(0, a) > 0 for all a ∈ A. This is because ωi

dce(a)

may be negative for some a ∈ A. As a result, ∆inter in general does not satisfy strong

sign preservation for the same two reasons ∆long did not satisfy it either. That is, (a) it

is possible that ∆i
ind < −∆i

dce, and (b) even if ∆i
ind = 0 the term ∆i

dce could be negative

by itself due to negative weights. Again, this second possibility separates ∆long and

∆inter from the short regression estimand, ∆short.

Remark 4.8. Replacing Assumption 2.2 with Assumption 2.1 leads to a decomposition

of ∆inter that introduces three changes relative to the one in Theorem 4.3. First, the term

∆i
dce becomes a linear combination of expectations that condition on {D = 1, A = a}.

Second, the interpretation of ∆i
ind becomes convoluted for the same reasons discussed

for ∆s
ind. Finally, the decomposition additionally includes a selection term that is con-

ceptually identical to ∆s
ind in the short regression. The details of these expressions are

presented in Theorem A.2 in Appendix A.

The possibility of ωi
dce(a) being negative for some a ∈ A does not rely on pathological

data generating processes and may arise in rather simple settings under reasonable

distributions for (A,D). We present simple examples in the proof of Theorem 4.3. Since

these examples are analogous to those we described in Section 4.2, we do not describe

them in detail here. We note, however, that in the example illustrated in Figure 2, the

weights ωi
dce(3) = −1.02 for all values of p.
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Remark 4.9. Similar to the long regression in in (9) that we discussed in Remarks

4.1 and 4.6, the interaction regression is used extensively in the mediation literature.

In the context of mediation analysis, this variant has been popularized and advocated

by Judd and Kenny (1981); Kraemer et al. (2002, 2008). However, the main goal in

that particular setting has been to test for the existence of mediation effects using the

estimated coefficients in (10), see Kraemer et al. (2008) for details on the proposed test

and Imai et al. (2010) for a result that shows that, under Assumption 4.1, such a test

does not provide evidence in favor or against the parameter δ̄(d) in (33) being zero.

Our results, on the other hand, imply that even in settings where mediation effects

are nuisance and the main goal is to interpret the coefficients directly related to the

treatment D, the main conclusions depend on the distribution of (A,D).

While Theorem 4.3 focuses on the properties of the estimand ∆inter, in settings with

interactions terms it is most often the case that the analyst would rather focus on the

estimand ∆inter +
∑K

j=1 λjE[Aj ] (or, simply, ∆inter +
∑K

j=1 λjaj for given values aj,

j = 1, . . . ,K). In Lemma B.4 in Appendix B we show that

∆inter+

K
∑

j=1

λjE[Aj ] =
∑

a∈A

ωi⋆
dce(a)(E[Y (1, a)−Y (0, a)])+ωi⋆

ind(a)(E[Y (0, a)−Y (0, 0)]) ,

where the “weights” {(ωi⋆
dce(a), ω

i⋆
ind(a)) : a ∈ A} may be negative in general, and thus

leading to an estimand with similar properties to those of ∆inter. The one special case

where the estimand ∆inter+
∑K

j=1 λjE[Aj ] works well is when µ(d, a) is assumed to take

the functional form

µ(d, a) = κ0 + κ1d+

K
∑

j=1

κ2,aaj + d

K
∑

j=1

κ3,jaj , (35)

which is equivalent to assume that the conditional mean of the observed outcome, Y ,

is correctly specified in the interaction regression in (10). Lemma B.5 in Appendix B

shows that ∆inter +
∑K

j=1 λjaj = µ(1, a) − µ(0, a) in this case, delivering an average

partial causal effect given a = (a1, . . . , aK), as defined in Definition 3.1. It follows from

these results that a clean interpretation of ∆inter or ∆inter +
∑K

j=1 λjaj in terms of the

definitions introduced in Section 3 essentially depends on a correctly specified linear

model for potential outcomes and does not generally apply to non-parametric models,

similarly to our results about the long regression in Section 4.2.

4.4 Strata fixed effects (SFE) regression

A lesson from Theorems 4.2 and 4.3 is that adding the other actions linearly in the

regression is attractive only when the actions are mutually exclusive. This suggests
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that if we could mechanically make the actions mutually exclusive, we could obtain

an estimand that is free from indirect effects and that satisfies strong sign preservation.

Perhaps not surprisingly, this is possible by considering the slope coefficient ∆sfe in (11),

where the regression controls for all possible values of A, i.e., {I{A = a} : a ∈ A}. We

refer to this regression as a strata-fixed effects regression, given its connection with the

standard practice of including strata fixed effects in randomized controlled trials with

covariate adaptive randomization; see Bugni et al. (2018, 2019). Our main result below

shows that ∆sfe in (11) admits a decomposition similar to the ones previously derived

for ∆short and ∆long that is free from indirect effects. This is formalized below.

Theorem 4.4. Let Assumption 2.2 hold, π1(a) be as in (13), and assume that P{A =

a} > 0 for all a ∈ A where

pa(d) ≡ P{D = d | A = a} . (36)

Then

∆sfe =
∑

a∈A

ωsfe(a)(µ(1, a) − µ(0, a)) , (37)

where the weights {ωsfe(a) : a ∈ A} are given by

ωsfe(a) ≡
π1(a)π0(a)

∑

a′∈A π1(a′)π0(a′)
, (38)

and satisfy
∑

a∈A ωsfe(a) = 1 and ωsfe(a) ≥ 0.

Theorem 4.4 shows that ∆sfe identifies an average direct causal effect as in Definition

3.2. Importantly, it does not contain indirect effects and, as a result, ∆sfe satisfies strong

sign preservation as in Definition 3.3. The weights ωsfe(a) admits a simple representation

and depend only on the conditional probabilities that the action a happens for the

treated and control group, π1(a) and π0(a). These weights are generally different than

the weights associated with the direct effect in the short regression, ∆s
dce, which are

simply π1(a), unlessD and A are independent. We emphasize that the result in Theorem

4.4 does not require the other actions, A, to be singled-valued or mutually exclusive.

Remark 4.10. Replacing Assumption 2.2 with Assumption 2.1 in Theorem 4.4 leads

to

∆sfe = ∆f
dce +∆f

sel , (39)

where, for ωsfe(a) as in (38),

∆f
dce ≡

∑

a∈A

ωsfe(a)E[Y (1, a)− Y (0, a)|D = 1, A = a] (40)

∆f
sel ≡

∑

a∈A

ωsfe(a)
(

E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]
)

. (41)
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The two terms, ∆f
dce and ∆f

sel, are directly comparable to the terms ∆s
dce and ∆s

sel in

(14). In particular, ∆f
sel is a selection term similar to ∆s

sel in (17), with the only difference

being the weights ωsfe(a) replacing π1(a).

4.5 Saturated (SAT) Regression

We now turn our attention to the last set of estimands we study in this paper; the slope

coefficient ∆sat in (12). As we have stated in the introduction, under Assumption 2.2 it

follows that µ(d, a) is immediately identified from E[Y |D = d,A = a] for any d ∈ {0, 1}

and a ∈ A and so identification of any contrast of means µ(d, a) is straightforward.

From this, it immediately follows that the same result could be achieved by running a

saturated regression, as in (12), that we re-write here for readability,

Y =
∑

a∈A

γ(a)I{A = a}+
∑

a∈A

∆sat(a)I{A = a}D + ǫ .

Standard results on saturated regressions imply that ∆sat(a) = µ(1, a) − µ(0, a) for all

a ∈ A, and so ∆sat(a) captures an average causal partial effect of D on Y for each value

of the other actions, a ∈ A, aligned with Definition 3.1. For completeness, we state

and prove this result formally in Theorem A.4 in the appendix. The same theorem also

shows that replacing Assumption 2.2 with Assumption 2.1 leads to a decomposition of

∆sat(a) that includes a selection term, as it was also the case for the other estimands

we considered.

5 Concluding Remarks

In this paper we study settings where the analyst is interested in identifying and estimat-

ing an average causal effect of a binary treatment on an outcome of interest, in instances

where the outcomes are “delayed” in the sense that they do not get immediately realized

after treatment assignment. This delay in the realization of the outcomes creates a time

window in between the treatment assignment and the realization of the outcome that,

in turn, opens up the possibility for other observed endogenous actions to take place

before the outcome is realized. In this context, we present formal results on how we can

decompose popular estimands that arise from running regressions of the outcome on the

treatment and different ways of “controlling” for the other actions and show that our

decompositions have immediate implications on how these estimands can be interpreted

in applications. All in all, our results provide a framework that allows analysts to un-

derstand under what type of conditions the practice of “controlling” for the presence of

other actions leads to estimands that admit causal and ceteris paribus interpretations.

Perhaps our most salient result is the one that shows that the most popular estimand
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that linearly controls for the other actions in the regression, with or without interactions

with the treatment, does not generally provide benefits relative to a simple regression of

outcome on treatment. Under our assumptions, however, identification of partial causal

effects immediately follows from saturated regressions.

A Proofs

Proof of Theorem 4.1. This proof follows from derivations in Section 4.1 and basic algebraic

manipulations.

Theorem A.1. Consider the long regression in (8) and let Σlong denote the variance-covariance

matrix of (A,D). Assume Σlong is positive definite and let M = Cov(D,A)Var(A)−1. Then,

∆long =
∑

a∈A

ωl
dce(a)E[Y (1, a)− Y (0, a)|D = 1, A = a]

+
∑

a∈A

ωl
ind(a)(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])

+
∑

a∈A

ωl
dce(a)(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]) , (A-1)

where

ωl
dce(a) ≡

π1(a)[Var(D)− P{D = 1}
∑K

j=1 Mj(aj − E[Aj ])]

Var(D)− Cov(D,A)Var(A)−1 Cov(A,D)

ωl
ind(a) ≡

Var(D)[π1(a)− π0(a)]− P{A = a}
∑K

j=1 Mj(aj − E[Aj ])

Var(D)− Cov(D,A)Var(A)−1 Cov(A,D)
, (A-2)

and πd(a) is defined in (13). Furthermore,
∑

a∈A
ωl
dce(a) = 1,

∑

a∈A
aωl

ind(a) = 0, and
∑

a∈A
ωl
ind(a) = 0.

Proof. Let θ ≡ (θj : j = 1, . . . ,K). By properties of projections,

E[(1, D,A′)′(Y − (∆longD + θ0 + θ′A))] = 0 . (A-3)

Profiling θ0 leads to

Cov(D,Y ) = Var(D)∆long +Cov(A,D)′θ (A-4)

Cov(A, Y ) = Cov(A,D)∆long +Var(A)θ . (A-5)

Since Σlong is positive definite, Var(A) is positive definite. Then, (A-5) implies that θ =

Var(A)−1(Cov(A, Y )− Cov(A,D)∆long). If we plug this into (A-4), we get

(Var(D)− Cov(D,A)Var(A)−1 Cov(A,D))∆long = Cov(D,Y )−M Cov(A, Y ) . (A-6)
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Since Σlong is positive definite, Cov(D,A)Var(A)−1 Cov(A,D) > 0, and so (A-6) implies that

∆long =
Var(D)∆short −

∑K

j=1 Mj Cov(Aj , Y )

Var(D)− Cov(D,A)Var(A)−1 Cov(A,D)
, (A-7)

where we used that Var(D)∆short = Cov(D,Y ). For any j = 1, . . . ,K, some algebra shows that

Cov(Aj , Y ) =
∑

a∈A

E[Y (1, a)− Y (0, a)|D = 1, A = a](aj − E[Aj ])π1(a)E[D]

+
∑

a∈A

(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])(aj − E[Aj ])P{A = a}

+
∑

a∈A

(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a])(aj − E[Aj ])π1(a)E[D] . (A-8)

Then, (A-1) follows from combining (14), (A-7), and (A-8).

To show
∑

a∈A
ωl
dce(a) = 1, consider the following derivation.

∑

a∈A

ωl
dce(a)

(1)
=

Var(D)− P{D = 1}
∑K

j=1 Mj(E[Aj |D = 1]− E[Aj ])]

Var(D)− Cov(D,A)Var(A)−1 Cov(A,D)

(2)
=

Var(D)−M Cov(A,D)

Var(D)− Cov(D,A)Var(A)−1 Cov(A,D)

(3)
= 1 ,

where (1) holds by
∑

a∈A
π1(a) = 1 and

∑

a∈A
π1(a)aj = E[Aj |D = 1], and (2) holds by

P{D = 1}(E[Aj |D = 1]− E[Aj ]) = Cov(Aj , D), and (3) holds by definition of M .

We show
∑

a∈A
ωl
ind(a) = 0 by the following derivation applied to its numerator:

Var(D)
∑

a∈A

[π1(a)− π0(a)]−
∑

a∈A

P{A = a}

K
∑

j=1

Mj(aj − E[Aj ]) = 0 ,

where the equality holds by
∑

a∈A
π1(a) =

∑

a∈A
π0(a) =

∑

a∈A
P{A = a} = 1 and

∑

a∈A
P{A =

a}aj = E[Aj ].

Finally, we show
∑

a∈A
auω

l
ind(a) = 0 for any u = 1, . . . ,K. Once again, we focus on

following derivation applied to its numerator:

∑

a∈A

au Var(D)[π1(a)− π0(a)]−
∑

a∈A

auP{A = a}

K
∑

j=1

Mj(aj − E[Aj ])

(1)
= Var(D)[E[Au|D = 1]− E[Au|D = 0]]−M Cov(Au, A)

(2)
= Cov(D,Au)− Cov(D,A)Var(A)−1 Cov(A,Au)

(3)
= 0 ,

where (1) holds by
∑

a∈A
πd(a)aj = E[Aj |D = d] for d = 0, 1, and

∑

a∈A
auP{A = a}(aj −

E[Aj ]) = Cov(Au, Aj), (2) holds by Var(D)[E[Au|D = 1] − E[Au|D = 0]] = Cov(D,Au) and

the definition of M , and (3) holds by the fact that Var(A)−1 Cov(A,Au) equals a column vector

with zeros except for a one in the uth position.

Proof of Theorem 4.2. The first part follows from Theorem A.1, which also yields
∑

a∈A
ωl
dce(a) =

1 and
∑

a∈A
ωl
ind(a) = 0. To complete the proof, we now show the equivalence between (a), (b),
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and (c).

First, we show that (a) implies (b) and (c). To this end, assume (a) holds. Then, the long

regression in (9) is equivalent to an SFE regression in (11). To see why, note that (a) implies

that A is a K dimensional vector that is either equal to 0 or equal to a canonical vector (i.e., a

vector with a 1 in only one of its coordinates and zeroes otherwise). If we then let θ(a) = θ0 for

a = 0 and θ(a) = θj for a being the canonical vector with jth coordinate equal to one, we get

θ0 + θ′A =
∑

a∈A

θ(a)I{A = a} .

Therefore, ∆long = ∆sfe and Theorem A.3 imply (b) (with ωl
dce(a) = ωf

dce(a)) and (c).

Second, we show that (b) or (c) implies (a) or, equivalently, the negation of (a) implies the

negation of (b) and the negation of (c).

Start by considering the case when K = 1. Then, (a) fails when A 6= {0, 1}. For example,

consider the case where A = {0, 1, 2} with {A|D = 1} ∼ Bi(2, 0.3), {A|D = 0} ∼ Bi(2, 0.9), and

P{D = 1} = 0.5, where Bi(n, p) denotes a Binomial distribution with n trials and probability

p. With this distribution of (A,D), the weights in (A-2) become ωl
dce ≈ [−0.1, 0.76, 0.34] and

ωl
ind ≈ [−0.14, 0.28,−0.14], and so (b) and (c) fail.

Next, consider the case when K = 2. In this case (a) can fail when (i) Aj 6= {0, 1} for

some j = 1, 2 or (ii) Aj = {0, 1} for all j = 1, 2 but A1A2 6= 0. For (i), consider {A1|D =

1} ∼ Bi(2, 0.3), {A1|D = 0} ∼ Bi(2, 0.9), P{D = 1} = 0.5, A2 ⊥ {D,A1}, and Var(A2) > 0.

The fact that A2 ⊥ {D,A1} and Var(A2) > 0 implies that A2 drops out of the expressions

in (A-2), and the example becomes identical to the one considered when K = 1, where (b)

and (c) fail. For (ii), let Ber(p) denote a Bernoulli distribution with parameter p and consider

{Aj |D = 0} ∼ Ber(0.1) and {Aj |D = 1} ∼ Ber(0.7) for j = 1, 2, with P{D = 1} = 0.5, so that

Aj = {0, 1} for j = 1, 2 and P{A1A2 = 0} ≈ 0.45. With this distribution of (A,D) the weights

in (A-2) become ωl
dce ≈ [0.34, 0.38, 0.48,−0.10] and ωl

ind ≈ [−0.14, 0.14, 0.14,−0.14], and so (b)

and (c) fail.

Finally, consider the case K > 2. Then, (a) can fail when (i) Aj 6= {0, 1} for some j =

1, . . . ,K or (ii) Aj = {0, 1} for all j = 1, . . . ,K but AjAl 6= 0 for some j, l = 1, . . . ,K with j 6= l.

In either case, we can repeat the examples used for K = 2 by adding coordinates j = 3, . . . ,K

with {Aj : j > 2} ⊥ {D, {Aj : j ≤ 2}}, and Var(Aj) > 0 for j > 2. By construction, {Aj : j > 2}

drops out of the expressions in (A-2), and the examples considered with K = 2 imply the failure

of (b) and (c).

Theorem A.2. Consider the interaction regression in (10) and let Σinter denote the variance-

covariance matrix of (A,D,AD). Assume Σinter is positive definite and letM = Cov(D,W )Var(W )−1

with W ≡ (A′, A′D)′. Then,

∆inter =
∑

a∈A

ωi
dce(a)E[Y (1, a)− Y (0, a)|D = 1, A = a]

+
∑

a∈A

ωi
ind(a)(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])

+
∑

a∈A

ωi
dce(a)(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]) , (A-9)
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where

ωi
dce(a) ≡

π1(a)
[

σ2
D − p

∑K

j=1 Mj(aj − E[Aj ])− p
∑K

j=1 Mj+K(aj − pE[Aj |D = 1])
]

σ2
D −M Cov(W,D)

(A-10)

ωi
ind(a) ≡

σ2
D(π1(a)− π0(a))−

∑K

j=1 Mjpa(aj − E[Aj ])− p
∑K

j=1 Mj+K(π1(a)aj − paE[Aj |D = 1])

σ2
D −M Cov(W,D)

,

p = P{D = 1}, pa = P{A = a}, σ2
D = Var(D), and πd(a) is defined in (13). Furthermore,

∑

a∈A
ωi
dce(a) = 1,

∑

a∈A
aωi

ind(a) = 0, and
∑

a∈A
ωi
ind(a) = 0.

Proof. Let θ = (θj : j = 1, . . . ,K), λ = (λj : j = 1, . . . ,K), and α = (θ′, λ′)′. By properties of

projections,

E[(1, D,A′, DA′)′(Y − (∆interD + θ0 + α′W ))] = 0 . (A-11)

Profiling θ0 leads to,

Cov(D,Y ) = Var(D)∆inter +Cov(W,D)′α (A-12)

Cov(W,Y ) = Cov(W,D)∆inter +Var(W )α . (A-13)

Since Σinter is positive definite, Var(W ) is positive definite. Then, (A-13) implies that α =

Var(W )−1(Cov(W,Y )− Cov(W,D)∆inter). If we plug this into (A-12), we get

(Var(D)−M Cov(W,D))∆inter = Cov(D,Y )−M Cov(W,Y ) . (A-14)

Since Σinter is positive definite, Var(D) − Cov(W,D)′ Var(W )−1 Cov(W,D) > 0 and so (A-14)

implies that

∆inter =
Cov(D,Y )−

∑K

j=1 Mj Cov(Aj , Y )−
∑K

j=1 Mj+K Cov(DAj , Y )

Var(D)−M Cov(W,D)
, (A-15)

where we used that Var(D)∆short = Cov(D,Y ). For any j = 1, . . . ,K, some algebra shows that

Cov(Aj , Y ) =
∑

a∈A

E[Y (1, a)− Y (0, a)|D = 1, A = a](aj − E[Aj ])π1(a)p

+
∑

a∈A

(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])(aj − E[Aj ])pa

+
∑

a∈A

(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a])(aj − E[Aj ])π1(a)p , (A-16)

and

Cov(DAj , Y ) = p
∑

a∈A

E[Y (1, a)− Y (0, a)|D = 1, A = a]π1(a)(aj − pE[Aj |D = 1])

+ p
∑

a∈A

(E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a])π1(a)(aj − pE[Aj |D = 1])

+ p
∑

a∈A

(E[Y (0, a)|D = 0, A = a]− E[Y (0, 0)|D = 0, A = 0])(π1(a)aj − paE[Aj |D = 1]) .

(A-17)
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By plugging in (14), (A-16), and (A-17) into (A-15), (A-9) follows.

To show
∑

a∈A
ωi
dce(a) = 1, consider the following derivation.

∑

a∈A

ωi
dce(a)

(1)
=

σ2
D − p

∑K

j=1 Mj(E[Aj |D = 1]− E[Aj ])−
∑K

j=1 Mj+Kσ2
DE[Aj |D = 1]

σ2
D −M Cov(W,D)

(2)
=

σ2
D −

∑K

j=1 Mj Cov(D,Aj)−
∑K

j=1 Mj+K Cov(D,DAj)

σ2
D −M Cov(W,D)

(3)
= 1 ,

where (1) holds by
∑

a∈A
π1(a) = 1,

∑

a∈A
π1(a)aj = E[Aj |D = 1], and σ2

D = p(1−p), (2) holds

by p(E[Aj |D = 1] − E[Aj ]) = Cov(D,Aj) and σ2
DE[Aj |D = 1] = Cov(DAj , D), and (3) holds

by definition of M .

We show
∑

a∈A
ωi
ind(a) = 0 by the following derivation applied to its numerator:

σ2
D

∑

a∈A

(π1(a)−π0(a))−

K
∑

j=1

Mj

∑

a∈A

pa(aj−E[Aj ])−p

K
∑

j=1

Mj+K

∑

a∈A

(π1(a)aj−paE[Aj |D = 1]) = 0 ,

where the equality holds by
∑

a∈A
π1(a) =

∑

a∈A
π0(a) =

∑

a∈A
pa = 1,

∑

a∈A
paaj = E[Aj ],

and
∑

a∈A
π1(a)aj = E[Aj |D = 1].

Finally, we show
∑

a∈A
auω

i
ind(a) = 0 for any u = 1, . . . ,K. Once again, we focus on

following derivation applied to its numerator:

∑

a∈A

auσ
2
D(π1(a)− π0(a))−

K
∑

j=1

Mj

∑

a∈A

aupa(aj − E[Aj ])− p

K
∑

j=1

Mj+K

∑

a∈A

au(π1(a)aj − paE[Aj |D = 1])

(1)
= σ2

D[E[Au|D = 1]− E[Au|D = 0]]−

K
∑

j=1

Mj Cov(Au, Aj)−

K
∑

j=1

Mj+Kp(E[AuAj |D = 1]− E[Au]E[Aj |D = 1])

(2)
= Cov(D,Au)−

K
∑

j=1

Mj Cov(Aj , Au)−

K
∑

j=1

Mj+K Cov(DAj , Au)

(3)
= Cov(D,Au)− Cov(D,W )Var(W )−1cov(W,Au)

(4)
= 0 ,

where (1) holds by
∑

a∈A
πd(a)aj = E[Aj |D = d] for d = 0, 1,

∑

a∈A
auP{A = a}(aj −E[Aj ]) =

Cov(Au, Aj), and
∑

a∈A
aupa = E[Au], (2) holds by Var(D)[E[Au|D = 1] − E[Au|D = 0]] =

Cov(D,Au) and p(E[AuAj |D = 1] − E[Au]E[Aj |D = 1]) = Cov(DAj , Au), (3) holds by the

definition of M , and (4) holds by the fact that Var(W )−1 Cov(W,Au) equals a column vector

with zeros except for a one in the uth position.

Proof of Theorem 4.3. The first part follows from Theorem A.2, which also yields that
∑

a∈A
ωi
dce(a) =

1 and
∑

a∈A
ωi
ind(a) = 0. To complete the proof, we now show the equivalence between (a), (b),

and (c).

First, we show that (a) implies (b) and (c). To this end, assume (a) holds. Then, the long

with interactions regression in (10) is equivalent to a SAT regression in (11). To see why, note

that (a) implies that A = {0K×1, {ej : j = 1, . . . ,K}}, where ej ∈ R
K×1 has a one in the j’th

coordinate and zero otherwise. By defining A0 = 1 −
∑K

j=1 Aj , γ(a) = θ0 and ∆sat(a) = ∆inter
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for a = 0, and γ(a) = θ0 + θj and ∆sat(a) = ∆inter + λj for a = ej with j = 1, . . . ,K, we get

∆interD + θ0 + θ′A+ λ′AD =
∑

a∈A

γ(a)I{A = a}+
∑

a∈A

∆sat(a)I{A = a}D .

Therefore, ∆inter = ∆sat(0) and Theorem A.4 imply (b) (with ωdce(0) = 1 and ωdce(ej) = 0 for

j = 1, . . . ,K) and (c).

To conclude, we now show that (b) or (c) implies (a) or, equivalently, the negation of (a)

implies the negation of (b) and the negation of (c).

First, consider the case when K = 1. Then, (a) fails when A 6= {0, 1}. For example,

if {A|D = 0} ∼ Bi(2, 0.3), {A|D = 1} ∼ Bi(2, 0.9), and P{D = 1} = 0.5, and so A =

{0, 1, 2}. By evaluating this information on (A-10), we get ωdce ≈ [0.19, 1.62,−0.81] and ωind ≈

[−0.72, 1.44,−0.72] , i.e., (b) and (c) fail.

Second, consider the case when K = 2. Then, (a) can fail when (i) Aj 6= {0, 1} for some j =

1, 2 or (ii) Aj = {0, 1} for all j = 1, 2 but A1A2 6= 0. For (i), consider {A1|D = 0} ∼ Bi(2, 0.3),

{A1|D = 1} ∼ Bi(2, 0.9), P{D = 1} = 0.5, A2 ⊥ {D,A1}, and Var(A2) > 0. The fact that

A2 ⊥ {D,A1} and Var(A2) > 0 implies that A2 drops out of the expressions in (A-10), and the

example becomes identical to the one considered when K = 1 and, thus, (b) and (c) fail. For (ii),

consider {Aj |D = 0} ∼ Be(0.3) and {Aj|D = 1} ∼ Be(0.9) for j = 1, 2, and P (D = 1) = 0.5,

and so Aj = {0, 1} for j = 1, 2 and P (A1A2 = 0) ≈ 0.25. By evaluating this information on

(A-10), we get ωdce ≈ [0.19, 0.81, 0.81,−0.81] and ωind ≈ [−0.72, 0.72, 0.72,−0.72], i.e., (b) and

(c) fail.

Finally, consider K > 2. Then, (a) can fail when (i) Aj 6= {0, 1} for some j = 1, . . . ,K

or (ii) Aj = {0, 1} for all j = 1, . . . ,K but AjAl 6= 0 for some j, l = 1, . . . ,K with j 6= l. In

either case, we can repeat the examples used for K = 2 by adding coordinates j = 3, . . . ,K with

{Aj : j > 2} ⊥ {D, {Aj : j ≤ 2}}, and Var(Aj) > 0 for j > 2. By construction, {Aj : j > 2}

drops out of the expressions in (A-10), and the examples considered with K = 2 imply the failure

of (b) and (c).

Theorem A.3. Consider the SFE regression in (11), and assume that P{A = a} > 0 and

P{D = 1|A = a} ∈ (0, 1) for all a ∈ A. Then,

∆sfe = ∆f
dce +∆f

sel , (A-18)

where

ωsfe(a) ≡
P{D = 0|A = a}P{D = 1|A = a}P{A = a}

∑

ã∈A
P{D = 1|A = ã}P{D = 0|A = ã}P{A = ã}

for all a ∈ A (A-19)

∆f
dce ≡

∑

a∈A

ωsfe(a)E[Y (1, a)− Y (0, a)|D = 1, A = a] (A-20)

∆f
sel ≡

∑

a∈A

ωsfe(a)
(

E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a]
)

. (A-21)

Furthermore, note that
∑

a∈A
ωsfe(a) = 1 and ωsfe(a) ≥ 0.
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Proof. By properties of projections,

E[Y D] = ∆sfeE[D] +
∑

a∈A

θ(a)E[I{A = a}D] (A-22)

E[Y I{A = a}] = ∆sfeE[DI{A = a}] + θ(a)P{A = a} for all a ∈ A . (A-23)

By P{A = a} > 0 for all a ∈ A, (A-23) implies that

θ(a) = E[Y |A = a]−∆sfeE[D|A = a] for all a ∈ A . (A-24)

Then, (A-22), (A-24), and some algebra imply that

E[Y |D = 1]−
∑

a∈A

E[Y |A = a]P{A = a|D = 1}

= ∆sfe

∑

a∈A

P{D = 1|A = a}P{D = 0|A = a}P{A = a}

P{D = 1}
, (A-25)

Under P{A = a} > 0 and P{D = 1|A = a} ∈ (0, 1) for all a ∈ A, (A-25) implies that

∆sfe =
P{D = 1}E[Y |D = 1]−

∑

a∈A
E[Y |A = a]P{A = a,D = 1}

∑

a∈A
P{D = 1|A = a}P{D = 0|A = a}P{A = a}

=
∑

a∈A

ωsfe(a)
(

E[Y |A = a,D = 1]− E[Y |A = a,D = 0]
)

. (A-26)

By doing algebra on (A-26), (A-18) follows. Finally, verifying
∑

a∈A
ωsfe(a) = 1 and ωsfe(a) ≥ 0

is straightforward given the definition in (A-19).

Proof of Theorem 4.4. This result follows immediately from Theorem A.3.

Theorem A.4. Consider the SAT regression in (12), and assume that P{A = a} > 0 and

P{D = 1|A = a} ∈ (0, 1) for all a ∈ A. Then, for all a ∈ A,

∆sat(a) = ∆t
dce(a) + ∆t

sel(a) , (A-27)

where

∆t
dce(a) ≡ E[Y (1, a)− Y (0, a)|D = 1, A = a] (A-28)

∆t
sel(a) ≡ E[Y (0, a)|D = 1, A = a]− E[Y (0, a)|D = 0, A = a] . (A-29)

Furthermore, under Assumption 2.2, ∆t
sel(a) = 0 and

∆sat(a) = ∆t
dce(a) = µ(1, a)− µ(0, a) . (A-30)

Proof. Fix a ∈ A arbitrarily throughout this proof. By projection,

E[Y I{A = a}] = γ(a)P{A = a}+∆sat(a)E[DI{A = a}]

E[Y DI{A = a}] = (γ(a) + ∆sat(a))E[DI{A = a}] . (A-31)
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By P{A = a} > 0, (A-31) implies that

γ(a) = E[Y |A = a]−∆sat(a)P{D = 1|A = a} (A-32)

E[Y D|A = a] = (γ(a) + ∆sat(a))P{D = 1|A = a} . (A-33)

By plugging in (A-32) on (A-33), we get

E[Y D|A = a]− E[Y |A = a]P{D = 1|A = a} = ∆sat(a)P{D = 1|A = a}P{D = 0|A = a} .

(A-34)

By (A-34) and P{D = 1|A = a} ∈ (0, 1), we get that

∆sat(a) = E[Y (1, a)|D = 1, A = a]− E[Y (0, a)|D = 0.A = a]. (A-35)

The desired result follows from adding and subtracting E[Y (0, a)|D = 1, A = 1] to (A-35).

B Auxiliary Lemmas

Lemma B.1. The following statements are true.

(a) Assumption 4.1 implies Assumption 2.2.

(b) Assumption 2.2 does not imply Assumption 4.1.

(c) Assumption 4.1 implies that Y (d̃, a) ⊥ A(d) | X for (d̃, d, a) ∈ D ×D ×A.

Proof. Part (a). For any (d̃, ã, y, a, d), we have

P{Y (d̃, ã) ≤ y,A(d) = a,D = d|X}
(1)
= P{Y (d̃, ã) ≤ y|X} P{A(d) = a|X} P{D = d|X}

(2)
= P{Y (d̃, ã) ≤ y|X} P{A(d) = a,D = d|X}

(3)
= P{Y (d̃, ã) ≤ y|X} P{A = a,D = d|X} , (B-36)

where (1) holds by (30) and (31), (2) holds by (30), and (3) holds by A(D) = A. Since

(d̃, ã, y, a, d) is arbitrary, (B-36) implies Assumption 2.2.

Part (b). Consider the following example. Assume X ⊥ (D, (A(d) : d ∈ D)′, (Y (d̃, a) :

(d̃, a) ∈ D × A)′)′, Y (d, a) = 0 for all (d, a), (A(1), A(0)) = (D,D), and D ∼ Be(0.5). Since

Y (d, a) = 0, it is independent of (D,A(D)) = (D,D). Thus, Assumption 2.2 holds. By

Y (d, a) = 0 for all (d, a) and also A(d) = D, we have Y (d̃, a) ⊥ A(d)|D, so (31) holds. However,

(Y (d̃, a), A(d)) = (0, D) 6⊥ D, and so (30) and Assumption 4.1 fail.

Part (c). For any (d̃, ã, y, a, d), we have

P{Y (d̃, ã) ≤ y,A(d) = a|X}
(1)
= P{Y (d̃, ã) ≤ y,A(d) = a|X,D}

(2)
= P{Y (d̃, ã) ≤ y|X,D} P{A(d) = a|X,D}

(3)
= P{Y (d̃, ã) ≤ y|X} P{A(d) = a|X} , (B-37)
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where (1) and (3) hold by (30), and (2) holds by (31). Since (d̃, ã, y, a, d) is arbitrary, (B-37)

implies Assumption 2.2.

Lemma B.2. Assume the conditions in Theorem 4.2, and that

µ(d, a) = κ0 + κ1d+ κ′
2a for all (d, a) ∈ {0, 1} × A (B-38)

for some constants κ0, κ1, κ2. First, the coefficients in (9) satisfy ∆long = κ1, θ0 = κ0, and

θ1 = κ2. Second, the terms in the decomposition in (22) are ∆l
dce = κ1 and ∆l

ind = 0.

Proof. Assumption 2.2 implies that E(Y |D = d,A = a) = µ(d, a) which, combined with (B-38),

implies that the conditional expectation of Y is linear in (1, a, d). From here, the first result

follows from the fact that the linear regression consistently estimates the parameters of a lin-

ear conditional expectation. The second part follows immediately from combining (B-38) with
∑

a∈A
aωl

ind(a) = 0 and
∑

a∈A
ωl
dce(a) = 1 (both shown in Theorem A.1).

Lemma B.3. The examples used in the proofs of Theorem 4.2 and 4.3 can be completed to

satisfy Assumption 4.1.

Proof. For brevity, we focus on the example in the proof of Theorem 4.2 when K = 1. A similar

argument can be made for all other examples.

Recall that the example in the proof of Theorem 4.2 when K = 1 is as follows: {A|D = 0} ∼

Bi(2, 0.3), {A|D = 1} ∼ Bi(2, 0.9), and P{D = 1} = 0.5, and so A = {0, 1, 2}. The example

is silent about X or {Y (d, a) : (d, a) ∈ D × A}, and so it is unclear whether Assumption 4.1

holds or not. We now provide one way to complete the specification of the example in a manner

compatible with Assumption 4.1.

Assume that X ⊥ ({Y (d, a) : (d, a) ∈ D ×A}, D, {A(d̃) : d̃ ∈ D}), {Y (d, a) : (d, a) ∈ D ×A}

non-stochastic and equal to {µ(d, a) : (d, a) ∈ D × A}, A(0) ∼ Bi(2, 0.3), A(1) ∼ Bi(2, 0.9),

D ∼ Be(0.5), and {A(1), A(0), D} are independent random variables. These conditions imply

that A(0)
d
= {A(0)|D = 0} = {A|D = 0} ∼ Bi(2, 0.3), A(1)

d
= {A(1)|D = 1} = {A|D =

1} ∼ Bi(2, 0.9), and P{D = 1} = 0.5, as required by the example. Next, we show that the

completed example satisfies Assumption 4.1. First, we have that (30) holds from the fact that

X is independent of the rest of the problem, {Y (d, a) : (d, a) ∈ D × A} is non-stochastic, and

A(d) ⊥ D. Second, we have that (31) holds from the fact that X is independent of the rest of

the problem and {Y (d, a) : (d, a) ∈ D ×A} is non-stochastic.

Lemma B.4. Consider the setup in Theorem 4.3 and that A is scalar. Then, the coefficients in

(10) satisfy the following decomposition:

∆inter + E[A]λ =
∑

a∈A

ωi⋆
dce(a)(E[Y (1, a)− Y (0, a)]) + ωi⋆

ind(a)(E[Y (0, a)− Y (0, 0)]) , (B-39)
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where

∆ = Var(AD)Var(A)− (Cov(DA,A))2

Ψ = 1 +
E[A]

∆
(Cov(A,DA)Cov(A,D)−Var(A)Cov(DA,D))

ωi⋆
dce(a) = Ψωi

dce(a) +
E[A]

∆
(Var(A)pπ1(a)(a− pE[A|D = 1])− Cov(A,DA)(a − E[A])π1(a)p)

ωi⋆
ind(a) = Ψωi

ind(a) +
E[A]

∆
(Var(A)p(π1(a)a− paE[A|D = 1])− Cov(A,DA)(a − E[A])pa) .

(B-40)

Moreover,
∑

a∈A
ωi⋆
dce(a) = 1 and

∑

a∈A
ωi⋆
ind(a) = 0. Furthermore, it is possible to have

ωi⋆
dce(a) < 0 and ωi⋆

ind(a) 6= 0 for some a ∈ A.

Proof. By properties of projection,

(Var(W ))−1(Cov(W,Y )− Cov(W,D)∆inter) = α = (θ′, λ′)′ .

We can use the fact that A is scalar to obtain an explicit formula for (Var(W ))−1. With this

expression in hand, we get

∆inter + E[A]λ = Ψ∆inter +
E[A]

∆
(Var(A)Cov(DA, Y )− Cov(A,DA)Cov(A, Y )) , (B-41)

By plugging in the expressions for (A-9), (A-16), (A-17) on the right-hand side of (B-41), im-

posing Assumption 2.2, we obtain (B-39) and (B-40).

By the definition of {(ωi⋆
dce(a), ω

i⋆
ind(a)) : a ∈ A} in (B-40) and repeating arguments used in

the proof of Theorem A.2, it is immediate to show that
∑

a∈A
ωi⋆
dce(a) = 1 and

∑

a∈A
ωi⋆
ind(a) = 0.

To conclude, it suffices to find an example in which ωi⋆
dce(a) < 0 and ωi⋆

ind(a) 6= 0 for some

a ∈ A. To this enc, consider an example with {A|D = 0} ∼ Bi(2, 0.9), {A|D = 1} ∼ Bi(2, 0.1),

and P{D = 1} = 0.3, and so A = {0, 1, 2}. By evaluating this information on (B-40), we get

ωdce ≈ [−0.2, 1.08, 0.12] and ωind ≈ [−0.26, 0.52,−0.26] , i.e., (b) and (c) fail.

Lemma B.5. Assume the conditions in Theorem 4.3, and that

µ(d, a) = κ0 + κ1d+ κ2a+ κ′
3ad for all (d, a) ∈ {0, 1} × A (B-42)

for some constants κ0, κ1, κ2, κ3. Then, the coefficient in (10) satisfies ∆inter = κ1, θ0 = κ0,

θ = κ2, and λ = κ3. Furthermore, the decomposition in (34) are ∆i
dce = κ1 and ∆i

ind = 0.

Proof. Assumption 2.2 implies that E(Y |D = d,A = a) = µ(d, a) which, combined with (B-42),

implies that the conditional expectation of Y is linear in (1, a, d, ad). From here, the first result

follows from the fact that the linear regression consistently estimates the parameters of a linear

conditional expectation. The second part follows from combining
∑

a∈A
aωi

ind(a) = 0 (shown in

Theorem A.2) and (B-42).
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